
SCCharts: Sequentially Constructive Statecharts
for Safety-Critical Applications

HW/SW-Synthesis for a Conservative Extension of Synchronous Statecharts

Reinhard von Hanxleden,
Björn Duderstadt,

Christian Motika, Steven Smyth
Kiel University, Germany
{rvh, bdu, cmot, ssm}
@informatik.uni-kiel.de

Michael Mendler,
Joaquı́n Aguado

Bamberg University, Germany
{michael.mendler, joaquin.aguado}

@uni-bamberg.de

Stephen Mercer,
Owen O’Brien

National Instruments, Austin, TX, USA
{stephen.mercer, owen.o’brien}

@ni.com

Abstract
We present a new visual language, SCCharts, designed for specify-
ing safety-critical reactive systems. SCCharts use a statechart nota-
tion and provide determinate concurrency based on a synchronous
model of computation (MoC), without restrictions common to pre-
vious synchronous MoCs. Specifically, we lift earlier limitations
on sequential accesses to shared variables, by leveraging the se-
quentially constructive MoC. The semantics and key features of
SCCharts are defined by a very small set of elements, the Core
SCCharts, consisting of state machines plus fork/join concurrency.
We also present a compilation chain that allows efficient synthesis
of software and hardware.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.3.4 [Pro-
cessors]: Compilers

Keywords Statecharts, synchronous languages, visual languages,
determinacy, concurrency, hw/sw-synthesis, safety-critical systems

1. Introduction
Background. Statecharts, introduced by Harel in the late 1980s [14],
have become a popular means for specifying the behavior of em-
bedded, reactive systems. The visual syntax of statecharts is in-
tuitively understandable for application experts from different do-
mains who are not necessarily computer scientists. The statechart
concepts of hierarchy and concurrency allow the expression of
complex behavior in a much more compact fashion than standard,
flat finite state machines. However, defining a suitable semantics for
the statechart syntax is by no means trivial, as evinced by the multi-
tude of different statechart interpretations. In the 1990s already, von

[Copyright notice will appear here once ’preprint’ option is removed.]

der Beeck [30] identified a list of 19 different non-trivial seman-
tical issues, and compared 24 different semantics proposals; these
did not even include the “official” semantics of the original Harel
statecharts (clarified later by Harel [15]) nor the many statechart
variants developed since then, such as UML statecharts with its
run-to-completion semantics. One of the semantical issues identi-
fied early on for statecharts is the question of determinacy, which is
not surprising as statecharts include concurrency and hence are po-
tentially subject to race conditions. Adopting Milner’s distinction
of determinacy and determinism [19], we consider a computation
as determinate if the same sequence of inputs produces the same
sequence of outputs, as opposed to deterministic computations,
which in addition have identical internal behavior/scheduling. In
many application areas, including the area of safety-critical appli-
cations that has motivated the work presented here, determinacy is
a strict requirement. Given a sequence of input stimuli, a safety-
critical reactive system must always produce the same sequence of
outputs, even if the internal behavior involves concurrency. Many
statechart variants do not fulfill this determinacy requirement; e. g.,
STATEMATE, the original statecharts tool, detected potential non-
determinacy at run-time, but not at compile time.

One approach for achieving determinacy, successfully em-
ployed by the family of synchronous languages, is to abstract ex-
ecution time away. This implies unique variable (or signal) val-
ues throughout an instantaneous reaction chain, or tick, which
eliminates race conditions. This concept has also been applied to
statechart-like visual languages, such as André’s SyncCharts [2].
The synchronous model of computation (SMoC) is a sound ap-
proach that solves the determinacy issue. However, it is quite re-
strictive due to the “only one value per reaction” requirement. For
example, the classical SMoC cannot directly express something
like if (x < 0) x = 0 for some shared variable x. This restriction may
seem natural to hardware designers, who are used to the require-
ment of stable, unique voltage values within a clock cycle and the
lack of built-in sequencing in combinational, parallel circuits. How-
ever, this limitation often causes bewilderment with programmers
used to languages like C or Java, where such sequential variable
accesses pose no problem and do not result in compile-time errors.
This issue has motivated the sequentially constructive (SC) MoC
proposed recently [33], which extends the classical synchronous
MoC by allowing variables to be read and written in any order as
long as sequentiality expressed in the program provides sufficient
scheduling information to rule out race conditions.

Contributions and Outline. Concerning programming language
design, we here present a new, visual modeling language for reac-

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 1 2014/4/7

Interface

declaration

Final state

Connector

Initial state

Root state

Named

simple state

Transition

trigger/effect

Region ID

Transition

priority

Conditional

termination

Anonymous

simple state

History transition

Entry/During/Exit

actions

Termination

Superstate

Signal

Immediate

transition

Suspension

Strong abort

Local declaration

Weak abort

Deferred transition

Count Delay

Pre-Operator

Initialization

Complex final

state

Figure 1. Syntax overview of SCCharts. The upper region contains Core SCCharts elements only, the lower region illustrates Extended
SCCharts.

tive systems, called Sequentially Constructive Statecharts, or SC-
Charts. SCCharts have been designed with safety-critical applica-
tions in mind and aim for easy adaptation. The safety-critical focus
is reflected not only in the determinate semantics, but also in the
approach to defining the language; the basis of the language is a
minimal set of constructs, termed Core SCCharts, which facilitate
rigorous formal analysis and verification. Building on these core
constructs, Extended SCCharts add expressiveness with a num-
ber of additional constructs (Sec. 2). Concerning implementation,
we present a complete compilation chain from Extended SCCharts
down to software (C) or hardware (VHDL). As a first, high-level
compilation phase, we discuss a novel approach towards handling
aborts and other complex reactive control flow patterns by model-
to-model pre-processing transformations into the minimal set of
language features provided by Core SCCharts and into an inter-
mediate format called SCG. Each high-level transformation is of
limited complexity and open to inspection by the modeler, unlike
existing “monolithic” statecharts compilation approaches (Sec. 3).
Then, building on the SCG, we present two alternative low-level
compilation approaches. The first, data-flow compilation approach
is a new, simpler alternative of the established Esterel circuit se-
mantics [20]. Our approach exploits the minimal nature of Core
SCCharts, but, unlike the original circuit semantics, also encom-
passes sequentiality. It is a very direct compilation approach that
allows hardware synthesis as well as software synthesis, but is
restricted to “acyclic” SCCharts (Sec. 4). The second, priority-
based low-level compilation proposal for SCCharts introduces a
new, leaner variant of Synchronous C [31], termed SCLP . This
second approach is more permissive in that it also allows control

flow cycles, and we expect it to scale better than the data-flow ap-
proach, but it does not facilitate hardware synthesis as good as the
data-flow approach (Sec. 5). We furthermore discuss experimental
(Sec. 6) and related work (Sec. 7) before concluding (Sec. 8).

