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Abstract. We present a new application for graph drawing in the con-
text of graphical model-based system design, where manual placing of
graphical items is still state-of-the-practice. The KIELER framework aims
at improving this by offering novel user interaction techniques, enabled
by automatic layout of the diagrams. In this paper we present extensions
of the well-known hierarchical layout approach, originally suggested by
Sugiyama et al. [22], to support port constraints, hyperedges, and com-
pound graphs in order to layout diagrams of data flow languages. A case
study and experimental results show that our algorithm is well suited for
application in interactive user interfaces.

1 Introduction

Graphical modeling languages have evolved to appealing and convenient instru-
ments for the development and documentation of systems, both in hardware and
in software. There are various examples for graphical modeling frameworks that
have become an important part of modern development processes. An important
class of modeling diagrams are data flow diagrams, which are graphical repre-
sentations of data flow models for design of complex systems. Applications of
data flow diagrams can be found in modern software and hardware development
tools. Some of these, such as Simulink (The MathWorks, Inc.), LabVIEW (Na-
tional Instruments Corporation), and ASCET (ETAS Inc.), are mainly used for
model-based design and simulation of embedded systems and digital or ana-
log hardware, while others, such as SCADE (Esterel Technologies, Inc.), are
optimized for automatic code generation from high-level system models. The
Ptolemy project [8] features data flow diagrams for actor-oriented design. All
these examples feature a graphical editor for data flow diagrams, so that users
can create diagrams in drag-and-drop manner.

Typical graphical modeling tools do not support the developer with auto-
matic diagram layout, or do so only in a rudimentary fashion. This leads to
unnecessarily high development times, as the developer has to manually adapt
the layout after each structural change of the model. In this paper we present
methods to apply the hierarchical layout approach [22] to data flow diagrams.
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Fig. 1. A data flow diagram from Simulink

We describe constraints which are imposed by such diagrams and show how to
extend existing methods to satisfy these constraints. This includes methods for
crossing reduction with port constraints and routing of directed hyperedges.

A data flow model is described by a directed graph where the vertices repre-
sent operators that compute data and the edges represent data paths [6]. Such
a data path has a specified source port where data is created and a target port
where data is consumed. A source port may be connected with multiple target
ports, thus forming a hyperedge. Furthermore, the edges of data flow diagrams
are required to be drawn orthogonally. A diagram from Simulink is shown in
Fig. 1, which demonstrates the use of ports and hyperedges.

We will proceed as follows. Port constraints, hyperedges and other special-
ties of data flow diagrams are presented in Section 2. Here, we also introduce
four scenarios of port constraints that appear frequently in our applications. Re-
lated work is discussed in Section 3. Section 4 describes our methods to handle
the special requirements of data flow diagrams within the hierarchical approach.
Results of our implementation are shown in Section 5, and we conclude in Sec-
tion 6. A much more in-depth presentation covering the full hierarchical layout
algorithm and details on its implementation can be found on-line [19, 20].

2 Port Constraints and Hyperedges

A port based graph is a directed graph G = (V,E) together with a finite set P
of ports. For each v ∈ V we write P (v) for the subset of ports that belong to
v, and we require P (u) ∩ P (v) = ∅ for u 6= v. Each edge e = (u, v) ∈ E has a
specified source port ps(e) ∈ P (u) and a target port pt(e) ∈ P (v). We write v(p)
for the vertex u for which p ∈ P (u).

A drawing of a port based graph G is a mapping Γ of the vertices, edges, and
ports ofG to subsets of the plane IR2. In general graph drawing it is sufficient that
the drawing of each edge e = (u, v) contacts the drawings of u and v anywhere
at their border. For port based graphs the drawing of each port p ∈ P (v) has
a specific position on the border of Γ (v), and the edges that have p as source
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Fig. 2. (a) A hyperedge that connects four vertices (b) The vertex Composite contains
connections to external ports, which are shown as small dark boxes on its border.

or target port may touch Γ (v) only at that position. We consider four different
scenarios for the positions of the ports P (v) on a vertex v:

FreePorts Ports may be drawn at arbitrary positions on the border of Γ (v).
FixedSides The side of Γ (v) is prescribed for each port, i. e. the top, bottom,

left, or right border, but the order of ports is free on each side.
FixedPortOrder The side is fixed for each port, and the order of ports is

fixed for each side.
FixedPorts The exact position is fixed for each port.

