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Abstract

Complex software systems are often modeled using data flow diagrams, in which
nodes are connected to each other through dedicated connection points called
ports. The influence a layout algorithm has on the placement of ports is deter-
mined by port constraints defined on the corresponding node.

In this paper we present approaches for integrating port constraints into the
layer-based approach to graph drawing pioneered by Sugiyama et al. We show
how our layout algorithm, called KLay Layered, progresses from relaxed to more
restricted port constraint levels as it executes, and how established algorithms
for crossing minimization and edge routing can be extended to support port
constraints. Compared to the previous layout algorithms supporting ports, our
algorithm produces fewer edge crossings and bends and yields pleasing results.

We also explain and evaluate how layout algorithms can be kept simple by
using the concept of intermediate processors to structure them in a modular way.
A case study integrating our layout algorithm into UC Berkeley’s Ptolemy tool
illustrates how KLay Layered can be integrated into Java-based applications.

Keywords: graph drawing, crossing minimization, port constraints, layered
graphs, data flow diagrams

1. Introduction

With up to ten million lines of code, software-based functions account for 50–
70% of the effort in the development of automotive electronic control units [3].
To keep up with the growing complexity and tightening time-to-market require-
ments, embedded software domains such as the automotive, rail, or aerospace in-
dustries increasingly take advantage of graphical model-based development tools
that follow the actor-oriented approach [19] such as Simulink (The MathWorks),
SCADE (Esterel Technologies), ASCET (ETAS), or Ptolemy (UC Berkeley).
Herein, graphical diagrams are used as input representations for simulators,
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(a) Layout using a previous approach [25] (3 edge crossings, 30 edge bends)

(b) Layout using the method presented here (1 edge crossing, 14 edge bends)

Figure 1: A Ptolemy model representing a stack (example by Edward A. Lee)

rapid prototyping systems, and code generators. Figure 1 shows a typical data
flow diagram from Ptolemy and reveals the basic components of such a dia-
gram, namely actors (also called blocks or operators), connections between the
actors, and ports that define the interface of actors and the kind of data that is
transported by connections.

While it is generally assumed that graphical diagrams are more readable
than textual programs, the readability of a diagram strongly depends on its
layout. Therefore, when creating or changing a model, an estimated 25% of a
user’s time is spent on manual layout adjustments according to Klauske [16].
Using graph layout algorithms to automate layout adjustments, this time can be
better spent improving the model itself instead of its graphical representation.

Since in data flow diagrams actors are connected through ports, graph layout
algorithms have to provide support for them. The position of a port relative
to its actor need not even be fixed; instead, the layout algorithm can be made
responsible for finding a good position. The degree of freedom it has in doing so
is given by port constraints placed on the actor. Traditional layout algorithms
support these requirements only in very limited ways, if at all.

Contributions. In this paper, we address the automatic layout of graphs with
port constraints, building on the layer-based approach that has already proven
successful in many domains but so far has received little attention with respect to
port constraints. We introduce a structured way for transitioning from relaxed
to restricted port constraint levels during the algorithm. We describe how the
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popular barycenter-based crossing minimization heuristic can be extended to
support ports and compare different methods for doing so. We also introduce
methods for sorting ports where their order is not fixed. We describe how
inverted ports can be handled that require connected edges to be routed around
a node. For handling north/south-side ports, we introduce layout units and a
new flexible method for dummy node creation. We also present the concept
of intermediate processors to structure layout algorithms in a modular way,
including an account of our practical experience with this concept.

As explained above, the development of the methods presented here was
primarily motivated by the desire for automatic layout of data flow diagrams
as used in embedded software development. However, our results should be
applicable to other application areas as well, such as electronic circuit diagrams
or any other graph representation with port constraints.

Outline. The rest of this section defines the necessary notation, introduces the
layer-based approach to graph drawing, and gives an overview of related work in
this area. Section 2 describes a clean approach for handling port constraint levels
in a layout algorithm. Since port constraints have large implications for crossing
minimization and edge routing, the necessary modifications are described in
depth in Sections 3 and 4. Shifting towards a more practical perspective, we
give details on the algorithm’s modular architecture and a case study describing
its integration into an existing software product in Section 5. We finish with a
detailed evaluation of the algorithm in Section 6 and conclude with Section 7.

1.1. Definitions

Let (V,E) be a directed graph and v ∈ V . We denote the set of incoming
edges of v by Ei(v) and the set of outgoing edges of v by Eo(v). The source
node of an edge e = (u, u′) is vs(e) = u, and its target node is vt(e) = u′. In
a port-based graph each edge is connected to its source and target over specific
ports. The set of ports attached to v is denoted by P (v). An edge e has a source
port ps(e) ∈ P (vs(e)) and a target port pt(e) ∈ P (vt(e)). For a port p ∈ P (v)
we write Ei(p) for the subset of incoming edges of v that have p as their target
port, and Eo(p) for the subset of outgoing edges of v that have p as their source
port. Furthermore, we define E(p) = Ei(p) ∪ Eo(p).

The drawing of a port-based graph maps each node v ∈ V to an area bounded
by a rectangle with its upper left corner at pos(v) = (x, y) ∈ R2 and its bottom
right corner at (x + w, y + h) with w, h > 0. Likewise, each port p ∈ P (v)
is mapped to a position pos(p) ∈ R2, but that position is constrained to the
boundary of the bounding rectangle of v. As a consequence, p can be assigned
to a side s ∈ {north, east, south,west} depending on which side of the bounding
rectangle of v is chosen. The vertical axis is assumed to point downwards.

Edges are drawn with series of line segments that are each determined by a
start point, an end point, and a sequence of bend points. Usually orthogonal
routing is applied to port-based graphs: all line segments are aligned either
horizontally or vertically.
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During its execution, an algorithm may add and remove additional nodes.
We distinguish such additional nodes from the nodes originally present in the
graph and call them dummy nodes and regular nodes, respectively.

Many modeling applications that use ports do not allow graph drawing al-
gorithms to modify the positions of ports relative to the node they are attached
to, i. e. pos(p)− pos(v) must be constant for each p ∈ P (v). Other applications
allow repositioning ports within certain constraints. The port constraints model
used here assigns a constraint level PC(v) to each node v, which can be chosen
from five different levels:

Free Ports can be placed at arbitrary positions on the boundary of node v.

FixedSide A side of v, denoted by side(p) ∈ {north, east, south,west}, is as-
signed to each port p ∈ P (v).

FixedOrder The side of each port is fixed, and the ports of each side have to
be placed in a specific order.

FixedRatio Each port is assigned a position, relative to the containing node
v; if v is resized, the position is scaled accordingly.

FixedPos Each port is assigned a relative position that must not be modified
by the layout algorithm.

1.2. Drawing Graphs with the Layer-Based Approach

The layer-based graph layout approach was introduced by Sugiyama et
al. [26]. Given a directed acyclic graph, this approach arranges all edges in
the same direction by organizing the nodes in subsequent layers, which are also
called hierarchies or levels in graph drawing literature. All algorithms are de-
scribed with the assumption that the main orientation of edges is from left to
right, hence the nodes of each layer are arranged vertically. While this is incon-
sistent with most of the graph drawing literature, which assumes top-to-bottom
layout [10, 26], the left-to-right layout is commonly used for data flow diagrams.

The layer-based approach solves the graph layout problem by dividing it into
five consecutive phases.

1. Elimination of Cycles. Directed cycles can be eliminated by reversing a
subset of the edges. The aim is to minimize this subset in order to have as
many edges as possible pointing in the same direction in the final drawing.
A popular algorithm for this problem is the heuristic of Eades et al. [4].

2. Layer Assignment. Nodes are assigned to layers L1, . . . , Lk such that all
edges point from layers of lower index to layers of higher index. Edges that
span more than one layer (long edges) are split with dummy nodes in order
to obtain a proper layering, where all edges connect nodes placed in con-
secutive layers. The number of required dummy nodes can be minimized
efficiently with the algorithm of Gansner et al. [10].
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3. Crossing Minimization. The nodes of each layer Li are ordered with the
goal of minimizing the number of edge crossings that can occur between
pairs of layers. The barycenter heuristic, proposed by Sugiyama et al. [26],
is very simple, fast, and gives reasonably good results [15].