2. The SCCharts Language
Fig. 1 shows an overview of the SCCharts syntax. The upper part
illustrates Core SCCharts, which contain the key ingredients of
statecharts, namely concurrency and hierarchy. The lower region
contains elements from Extended SCCharts.

2.1 Interface Declarations
An SCChart starts at the top with an interface declaration that can
declare variables and external functions. Variables can be inputs,
read from the environment, or outputs, written to the environment.
Variables can also be inputoutput variables, which are both inputs
and outputs; these are read from the environment, optionally mod-
ified, and written back to the environment. In the following, when
we refer to inputs or to outputs, this generally includes inputoutputs
as well. The environment initializes inputs at the beginning of the
tick (stimulus), e. g., according to some sensor data. Outputs are
used at the end of a tick (response), e. g., to feed some actuators.
Output variables that are not also input variables are not initialized
by the environment at each tick. During a tick, variables may be in-
crementally updated by the SCChart through internal computations
not observable by the environment.

The interface declaration also allows the declaration of local
variables, which are neither input nor output. An interface decla-
ration may be attached to states other than the top-level state. This

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 2 2014/4/7

also allows the modularization of SCCharts, at lower levels, using
a static macro referencing/expansion mechanism. In this case, the
interface declaration serves for compile-time variable binding/re-
naming. Then the interaction of an SCChart with its environment
via input/output variables must not be limited to the beginning and
the end of a tick, but can happen arbitrarily, as governed by the SC
scheduling rules described later.

Non-input variables are persistent across tick boundaries, even
if their scope is left and re-entered, since they are statically allo-
cated. However, they are per default uninitialized, like in C. This
means that when a variable v is read and has not been written be-
fore, the read value is undefined. We therefore advise to statically
(and conservatively) check for such possible uninitialized reads.
One way to avoid uninitialized reads is to augment variable declara-
tions with explicit initializations, provided by Extended SCCharts.

2.2 States and Transitions
The basic ingredients of SCCharts are states and transitions that go
from a source state to a target state. When an SCChart is in a certain
state, we also say that this state is active. Transitions may carry a
transition label, with a priority p, a trigger t, and an action a, which
are all optional, with the syntax “[p:] [t] [/ a]”1. The trigger is a
side-effect-free boolean expression on local and global variables,
and the action an assignment x = e (or a sequence thereof) of
arbitrary data type.

When a transition trigger becomes true and the source state
is active, the transition is taken instantaneously, meaning that the
source state is left and the target state is entered in the same
tick. However, transition triggers are per default delayed, or non-
immediate, meaning that they are disabled in the tick in which the
source state just got entered. This convention helps to avoid instan-
taneous loops, which can potentially result in causality problems.
One can override this by making a transition immediate (shown as
dashed transition). Multiple transitions originating from the same
source state are disambiguated with a unique priority; first the tran-
sition with priority 1 gets tested, if that is not taken, priority 2 gets
tested, and so on.

If a state has an immediate outgoing transition that has no
trigger condition, we refer to this transition as default transition,
because it is always enabled, and we say that the state is transient,
because it will always be left in the same tick as it is entered.

2.3 Hierarchy and Concurrency
A state can be either a simple state or it can be refined into a su-
perstate, which encloses one or several concurrent regions (sepa-
rated with dashed lines). Conceptually, a region corresponds to a
thread. Each region must have exactly one initial state (thick bor-
der). When a region enters a final state (double border), then the
region terminates.

A superstate may have an outgoing termination transition
(green triangle), also called unconditional termination or, in Sync-
Charts, normal termination, which gets taken when all regions have
reached a final state at the end of a tick. Termination transitions are
always immediate. They may be labeled with an action, but—in
Core SCCharts—do not have an explicit trigger condition. Hence a
superstate should have at most one outgoing termination, as in case
of multiple terminations only the one with highest priority can ever
be taken. In Core SCCharts, superstates cannot be marked final;
this is allowed in Extended SCCharts.

1 A syntactic complication, solved by different statechart dialects/tools in
different ways, is that the “/” may also indicate division. We here suggest to
disambiguate the two interpretations, where necessary, by putting divisions
into parentheses. I. e., the leftmost, not parenthesized “/” is interpreted as a
trigger/action separator, others are interpreted as division operators.

2.4 Termination
Region termination, final states and termination transitions may
seem like straightforward concepts. However, their precise seman-
tics and the choices we made in SCCharts deserve some further
discussion, as different interpretations have emerged in the past.

Region termination here means that a region “does not do any-
thing anymore.” Thus in Core SCCharts final states have no out-
going transitions, no refinements, no interface declaration, and no
During/Exit actions (introduced in Extended SCCharts) associated
with them. Thus final states here have a fairly strong interpretation,
i. e., they are quite restricted. This allows a very straightforward im-
plementation, as one can then re-use the information on which re-
gions are active, which is also needed for scheduling purposes. An
alternative semantics for final states would be to just say that the
surrounding superstate terminates when all its regions have reached
a final state. This interpration of final states would be weaker in the
sense that it would still allow a region to leave a final state again,
and a final state might still perform actions or execute refinements.
For Core SCCharts, this choice was rejected, due to the aforemen-
tioned efficiency reasons. However, the weaker, more permissive
interpretation is included in Extended SCCharts.