Mixed-case scenarios, in which some ports of a single vertex have fixed positions
and others are free, are not yet covered in our approach, because they require
very complex handling and are not needed in our applications.

A hyperedge has an arbitrary number of endpoints, thus it may connect more
than two vertices. Although there are approaches to directly handle hyperedges
[10, 17], we split all hyperedges into sets of plain edges in order to simplify the
algorithms. For this reason we consider all edges that are incident at the same
port of a vertex as parts of a single hyperedge. For example, the hyperedge
shown in Fig. 2(a) would be represented by the edges (2, 1), (2, 3), and (2, 4).
Such splitting of hyperedges is not unique if the hyperedge has multiple sources
and multiple sinks, but many data flow languages do not allow multiple sources
for hyperedges.

In data flow diagrams, each vertex may contain a nested diagram; in this
context we have to extend our notion of a graph. A compound graph or clustered
graph G = (V,H,E) consists of a set of vertices V , a set of inclusion edges H,
and a set of adjacency edges E [21]. The inclusion graph (V,H) must form a tree,
hence for each vertex v we can write Vch(v) for the set of children of v and vpar(v)
for the parent of v. For data flow diagrams the adjacency edges are only allowed
to connect vertices that have the same parent in the inclusion tree. However, we
treat the ports P (v) of each vertex v as external ports of the diagram contained
in v, and the children Vch(v) may be connected to the ports P (v) (see Fig. 2(b)).
We employ special edge routing mechanisms to properly connect the ports of a
node v with its children.



3 Related Work

Besides the context of system modeling, the term data flow diagram and its
abbreviation DFD are used in the area of structured software analysis [5]. In this
sense DFDs are used for software requirements specification and modeling of the
interaction between processes and data. Layout of DFDs has been covered by
Batini et al. [3] and Doorley et al. [7]. As DFDs have little in common with data
flow diagrams for system modeling, these layout algorithms cannot be applied
to our specific problem.

The main specialties that make layout of data flow diagrams for system
modeling more difficult than layout of general graphs are ports, hyperedges, or-
thogonal edge routing, and compound graphs. Previous work on layout with port
constraints includes that of Gansner et al. [11] and Sander [14], who gave exten-
sions of the hierarchical approach to consider attachment points of edges. These
methods are mainly designed for the special case of displaying data structures
and are not suited for the more general constraints of data flow diagrams. A
more flexible approach is chosen in the commercial graph layout library yFiles
(yWorks GmbH), which supports two models of port constraints and hyperedge
routing for the hierarchical approach3, but no details on the algorithm have been
published [23]. Either a weak port constraints model (corresponding to Fixed-
Sides) or a strong port constraints model (corresponding to FixedPorts) can
be chosen in yFiles. Other unpublished solutions to drawing with port con-
straints include ILOG JViews [18] and Tom Sawyer Visualization4. Handling of
hyperedges in hierarchical layout has been covered by Eschbach et al. [10] and
Sander [17]. Sugiyama et al. [21] and Sander [16] showed how to draw general
compound graphs, but due to the presence of external ports (see Section 2), our
requirements for compound graphs are different. We adapt the orthogonal edge
routing approach suggested by Eschbach et al. [10]; alternative approaches have
been given by Sander [15, 17] and Baburin [2].

The topic of visualization of hardware schematics is quite related to drawing
of data flow diagrams. While traditional approaches for layout of schematic dia-
grams follow the general place and route technique from VLSI design [1, 12], more
recent work includes some concepts from the area of graph drawing [9]. However,
these concepts are not sufficient for the needs of our application, since they do
not address our scenarios for port constraints, but concentrate on partitioning
and placement for large schematics and hyperedge routing.

4 Extensions of the Hierarchical Layout Approach

The hierarchical layout method is well suited for laying out directed graphs
and aims at emphasizing the direction of flow, thus expressing the hierarchy of
vertices in the graph. It was proposed by Sugiyama, Tagawa, and Toda [22] and

3 yFiles Developer’s Guide, http://www.yworks.com/
4 Tom Sawyer Software, http://www.tomsawyer.com/



Fig. 3. A layered graph with four layers and three long edges, two of which are part of
a hyperedge; the circular vertices are dummy vertices used to split the long edges.

has been extensively studied and improved afterwards. We chose the methods of
Di Battista et al. [4] and Sander [15] as a base for our implementation.

Handling of port constraints, hyperedges, orthogonal edge routing, and com-
pound graphs is not addressed in the basic versions of the hierarchical layout
algorithm. The following sections will depict our approaches to handle these
problems. In hierarchical drawings the directed edges are arranged either hori-
zontally or vertically, but only horizontal layout direction is discussed here, as
both variants are symmetric.