4. Node Placement. The nodes of each layer Li are assigned vertical positions
according to the order determined in the previous step. Positions should
be chosen such that the edges can be drawn as straight as possible, e. g.
with the method of Sander [21] or the method of Brandes and Köpf [2].

5. Edge Routing. This final phase adds bend points to edges, depending
on the desired routing style. Methods for orthogonal routing that also
support hyperedges (edges connecting multiple ports) have been proposed
by Eschbach et al. [7] and Sander [22].

The barycenter heuristic for crossing minimization is an important basis for the
extensions proposed in this paper. It reduces the ordering problem to consider
only two layers La and Lb at a time, where La is kept fixed and Lb is reordered.
In the following, we assume that La is left of Lb in the ordering of layers; thus we
consider only the set Ei of incoming edges of the nodes in Lb, but the symmetric
case can be computed in the same way by considering the set Eo of outgoing
edges of the nodes in La. For each node v ∈ La, let r(v) be its position in the
fixed order of La. The barycenter value for each node w ∈ Lb is defined by

b(w) =
1

|Ei(w)|
∑

(v,w)∈Ei(w)

r(v) , (1)

that is the average position of the connected nodes in La. The order of Lb is ob-
tained by sorting the contained nodes by their barycenter values. The barycenter
method can be used to order all layers using the layer sweep algorithm:

1. Determine a random order for the nodes of L1.

2. Repeat for i = 2, . . . , k: Reorder the nodes of Li to reduce the number of
crossings of edges with their source in Li−1 and their target in Li.

3. Repeat for i = k−1, . . . , 1: Reorder the nodes of Li to reduce the number
of crossings of edges with their source in Li and their target in Li+1.

4. Repeat steps 2 and 3 until the total number of crossings is not further
reduced.

Generally the result of the layer sweep algorithm can be improved by repeating
it with different random initial orderings, and then selecting the result that
produced the least number of edge crossings. This selection process as well as
step 4 of the layer sweep algorithm require a method for counting the number
of crossings that result from a given layering. There are simple and efficient
algorithms for counting crossings, e. g. the algorithm of Barth et al. [1].

More details on layer-based layout are reported by Healy and Nikolov [14].

1.3. Related Work

The first contributions to the problem of integrating port constraints in the
layer-based approach were motivated by the layout of data structures, where
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certain fields of a structure may contain pointers to other structures. Gansner
et al. showed how node positioning can be extended for including offsets derived
from port positions [10]. Sander introduced the idea of handling side ports by
adding dummy nodes in order to route the respective edges [21]. The problem of
crossing minimization with port constraints was first discussed by Waddle, who
adapted the barycenter heuristic to consider port positions [28]. These contri-
butions employ FixedPos constraints with spline curve edge routing, but they
do not support inverted ports or other port constraints and are not sufficient
for the layout of data flow diagrams. Basic approaches for handling multiple
levels of port constraints were proposed by Spönemann et al. [25].

Schreiber proposed different solutions in the context of drawing bio-chemical
networks [23]. The crossing minimization phase is adapted by inserting dummy
nodes for each port and adding constraints to respect the order of ports. Side
ports are handled by routing the incident edges locally for each node, which is
done through transformation into a two-layer crossing minimization problem.
This suffices for treating FixedPos constraints, but can lead to unpleasant lay-
outs since the number of resulting bend points is possibly higher than necessary
(see Section 4). The approach of Siebenhaller suffers from the same problem
because it also routes edges of side ports locally [24]. However, it supports more
flexible port constraints by associating them with individual edges. The conse-
quence is that a node may have some edges that are constrained to ports, and
some that are not. This flexibility can be useful for the layout of UML diagrams,
where it is possible that only a subset of the edges is connected to fixed points
of a node. The crossing minimization problem that results from this additional
degree of freedom can be partly solved by reducing it to a network flow prob-
lem. The extension of our approaches to consider such mixed constraints is not
required for most data flow languages and is left for future research.

Klauske and Dziobek introduced a specialized node placement for Fixed-
Ratio constraints [16, 17] in the context of the Simulink modeling language.
Their approach is an extension of the linear program for node placement pro-
posed by Gansner et al. [10]. This extension does not only determine vertical
positions for the nodes, but also modifies their height in order to find an optimal
placement of ports.

Gutwenger et al. introduced the concept of embedding constraints for model-
ing the port constraints of a node [12], but that model captures only the order of
ports, and not their concrete positions. Such constraints are used in the context
of planarization based layout, e. g. the topology-shape-metrics approach [27].
Harrigan and Healy applied embedding constraints to level planarization [13],
which consists in finding a planar subgraph respecting a given layer assignment.

Klauske et al. proposed a new approach in which edges connected to north/
south-side ports are routed through dummy nodes that are allowed to be in-
terleaved with dummy nodes of long edges, giving more freedom to the edge
routing [18]. However, the order of the dummy nodes is fixed and minimizes
crossings only locally. This approach is compared with a new approach that
does not fix the order of the dummy nodes in this paper. For handling inverted
ports, Klauske et al. also introduced the concept of in-layer edges that connect
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FREE FIXEDSIDE FIXEDORDER
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FIXEDPOS

before / after
phase 1

after
phase 3

before / during / after
phase 4

during
phase 4

Figure 2: Overview of port constraint level transitions in the five phases of the layer-based
layout approach. Nodes can start at all constraint levels depending on user preferences or
requirements imposed by the diagram language, but will always be transitioned to FixedPos
once the layout algorithm has finished.

two nodes in the same layer, and described the algorithmic modifications nec-
essary to support them. Finally, Klause et al. introduced a way for structuring
layout algorithms in a modular way, allowing them to dynamically adapt to
different layout tasks. We follow this up in this paper with an account of our
practical experience with this concept after having made extensive use of it.

2. Handling Port Constraint Levels

Let v ∈ V be a node and PC(v) be the port constraint level of v. The basic
principle for handling this constraint level is to lift it to stricter values as we
progress through of the five phases of the layer-based approach. One important
goal is to modify the algorithms employed in the five phases as little as possible,
and to realize most of the extensions in additional preprocessing or postprocess-
ing algorithms (see Section 5.1). This allows a modular implementation with
a clear separation of concerns and helps to tame the complexity of the prob-
lems related to port constraints. In this section, we examine the transitions of
constraint levels, of which an overview is given in Figure 2.

Free → Fixed Side. If PC(v) = Free, all ports can be aligned to the main
layout direction of the edges, which we assume to be left-to-right throughout
this paper. This means that ports with incoming edges can be placed on the
west side of v, while ports with outgoing edges can be placed on the east side.
However, in the rare case that a port p has both incoming and outgoing edges,
a compromise has to be found by comparing the number of edges:

• If |Ei(p)| − |Eo(p)| > 0, assign the side s(p) = west.

• If |Ei(p)| − |Eo(p)| < 0, assign the side s(p) = east.

• If |Ei(p)| − |Eo(p)| = 0, choose an arbitrary side.

The transition to fixed sides must be done before the crossing minimization
phase since the decision which side to assign to each port has an impact on
the number of edge crossings. If the transition is done before the cycle elimi-
nation phase, the edges incident to each node are consistently attached west or
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1 2

(a) Before cycle elimination

1 2

(b) After cycle elimination

Figure 3: Transition from Free port constraints to FixedSide before or after the cycle elim-
ination phase.

1 2

3

(a) Even distribution

1 2

3

(b) Local adjustment

1 2

3

(c) Scaling of node size

Figure 4: Different methods for port placement: (a) even distribution on the node sides, (b)
local adjustments to eliminate edge bends, and (c) scaling of node height with FixedRatio
port constraints.

east depending on whether they are incoming or outgoing (see Figure 3a). In
contrast, if the transition is done after cycle elimination, some edges may be
reversed, hence they are attached to the opposite sides (see Figure 3b). The
variant shown in Figure 3a emphasizes more clearly the flow represented by the
edges, but the variant in Figure 3b is more compact. Therefore both options
are valid and should be available in an implementation.