Conversely, a region effectively terminates whenever a region
has no During action and reaches a state with no outgoing transi-
tions, no refinements, and no associated actions. However, for clar-
ity, we here require that the state must be explicitly marked as fi-
nal if we want to enable termination of the surrounding superstate.
Thus “reaching a final state” is a stronger condition than “region
termination,” and we link termination of the superstate to all of its
regions reaching final states, not to region termination. This im-
plies that a termination transition of a superstate can never be taken
if any region enclosed by that superstate does not contain any final
state. We therefore suggest to require that a region must contain a
final state if its enclosing superstate has an outgoing termination
transition. However, unlike suggested for SyncCharts [2], we ar-
gue that one should permit final states even if there is no enclosing
termination, to clearly indicate termination of a region.

Note that even when all regions of a superstate have reached a
final state, and hence have terminated, the enclosing superstate is
still considered active until it is left. Thus During actions for the
superstate keep getting executed until the state is left.

2.5 The ABO Example
The ABO example shown in Fig. 2a illustrates the concepts of Core
SCCharts: ticks, concurrency (with forking and joining), determi-
nate scheduling of shared variable accesses, and sequential over-
writing of variables. The interface declaration of ABO states that A
and B are Boolean inputs as well as outputs. O1 and O2 are Boolean
outputs. Two possible execution traces are shown in Fig. 2b. The
first trace begins with A set to true by the environment in the initial
tick. This triggers the transition to DoneA and sets both B and O1
to true. As this is the initial tick, the delayed transition from WaitB
to DoneB does not get triggered by the B. In the next tick, all inputs
are false, no transitions are triggered, and O1 stays at true. In the
third and last tick, B triggers the transition to DoneB, which sets O1
to true, but sequentially afterwards, O1 is set to false again as part
of the transition to GotAB, which is triggered by the termination of
regions HandleA and HandleB. Hence, at the end of this tick, only
B and O2 will be true.

The second trace illustrates how A in the second tick triggers
the transitions to DoneA as well as to DoneB, hence emission of
B and O2 and the termination of the automaton. Note, however,
that this behavior is only achieved if the action of the transition to
DoneA that writes B is performed before the trigger of the transition
to DoneB reads B. In other words, there is a race condition on

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 3 2014/4/7

(a) Core SCChart ABO.

-A

A,
B,O1

O1

B

B,
O2

-A

A,B,
O2

(b) Two possible execution
traces, with true-valued inputs
above the tick time line and
true-valued outputs below. (c) Normalized SCChart ABO-norm.

(d) The SC Graph. Basic blocks (BBs) are denoted
as (purple) rectangles, denoted with their guards; gi
guards BB i. The data dependence on B (dashed ar-
row) splits BB 7 into two scheduling blocks.

1 module ABO
2 input output bool A, B;
3 output bool O1, O2;
4 {
5 O1 = false;
6 O2 = false;
7

8 fork
9 HandleA:

10 if (! A) {
11 pause;
12 goto HandleA;
13 }
14 B = true;
15 O1 = true;
16

17 par
18 HandleB:
19 pause;
20 if (! B) {
21 goto HandleB;
22 }
23 O1 = true;
24

25 join ;
26

27 O1 = false;
28 O2 = true;
29 }

(e) SCL code.

Figure 2. The ABO example, illustrating the Core SCChart features.

two concurrent accesses to B that could potentially result in non-
determinacy, unless we take further measures (see Sec. 2.7).

2.6 Extended SCCharts
Extended SCCharts are quite rich and include, for example, all of
the language features proposed for SyncCharts [2]. Not all exten-
sions may be of equal use for all applications, and a tool smith
might well decide to not support all features in an SCChart mod-
eling tool. E. g., (valued) signals, the pre operator, suspension, and
history could all be omitted without affecting the other elements of
Extended SCCharts and their transformations.

A report describes Extended SCCharts in full detail [32]. For
space considerations, we here merely provide one example of one
of the more important extensions, namely aborts. The ABRO SC-
Chart (Fig. 3a), the “hello world” of synchronous programming,
compactly illustrates concurrency and preemption. The reset signal
R triggers a strong abort of the superstate ABthenO, which means
that if R is present, ABthenO is instantaneously re-started. The ex-
act semantics of ABRO is expressed by the equivalent ABRO-xp
(Fig. 3b), which only uses Core SCCharts features. In ABthenO,
a new region Ctrl sets an internal “strong abort flag” S in case the
abort trigger R becomes true. This flag then prompts a termination
of ABthenO, followed by a self transition.

2.7 Sequential Constructiveness
The main goal of the sequentially constructive (SC) MoC is to rule
out any race conditions that might induce non-determinacy, without
being unnecessarily restrictive. The idea is to enforce a certain pro-
tocol on ordering variable accesses, namely the initialize-update-
read (iur) protocol – but to do so only for variable accesses that are

(a) Original ABRO (b) After expansion: ABRO-xp

Figure 3. ABRO, illustrating the transformation of a strong abort
(triggered by R) into an equivalent SCChart without strong abort.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 4 2014/4/7

up to the discretion of a scheduler. I. e., we enforce the iur protocol
only for concurrent accesses, and not for sequential accesses.

DEFINITION 1 (Combination functions). A function f(x, y) is a
combination function on x if, for all x, y1, y2, f(f(x, y1), y2) =
f(f(x, y2), y1).

One may construct arbitrarily complicated assignments from which
a compiler might try to extract some combination function. How-
ever, to facilitate the compiler’s job and to make increments also
obvious to the human reader of a program, we recommend to use,
whenever possible, augmented assignment patterns (familiar from
C/Java) of the form x f= e, with f being +, *, etc., and e being an
expression without side effects and not involving x (e. g., x += 1).

DEFINITION 2 (Initializations, Updates, Reads). An assignment
x = f(x, e) where f is a combination function f and e an ex-
pression not referencing x is an update for x, of type f . Other
assignments x = e are initializations of x. A trigger expression e
or an assignment x = e is a read of every variable y referenced by
e , unless x and y are the same variable and the assignment is an
update.

Note that an update x = f(x, e) does not count as a read of x
although f(x, e) references x. A transition (trigger and action) can
contain several read and write accesses.

