
Improved Layout for Data Flow Diagrams
with Port Constraints

Lars Kristian Klauske1, Christoph Daniel Schulze2,
Miro Spönemann2, and Reinhard von Hanxleden2

1 Daimler Center for Automotive Information Technology Innovations, Berlin
lars.klauske@dcaiti.com

2 Real-Time and Embedded Systems Group, Christian-Albrechts-Universität zu Kiel
{cds,msp,rvh}@informatik.uni-kiel.de

Abstract. The automatic generation of graphical views for data flow
models and the efficient development of such models require layout al-
gorithms that are able to handle their specific requirements. Examples
include constraints on the placement of ports as well as the proper han-
dling of nested models. We present an algorithm for laying out data flow
diagrams that improves earlier approaches by reducing the number of
edge crossings and bend points. We validate the quality of our algorithm
with a range of models drawn from Ptolemy, a popular modeling tool for
the design of embedded systems.

1 Introduction

With up to ten million lines of code, software-based functions account for 50–
70% of the effort in the development of automotive electronic control units [2, 24].
To keep up with the growing complexity and tightening time-to-market require-
ments, embedded software domains such as the automotive, rail or aerospace in-
dustry increasingly take advantage of graphical model-based development tools
that follow the actor-oriented approach of data flow models [10] such as Simulink
(The MathWorks, Inc.), SCADE (Esterel Technologies), ASCET (ETAS), or
Ptolemy (UC Berkeley). Herein, graphical diagrams are used as input represen-
tations for simulators, rapid prototyping systems, and code generators. Fig. 1
shows a typical data flow diagram from Simulink and reveals the basic compo-
nents of such a diagram, namely actors (also called blocks or operators), con-
nections between the actors, and ports specifying the interface of actors and the
kind of data that is transported by connections.

While it is generally assumed that graphical diagrams are more readable than
textual programs, their readability strongly depends on the diagrams’ layout.
Therefore, when creating or changing a model, an estimated 30% of a user’s time
is spent on manual layout adjustments according to Klauske and Dziobek [8]. Ad-
ditionally, interactive applications employing methods such as automatic model
generation and transformation gain importance, requiring diagram layouts to be
generated from scratch. Both of these problems imply the need for an adequate
automatic view generation using methods of graph layout.



Fig. 1. A Simulink model for engine control (example by The MathWorks, Inc.)

Contributions. In this paper, we address the problem of automatic layout of
data flow diagrams. While the difficulties of port constraints and hyperedges in
crossing reduction and edge routing, as well as some basic solutions, have already
been introduced [19, 9], we show how to further reduce the number of edge cross-
ings and bend points through the creation and handling of additional dummy
nodes and extensions of the crossing minimization phase. We also describe an
improved method to handle the layout of nested diagrams.

Outline. We begin by introducing two example applications in Sect. 2, give an
overview of related work in this area in Sect. 3, and continue by defining the
necessary mathematical notation in Sect. 4. In Sect. 5 we provide the description
of our algorithm, followed by the evaluation and its results in Sect. 6. Finally we
conclude in Sect. 7.

2 Data Flow Models

For a closer look at the application domains of our graph drawing method, we
present two exemplary modeling tools: Simulink and Ptolemy.

2.1 Simulink

Simulink is a graphical modeling language based on data flow diagrams with op-
tional Statechart diagrams encapsulated inside data flow diagram nodes. It is of
widespread use for embedded software development in the automotive domain.
Its models are used for specification, simulation, rapid prototyping, and pro-
duction code generation. Using real-world Simulink models of automotive body
control modules with a total of 40,000 nodes and 50,000 edges as our reference,
the average Simulink diagram has about 20 nodes and 30 edges, with 90% of all
models counting 60 edges or less. While large diagrams of more than 100 nodes
do exist (about 1% of our reference diagrams), they usually follow a very simple
structure with few or no potential edge crossings and only a couple of layers.