4.1 Assignment of Dummy Vertices

In the layer assignment phase we compute layers L1, . . . , Lk for the vertices of
the acyclic graph G using any standard method. A layering is called proper if
all edges e connect only vertices from subsequent layers. As illustrated in Fig. 3,
a proper layering is constructed from a general layering by splitting long edges
using dummy vertices. We use linear segments to organize the dummy vertices:
each vertex v in the layered graph is contained in exactly one linear segment
S(v), and a linear segment contains either a single regular vertex or all dummy
vertices created for a long edge. These linear segments are used in the vertex
placement phase to arrange the dummy vertices of each long edge in a straight
line adapting Sander’s methods [15]. In Fig. 3, the linear segment of the dummy
vertex a is S(a) = {a, c}.

We customized the linear segments approach to support hyperedges which
span multiple layers. In this case, care must be taken to merge the dummy
vertices of their corresponding point-to-point edges. For this reason we split
long edges by processing them iteratively and associating the linear segment of
their dummy vertices with their source and target port. If for any long edge
there is already a linear segment associated with its source or target port, the
dummy nodes of this linear segment are reused. An example is shown in Fig. 3,
where the long edges (1, 3) and (1, 4) share the dummy vertex b.

If the diagram contains external ports, they are also added to the layered
graph: input ports, which have only outgoing connections, are assigned to the
first layer, while output ports, which have only incoming connections, are as-
signed to the last layer. In this way the external ports can be treated as normal
vertices in the following phases of the algorithm.



4.2 Crossing Minimization

The problem of crossing minimization for layered graphs is usually solved with
a layer-by-layer sweep: choose an arbitrary order for layer L1, then for each
i ∈ {1, . . . , k − 1} optimize the order for layer Li+1 while keeping the vertices
of layer Li fixed. Afterwards the same procedure is applied backwards, and it
can then be repeated for a specified number of iterations. We will only cover the
forward sweep here, because the backward case is symmetric.

Since the standard layer-by-layer sweep is only applied to vertex positions,
we will now look at our extensions for port positions. When ports are used to
determine the source and target point of each edge, the number of crossings
does not only depend on the order of vertices, but also on the order of ports for
each vertex. For each vertex v we define port ranks for the ordered ports P (v) =
{p1, . . . , pm} as r(pi) = i. Furthermore we define extended vertex ranks so that
for each v ∈ Li and p ∈ P (v) the sum of the rank of v and the rank of p is unique.
The rank width of a vertex v ∈ Li is w(v) := 1 if v was created for a dummy
vertex of a long edge or for an external port, and w(v) := |P (v)| otherwise. The
extended vertex ranks of the ordered vertices in the layer Li = {v1, . . . , vh} are
defined as r(vj) :=

∑
g<j w(vg) for all j ≤ h.

We implemented the Barycenter method for the two-layer crossing problem:
first calculate values a(v) ∈ IR for each v ∈ Li+1, then sort the vertices in Li+1

according to these values. Let Ei(v) be the set of incoming edges of v. In our
approach, the a(v) values are determined as the average of the combined vertex
and port ranks for all source ports of incoming edges of v:

a(v) :=
1

|Ei(v)|
∑

(u,v)∈Ei(v)

(r(u) + r(ps(u, v))) . (1)

Vertices vj that have no incoming edges should be assigned values a(v) that re-
spect the previous order of vertices, thus we define a(vj) := 1

2 (a(vj−1)+a(vj+1))
if Ei(vj+1) 6= ∅ and a(vj) := a(vj−1) otherwise. By setting a(v0) := 0 and calcu-
lating the missing a(vj) values with increasing j we can assure that a(vj−1) is
always defined.