We also refer to initializations as absolute writes and to updates
as relative writes. The motivation for distinguishing absolute and
relative writes is two-fold. First, the concept of relative writes al-
lows to merge concurrent writes, if they are relative and of the same
type, in a determinate fashion. This has been used in the past e. g.
for parallelizing computations [25], or also in Esterel, with the com-
bine operators, which are a slightly restricted form of our combi-
nation functions (Esterel requires commutativity, which we don’t—
consider, e. g., subtraction). Second, we allow both an initialization
and updates to the same shared variable, while maintaining deter-
minacy by ordering the initialization before the update. This allows
to emulate Esterel-style signals fairly easily. In a nutshell, we en-
code signals with booleans, with signal absence encoded by false
and signal presence by true; a signal s is initialized to false, and up-
dated to true with s = s or true. The iur protocol assures that signals
are initialized before they are emitted (set to true), and that signals
are emitted before they are tested for presence. Having explicit ac-
cess to signal initialization allows, for example, to handle so-called
reincarnated signals very efficiently, as detailed elsewhere [1].

DEFINITION 3 (Static concurrency). A pair of variable accesses is
(statically) concurrent, if they belong to concurrent regions of some
superstate S (including arbitrary superstate nesting).

DEFINITION 4 (iur scheduling relations). Given two statically con-
current accesses n1, n2 on some variable x, we define relations

• n1 ↔ww n2 iff n1 and n2 both initialize x or both perform
updates of different type. We call this a ww conflict.
• n1 →ir n2 iff n1 initializes x and n2 reads x.
• n1 →iu n2 iff n1 initializes x and n2 updates x.
• n1 →ur n2 iff n1 updates x and n2 reads x.
• →iur =def ↔ww ∪ →ir ∪ →iu ∪ →ur . This summarizes the

constraints induced by concurrent accesses.

We also refer to these relations as iur (ww, ir, iu, ur) order.
This order refines the standard write-before-read requirement of
synchronous languages, with the key difference that we here restrict
our attention to concurrent accesses. Note that these orders must
not be acyclic (antisymmetric); for example, due to the symmetry
of the ww order, a ww conflict induces an iur cycle.

DEFINITION 5 (Sequential order, instantaneous order). Given ac-
cesses n1,2, we define

• n1 →seq n2 iff there is an instantaneous sequential control
flow path n1 to n2 (sequential order).
• →ins =def →seq ∪ →iur (instantaneous order).

The sequential order becomes apparent in the SCG (Sec. 3.3).
For example, it is n1 →seq n2 for accesses n1,2 if 1) n1 is in the
trigger and n2 is in the action of some transition label, or 2) if n1,2

belong to two sequentially ordered assignments within one action,
or 3) if there is a state S where n1 is part of a transition that enters
S and n2 is part of a transition with immediate trigger that leaves
S. Note that in the presence of immediate self-loops on superstates,
accesses may be sequential as well as concurrent to each other.

We also assume that (i) within an assignment, all read accesses
are executed before the write, and (ii) each assignment is executed
atomically with respect to variable accesses from concurrent re-
gions.

The→ins order is a conservative approximation of all schedul-
ing constraints within a tick, which leads to the following conser-
vative approximation of sequential constructiveness.

DEFINITION 6 (Acyclic Sequential Constructiveness (ASC)). An
SCChart is acyclic sequentially constructive (ASC) if its →ins

order is acyclic.

THEOREM 7. An ASC program scheduled according to→ins pro-
duces determinate input/output behavior.

This can be seen by inspecting the definitions of sequentiality,
concurrency and of the iur scheduling relations. For a formal proof
see elsewhere [33].

In ABO, only B has concurrent write/read accesses, in the con-
current regions HandleA and HandleB. Clearly, ABO is ASC. The
iur protocol requires the write in HandleA to precede the concur-
rent read in HandleB. This can be achieved by scheduling HandleA
before HandleB, and once this is assured, all executions of ABO will
produce determinate results.

A distinguishing feature of the SC MOC is that it allows arbi-
trary sequential variable accesses to shared variables within a tick.
In ABO, O1 can be first assigned to true and then to false within
the same tick. This is a significant extension of the classical syn-
chronous MoC, which would reject ABO due to the multiple writes
to O1 within a tick, and thus would not accept ABO as a valid Sync-
Chart.

2.8 Sequential Constructiveness beyond ASC
Sec. 2.7 introduced (acyclic) SC in a fairly conservative fashion,
based solely on structural, static analysis. We recommend this as
a “base line,” meaning that any SCChart compiler should accept
models that are ASC as defined above, and that models should be
ASC to ensure portability. However, the SC MoC allows to relax
this in several ways without losing determinacy:

1. The →iur relation can be reduced to a subset of what results
from Def. 4. For example, we can drop n1 →iur n2 if (i) n1,2

are confluent [33], or (ii) n1,2 cannot be run-time concurrent,
meaning that their activations are always in separate ticks, or
in the same tick but in different activations of their common
superstate S (due to an instantaneous self-loop on S) and thus
sequentially ordered.

2. We can permit →ins cycles that solely contain →seq edges.
Such cycles due to purely sequential control flow do not open
any room for scheduler-induced non-determinacy. We refer to
such programs (SCCharts) that do not contain any cycles with
→iur edges as iur acyclic programs.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 5 2014/4/7

3. Generalizing 2), an →ins cycle is problematic only if all its
→iur edges involve run-time concurrent accesses. This is the
case only if for none of its n1 →iur n2 edges the cycle leaves
and re-enters a superstate enclosing n1 and n2.

4. Similarly, we can replace →seq by a weaker →df (data-flow)
order that only orders non-confluent accesses. This is akin to
replacing sequential control flow edges by sequential data flow
edges, as in a Program Dependence Graph (PDG) [10]. With
→idf =def →df ∪ →iur we refer to programs (SCCharts) that
do not contain any→idf cycles as data-flow acyclic programs.

5. Static cycles might be “false” in the sense that it might be possi-
ble to respect→ins at run-time, due to mutual run-time exclu-
siveness of parts of the cycle. This could be handled with dy-
namic scheduling, or by conversion into an equivalent, acyclic
program [17, 26].