(a) Layout using a previous approach [19] (3 edge crossings, 30 edge bends)

(b) Layout using the method presented here (1 edge crossing, 14 edge bends)

Fig. 2. A Ptolemy model representing a stack (example by Edward A. Lee)

The algorithm presented in this paper can directly be applied to Simulink
diagrams: Simulink edges can be taken as hyperedges with one source and one
or more targets. Ports are arranged on the rectangular node borders, with all
output ports on one side, most input ports on the opposite side, and up to three
input ports on the remaining sides (see Fig. 1 for a typical example).

The port side and order in Simulink diagrams is always fixed, with port
positions that depend roughly linearly on the node size. For the scope of this
paper, we assume Simulink node sizes to be fixed, which results in fixed port
positions. Simulink diagrams with variable node sizes can be processed using an
LP-based edge straightening method [8, 9].

2.2 Ptolemy

Ptolemy3 is an open source modeling environment developed at UC Berkeley
that targets the modeling and semantics of concurrent real-time systems [4].
Ptolemy models are actor-oriented data flow diagrams and can contain nested
state machines (modal models). A Ptolemy data flow model of the process net-
works domain is shown in Fig. 2.

The layout algorithm presented in this paper has been integrated in the
modeling environment of Ptolemy and is now part of its official distribution.
Thereby automatic layout can be used as an aid for the creation of Ptolemy
models and for the visualization of generated or transformed models.

3 http://ptolemy.eecs.berkeley.edu/



3 Related Work

The foundations for the layout of directed graphs were laid by Sugiyama et
al. [21], who introduced the layered (a.k.a. hierarchical) approach for graph
drawing. The basic idea is to organize the nodes in subsequent layers such that
edges point from layers of lower index to those of higher index. This kind of
ordering helps to emphasize the direction of flow, which is quite natural for
data flow diagrams. Afterwards the nodes of each layer are reordered so as to
minimize the number of edge crossings. This is followed by the calculation of
suitable coordinates for node positions, and optionally by an edge routing phase.

The first contributions to the problem of integrating port constraints in the
layered approach were motivated by the layout of data structures, where cer-
tain fields of a structure may contain pointers to other structures. Gansner et
al. showed how node positioning can be extended for including offsets derived
from port positions [6]. Sander introduced the idea of handling side ports by
adding dummy nodes in order to route the respective edges [14]. The problem
of crossing minimization with port constraints was first discussed by Waddle,
who adapted the standard node ordering heuristic to consider port positions
[22]. These contributions employ FixedPos constraints with spline curve edge
routing, but they do not support inverted ports or other port constraints and
are not sufficient for the layout of data flow diagrams.

Schreiber proposed different solutions in the context of drawing bio-chemical
networks [17]. The crossing minimization phase is adapted by inserting dummy
nodes for each port and adding constraints to respect the order of ports. Side
ports are handled by routing the incident edges locally for each node, which is
done through transformation into a two-layer crossing minimization problem.
This suffices for treating FixedPos constraints, but can lead to unpleasant lay-
outs, since the number of resulting bend points is possibly higher than necessary.
This can be seen in Fig. 3(a), where the incoming edge at the South side port of
node d has two additional bend points. The approach of Siebenhaller suffers from
the same problem, because it also routes edges of side ports locally [18]. How-
ever, it supports more flexible port constraints, since constraints are associated
with individual edges instead of nodes. The consequence is that a node may have
some edges that are constrained to ports, and some that are not. The crossing
minimization problem that results from this additional degree of freedom can be
solved by reducing it to a network flow problem. This flexibility can be useful
for the layout of UML diagrams, where it is possible that only a subset of the
edges is connected to fixed points of a node, but data flow diagrams usually do
not require such mixed constraints.

A previous approach [19] for layout of data flow diagrams applied local rout-
ing not only to the side ports of a node, but also to inverted ports, which leads
to layouts such as the one shown in Fig. 3(a). Although it simplifies the crossing
minimization phase, the obvious drawback is that it cannot take into account the
global structure of the graph, and thus leads to an unnecessarily high number of
edge crossings and bend points. In this paper we therefore employ a different ap-
proach based on dummy nodes, which is able to route the feedback edge (d, c) in



a

b

c d

(a) Previous approach [19]: edges at side
ports and inverted ports routed locally
(5 edge crossings)

a

b

c

d

(b) Our proposal: edges at side ports
and inverted ports routed using dummy
nodes (1 edge crossing)

Fig. 3. Two alternatives for handling port constraints.