For vertices with FixedSides or FreePorts port constraints we have the
additional task of finding an order of ports for each vertex that minimizes the
number of crossings. We extend the method described above as follows: instead
of calculating values a(v) to order the vertices, calculate values a(p) to order the
ports first, then calculate

a(v) :=
1

|P (v)|
∑

p∈P (v)

a(p) . (2)

For each port p let Ei(p) be the set of edges which are incoming at that port.
Analogously to Equation 1 we define

a(p) :=
1

|Ei(p)|
∑

(u,v)∈Ei(p)

(r(u) + r(ps(u, v))) . (3)
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Fig. 4. (a) Routing between layers using vertical line segments (b) Routing around
vertices due to prescribed port positions

If there are long hyperedges that share common dummy vertices, as described
in Section 4.1, crossing reduction must be adapted to avoid inconsistencies in
the following phases. If, for example, backwards crossing reduction is performed
for the second layer of the graph in Fig. 3 while keeping the vertices of the third
layer fixed as (3, c, d), it can happen that the dummy vertex b is placed above
a because of its outgoing connection to vertex 3. This would lead to a crossing
of the edges (a, c) and (b, d), thus the corresponding linear segments {a, c} and
{b, d} could not be drawn as straight horizontal lines.

To resolve this problem, two new rules must be added for each long edge that
is split into dummy vertices v1, . . . , vk:

1. For each dummy vertex vi, i ∈ {2, . . . , k}, only one incoming connection may
be considered for crossing reduction, namely (vi−1, vi).

2. For each dummy vertex vi, i ∈ {1, . . . , k − 1}, only one outgoing connection
may be considered for crossing reduction, namely (vi, vi+1).

4.3 Orthogonal Edge Routing

In order to achieve orthogonal edge routing, each edge that cannot be represented
by a single horizontal line needs a vertical line segment (see Fig. 4(a)). A proper
order of vertical line segments is important to avoid additional edge crossings,
and grouping of hyperedges must be considered. To accomplish this, each port p
of a vertex in layer Li that contains outgoing connections to layer Li+1 is assigned
a routing slot s(p). The resulting routing slots are sorted and given appropriate
horizontal positions, and each edge that has p as source port is given two bend
points with the respective horizontal position of s(p).

We employ the basic sorting of routing slots as depicted by Eschbach et al.
[10], but have to extend it to support the different scenarios of port positions.
An additional difficulty arises when the source port of an edge is not on the right
side of the source vertex, or the target port is not on the left side of the target
vertex. In these cases additional bend points are needed to route the edge around
the vertex, as seen in Fig. 4(b). For this purpose routing slots must be assigned
on each side of a vertex, similarly to layer-to-layer edge routing. This is done



in an additional phase after crossing reduction; all edges which need additional
bend points are processed here, as well as self-loops. The rank of a routing slot
indicates its distance from the corresponding vertex. For example, the self-loop
(4, 4) in Fig. 4(b) is assigned routing slots of rank 1 on the left, bottom and right
side of vertex 4, while the edge (2, 4) is assigned a routing slot of rank 2 on the
bottom side of vertex 4.

As an output of this additional routing phase, the number of routing slots
for the top and the bottom side of each vertex v, together with the given height
of v, determines the amount of space that is needed to place v inside its layer.
This information is passed to the vertex placement phase, so that the free space
that is left around each vertex suffices for its assigned routing slots.

4.4 Compound Graphs with External Ports

For general compound graphs G = (V,H,E), the adjacency edges E are allowed
to connect vertices from different levels of the inclusion tree (V,H). As this is not
the case for data flow diagrams, we do not need to employ the special versions
of the hierarchical layout method for compound graphs [21, 16], but can follow a
simpler approach, which consists of executing the layout algorithm recursively,
starting with the leaves of the inclusion tree.

However, the presence of external ports (see Fig. 2(b)) leads to the additional
problem that edges of the nested graph may be connected to these ports, which
may be subject to any of the four scenarios of port constraints described in
Section 2. During edge routing such connections must be specially handled, in
particular if there are input ports which are not on the left side of the nested
diagram, or output ports which are not on the right side. These cases require
additional bend points, and if there are multiple edges which need to be routed
along the top or bottom side of the nested diagram, the order of these edges
must be adjusted to minimize the number of crossings. We achieve this through
similar techniques as those used for layer-to-layer edge routing.

5 Implementation and Results

An implementation of our layout algorithm is part of the Kiel Integrated En-
vironment for Layout for the Eclipse RichClientPlatform (KIELER)5. KIELER

is a platform for experimental approaches to graphical model-based design and
for combination of different aspects of graphical modeling, such as methods of
model editing, visualization of simulation, and automatic layout. Unlike its pre-
ceding project, the Kiel Integrated Environment for Layout (KIEL), which was
developed as a stand-alone Java application [13], KIELER builds on Eclipse, an
extensible platform comprised of various integrated development environments.
Our Eclipse interface enables the layout functionality for editors of the Eclipse

5 http://www.informatik.uni-kiel.de/rtsys/kieler/



(a) left: 47 edge crossings, right: 4 edge crossings

(b) left: 41 edge crossings, right: 13 edge crossings

Fig. 5. Comparison with yFiles: (a) our layout method (b) layout with yFiles

Graphical Modeling Framework (GMF)6 and hence for a wide variety of graphi-
cal editors. Since the algorithm is written in Java, it can also be used as a plain
class library outside of Eclipse.