2.9 SCCharts Pragmatics
The SCCharts language has been designed with modeling pragmat-
ics in mind [11], i. e., modelers should be able to work productively
with complex SCCharts. Specifically, the visual syntax is defined
such that it lends itself to fully automatic layout. Automatic lay-
out facilitates a separation of model and view, which not only frees
the designer from the burden of drawing and modifying diagrams
manually, but also permits customized, filtered views. Customized
views highlight certain model aspects and omit others, with the
user/modeling tool acting as controller [22]. This “MVC pattern”
is well-established in SW engineering, and it is just as useful for vi-
sual programming. However, as of today, few modeling languages
and tools harness this potential. For example, one might hide tran-
sition labels to focus on state relations, or during simulation, one
may choose to show the contents of superstates only when they
are currently active. This guides the modeler and helps to reconcile
model complexity with screen/paper real estate limitations.

Compared to SyncCharts, we chose to express transition priori-
ties not in separate labels, which are difficult to place automatically
without overlapping with transitions, but instead made priorities
part of the transition labels. Also, we show immediate transitions
as dashed lines, rather than hash-prefixes of the transition triggers,
to reduce clutter and to facilitate the visual detection of possible
instantaneous loops.

In addition to the visual SCCharts syntax presented here, we
also developed an SCCharts Textual syntax (SCT), not further de-
tailed here. In our SCCharts modeling prototype, one can create a
leading, detailed model description in SCT, while a graphical SC-
Chart with filters set by the modeler is continuously synchronized.
This combines advantages of textual entry (speed, ease of revision
management, etc.) and graphical view (ease of overview, highlight-
ing of state patterns).

3. High-Level Compilation
SCCharts can be synthesized into hardware and software, and the
best compilation approach depends on the characteristics of the
execution platform and of the models to be compiled. As SCCharts
is a new language, we are still at the beginning of exploring these
trade-offs and optimal synthesis strategies. However, we can report
on a compilation chain that we have implemented as part of an
open-source modeling environment (see Sec. 6). The compilation
begins with a high-level compilation phase, which consists of the
following steps:

1. Expand Extended SCCharts features, resulting in a Core SC-
Chart (Sec. 3.1).

2. Reduce transition complexity, resulting in a normalized Core
SCChart (Sec. 3.2).

�����������

����������

���������������������������

�����
�������

����������

������
�������

�������
��������

����
���������������

�����������
�����������

�������
�����������

����
�������

����������������
�������

��� �������

�������� �������
����

������� ������

Figure 4. The Extended SCCharts features and their transforma-
tion interdependencies.

3. Map into an SC Graph (SCG), annotated with scheduling con-
straints due to concurrent shared variable accesses (Sec. 3.3).

3.1 Step 1: Expand Extended SCCharts
Extended SCCharts provide a set F of extended features, listed in
Fig. 4, grouped according to their origins. Each feature f ∈ F is
defined in terms of a transformation rule Tf that expands an SC-
Chart C that uses f into another, semantically equivalent SCChart
C′ that does not use f . More precisely, Tf produces an SCChart
not containing f but possibly containing features in Prodf ⊆ F .
Also, Tf can preserve a certain set of features Handlef ⊆ F . Thus,
we must perform the transformations in a certain order, indicated
in Fig. 4. Specifically, for f, g ∈ F , we must perform Tf before Tg

if (i) g ∈ Prodf (solid edges), or (ii) f /∈ Handleg (dotted edges).
As can be easily seen, the dependencies form a partial order, i. e.,
there are no cycles. Thus Extended SCCharts can be compiled into
equivalent Core SCCharts in a single pass.

The transformation rules are not only used to implement model-
to-model (M2M) transformations, but also serve to unambiguously
define the semantics of the extensions. Each such transformation
is of limited complexity, and the results can be inspected by the
modeler, or also a certification agency. This is something we see as
a main asset of SCCharts for the use of safety-critical systems.

Considering again the aborts extension (Sec. 2.6), the default
transformation approach for aborts follows the “write-things-once”
(WTO) principle, as illustrated for ABRO in Fig. 3. E. g., the orig-
inal trigger R appears only once in the transformed model. This
transformation adds a constant model increase per original (super-
)state and per abort transformation, which makes it a useful default
strategy that scales well. For all Extended SCCharts properties, we
provide default transformation rules that follow the WTO principle.
Thus each extended feature can be transformed away in time linear
in model size, and the size of the fully expanded SCChart is linear
in the original model size.

As an alternative transformation approach for aborts, one could
also replace S directly by R. This would not require an explicit
Ctrl-thread anymore, which would result in a more compact ABRO-

xp. However, this transformation would not be WTO anymore, and
in case of multiple, possibly complex trigger conditions, this trigger
propagation might lead to a larger model increase than the default
transformation.

3.2 Step 2: Normalize SCCharts
To facilitate Step 3, the mapping to the SCG, we normalize Core
SCCharts such that states have only certain “primitive” outgoing
transition patterns as shown in Fig. 5. A thread is a set of states
connected through transitions with one initial state and an arbitrary

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 6 2014/4/7

Region Superstate Trigger Action State
(Thread) (Parallel) (Conditional) (Assignment) (Delay)

Normalized
SCCharts

SCG

SCL t fork t1 par t2 join if (c) s1 else s2 x = e pause

Data-Flow
Code

d = gexit

m = ¬
∨

surf ∈ t

gsurf

gjoin = (d1 ∨m1) ∧
(d2 ∨m2) ∧
(d1 ∨ d2)

g =
∨

gin

gtrue = g ∧ c

gfalse = g ∧ ¬c

g =
∨

gin

x′ = g ? e : x gdepth = pre(gsurf)

Circuits surf1

surf2
m

m1

d1

m2

d2

d1
d2

gjoin

c

g

gfalse

gtrue

x

e

g

x′

Figure 5. The “synthesis matrix” for SCCharts. The upper part shows the high-level synthesis from normalized SCCharts to the SCG, the
lower part shows the data-flow approach for low-level synthesis to software or hardware.

(a) Before (b) After splitting triggers

Figure 6. The normalization of Sandwich requires duplication of
an immediate trigger (T2), because there is a delayed trigger of
lower priority (T3).

number of final states. A parallel is a superstate that contains one or
more threads. A conditional is a state with two outgoing immediate
transitions, one of which has a trigger. An assignment is a state with
one outgoing immediate transition that has one action. A delay is
a state with one outgoing delayed transition, without any trigger or
action.