Fixed Side → Fixed Order. If PC(v) = FixedSide after the nodes of each layer
have been ordered, it is necessary to order the ports on each side of v such that
the number of crossings is minimized. Since v can contain arbitrarily many
ports and each port can have arbitrarily many incident edges, the port ordering
problem is equivalent to the two-layer crossing minimization problem where one
layer is free and the other is fixed. As a consequence, ordering the ports of a node
optimally is NP-hard [11], but reasonably good solutions can be found with an
adapted version of the barycenter heuristic for two-layer crossing minimization.
The adapted heuristic is described in Section 3. If dummy nodes are used to
route edges connected to certain node sides, the order of these dummy nodes
must be considered when sorting ports, which is described in Section 4.

Fixed Order → Fixed Position. If PC(v) = FixedOrder, the final constraint
level transition consists in setting concrete coordinates for each port. A straight-
forward method for this is to distribute the ports evenly on the boundary of v
before the node placement phase (phase 4 of the layer-based approach). Then
the node placement algorithm is responsible for considering these relative port
coordinates in order to straighten the edges as much as possible.
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Fixed Ratio → Fixed Position. The case PC(v) = FixedRatio only makes
sense if the layout algorithm is allowed to modify the size of v, which is an
extension to the layout problem that is outside the scope of this paper. It
is particularly helpful for modeling languages/tools where the port position is
derived from node sizes, as is, for example, the case in Simulink. Let p be a
port with initial position (x, y) relative to v. If the height of v is scaled by a
factor λh and p is on the east or west side, the vertical position of p is scaled
accordingly to y′ = λhy. This behavior can be exploited for minimizing the
number of edge bends: in Figure 4c, the height of node 1 is increased such that
the distance between the two topmost ports equals the port distance of node 2,
eliminating the bends of the connecting edges that are seen in Figure 4a. Node
sizes can be optimized for edge straightening using the node placement method
of Klauske and Dziobek [16, 17].

3. Crossing Minimization with Port Constraints

Extending the crossing minimization phase to consider port constraints is
crucial since the number of crossings does not depend only on the order of
nodes, but also on the order of ports for each node. We show how to modify the
barycenter heuristic used in the layer sweep algorithm [26] such that it includes
the port order in its calculations.

Let La be the fixed layer and Lb be the free layer to be reordered. For each
node v ∈ La, let P ′(v) ⊆ P (v) be the subset of ports that have connections
to nodes in Lb. For each port p ∈ P ′(v), we require a rank value r(p) that is
defined in Section 3.1. We redefine the barycenter value of a node w ∈ Lb by

b(w) =
1

|Ei(w)|
∑

e∈Ei(w)

r(ps(e)) . (2)

Here the source port ps(e) of incoming edges e is considered instead of the source
node. Outgoing edges can be processed symmetrically by using the target port
pt(e) and the set of outgoing edges Eo(w) in the calculation above, which is
necessary for backwards sweeps of the layer sweep algorithm. The resulting
barycenter values are used for sorting the nodes of Lb in the same way as for
graphs without ports.

3.1. Port Ranking

The remaining question is how to determine the rank r(p) for each port p in
La. Waddle proposed to use the actual coordinates of the ports [28], but that
can only be done if the port constraints are set to FixedPos since for the other
constraint levels the port coordinates are set after the crossing minimization
phase has finished. Another option is to determine an index of p considering all
other ports in the layer La, which we call the layer-total approach.

Let vi ∈ La = {v1, . . . , v|La|} be a node in the ordered layer. At first we
assume all port orders to be fixed, so let pj ∈ P ′(vi) = {p1, . . . , p|P ′(vi)|} be a
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p1 p2 p3
p4
p5
p6

p7p8p9
p10

p11

p12

(a) Outgoing edges

p1 p2 p3
p4
p5
p6

p7p8p9
p10

p11

p12

(b) Incoming edges

Figure 5: Edge order for outgoing edges (for forward layer sweeps) and incoming edges (for
backwards layer sweeps). Taking a set of ports indexed in clockwise order, outgoing edges
are ordered clockwise starting with the leftmost north-side port, while incoming edges are
ordered counter-clockwise starting with the rightmost north-side port. For inverted ports, i. e.
west-side ports in (a) and east-side ports in (b), two alternative routings are feasible, either
above or below the node, but this cannot be decided locally (see Section 4).

port in the ordered port set of vi. As a convention, we assume this order to be
clockwise, starting with the leftmost port on the north side of vi. As shown in
Figure 5a, this convention corresponds to the expected order of outgoing edges of
vi, hence it can be applied to forward layer sweeps. Backwards sweeps are based
on the incoming edges and require a different order, namely counter-clockwise
starting with the rightmost port on the north side (see Figure 5b). Let g be the
greatest index such that p1, . . . , pg are all assigned to the north side of vi. Then
the edge order is induced by o(pj) = j for forward layer sweeps, o(pj) = g−j+1
for backwards layer sweeps if j ≤ g, and o(pj) = g + |P ′(vi)| − j + 1 otherwise.
Let range(vk) = |P ′(vk)| be the range of port ranks occupied by a node vk ∈ La

with fixed port order. We define the layer-total rank of pj as

rLT(pj) =

(∑
k<i

range(vk)

)
+ o(pj) , (3)

which gives unique integer rank values for all ports in La. With this kind of
ranking, nodes with many ports occupy a greater range of ranks than nodes
with few ports.

An alternative is to assign each node an equal range of 1, which we call the
node-relative approach:

rNR(pj) = i+
o(pj)

range(vi) + 1
, (4)

where again i is the node index and j is the port index.
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v1

v2

v3

v4

v5

v6

4
5

3

2
1

6

1.33
1.66

2.25
2.5
2.75

3.5

rLT rNRLa Lb

Figure 6: Ranks computed with the layer-total (rLT) and the node-relative (rNR) methods.
The barycenter values for the layer-total ranks are b(v4) = 3.5, b(v5) = 3.33, and b(v6) = 4,
which results in the node order (v5, v4, v6). In contrast, the node-relative ranks produce
b(v4) = 2.21, b(v5) = 2.36, and b(v6) = 2.5, resulting in the node order (v4, v5, v6). With
both variants the drawing has 5 edge crossings.

Both the layer-total and the node-relative ranking approach are very effective
for crossing minimization with ports. See Section 6.2 for an evaluation of the
two approaches. An example illustrating their operation is shown in Figure 6.

The two port ranking methods can be adapted to port constraint levels that
do not imply a specific order of ports. The basic idea is to create groups of
ports of which the order can be chosen freely, and to assign the same rank value
to all members of a group. As described in Section 2, all nodes with constraint
level Free are set to FixedSide before or after phase one of the layer-based
approach, hence we need to consider only the case FixedSide as alternative to
the constraint levels with fixed port order. Since in our model each node can be
assigned an individual port constraint, both rank calculation methods must be
extended such that the rank of each port of a node v can be calculated differently
than that of ports of other nodes. We denote the set of non-empty sides of v
with Sv, i. e. s ∈ Sv if there exists a port p ∈ P ′(v) such that side(p) = s. Now
we redefine the range of ranks occupied by v by

range(v) =

{
|Sv| if PC(v) = FixedSide,
|P ′(v)| otherwise.

Given a node vi ∈ La for which PC(vi) = FixedSide, all ports p ∈ P ′(vi) that
are assigned to the same side of vi are also given the same rank value. The four
sides {s1, s2, s3, s4} are ordered in the same way as already done for fixed-order
constraints (see Figure 5). For forward layer sweeps, it is s1 = north, s2 = east,
s3 = south, and s4 = west, while for backwards layer sweeps, it is s1 = north,
s2 = west, s3 = south, and s4 = east. For each side s, let σ(s) = 1 if s ∈ Sv and
σ(s) = 0 otherwise. Furthermore, let p ∈ P ′(vi) be a port and side(p) = sj be
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its assigned side. The edge order for FixedSide constraints is induced by

o(p) =

∑
k<j

σ(sk)

+ 1 .