Fig. 3(b) with four bend points and without any crossings, as opposed to six bend
points and three crossings for the previous approach. Other previous contribu-
tions adapt the barycenter heuristic for handling different port constraints [19],
and add a specialized node placement for FixedRatio constraints [8, 9]. This
type of constraint allows changing the size of nodes in order to minimize the
number of bend points of incident edges [9].

Orlarey et al. generate data flow diagrams out of textual specifications [12].
Instead of generating a graph and applying a graph layout algorithm to it, they
derive the layout directly from an algebraic representation [11]. The composi-
tional nature of this representation implies a geometric node ordering: sequential
composition leads to horizontal order, and parallel composition leads to vertical
order. Since our contribution is based on graph representations, we will not go
into further details on the algebraic approach.

4 Definitions

A directed port-based graph consists of a finite set of nodes V and ports P , a set
of edges E ⊆ P × P connecting the ports, and a function n : P → V that maps
ports to their nodes. An edge e = (p1, p2) ∈ E is an outgoing edge of p1 and v1
and an incoming edge of p2 and v2 if v1 = n(p1) and v2 = n(p2); e is said to be
incident to p1, p2, v1, and v2. We call p1 and v1 the source of e, while p2 and v2
are called its target.

A layering of a graph is a partition L = (L1, . . . , Lk) of the nodes into layers
L1, . . . , Lk such that for all edges e with source node v1 ∈ Li and target node
v2 ∈ Lj we have i < j. If we have i ≤ j, L is called a weak layering, and an edge
connecting two nodes in the same layer is called an in-layer edge. If i < j − 1
then e is called a long edge and is split into a sequence of edges that span
only consecutive layers by adding edge dummy nodes. Each layer has a specific
ordering of its nodes which can be altered by the algorithm. The current index
of node v in this ordering is written as idx(v).

Usually ports are drawn on the border of their respective nodes. The function
side : P → {North,South,West,East} assigns ports to one of the node’s



sides. Ports with only incoming edges are called input ports and are usually
placed on the West side. Ports with only outgoing edges are called output ports
and are usually placed on the East side. Input ports that are placed on the East
side and output ports that are placed on the West side are called inverted ports.
Ports on the North or South side are called side ports.

Port constraints control how much influence a layout algorithm has over the
positioning of the ports of a node. The function cons : V → PC maps nodes to
their port constraints, with PC containing the available port constraints. They
are, in increasing order of strictness:

Free Ports may be drawn at arbitrary positions on the border of a node.
FixedSides The side is prescribed for each port, but the order of ports is free

on each side.
FixedOrder The side is fixed for each port, and the order of ports is fixed for

each side.
FixedRatio The side is fixed for each port, and the ratio between the port’s

position on the side and the side’s length is fixed.
FixedPos The exact position is fixed for each port.

Due to constraints from the application domains, we assume the graph to be
drawn such that the prevalent direction of edges is from left to right. Hence the
nodes of a layer Li are placed on a vertical line, Li+1 is drawn right of Li, and
nodes within layers are indexed from top to bottom. Other publications (e. g.
Sugiyama et al. [21]) and applications (e. g., UML diagrams) assume a top-down
drawing, but our definitions and approaches can be applied symmetrically.

5 The KLay Algorithm

The KLay Layered algorithm is part of the Kiel Integrated Environment for
Layout Eclipse RichClient (KIELER)4 project, a test bed for layout algorithms
and modeling pragmatics. The algorithm expects a set of nodes and edges as
its input and computes coordinates and bend points to arrive at a layout. It is
structurally based upon the layered approach by Sugiyama et al., being divided
into several phases as follows:

1. KLay Layered does not assume the input graph to be acyclic, which requires
the first phase to break possible cycles. This is done using the feedback arc
set algorithm proposed by Eades et al. [3]. The goal is to have the vast
majority of edges point in the same direction, so as to make the flow of data
as obvious as possible.