If a superstate S does not have an outgoing termination transi-
tion, normalization adds a normal termination transition from S to a
new, non-final state T . This ensures that join nodes in the SCG have
a defined control flow successor. For similar reasons, if a non-final
state S does not have any outgoing transitions, we add a delayed
self transition. This is equivalent to a halt statement in Esterel.

After these initial steps, normalization transforms states with
arbitrary outgoing transition patterns as follows.

1. Split actions. For each transition T from some state S1 to
another state S2, where T has an action A, and T has a trigger
or is delayed: remove A from T ’s transition label, create a new
target state S for T , and create an immediate transition from
S to S2 with action A. If T contains multiple actions, create a

sequence of new transitions/states.

2. Split triggers. For each state S whose outgoing transitions are
not yet in primitive form: create a sequence of conditionals that
check the immediate triggers (surface check), followed by a
delay, followed by another sequence of conditionals that check
all triggers (depth check) before looping back to the delay.2

The depth check can reuse triggers from the surface check by
looping back not to the delay, but to the first trigger of the
surface check for which there exists no delayed trigger with
lower priority.

The result of normalizing ABO is shown in Fig. 2c. In ABO, as
in most cases, we can construct control flow such that no trigger
duplication is necessary when doing the normalization. However,
there are counter examples, such as Sandwich (Fig. 6), where the
depth check can loop back to (and thus reuse) T4, but not T2. The
check of T2 must be duplicated because there is a delayed trigger of
lower priority (T3). Thus there must be a surface check (on the path
from S to S2) of T2 that, if not taken, transfers control directly to
a test of T4, and a depth check of T2 (on the path from S2 back to
itself) that subsequently tests T3.

3.3 Step 3: Map to SC Graph
Fig. 5 shows the mapping from normalized SCChart components to
the SCG. A thread has one entry node, corresponding to the initial
state, and one exit node, which corresponds to all final states of the
thread. If a thread has no final states, the exit node is not reachable.
A delay consists of surface and depth nodes that are connected
through a tick edge (dotted). Other edges of the SCG are sequential
edges (solid) that correspond to ordinary control flow (see Def. 5).
As part of Step 3, the SCG is also annotated with dependency
edges (dashed, see Fig. 2d), which indicate scheduling constraints

2 In synchronous programming, the surface of a (possibly compound) state-
ment refers to its behavior in the first tick of its execution, and the depth
refers to its behavior in subsequent ticks.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 7 2014/4/7

Data-Flow Priority
Accepts all ASC SCCharts + +

Accepts all data-flow acyclic SCCharts + –
Accepts all iur acyclic SCCharts – +

Can synthesize hardware + –
Can synthesize software + +

Size scales well (linear in size of SCChart) + +
Speed scales well (execute only “active” parts) – +

Instruction-cache friendly (good locality) + –
Pipeline friendly (little/no branching) + –

WCRT predictable (simple control flow) + +/–
Low execution time jitter (simple/fixed flow) + –

Figure 7. Comparison of data-flow vs. priority low-level compila-
tion approaches. The lower part only applies to software. WCRT,
the Worst Case Reaction Time, is the maximal execution time per
tick.

according to the iur protocol due to shared variable accesses (see
Def. 4).

The SCG also has a textual representation, the SC Language
(SCL). See Fig. 5 for the abstract SCL syntax and its correspon-
dence to SCG elements. In addition, SCL has a goto statement that
jumps to a label l to accommodate the free control flow permitted
by state transitions.

4. Data-Flow Low-Level Compilation
Once we have mapped an SCChart to its SCG, there are differ-
ent options for downstream synthesis. An overview comparison is
given in Fig. 7. The data-flow approach is suitable if the SCG (in-
cluding dependency edges, but excluding tick edges) is data-flow
acyclic (see Sec. 2.8). The basic idea is to generate a netlist, which
can then be realized in hardware, or can be simulated in software.
This approach, including the requirement to have an acyclic flow
graph, is already well established for compiling SyncCharts or Es-
terel [20]. We differ from the established circuit translation rules for
Esterel in two ways: 1) we have simpler translation rules, mainly
because aborts (and suspensions) are already transformed away
during high-level synthesis, and 2) the SC MoC permits sequen-
tial assignments.

See again Fig. 5 for the mapping from SCG elements to data-
flow code and circuits. As we synthesize a netlist where all compo-
nents are always active, we encode control flow with guards. How-
ever, instead of creating a guard for every node, we group nodes
together into basic blocks that consist of nodes with a common
control flow entrance and exit node. A guard g is true iff control
enters g’s basic block in the current tick. For example, the guard
for a conditional or an assignment is true iff any of the guards gin of
the predecessor nodes (basic blocks) is true. An interesting guard is
gjoin, which indicates whether a set of threads terminates in the cur-
rent tick. To calculate gjoin, each thread computes a flag d (“done”),
which is true when a thread is done, i. e., the guard of its exit node
is true, and a flag m (“empty”), which is true when it has no active
delay, i. e., the guards of its surface nodes are all false. For a delay,
the guard gdepth of the depth node is the registered guard gsurf of the
surface node.

To permit sequential assignments, we split multiple instances
(assignments) of variables apart, akin to SSA [3]. Thus an assign-
ment x = e creates a new instance (wire) x′. The multiplexer that
forwards either e or x to x′ corresponds to SSA’s Φ-nodes. The or-
dering of the instances must obey the control/dependency ordering
induced by the SCG and the iur protocol.

If such an order is not possible, due to a control/dependency
cycle, we must reject the program and cannot proceed further. As
in other hardware compilation approaches (including compilation

1 module ABO−seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, m2, m6, g2,
5 g3, g4, g5, g6, g7, g8;
6 bool g4 pre, g8 pre;
7 {
8 g0 = GO;
9 if g0 {

10 O1 = false;
11 O2 = false; };
12 g5 = g4 pre;
13 g7 = g8 pre;
14 g2 = g0 || g5;
15 g3 = g2 && A;
16 if g3 {
17 B = true;
18 O1 = true; };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true; };
23 g8 = g0 || (g7 && ! B);
24 m2 = ! g4;
25 m6 = ! g8;
26 g1 = (g3 || m2) &&
27 (g6 || m6) && (g3 || g6);
28 if g1 {
29 O1 = false;
30 O2 = true; };
31 g4 pre = g4;
32 g8 pre = g8;
33 }

(a) SCL code, permitting multi-
ple assignments per variable.