Fig. 5(a) shows results of automatic layout in the FixedPorts scenario for
port positions. Here we see the effectiveness of our method of crossing minimiza-
tion, as the order of vertices in each layer is adapted to the fixed port positions.
Figure 5(b) shows the same diagrams with layouts created in yEd, a free graph
editor of yWorks GmbH which includes the yFiles layout library. The results
demonstrate that our layout method is comparable with the commercial library
yFiles with regard to layout with port constraints.

To test our layout algorithm in an existing modeling framework, it was inte-
grated into Vergil, the editor for Ptolemy II developed at UC Berkeley by Lee et
al. [8]. Ptolemy II is a graphical modeling tool for exploration of the semantics
of different models of computation of formalisms for embedded software design.
Its heterogeneous nature enables to mix it with models of physical phenomena
to result in full system models including the software controller and its physical
environment.

Graphical representations of Ptolemy models can be mapped almost directly
to the layout problem described in this paper. Ptolemy actors are the intercon-
nected software components represented by nodes which consume and produce
data at dedicated ports. Connections can be joined by relation vertices to ob-

6 http://www.eclipse.org/modeling/gmf/



Fig. 6. Layout of a Ptolemy II model

tain hyperedges that share a common data source. However, Ptolemy does not
yet support the setting of connection bendpoints, but dynamically routes them
internally. Additionally, the data flow of ports is sometimes bidirectional, which
results in undirected edges. As our algorithm requires directed graphs, a heuristic
chooses explicit directions for all edges first.

The Ptolemy editor Vergil is not based on Eclipse but implemented in plain
Java. Hence we used our stand-alone algorithm library and interfaced it with the
graphical drawing backend of Ptolemy. Initial results produce diagrams such as
those depicted in Fig. 6 and show that the algorithm is applicable for an impor-
tant set of real-world system modeling tools. More details about the Ptolemy
integration can be found elsewhere [20].

Measurement data for the execution time of the hierarchical layout method
are shown in Fig. 7. For graphs with about 25 000 vertices and the same number
of edges the algorithm takes less than a second, which proves its suitability for
automatic layout in a user interface environment. However, the execution time
highly depends on the average vertex degree, since layout for a graph with 2 000
vertices and 2 000 edges is 8 times faster than layout for 100 vertices and 2 000
edges. One reason for this is that for vertices with a lot of incident edges the
number of long edges that stretch over multiple layers is likely to be high, so that
dummy vertices must be inserted to obtain a proper layering. The consequence
is that the problem size rises with regard to the total number of vertices.

6 Conclusion

We introduced four scenarios of port constraints for graph drawing and presented
methods to extend the hierarchical layout approach to handle ports, hyperedges,
orthogonal edge routing, and compound graphs. These methods are implemented
in KIELER, an Eclipse based framework for research on the pragmatics of graph-
ical modeling. The results of our implementation and the low execution times
demonstrate its suitability to enhance graphical modeling tools by automatic
layout of data flow diagrams. Further work can be done to improve the layout
quality:

– Additional support for layout of edge labels.



����� ����� ����� ����	 ����

�������

�������

������

�����

�����

����������������� ���"!$#&%��('

)+*
,-
./021
3/0
4,
5+6
7

(a)

� � ��� ��� ��� ����

�	�
�

�	���

�	���

�	��

�	���

�	���

�	���

�������������������	�! "�$#&%' (��)� *��+-,��.�0/1�.�2�!�43

576
89
:;<>=
?;<
@8
A7BC

(b)

Fig. 7. Execution time for (a) varying number of vertices and one outgoing edge per
vertex (b) 100 vertices and varying number of outgoing edges per vertex

– Direct support of directed hyperedges with multiple sources and multiple
targets.

– Some data flow languages such as SCADE allow to integrate Statecharts in
their data flow diagrams. A layout algorithm should be able to handle this,
i. e. arbitrarily mix nodes with and without port constraints and hyperedges.

– Some vertices in data flow diagrams are very large, thus forcing their respec-
tive layer to be large. This could be improved by possibly stretching large
vertices over multiple layers.
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