By applying these new definitions of the range and edge order functions to
Equations 3 and 4 we obtain new versions of the layer-total and node-relative
ranking methods that assume an arbitrary order of ports on each side.

3.2. Counting Crossings

In order to effectively use the port-aware barycenter heuristic in the layer
sweep algorithm for crossing minimization, we need a method for counting the
number of crossings with proper consideration of port orders (see Section 1.2).
In a properly layered graph, two edges can cross only if their source and target
nodes are in the same layers. As a consequence, the total number of crossings
can be determined as the sum of the crossings counted for each pair La, Lb of
consecutive layers.

Let A be an algorithm for counting the number of crossings of edges con-
necting nodes in La with nodes in Lb. We can extend this to consider port
constraints by replacing each node v with fixed port order by a set of nodes
v1, . . . , v|P (v)| according to the ports P (v) = {p1, . . . , p|P (v)|}. In a similar way,
we replace each node v′ with FixedSide constraint by nodes v′n, v

′
e, v
′
s, v
′
w rep-

resenting the groups of ports located on each of the four sides of v′. After this
transformation we execute algorithm A, which possibly results in a higher num-
ber of crossings as compared to the unmodified version. A good choice for A is
the algorithm of Barth et al. [1].

3.3. Sorting Ports

Nodes for which the order of ports is not prescribed have to be processed
after an ordering of all layers has been determined. The goal is to find an
order of ports with minimal number of edge crossings. Siebenhaller presented
an approach for ordering free edges at nodes that can also have fixed edges
by transforming the problem into a flow network and finding a minimum cost
flow [24, Section 4.5.1.2]. In our model of port constraints this mixed scenario
is not allowed, thus the ports of a node are all subject to the same ordering
constraint. According to Section 2 only the case FixedSide has to be considered
for crossing minimization since for nodes with fixed port order the port ordering
step is skipped, and the Free constraint level is processed earlier.

Let v be a node with FixedSide constraint. In order to find a suitable
ordering of the ports of v we apply an adapted variant of the barycenter heuristic.
Each port p ∈ P (v) is assigned a barycenter value b(p) defined by

b(p) =
1

|E(p)|

 ∑
e∈Eo(p)

r(pt(e)) −
∑

e∈Ei(p)

r(ps(e))

 . (5)
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rLT
1

2
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4

1

2

3

4

rLT

Figure 7: Ranks of ports connected by outgoing edges of v (right layer) conform to the
clockwise order of ports around v. Ranks of ports connected by incoming edges (left layer),
however, are contrary to that clockwise order.

Then the ports P (v) are sorted with a primary and a secondary key: the primary
key is the side assigned to each port, and the secondary key is the barycenter
value. The ranks r(ps(e)) and r(pt(e)) are computed in the same way as previ-
ously described for the ordering of layers. Note that the barycenter calculation
for ports considers ranks for incoming edges as well as outgoing edges. The
ranks of incoming edges are considered with a negative sign because the order
of the corresponding ports is contrary to the convention that the ports of v are
ordered clockwise around v (see Figure 7). Usually a port has either incoming
or outgoing edges, but not both, hence one of the two sums in Equation 5 is
zero. Since fixing the order of P (v) influences the ranks of these ports, care
must be taken to properly update the rank values. The process of sorting ports
for the whole graph is outlined in Algorithm 1.

Algorithm 1: Sorting ports

Input: a graph with layers L1, . . . , Lk

for i = 1 . . . k do
if i < k then

Compute ranks of the ports in Li+1

for each v ∈ Li do
if PC(v) = FixedSide then

for each p ∈ P (v) do
Compute the barycenter b(p)

Sort P (v) by assigned sides and barycenter values
PC(v)← FixedOrder

// Rank values may now be different due to updated constraints.
Recompute ranks of the ports in Li
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A problem with the approach of using the ranks of both the preceding and
the subsequent layer in the barycenter calculation is that the rank values of the
two layers are determined independently of each other, and thus it makes little
sense to compare them with each other in the sorting algorithm. We solve this
problem using preprocessing techniques, as a consequence of which all outgoing
edges of a node are incident to ports on the east side, and all incoming edges are
incident to ports on the west side. This property ensures that only ranks of ports
from the same layer are compared with each other by the sorting algorithm.

4. Edge Routing with Port Constraints

The way an edge incident to a node v should be routed depends on the side
to which the edge is connected, and whether it is an incoming or an outgoing
edge. We call a port p ∈ P (v) regular if either side(p) = east and Ei(p) =
∅, or side(p) = west and Eo(p) = ∅. For instance, all ports in Figure 7 are
regular and thus conform to the left-to-right orientation of edges. In contrast,
we call p an inverted port if either side(p) = east and Ei(p) 6= ∅, or side(p) =
west and Eo(p) 6= ∅. If all ports are regular, we can apply standard routing
methods [7, 22]. If we have inverted ports or north/south-side ports, however,
the standard methods are not sufficient and additional bend points are required
(see Figure 5).

In previous contributions for handling north/south-side ports, the affected
edges of a node v were replaced by dummy nodes constrained to be placed next
to v. Hence, the edges are routed locally around v without allowing other edges
to be routed in between [21, 23, 24, 25]. We call this the local approach for
routing with port constraints. As the term suggests, the approach restricts the
routing of edges to a specific area surrounding the node v and does not take the
global graph structure into account. Such a local routing is also implied by the
edge order function o(p), p ∈ P (v), defined in Section 3.1. Figure 5 reveals that,
according to this order function, edges incident to inverted ports are always
assumed to be routed below the node. This is not always a good choice since
in some cases routing above the node would yield a more readable drawing.
Furthermore, the local approach does not allow other nodes to be placed inside
the reserved routing area surrounding v.

We propose a global routing approach which is based on the idea of represent-
ing edge segments by dummy nodes that can be placed with certain constraints
during the crossing minimization phase [16, Section 3.3.4]. This approach allows
a more flexible arrangement of edge segments in order to increase the freedom
for minimizing edge crossings and bends. The graph shown in Figure 8 has 5
crossings and 17 bends when drawn with the local approach, but only 1 cross-
ing and 11 bends when drawn with our global approach. This is mainly due
to two properties of our global method that are exploited in the example: the
feedback edge (4, 3) is drawn above instead of below the nodes, and the edge
(1, 4) intersects the area between node 3 and the bend point of edge (2, 3). In
contrast, the local method first fixes the routing of the edges (1, 3), (2, 3), and
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(a) Local: 5 crossings, 17 bends
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(b) Global: 1 crossing, 11 bends

Figure 8: Two approaches for routing edges subject to port constraints: (a) the local approach
reserves an exclusive area around each node without regard to the structure of the graph, while
(b) the global approach generates dummy nodes that can be placed with constraints that are
less strict, and thus enables solutions with fewer edge crossings and bends.

u v

(a) An edge with inverted ports

u v

wu wv
eu

euv ev

(b) Dummy nodes inserted into (u, v)

Figure 9: An edge (u, v) connecting inverted ports is split with dummy nodes wu and wv .
The new edges eu = (u,wu) and ev = (wv , v) are in-layer edges.

(4, 3) locally around node 3 and thereby prevents edge (1, 4) to run between the
edges (1, 3) and (2, 3).

More details on the global routing approach are given in the remainder of
this section.