2. As in Sugiyama’s approach, a layer assignment phase computes a valid lay-
ering for the graph. Long edges are split into segments such that edges only
connect nodes in neighboring layers. KLay Layered provides an implemen-
tation of the network simplex layering algorithm by Gansner et al., which
minimizes the length of edges [6].

4 http://www.informatik.uni-kiel.de/rtsys/kieler/



3. The order of nodes in a layer determines the number of edge crossings.
Solving this problem is NP-complete even for two layers [7], making the use
of heuristics necessary. A popular heuristic is the barycenter approach, which
works with two layers of which one is fixed. Its nodes are assigned rank values
reflecting their order in the layer. For the free layer’s nodes, rank values are
computed based on the ranks of their fixed-layer neighbors. The nodes are
then sorted by their computed ranks to arrive at an ordering for the free
layer [21].
KLay Layered performs forward and backward sweeps through the layers,
each time randomizing the order of the sweep’s first fixed layer. After a pre-
defined number of sweeps, the result with the least number of edge crossings
is chosen.

4. The node placement phase determines the position of nodes inside each layer,
making sure not to change the ordering determined by the crossing minimiza-
tion phase. KLay Layered uses Sander’s method for node placement, which
partitions the graph’s nodes into linear segments whose elements are to be
kept on a straight line [15]. Typically, edge dummy nodes inserted to divide
long edges form a linear segment to keep long edges free of bend points.

5. While Sugiyama’s approach uses straight lines to connect nodes, KLay Lay-
ered routes edges orthogonally, with bend points set in a way that each
segment of an edge runs either horizontally or vertically. This requires the
addition of a final edge routing phase, which is based on Sander’s hyperedge
routing algorithm [16].

Having already split the algorith into five distinct phases, it is only a small
step to allow the concrete implementations to be exchanged at runtime. This
way, the algorithm can also be used for different applications. For instance, our
main implementation of the edge routing phase routes edges orthogonally, which
is the expected method for data flow diagrams. For other types of diagrams,
however, edges may be preferred to simply be straight lines, which is supported
by another—in that case rather trivial—implementation of the edge routing
phase.

We introduce an additional level of modularity by adding intermediate pro-
cessing phases before, between, and after the five main phases. During these
intermediate phases, additional modules can be executed that simplify the main
phases by factoring out shared functionality, or by reducing complex layout
problems to simpler ones that can be handled by the five main phases. Which
modules are executed depends on the graph’s features: if there are no inverted
ports, no corresponding modules need to be executed.

The remainder of this section describes our methods of handling northern
and southern ports, inverted ports, and hierarchical ports.

5.1 Side Ports

The usual case for data flow diagrams is for a node to have its input ports on
the West side and its output ports on the East side. The situation becomes



(a) A node with side ports and with
edges drawn as KLay Layered would.
Note that the local number of cross-
ings is minimal.

(b) Inserted bend dummy nodes. (solid
circles) Edge dummy nodes can be in-
serted among them without problems,
but the relative order of bend dummy
nodes must be fixed to avoid ambiguity.

Fig. 4. Side ports and how bend dummy nodes are created to handle them.

more complicated, however, once nodes are allowed to have ports on the North
or South side, also called side ports. Note that this can only happen with port
constraints set to FixedSides or higher. Previous methods transform such nodes
to the usual case, either by doing a node-local routing first [17, 19], or by adding
a dummy node for the northern and for the southern side which encapsulates the
necessary edge routing [14]. All of these approaches suffer from the problem that
long edges must be routed around edges connected to side ports, introducing
unnecessary bend points or crossings, as can be seen in Fig. 3.

Our method resembles the latter approach, but solves its limitations by al-
lowing more than one dummy node to be created for each side: if the side has
x ports, we create between dx/2e and x bend dummy nodes for those ports as
shown in Fig. 4. These dummy nodes are created just prior to crossing mini-
mization, and are removed after the last phase, inserting bend points at their
position.

This method allows edge dummy nodes to be placed between the bend
dummy nodes, which was not previously possible. However, it puts two con-
straints on the result of the crossing minimization phase: First, generated bend
dummy nodes must retain their order to avoid ambiguity due to overlapping
edges. And second, the bend dummy nodes generated for different nodes must
not be interleaved.