1 −− Main logic
2 g0 <= GO;
3 O1 <= false WHEN g0 ELSE O1 pre;
4 O2 <= false WHEN g0 ELSE O2 pre;
5 g5 <= g4 pre;
6 g7 <= g8 pre;
7 g2 <= g0 or g5;
8 g3 <= g2 and A in;
9 B <= true WHEN g3 ELSE B in;

10 O1 2 <= true WHEN g3 ELSE O1;
11 g4 <= g2 and not A in;
12 g6 <= g7 and B;
13 O1 3 <= true WHEN g6 ELSE O1 2;
14 g8 <= g0 or (g7 and not B);
15 m2 <= not (g4);
16 m6 <= not (g8);
17 g1 <= (g3 or m2) and
18 (g6 or m6) and
19 (g3 or g6);
20 O1 4 <= false WHEN g1 ELSE O1 3;
21 O2 2 <= true WHEN g1 ELSE O2;
22

23 −− Assign outputs
24 A out <= A in;
25 B out <= B;
26 O1 <= O1 4;
27 O2 <= O2 2;

(b) VHDL code (behavioral part), with
single assignments per variable/wire.
Variable name suffixes “ in/ out” denote
inputs/outputs, “x pre” indicates regis-
tered value of x, and “x i” denotes in-
stance i of x.

Figure 8. Illustration of the data-flow low level synthesis approach
with ABO.

of synchronous languages), we cannot synthesize loops directly;
these would require preprocessing, such as loop unrolling.

Recall that non-input variables are persistent, and that we do not
make any guarantees about uninitialized variables. Thus, if a non-
input variable x is possibly read in a tick before it is written, it must
be initialized from a register that stores the last value of x from the
previous tick, or, if this is the initial tick for entering the scope of
x, some arbitrary constant.

For hardware synthesis, the resulting netlist requires no further
considerations. For software synthesis, we must ensure that the
data-flow equations are computed in an order compliant with the
SCG control/dependency edges. For that purpose, we subdivide
basic blocks at each incoming or outgoing dependency edge into
scheduling blocks that can be scheduled atomically.

For ABO, Fig. 8a shows the SCL code after sequentialization
and guard introduction. This still assumes persistent variables (out-
puts and pause registers) and allows multiple variable assignments,
as would be suitable for software synthesis. This SCL code could
be mapped directly to a tick function in C, with state externalized
into the surface guards (g4 pre/g6 pre). A tick function computes a
single reaction and is typically embedded in some while loop that it-
erates in regular intervals. Fig. 8b shows the corresponding VHDL
code, after SSA-transformation and explicit registering.

From the initial SCChart to the VHDL (or C), all transformation
steps are model-to-model transformations, where we successively
replace complex constructs with equivalent, simpler constructs, but
stay on the same semantical foundation; the SCG/SCL/C/VHDL
artefacts are just different graphical/textual serializations.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 8 2014/4/7

1 // Boolean type
2 typedef int bool;
3 #define false 0
4 #define true 1
5

6 // Enable/disable threads with prioID p
7 #define u2b(u) (1 << u)
8 #define enable(p) enabled |= u2b(p); \
9 active |= u2b(p)

10 #define isEnabled(p) ((enabled & u2b(p)) != 0)
11 #define disable(p) enabled &= ˜ u2b(p)
12

13 // Set current thread continuation
14 #define setPC(p, label) pc[p] = &&label
15

16 // Pause, resume at <label>
17 #define pause(label) setPC(cid, label) ; \
18 goto L PAUSE
19

20 // Pause, resume at pause
21 #define concat helper(a, b) a ## b
22 #define concat(a, b) concat helper(a, b)
23 #define label concat(L, LINE)
24 #define pause pause(label) ; label :
25

26 // Fork/ join sibling thread with prioID p
27 #define fork1(label , p) setPC(p, label) ; enable(p);
28 #define join1(p) label : if (isEnabled(p)) \
29 { pause(label) ; }
30

31 // Terminate thread at ”par”
32 #define par goto L TERM;

(a) Selected SCLP macros. The address of label is ob-
tained with &&label. The concatenation operator ## pre-
vents macro expansion of its arguments, hence we need
concat helper. LINE expands to the current line num-

ber.

85 int tick ()
86 {
87 tickstart (2) ;
88 O1 = false;
89 O2 = false;
90

91 fork1(HandleB, 1) {
92 HandleA:
93 if (! A) {
94 pause;
95 goto HandleA;
96 }
97 B = true;
98 O1 = true;
99

100 } par {
101

102 HandleB:
103 pause;
104 if (! B) {
105 goto HandleB;
106 }
107 O1 = true;
108 } join1(2);
109

110 O1 = false;
111 O2 = true;
112 tickreturn;
113 }

(b) ABO SCLP tick
function

85 int tick ()
86 {
87 if (notInitial) { active = enabled; goto L DISPATCH; } else {

pc[0] = && L TICKEND; enabled = (1 << 0); active =
enabled; cid = 2; ; enabled |= (1 << cid); active |= (1
<< cid); notInitial = 1; } ;

88 O1 = 0;
89 O2 = 0;
90

91 pc[1] = &&HandleB; enabled |= (1 << 1); active |= (1 << 1); {
92 HandleA:
93 if (! A) {
94 pc[cid] = && L94; goto L PAUSE; L94:;
95 goto HandleA;
96 }
97 B = 1;
98 O1 = 1;
99

100 } goto L TERM; {
101

102 HandleB:
103 pc[cid] = && L103; goto L PAUSE; L103:;
104 if (! B) {
105 goto HandleB;
106 }
107 O1 = 1;
108 } L108: if (((enabled & (1 << 2)) != 0)) { pc[cid] = && L108;

goto L PAUSE; };
109

110 O1 = 0;
111 O2 = 1;
112 goto L TERM; L TICKEND: return (enabled != (1 << 0));

L TERM: enabled &= ˜(1 << cid); L PAUSE: active &=
˜(1 << cid); L DISPATCH: asm volatile(”bsrl %1,%0\n
” : ”=r” (cid) : ”r” (active)); goto ∗ pc[cid];

113 }

(c) ABO SCLP tick function after macro expansion. The flag
notInitial is initially 0, indicating the initial tick.