4.1. Inverted Ports

The basic scheme for handling inverted ports is illustrated in Figure 9: given
an edge e = (u, v) for which the source port ps(e) is inverted, a dummy node
wu is inserted in the same layer as u, and e is split into eu = (u,wu) and
euv = (wu, v). If the target port pt(e) is inverted, a dummy node wv is inserted
in the same layer as v, and e is split into euv = (u,wv) and ev = (wv, v). If
both ps(e) and pt(e) are inverted, as shown in Figure 9b, the edge sequence
replacing e is eu = (u,wu), euv = (wu, wv), and ev = (wv, v). As a result of this
preprocessing, the new edge euv can be treated as a regular edge. The edges eu
and ev, however, have their source and target in the same layer, which breaks
the general requirement of a proper layering introduced in Section 1.2. We call
this new kind of edges in-layer edges and restrict them to only connect ports
on the same side.

While in-layer edges can be ignored during node placement (phase 4), and
while it is straightforward to include them in the orthogonal edge routing (phase
5), more intricate adaptions are necessary for crossing minimization (phase 3).
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The complexity of these adaptions can be greatly reduced by exploiting the fact
that for the processing of inverted ports either the source or the target node
of an in-layer edge is a dummy node. Let v be a regular node connected to a
dummy node wv via an in-layer edge e = (wv, v), as shown in Figure 9b. We
have to correct the barycenter calculation for v in case of a forward layer sweep
with v and wv both in the free layer Lb: the normal processing would include
the rank r(ps(e)) in the sum computed for b(v) (see Equation 2), but that rank
would be undefined because ranks are defined only for ports in the fixed layer
La. The dummy node wv, however, has only incoming edges with their source
in La, hence the value b(wv) can be computed normally. The solution is to use
b(wv) in place of r(ps(e)) in the computation of b(v). This can be written as

b(v) =
1

|Ei(v)|

 ∑
e∈Ei(v),
vs(e)∈La

r(ps(e)) +
∑

e∈Ei(v),
vs(e)∈Lb

b(vs(e))

 . (6)

In the example shown in Figure 9b this would mean that b(v) = b(wv) since
(wv, v) is the only edge incident to v. The barycenter values can be computed
by first processing all dummy nodes of Li, for which we ignore the in-layer
edges, then all remaining nodes. The adaption of backwards layer sweeps is
symmetric. As a result, dummy nodes created for inverted ports are placed near
their corresponding regular nodes. After all five phases of the layout algorithm
have finished, the dummy nodes are removed in the same way as those created
to split long edges, thus restoring the original edges.

An additional extension is necessary regarding the barycenter calculation for
sorting ports with FixedSide constraints defined in Equation 5. For regular
ports this extension can be done in the same way as shown for the ordering of
layers (Equation 6). For inverted ports, however, we need to obtain barycenter
values in a different way. Let p ∈ P (v) be an east-side port of v connected to
a dummy node w via an in-layer edge. At the time when the ports of v are
sorted, the relative position of v and w in their respective layer L is already
determined, so let i(v) and i(w) be the indices of these nodes. If i(w) < i(v),
we want p to be placed at the top of the east side, and otherwise we want it at
the bottom. A simple solution is to first compute the barycenters of all regular
ports and determine their minimum bmin and maximum bmax. Let iavg be the
average index of dummy nodes connected to p via in-layer edges (p may have
more than one in-layer edge). The barycenter of p is

b(p) =

{
bmin − iavg if iavg < i(v),
bmax + |L|+ 1− iavg otherwise.

As can be seen in Figure 10, the effect of the negative sign of iavg is that the
order of ports is inverted with respect to the order of dummy nodes, but that is
correct if crossings of in-layer edges are to be avoided. The handling of west-side
inverted ports is symmetric.
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i(w2) = 1

i(w1) = 2

i(v) = 3

i(w6) = 4

i(w5) = 5

b(p3) = bmin = 1

b(p4) = bmax = 2

Figure 10: Sorting ports with in-layer edges: b(p1) = bmin−i(w1) = −1, b(p2) = bmin−i(w2) =
0, b(p5) = bmax + |L| + 1 − i(w5) = 3, and b(p6) = bmax + |L| + 1 − i(w6) = 4. Assuming
b(p3) = 1 and b(p4) = 2 according to Equation 5, we obtain the port order as depicted above.

Finally, the algorithm for counting crossings of edges between consecutive
layers must be complemented for counting the crossings caused by in-layer edges.
With orthogonal edge routing, we cannot predict exactly how many crossings
an in-layer edge will cause. We can, however, compute an upper bound in two
passes over a layer’s nodes. Remember that we have restricted in-layer edges
to only connect ports on the same side. The first pass iterates over the ports
on the eastern and on the western side separately from top to bottom. Each
port is assigned a number that equals the maximum number assigned so far for
ports on its side plus the number of edges incident to the port since those could
cause crossings with in-layer edges. The second pass then iterates over the ports
again looking for in-layer edges. The sum of the differences of port numbers of
the ports connected by the edges constitutes the maximum number of crossings.
Since the final number of crossings will usually be lower than this upper bound,
future research could go into finding algorithms that give more exact estimates.

4.2. North/South-Side Ports

Ports on the north or south side of a node v are handled by adding dummy
nodes in order to determine where to draw the necessary bend points. The
general idea is illustrated in Figure 11 for north-side ports. Each dummy node
is associated with either one or two ports. The edges are redirected to the
generated dummy nodes, hence the node v does not have any connections to
the north or south side after this preprocessing. After the five phases of the
layer-based algorithm have finished, the original edges are restored and bend
points are added at the vertical coordinates that have been assigned to the
dummy nodes.

Let v be a node, let Vv,N be the sequence of dummy nodes generated for
north-side ports of v, and let Vv,S be the sequence of dummy nodes generated
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(a) North-side ports
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(c) Resulting drawing

Figure 11: Edges connected to the north side are redirected to dummy nodes in the fixed-
order approach. In this example four nodes w1, . . . , w4 are required, of which w1 and w2 are
associated with two ports (indicated by the dashed lines in Fig. (b)). In the final drawing,
the original edges are restored and the dummy nodes are replaced by bend points.

for south-side ports of v. There are two methods for creating the dummy nodes
in Vv,N and Vv,S: one method optimizes the number of edge crossings locally
to v (fixed-order approach), the other takes surrounding layers into account
(variable-order approach). In the following, we will assume that no north/south-
side port of v has both, incoming and outgoing edges, which is usually the case.
However, extending the methods to handle this case is straightforward.

Fixed-Order Approach. The first method locally optimizes the number of cross-
ings caused by edges connected to north and south ports, without taking other
nodes into account. We iterate over the north ports of a node, starting with the
two outermost unprocessed ports p1, p2, working our way inwards. As Figure 11c
shows, the bend points later inserted can share the same vertical coordinate as
long as the left port p1 has only incoming edges and the right port p2 has only
outgoing edges; we thus create one dummy node for each such pair of ports.
Once we do not find such pairs anymore, we create one dummy node for each
port we have not iterated over yet. South ports are processed similarly.

Note that the order of the dummy nodes in the layer is crucial for edge
crossings to be locally minimized and thus has to be preserved by the crossing
minimization phase. For each node u with u ∈ L for some layer L, we introduce
node successor constraints Su ⊆ L that define a possibly empty set of nodes
that u must precede in L. When creating the dummy nodes for north and south
ports, each dummy node is defined as the successor to the previously created
dummy node. Additionally, the node v is the successor of the last node of Vv,N
and the first node of Vv,S is the successor of v. Support for node successor
constraints can be easily added to the crossing minimization phase. Once an
ordering is computed, the method of Forster [8] can be used to find successor
constraint violations and to resolve them.

For this approach to work, the order of ports on the north and south side
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must already be fixed (hence the name fixed-order approach). If PC(v) =
FixedSide, the ports on the north and south sides of v have to be sorted
before their respective dummy nodes are created. Since they are created before
the crossing minimization phase, it is not possible to consider the global graph
structure when sorting the ports. As a consequence, they can be sorted using
only local information, that is the number of incoming and outgoing edges. Let
∆E(p) = |Eo(p)|−|Ei(p)| for each port p, then ports with high ∆E value should
be placed towards the subsequent layer, while those with low ∆E should be
placed towards the preceding layer.