To satisfy these constraints, we add appropriate successor constraints on the
bend dummy nodes and remember which node they were created for. A successor
constraint is a tuple (v1, v2) ∈ V × V which requires v1 to be placed above v2
in a layer. Once an initial order is computed, violated constraints are resolved
through a method proposed by Forster [5].

Placing an edge dummy node between two bend dummy nodes causes edge
crossings usually not counted by the crossing minimization algorithm, which may
lead to inferior results. However, these crossings can be easily counted with a
time complexity linear to the number of nodes in a layer.



p

e

(a) A dummy node placed in the previ-
ous layer. The edge e needs to be recon-
nected and reversed appropriately, and
a new edge connects the dummy node
with the original target of e.

p

e

(b) A dummy node placed in the same
layer. The edge e is not reversed, but
reconnected to the dummy node. A new
edge connects the dummy node with its
original target.

Fig. 5. An inverted port and two approaches for handling it.

One limitation of this method is that the way bend dummy nodes are created
is designed to minimize edge crossings locally. Future research could go into
finding methods to also take surrounding layers into account.

5.2 Inverted Ports

With port constraints set to at least FixedSides, inverted ports may appear
in a diagram. Edges connected to inverted ports need to be routed around the
port’s node to avoid overlapping. There are two basic previous approaches to
handle this situation, both based on turning inverted ports into regular ones. The
first does so by applying node-local edge routing, as described in Sect. 5.1 [19].
The second approach handles inverted ports through the addition of a dummy
node [8, 9]. Take p to be an inverted port on the West side with an outgoing
edge e (Fig. 5(a)). Then a dummy node is added to the preceding layer, and
the source of e is changed to the new dummy node. Finally, the dummy node is
connected to p.

While the problems of the former approach have already been discussed, the
latter approach works reasonably well. However, additional work is required to
make sure that the dummy node does not take up space in its layer that could
well be used by other nodes. In particular, the inserted dummy node needs
additional handling when it is later removed, adding complexity.

KLay Layered therefore uses a different approach, illustrated in Fig. 5(b).
After the layer assignment phase, edge dummy nodes are added for edges con-
nected to inverted ports similar to the second approach. The differences are that
the dummy node is placed in the same layer, and that the dummy node does not
only have outgoing edges. One advantage of this approach is that the inserted
dummy node can be treated just like a regular edge dummy node inserted to
break long edges.

This of course comes at the cost of turning the layering into a weak layering
by the addition of in-layer edges, which has consequences for the crossing min-
imization phase. For barycenter-based algorithms, it is not immediately clear



what to do with in-layer edges. A problem arises when a barycenter value is to
be calculated for a node n1 which is connected to another node n2 in the same
layer, since n2 does not have a rank value assigned. We solve this by pretending
edges incident to n2 to also be incident to n1, and thereby effectively treating
n2 as not being there at all. This has the positive effect of making n1 and n2 be
closer together, thereby reducing the length and the possibility of crossings due
to the in-layer edge connecting them.

This approach also has consequences for cross counting. Usually, cross count-
ing algorithms only count crossings between two layers, not in the same layer.
However, a worst-case estimate for crossings caused by in-layer edges can be
easily computed in time linear to the number of ports in a layer. First, all ports
with incident edges are numbered from top to bottom. Then, for each in-layer
edge e, we calculate the difference of the numbers of the ports it connects. We
get the maximum number of ports between them whose incident edges will cause
crossings with e.

5.3 Hierarchical Ports

In order to control the complexity of large systems, data flow models are bro-
ken into hierarchically structured levels using composite actors, which are also
called submodules. Although the nested content of a composite actor is usually
displayed in a new window, it is also possible to draw it directly inside the com-
posite actor’s bounding box in the containing diagram by enlarging the bounding
box accordingly. This leads to a compound graph structure [20], where composite
actors are represented by compound nodes. This kind of visualization allows to
directly connect the ports of a composite actor with its content, thus emphasiz-
ing the flow of data across hierarchy levels. We call such ports with connections
to the inside as well as the outside hierarchical ports. Our approach regards
each compound node as a separate diagram to be laid out. The hierarchy tree
is traversed bottom-up, applying the layout algorithm to the deeper hierarchy
levels prior to the containing ones. This method requires the layout algorithm
to determine positions for hierarchical ports.

In a previous approach [19], hierarchical ports on the North or South
side were handled by routing their incident edges around a diagram’s nodes
to dummy nodes inserted into the first layer. This produced long edges and a
cluttered diagram, two problems that our new approach solves by eliminating
the need to route edges around the diagram.

With port constraints set to Free, this is staightforward. Dummy nodes are
added to the graph and placed in the first or last layer, depending on how many
outgoing and incoming edges they have. In the end, the position of hierarchical
ports can be directly inferred from where the algorithm placed their dummy
nodes.

With port constraints set to FixedSides or higher, the hierarchical equiv-
alents of side ports and inverted ports can appear. Treating hierarchical ports
assigned to the West or East side is similar to the Free case. However, for



p

Fig. 6. Inserted dummy nodes to handle hierarchical ports on the North side. Solid
circles are inserted dummy nodes the regular nodes connect to. The dashed line indi-
cates how our algorithm routes the edges to the hierarchical port p.

hierarchical ports assigned to the North or South side, some more work is re-
quired. In these cases, KLay Layered creates dummy nodes for nodes connected
to hierarchical ports to connect to instead, as shown in Fig. 6. These dummy
nodes are placed above or below all other nodes inside a layer, depending on
whether they belong to a North or South port. In a separate edge routing
phase, these dummy nodes are connected to another dummy node representing
the hierarchical port itself, the edges between them routed with the orthogonal
edge routing algorithm also used for normal edge routing. The position of the
hierarchical ports is derived from the position of their dummy node, calculated
using a force-based approach that takes the position of connected nodes into
account.

With port constraints set to at least FixedOrder, this calculation of dummy
node positions can lead to invalid results. In these cases, the positions are cor-
rected to adhere to the given hierarchical port order.

In the FixedRatio and FixedPos cases, the position of the hierarchical
ports is explicitly prescribed.

One shortcoming of this approach is that our treatment of hierarchical ports
does not take external connections into account. Thus, hierarchical ports can
be placed in a way that works well within an actor, but leads to unnecessary
crossings in the upper hierarchy levels. Ongoing research within our group aims
to solve this problem.

6 Evaluation

The quality of layouts is usually measured using a selection of aesthetics criteria,
of which the number of edge crossings and the number of bend points rank
among the most important according to Purchase et al. [13, 23]. We evaluated the
KLay Layered algorithm against its predecessor, the KLoDD (KIELER Layout of
Dataflow Diagrams) algorithm [19], comparing the number of produced crossings
and bend points. Since both are meant to be used in interactive applications



with users actively waiting for a layout to be generated, we also compared their
runtime performance.

For a visual impression, Fig. 2(b) shows a drawing created with KLay, while
Fig. 2(a) shows a drawing of the same model created with KLoDD.

We applied the algorithms to two sets of diagrams in order to evaluate the
layout quality. The first set consisted of 270 random graphs with 10 to 50 nodes
each and an average of 1.2 outgoing edges per node, which is roughly what we
find in real-world data flow diagrams. Port sides were chosen randomly: input
ports would usually be placed on the West side and output ports on the East
side, with a probability of 0.05 of this being the other way round, and with a
probability of 0.2 of a port being placed on the North or South side. For the
second set, we wanted to focus on real-world diagrams. Therefore we used a
selection of 141 models taken from the demonstration model repository of the
Ptolemy II tool developed at UC Berkeley and imported them into KIELER.
Contrary to the set of random graphs, the graph structure of most Ptolemy
models was hierarchical, with each compound node averaging 8.98 child nodes,
up to a maximum of 43 child nodes.

During the development of KLay Layered, we placed some emphasis on re-
ducing the number of bend points and thus expected it to be lower compared
to KLoDD. Due to improved crossing minimization we also expected the num-
ber of crossings to be slightly lower. The results of our quality evaluation are
shown in Fig. 7. Indeed they indicate that the number of bend points produced
by KLay Layered is almost consistently lower compared to KLoDD. Regarding
the number of crossings, the algorithms average fairly similar results, with KLay

Layered having a slight advantage for smaller diagrams.