Variable-Order Approach. The previous approach fixes the order of dummy
nodes and can thereby prevent the crossing minimization phase from finding
a globally optimized ordering. A better alternative seems to be to relax the
ordering constraints such that the dummy nodes Vv,N and Vv,S can be ordered
arbitrarily. Instead of deriving the dummy node order from the port order, we
first apply constrained crossing minimization and then derive the port order
from the dummy node order. However, we still require constraints to ensure
that v is placed between the nodes in Vv,N and Vv,S.

Creating the dummy nodes is similar to the creation process in the fixed-
order approach, with two exceptions. First, we do not insert successor con-
straints between dummy nodes. And second, we do not allow two ports to share
a single dummy node since this would limit the freedom of both the crossing
minimization and the node placement phase to find optimal results.

This approach can only be applied with success if the crossings between
edges connected to north/south side ports are included in the total crossing
number of a layer sweep (see for instance the edges connected to p3 and p4 in
Figure 11). This enables the layer sweep algorithm to select the ordering for
which the number of crossing is truly minimal. Counting the crossings for a
given dummy node order and port order is straightforward: given two north-
side edges e1, e2 with corresponding dummy nodes w1, w2 and ports p1, p2, the
edge e1 crosses the vertical segment of e2 if w1 is below w2 and either e1 is
outgoing and p1 is left of p2, or e1 is incoming and p1 is right of p2. If e1, e2
are on the south side, the condition is nearly the same, but w1 must be above
w2. Checking these conditions for each pair of edges takes quadratically many
computation steps depending on the number of edges on the north and south
side of v, but usually that number is rather low.

In contrast to the fixed-order approach, this approach does not require the
order of ports to be fixed beforehand. Instead, the order of ports can be easily
inferred by the order in which their dummy nodes appear in the layer, with the
goal of minimizing the number of crossings. To this end, we assign a barycenter
value to each north-side port p with corresponding dummy node w ∈ Vv,N:
b(p) = −i(w) if p has only incoming edges, b(p) = i(w) if p has only outgoing
edges, and b(p) = 0 otherwise, where i(w) is the index of w in its containing
layer. We treat dummy nodes in Vv,S similarly. The resulting barycenter values
can be integrated in the sorting process described in Section 3.3, where the port
side is the primary key and the port barycenter is the secondary key for sorting.
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Figure 12: Edges connected to the north side are redirected to dummy nodes in the variable-
order approach. In this example four nodes w1, . . . , w4 are required, one for each port (indi-
cated by the dashed lines in Fig. (b)). Since the crossing minimization determines the order
of dummy nodes in this approach, the ports are sorted once the dummy node order is known.

Figure 12 shows an example of this method.
One advantage of the fixed-order approach is that vertical space can be saved

by allowing edges connected to different ports to share the same dummy node.
Since the variable-order approach requires each port to have a separate dummy
node created for it, this would only be possible if the node placement phase
was extended accordingly. Such extensions are left for future research. The
fixed-order and the variable-order approaches are compared in Section 6.3.

Layout Units. The two approaches just described differ in how much they fix
the relative order of created dummy nodes using node successor constraints.
They are similar, however, in two other requirements we have not discussed
thus far:

1. The dummy nodes created for a node v1 must not be interleaved with
the dummy nodes created for another node v2. Otherwise, edges might
overlap each other, resulting in ambiguity.

2. A regular node v1 must not be placed among the dummy nodes created for
another node v2. Otherwise, edges connected to north-side or south-side
ports of v2 would cross v1.

To meet these requirements, we propose the concept of layout units: nodes
of one layout unit cannot be placed among nodes of another layout unit, thus
keeping the different layout units separate from each other. The layout unit of
a regular node v is Uv = Vv,N∪{v}∪Vv,S. Whenever a layer L is ordered during
the execution of the layer sweep algorithm, new node ordering constraints are
dynamically inserted and then resolved using Forster’s method. Let u, v ∈ L be
regular nodes and let v be the next node following u in the given order of L.
Node successor constraints are inserted from all nodes in Uu to all nodes in Uv

in order to prevent overlaps between layout units.
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Note that dummy nodes inserted to split long edges may well be placed
among the nodes of a layout unit. While such a placement would cause edge
crossings, it would not cause overlaps and would thus remain clear of ambiguity.

5. Implementation and Integration

The algorithmic concepts described so far are implemented in a Java-based
layout algorithm called KLay Layered. Since many popular graph layout li-
braries such as Graphviz1 and OGDF2 are implemented in C, the KLay project
is an effort to develop layout algorithms purely in Java. The algorithms are
integrated into the KIELER Infrastructure for Meta Layout (KIML),3 a frame-
work based on Eclipse4 which provides the glue between diagram viewers and
layout algorithms. KIML defines an intermediate graph format called KGraph
that is used to pass graphs to the layout algorithms as well as to return lay-
out information to the diagram viewers. Connecting a diagram viewer to all
layout algorithms provided through KIML thus becomes a matter of providing
a function that produces a KGraph and one that applies the computed layout
information back into the diagram. We already made such functions available
to graphical editors based on the popular frameworks GMF5 and Graphiti.6 We
have found that the GMF functions in particular work well without adaptations
for editors that follow GMF standards.

The basic architecture of KLay Layered follows the five phases outlined in
Section 1.2. One of the goals of its development is to keep the algorithm flexible
and to allow the user to adapt it to different types of diagrams. This is done by
providing different implementations for each phase, each geared towards differ-
ent optimization goals or different types of layout. For example, there are three
implementations of the edge routing phase: the first implements orthogonal edge
routing as presented in this paper, the second implements edge routing using
spline connections, and the third implements polyline edge routing, similar to
the one originally proposed for the layered approach by Sugiyama et al. [26].
The actual implementation used is determined by the user, with the algorithmic
architecture based on the well-known strategy pattern [9].

Providing different implementations of a phase also has its drawbacks, how-
ever. As shown in Figure 2, each implementation of the crossing minimization
phase has to end by making sure that all nodes have their port constraints
transitioned to at least FixedOrder. This is currently done the same way in
all implementations and could thus be easily factored out, reducing code du-
plication. Another problem is supporting layout options across the algorithm.

1http://www.graphviz.org/
2http://www.ogdf.net/
3http://www.informatik.uni-kiel.de/rtsys/kieler/
4http://www.eclipse.org/
5http://www.eclipse.org/modeling/gmp/
6http://www.eclipse.org/graphiti/

21

http://www.graphviz.org/
http://www.ogdf.net/
http://www.informatik.uni-kiel.de/rtsys/kieler/
http://www.eclipse.org/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/graphiti/


Suppose that the layout algorithm has to be adaptable to different layout direc-
tions (e. g., left-to-right and top-to-bottom). Any parts of the algorithm that
compute coordinates will differ only in details that depend on the chosen layout
direction, leading to code littered with lengthy conditional statements with al-
most identical code. A better way to support this option would be to transform
the layout problem into one that assumes a left-to-right layout direction and
to transform the solution back to the original problem afterwards. Then, the
bulk of the algorithm can simply assume a left-to-right layout direction, which
in turn greatly reduces code complexity.

We extend the basic architecture of KLay Layered to solve these issues by
introducing the concept of intermediate processors: modules that contain code
factored out of different phase implementations, or code that implements pre-
or post-processing to reduce complex layout problems to ones that the phase
implementations can handle.

The remainder of this section is devoted to a more detailed explanation of in-
termediate processors and our experience with this concept. This is followed by
a case study in which we integrated KLay Layered into Ptolemy, an application
not based on Eclipse.

5.1. Intermediate Processors

Intermediate processors simplify the regular phases by factoring out shared
functionality, or by reducing complex layout problems to simpler ones that can
be handled by the regular phases. As already hinted at, the exact place where
a processor fits differs from processor to processor. We thus extend KLay Lay-
ered’s basic architecture by adding intermediate processing slots before, be-
tween, and after the algorithm’s sequence of regular phases, each capable of
holding an arbitrary number of intermediate processors.