For the performance evaluation we used randomly generated diagrams with
nearly the same characteristics as the ones already described. Since we wanted
to measure the reaction of the algorithms to both changes in the number of
nodes and changes in the number of outgoing edges per node, we used two sets
of random diagrams. For the first set, we kept the number of outgoing edges per
node between 0 and 2, generating graphs with between 10 and 10, 000 nodes. The
second set was fixed at 100 nodes, with the number of outgoing edges varying
between 0 and 15.

As for the results, we expected KLay Layered to be considerably slower than
KLoDD due to its more complex architecture. We were surprised to see that this
is not the case, as can be seen in Fig. 8. In fact, for large diagrams, KLay Layered
shows a linear correlation with the number of nodes. It does not react quite as
well to the number of outgoing edges per node, however. This is very likely due
to its extensive use of dummy nodes, which KLoDD uses more conservatively.

All in all, KLay Layered performs very well with diagrams from our applica-
tion domain and is well suited to be used in interactive applications.



10 30 50
0

60

120

180

Nodes

Be
nd

Po
int

s

(a) Number of bend points. (Random
models)

10 30 50
0

50

100

Nodes

Ed
ge

Cr
os

sin
gs

(b) Number of edge crossings. (Random
models)

4 29 54 79
0

50

100

150

200

Nodes

Be
nd

Po
int

s

(c) Number of bend points. (Ptolemy
models)

4 29 54 79
0

10

20

Nodes

Ed
ge

Cr
os

sin
gs

(d) Number of edge crossings. (Ptolemy
models)

Fig. 7. The number of bend points and the number of crossings produced by the KLay
Layered algorithm presented here (solid lines and circles) and the KLoDD algorithm,
which follows a previous approach [19] (dashed lines and crosses), applied to our set of
random graphs (a, b) and to our selection of Ptolemy models (c, d).

7 Conclusion

We presented new approaches for handling port constraints as they often appear
in data flow diagrams of actor-oriented modeling languages such as Simulink or
Ptolemy. These approaches involve the creation and special treatment of dummy
nodes. To that end, we introduced enhancements to the crossing minimization
phase of the layer-based graph layout method. Compared to previous approaches,
our contributions result in significantly lower numbers of bend points and cross-
ings for realistically sized diagrams. However, there is still room for improve-
ments, which we leave for future work:

– The layer-sweep crossing minimization approach requires a method for count-
ing the number of crossings in order to find an appropriate terminating con-
dition. While there exist efficient counting methods for plain graphs [1], these
are inaccurate when hyperedges are involved, because their actual number
of crossings is determined later in the edge routing phase [16].

– We currently treat hierarchical diagrams by recursively applying the layout
algorithm to each hierarchy level, starting with the innermost ones. This



0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

Vertices

Ex
ec

ut
ion

Ti
m

e
(m

s)

(a) Performance relative to the number of
nodes in the graph.

0 2 4 6 8 10 12
0,00

5,00

10,00

15,00

Outgoing Edges

Ex
ec

ut
ion

Ti
m

e(
s)

(b) Performance relative to the number of
outgoing edges per node.

Fig. 8. The runtime performance of KLay Layered algorithm (solid line) and the
KLoDD algorithm (dashed line), plotted against the number of nodes (a) and against
the number of outgoing edges per node (b).

procedure is not optimal when the ports of a compound node are rearranged,
since the algorithm processing the content of that node does not take into
account its external connections.

– Relation nodes are hypernodes that are used in Ptolemy to connect an ar-
bitrary number of actors. Treating these nodes in the same manner as data
flow actors leads to unsatisfying results, and it is not clear what an optimal
solution would look like.

References

1. Barth, W., Jnger, M., Mutzel, P.: Simple and efficient bilayer cross counting. In:
Goodrich, M., Kobourov, S. (eds.) Graph Drawing, Lecture Notes in Computer
Science, vol. 2528, pp. 331–360. Springer Berlin / Heidelberg (2002), http://dx.
doi.org/10.1007/3-540-36151-0_13

2. Broy, M.: Challenges in automotive software engineering. In: ICSE 06: Proceedings
of the 28th international conference on Software engineering. pp. 33–42 (2006)

3. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters 47(6), 319–323 (1993)

4. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(1), 127–144 (Jan 2003)

5. Forster, M.: A fast and simple heuristic for constrained two-level crossing reduc-
tion. In: Proceedings of the 12th International Symposium on Graph Drawing
(GD’04), LNCS, vol. 3383, pp. 206–216. Springer (2005), http://dx.doi.org/10.
1007/978-3-540-31843-9_22

6. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. Software Engineering 19(3), 214–230 (1993)

7. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods 4(3), 312–316 (1983), http://link.aip.org/
link/?SML/4/312/1



8. Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout gen-
eration for Simulink. In: Proceedings of the MathWorks Automotive Conference
(MAC’10) (2010)

9. Klauske, L.K., Dziobek, C.: Effizientes Erstellen von Simulink Modellen mit
Hilfe eines spezifisch angepassten Layoutalgorithmus. In: Tagungsband Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme VII. pp.
115–126 (2011), http://www.in.tu-clausthal.de/abteilungen/gi/Forschung/

MBEES2011/
10. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded

hardware and software systems. Journal of Circuits, Systems, and Computers
(JCSC) 12(3), 231–260 (2003)

11. Orlarey, Y., Fober, D., Letz, S.: An algebraic approach to block diagram construc-
tions. In: Actes des Journèes d’Informatique Musicale (JIM2002). pp. 151–158.
GMEM Marseille (2002)

12. Orlarey, Y., Fober, D., Letz, S.: FAUST: an efficient functional approach to DSP
programming. In: Assayag, G., Gerzso, A. (eds.) New Computational Paradigms
for Computer Music. Editions Delatour France (2009)

13. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding?
In: Proceedings of the 5th International Symposium on Graph Drawing (GD’97).
LNCS, vol. 1353, pp. 248–261. Springer (1997)

14. Sander, G.: Graph layout through the VCG tool. Tech. Rep. A03/94, Universität
des Saarlandes, FB 14 Informatik, 66041 Saarbrücken (Oct 1994)

15. Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Proceedings
of the Symposium on Graph Drawing (GD’95). LNCS, vol. 1027, pp. 447–458.
Springer (1996)

16. Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Pro-
ceedings of the 11th International Symposium on Graph Drawing (GD’03). LNCS,
vol. 2912, pp. 381–386. Springer (2004)

17. Schreiber, F.: Visualisierung biochemischer Reaktionsnetze. Ph.D. thesis, Univer-
sität Passau, Innstrasse 29, 94032 Passau (2001)

18. Siebenhaller, M.: Orthogonal Graph Drawing with Constraints: Algorithms and
Applications. Ph.D. thesis, Universität Tübingen, Wilhelmstr. 32, 72074 Tübingen
(2009)

19. Spönemann, M., Fuhrmann, H., von Hanxleden, R., Mutzel, P.: Port constraints in
hierarchical layout of data flow diagrams. In: Proceedings of the 17th International
Symposium on Graph Drawing (GD’09). LNCS, vol. 5849, pp. 135–146. Springer
(2010)

20. Sugiyama, K., Misue, K.: Visualization of structural information: automatic draw-
ing of compound digraphs. IEEE Transactions on Systems, Man and Cybernetics
21(4), 876–892 (Jul/Aug 1991)

21. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics
11(2), 109–125 (Feb 1981)

22. Waddle, V.: Graph layout for displaying data structures. In: Proceedings of the
8th International Symposium on Graph Drawing (GD2000). LNCS, vol. 1984, pp.
98–103. Springer (2001)

23. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Information Visualization 1(2), 103–110 (2002)

24. Wernicke, M.: AUTOSAR auf dem Weg in die Serie. Elektronik
Praxis 02 (2008), http://www.elektronikpraxis.vogel.de/themen/

embeddedsoftwareengineering/analyseentwurf/articles/105576/