The intermediate processing configuration of the algorithm is determined by
the phase implementations chosen by the user. Before the algorithm’s execution,
we instantiate each phase implementation and query it for the intermediate pro-
cessors it requires in the different processing slots. The returned configuration
usually depends on the actual graph to be laid out: if there are no nodes with
northern or southern ports, the corresponding intermediate processors can sim-
ply be left out. KLay Layered thus dynamically configures itself for each layout
task, building a list of intermediate processors and phase implementations that
form a concrete instance of the algorithm.

Since the algorithm configures its intermediate processors already dynam-
ically, the obvious question is why we constrain this flexibility to predefined
processing slots; one could imagine a completely dynamic algorithm that is free
of a predefined structural skeleton. The reason for this limitation is that inter-
mediate processors have dependencies on each other: an intermediate processor
that computes the amount of space required by ports for each node may require
an intermediate processor that computes the port positions to have already run.
The number of possible dependencies increases quadratically with the number of
intermediate processors. By defining discrete slots for intermediate processors
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Figure 13: A Ptolemy model demonstrating parallel execution, laid out using the method
presented in this paper (example by Edward A. Lee). This model exhibits two graphical
features specific for Ptolemy models: relation vertices (a) and multiports (b).

to be placed in, we have to manage only the dependencies of processors that
share the same slot.

Even so, dependencies from one processor to other processors must be care-
fully managed. This is done by judiciously specifying the preconditions and
postconditions of each intermediate processor and defining the dependencies
such that the preconditions of each processor are met.

Since the introduction of intermediate processors, KLay Layered has grown
to include 35 of them. While we were worried at the beginning that managing
the dependencies between the processors might become too complex, this has
turned out not to be the case if proper care is taken defining the preconditions
and postconditions of the processors. In fact, we were surprised at just how
easy it is to add new features to the algorithm. For example, adding support
for edge labels by using dummy nodes became a matter of adding a few simple
intermediate processors to the algorithm, without having to change any phase
implementation. The most obvious downside is that moving tasks to inter-
mediate processors causes more iterations over the graph. For practically-sized
diagrams, however, the performance impact this has on the algorithm has turned
out to be negligible, as shown in Section 6. In our experience, the advantages
in terms of easier implementation and well-structured code far outweigh the
performance impact.

5.2. Ptolemy Integration

Ptolemy7 is an open source modeling environment developed at UC Berkeley
that targets the modeling and semantics of concurrent real-time systems [6].
Ptolemy models are actor-oriented data flow diagrams and can contain nested
state machines (modal models). Since Ptolemy is a Java program not based on
Eclipse, it serves as a case study for using the KLay Layered algorithm outside
Eclipse. To that end, a standalone version of the algorithm is available that
optionally includes all required external libraries.

While the majority of diagram viewers based on popular Eclipse technologies
can readily use layout algorithms through KIML without further modification,

7http://ptolemy.eecs.berkeley.edu/
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Figure 14: Layout preferences are integrated into Ptolemy using the Ptolemy UI conventions,
with an emphasis on presenting the options in as understandable a way as possible.

viewers not based on Eclipse require some programming effort to integrate au-
tomatic layout. How complex this is strongly depends on the employed drawing
library and on how well the graph model fits the KGraph format. Ptolemy
posed a few challenges in these regards.

To start with, even though Ptolemy defines a data flow language that trans-
fers tokens of data between ports, the flow of data can be ambiguous: ports
can be input ports, output ports, or even both. More severely, edges in the
underlying data model are undirected. This conflicts with both the KGraph
model, which requires edges to be directed, and KLay Layered, which uses edge
directions to compute a layering that emphasizes the flow of data. The trans-
formation therefore has to rely on a heuristic to infer edge directions from port
type information.

Ptolemy also distinguishes between ports with at most one connected edge
and multiports that can have an arbitrary number of edges connected to them,
as shown in Figure 13. Multiports are special in that their edges do not connect
to the same point, but are in fact offset from each other, which is contrary to
the way KLay Layered handles edges connected to the same port. The trans-
formation works around this disparity by generating one port in the KGraph
model for each edge connected to a multiport, with each port offset accordingly.

Another problem is caused by Ptolemy’s relation vertices, as also illustrated
in Figure 13. While edges can connect only two end points, it is often necessary
to connect more than two actors to each other, for example to feed the output
of one actor to several other actors. This is done in Ptolemy by introducing
relation vertices to the model: all ports reachable through the same set of
relation vertices are semantically treated as being directly connected to each
other. Without special consideration, relation vertices would be placed in layers
alongside regular nodes by the layout algorithm, which is aesthetically not very
pleasing and also often a waste of space. Instead, users would expect relation
vertices to be placed on junction points, that is, on points where two edges
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branch off from each other. KLay Layered computes junction points while
routing edges orthogonally, and ongoing work is concerned with ensuring that
relation nodes are placed on these points.

A final challenge was how to expose the rather large number of often very
specialized layout options supported by KLay Layered in the user interface.
If not filtered properly, these for example include options such as the edge
routing algorithm to be used, which can well be inferred automatically based on
the kind of Ptolemy model to be laid out: data flow diagrams use orthogonal
edge routing while modal models use spline-like edge routing. As shown in
Figure 14, we decided to hide the vast majority of options: most options can
simply be programmatically set to sensible defaults or be dynamically inferred,
depending on the kind of model to be laid out. The few remaining options are
presented using terms that are as intuitive as possible to users of Ptolemy, and
are integrated following Ptolemy’s established user interface standards.

In conclusion, we have found that the effort required to integrate automatic
layout into a diagram viewer depends on how different the models to be laid out
are from the KGraph format as well as on the assumptions made by the layout
algorithm.

6. Experimental Evaluation

The quality of layouts is usually measured through aesthetics criteria, of
which the number of edge crossings and the number of bend points rank among
the most important according to Purchase et al. [20, 29]. In this section, we
evaluate KLay Layered regarding the number of edge crossings and bend points
produced as well as its runtime performance. We also evaluate the two meth-
ods for assigning port ranks described in Section 3.1 and the two methods for
handling north/south-side ports described in Section 4.2 against each other.

6.1. Layout Quality and Runtime Performance

To evaluate the performance of KLay Layered, we compared it to its prede-
cessor algorithm called KLoDD (KIELER Layout of Dataflow Diagrams) [25].
For a first visual impression, Figure 1b shows a drawing created with KLay Lay-
ered, while Figure 1a shows a drawing of the same model created with KLoDD.

We applied the algorithms to two sets of diagrams in order to evaluate the
layout quality. The first set consisted of 270 random graphs with 10 to 50 nodes
each and an average of 1.2 outgoing edges per node. This corresponds to the
average number of edges found in the demonstration models of the Ptolemy
project; a similar value can be derived from the statistics for Simulink models
reported by Klauske [16, Section 2.1.2]. Port sides were chosen randomly: input
ports would usually be placed on the west side and output ports on the east
side, with a probability of 0.05 of this being the other way round, and with a
probability of 0.2 of a port being placed on the north or south side. For the
second set, we wanted to focus on real-world diagrams. Therefore we used a
selection of 141 models taken from the demonstration model repository of the
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Figure 15: The number of bend points and the number of crossings produced by the KLay
Layered algorithm presented here (solid lines and circles) and by the KLoDD algorithm, which
follows a previous approach [25] (dashed lines and crosses), applied to our set of random
graphs (a, b) and to our selection of Ptolemy models (c, d). Since only few of the Ptolemy
models exceed 40 nodes, these larger models were excluded from the diagrams for enhanced
legibility.

Ptolemy project. Contrary to the set of random graphs, the graph structure
of most Ptolemy models is hierarchical, i. e. some nodes may contain nested
subgraphs. The average number of nodes in these subgraphs is 8.98, and their
maximum is 43. The layout algorithms were applied separately to each sub-
graph. Further experiments using flattened versions of the Ptolemy models,
where the hierarchical structure was eliminated by directly connecting nodes
from different subgraphs, have led to similar results as those shown here.

During the development of KLay Layered, we placed an emphasis on reduc-
ing the number of bend points and thus expected it to be lower compared to
KLoDD. Due to improved crossing minimization we also expected the number
of crossings to be slightly lower. The results of our quality evaluation are shown
in Figure 15. Indeed they indicate that the number of bend points produced by
KLay Layered is almost consistently lower compared to KLoDD. On average,
KLay Layered produced 0.78 and 0.87 times as many bend points as KLoDD for
random diagrams and Ptolemy diagrams, respectively, with standard deviations
of 0.08 and 0.35. Regarding the number of crossings, the algorithms produce
similar results for random diagrams, but KLay Layered does better for Ptolemy
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Figure 16: The runtime performance of KLay Layered algorithm (solid line) and the earlier
KLoDD algorithm (dashed line), plotted against (a) the number of nodes and (b) against the
number of outgoing edges per node.

diagrams. On average, KLay Layered produced 0.99 and 0.44 times as many
crossings as KLoDD for random diagrams and Ptolemy diagrams, respectively,
with standard deviations of 0.40 and 0.67.

For the performance evaluation we used randomly generated diagrams with
nearly the same characteristics as the ones already described. Since we wanted
to measure the reaction of the algorithms to both changes in the number of
nodes and changes in the number of outgoing edges per node, we used two
sets of random diagrams. For the first set, we kept the number of outgoing
edges per node between 0 and 2, generating graphs with between 10 and 10, 000
nodes. The second set was fixed at 100 nodes, with the number of outgoing
edges varying between 0 and 15.

Due to its more complex architecture, we expected KLay Layered to be
considerably slower than KLoDD. We were surprised to see that this is not the
case, as can be seen in Figure 16. In fact, for large diagrams, KLay Layered
shows a linear correlation with the number of nodes. It does not react quite as
well to the number of outgoing edges per node, however, which is very likely due
to its extensive use of dummy nodes, which KLoDD uses more conservatively.
This is consistent with the results of Eiglsperger et al. [5], who found that using
as few dummy nodes as possible resulted in a considerable speedup of their
algorithm. However, our results show that even with the amount of dummy
nodes inserted, the performance is still good enough for KLay Layered to be used
in interactive applications. This is even more true considering that Eiglsperger
et al. target the layout of large diagrams with over five hundred nodes; Klauske
reports data flow diagrams in real-world Simulink models to average 22 nodes,
with only 4% of the diagrams exceeding 64 nodes and 100 edges.

We conclude that the advantages gained through dummy nodes in terms of
ease of implementation and modular structure are well worth the performance
degradation caused by them.

Three diagrams from the Ptolemy demonstration models, drawn with our
KLay Layered algorithm, are shown in Figure 17.
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(a) Guarded Count (SR domain)
Author: Edward A. Lee

(b) Loop (DDF domain)
Author: Gang Zhou

(c) Starmac (Continuous domain)
Authors: Mankit Leung, Gabe Hoffman

Figure 17: Ptolemy demonstration models drawn with the KLay Layered algorithm. Here we
used node-relative port ranking and variable-order handling of north/south ports.
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Figure 18: Difference of crossing numbers per edge for each of the random test graphs. The
horizontal axis represents the number of nodes n of the test graphs, and the vertical axis
represents the value (cNR − cLT)/m, where cNR is the number of crossings with the node-
relative approach, cLT is the number of crossings with the layer-total approach, and m is the
number of edges of the corresponding graph.

6.2. Comparison of Port Ranking Methods

In Section 3.1, we introduced two methods for assigning port ranks: the
node-relative approach and the layer-total approach. We evaluated them using
a set of 570 randomly generated graphs with between 10 and 94 nodes and a
similar edge density as used for the random graphs in Section 6.1. The port
constraints were set to FixedPos for all nodes. For each of the random graphs
the best result out of 1000 randomized executions of the layer sweep algorithm
was chosen.

The average number of edge crossings when using the layer-total ranking
approach was c̄LT ≈ 58.81, while with the node-relative approach the value
c̄NR ≈ 59.35 was measured. Although nearly equal in average, the number of
edge crossings resulting from the two approaches can be very different when
considering a particular graph, as seen in Figure 18. The chart reveals that
for many graphs the two ranking approaches yield quite different results both
in the positive and the negative direction, but without a significant advantage
for any of the approaches. Further experiments have shown that the number
of crossings is not improved significantly by applying both the layer-total and
the node-relative ranking approach and choosing the better result. Hence the
two approaches can be regarded as of equivalent quality, and the only effective
means for reducing the number of edge crossings is to increase the number of
randomized layer sweeps [15].
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Figure 19: The number of bend points and the number of crossings produced by the variable-
order approach (solid lines and circles) and the fixed-order approach (dashed line and crosses)
with port constraints set to FixedSide.

6.3. Comparison of North/South-Side Port Handling Methods

We compared the two approaches to handling north/south-side ports pre-
sented in Section 4.2 in terms of the numbers of bend points and edge crossings
produced. We used the same set of random diagrams already used for the layout
quality evaluation, with the exception that all ports were moved to the north or
south side. We expected the variable-order method to fare much better in both
metrics since it gives the crossing minimization algorithm the highest amount
of flexibility.

We began with all port constraints set to FixedPos. The results, shown in
Figure 19, confirmed our expectations: the variable-order approach fared con-
sistently better than the fixed-order approach. Further experiments with port
constraints set to FixedSide yielded the same results: here, too, the variable-
order approach produced consistently better results.

7. Conclusion

A large class of graphical languages, including data flow diagrams used for
embedded software development, impose port constraints on their drawings.
We presented in fair detail a method for the automatic layout of such diagrams,
building on the layered approach. A key element of our method is the creation
and special treatment of dummy nodes. This comes at a certain cost in terms of
runtime performance, but simplifies the handling of port constraints and allows
the algorithm to be structured modularly. As shown in the evaluation, the
performance of our algorithm is still good enough for it to be used in interactive
applications, especially given the size of typical data flow diagrams. Compared
to previous approaches, our contributions result in significantly lower numbers
of bend points and crossings for realistically sized diagrams.

We also presented our experience with a dynamic and modular structure of
layout algorithms based on intermediate processors. Provided that precondi-
tions and postconditions of the processors are carefully defined, this structure
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allows algorithms to adapt to the user’s requirements and to omit those proces-
sors that the current layout problem does not require.

The layout algorithm presented here is implemented in the Kiel Integrated
Environment for Layout Eclipse Rich Client (KIELER), which is our primary
testbed for such algorithmic developments. It is also now part of the Ptolemy
distribution and has received quite positive feedback there, regarding quality of
the results, performance, and usability. To quote a user: “I have to say we have
crossed a tipping point. I am now using automatic layout every time I use vergil
[the Ptolemy graphical editor]. I don’t see how we ever did without it . . . ”.8

In summary, we believe that the method presented here constitutes a sig-
nificant step towards making the automatic, high-quality drawing of data-flow
diagrams and other drawings with port constraints practical and widely used.
However, there are still areas for improvement, which we leave for future work:

• The calculation of port positions can contribute to avoiding bend points:
the even distribution of ports in Figure 4a causes two bend points in
the topmost edge, which can be eliminated by moving up the first port
of node 1 as shown in Figure 4b. Port placement methods that target
edge straightening would have to be realized either as part of the node
placement phase or as a post-processing.

• The layer-sweep crossing minimization approach requires a method for
counting the number of crossings in order to find an appropriate termi-
nating condition. While there exist efficient counting methods for plain
graphs [1], these are inaccurate when hyperedges are involved because
their actual number of crossings is determined later in the edge routing
phase [22]. While we introduced several worst case estimates, it is unclear
if and how these can be improved to be more accurate.

• We currently process hierarchical diagrams by recursively applying the
layout algorithm to each hierarchy level, starting with the innermost ones.
This procedure is not optimal when the ports of a compound node are
rearranged since the algorithm processing the content of that node does
not take into account its external connections.
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