Figure 9. The tick function synthesized for the ABO example (Fig. 2) with the priority approach. In the initial tick, the tickstart(p) macro
initializes the root thread (prioID 0) and sets the prioID of the current thread to p; in subsequent ticks, it only activates the enabled threads.
The tickreturn does some bookkeeping: at the L TICKEND label, the return value indicates whether any threads other than the root thread are
still enabled; at L TERM, we disable the current thread; at L PAUSE, we deactivate the current thread, retrieve in cid the active thread with
highest prioID (on the x86 and with gcc, we can embed the “Bit Scan Reverse” assembler instruction), and jump to its continuation.

5. Priority-Based Low-Level Compilation
While the reaction time of software produced with the data-flow
approach (Sec. 4) is proportional to the size of the SCChart, the re-
action time of the more software-like priority approach presented
now depends only on the components that are active within a tick.
Thus the priority approach can scale better to very large models.
Furthermore, the priority approach targets only software and thus,
unlike the data-flow approach, has no trouble accepting control
flow cycles, i. e., it accepts all iur acyclic programs (see Sec. 2.8).
However, it rejects some programs that the data-flow approach ac-
cepts, because the data-flow approach considers sequential control
flow only if it is relevant for the flow of data.

The priority approach extends SCL with prioIDs (Sec. 5.1),
which are used at run time to schedule concurrent threads. The
resulting language, termed SCLP , consists of the sequential core
of C, plus a set of predefined C macros that emulate reactive
control flow (Fig. 9a). Control is not realized with guards for each
basic block, as was the case in the data-flow approach, but instead
with continuation points for each thread. In gcc, this is done with
computed gotos; if computed gotos are not available, as in ANSI
C, this can be emulated with switch-case logic. Hence SCLP can
be compiled with any ordinary C compiler.

5.1 Thread segment IDs, Node Priorities, prioIDs
Each thread consists of a set of thread segments, which are delin-
eated by fork/join nodes in the SCG and have a thread segment
ID (tsID). Furthermore, each SCG node has a priority. SCLP dis-
patches threads based on a prioID, which combines the node prior-
ity with the tsID in a lexicographic fashion. For an SCLP program
with tsIDs in N<n for some n, prioIDs are computed as priority ×
n + tsID. This induces an ordering dominated by priorities, identi-
cal priorities are resolved by tsIDs. Encoding both thread IDs and
priorities into a single scalar permits efficient thread book keep-
ing. For example, in the implementation of the SCLP operators the
prioID indexes an array that stores for each thread its continua-
tion, and also indexes bit vectors that keep track of which threads
are currently active. The chosen encoding permits on the one hand
dynamic priority changes of a thread, and thus instantaneous back-
and-forth communication between concurrent threads, and on the
other hand still allows a fast dispatching based solely on which
thread has the highest prioID.

The priorities and tsIDs must be assigned such that the resulting
prioIDs induce a scheduling order that respects the scheduling
constraints induced by the SC MoC. This is achieved, e. g., with
the priority assignment algorithm [33] that runs in linear time and
requires that the program is iur acyclic (see Sec. 2.8). There is also a
TickEnd thread, with priority 0 and tsID 0, which is always running

and manages the return from the tick function.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 9 2014/4/7

In ABO, the concurrent access to shared variable B induces one
dependence, which can be handled by assigning priority 1 to the
nodes in HandleA and in the initial thread segment of the root thread
(up to the fork), and priority 0 to the other nodes. The root thread
corresponds to the SCChart’s root state and gets started when the
program gets started; when the root thread terminates, the whole
program terminates. In ABO there are no concurrent threads of
same priority, hence the assignment of tsIDs does not influence any
scheduling decisions; we can thus arbitrarily assign tsID 2 to Han-
dleA and tsID 1 to HandleB. However, we can avoid unnecessary
jumps and run-time prioID changes by 1) ordering HandleA be-
fore HandleB in the fork/join, so that the thread with lowest prioID
comes last and gets to execute the join, 2) propagating HandleA’s
tsID 2 up to the initial segment of the root thread, and 3) propagat-
ing HandleB’s tsID 1 down to the final segment of the root thread
(from the join onwards). Thus, there are n = 3 tsIDs in use, and the
resulting prioIDs are 1× 3 + 2 = 5 (HandleB/root), 0× 3 + 1 = 1
(HandleA/root), and 0× 0 + 0 = 0 (TickEnd).

To minimize storage requirements and to maximize the number
threads/priorities that can be encoded with only scalar bit vectors,
we compress the range of prioIDs by skipping unused prioIDs. For
ABO, shown in Fig. 9b, this results in shifting prioID 5 to prioID 2.

5.2 The SCLP Operators
The SCLP macros are tickstart(p), which starts the root thread
with prioID p; tickreturn, which contains some pausing/dispatching
logic and returns 1 or 0 depending on whether the root thread
is still running or not; pause, which pauses a thread until the
next tick starts; forkn(l1, p1, . . . , ln, pn), which forks off n sibling
threads with start labels li and prioIDs pi; par, which acts as a
thread barrier by terminating a thread; and joinn(p1, . . . , pn), which
joins sibling threads with n different prioIDs pi. Note that the
joinn is not performed by the parent thread, but by one of its
child threads; the parent thread does not get started again until
its children have terminated. To catch the termination of sibling
threads instantaneously, the thread executing the joinn must run at
a prioID that is lower than that of these siblings. In case a sibling
thread to be joined may perform a priority change, it must be
considered with all prioIDs that it may take on. A further operator,
not required in ABO, is prio(p), which allows to change the prioID
of a thread.

When a parent thread forks off child threads, the child thread
that is started immediately after the fork gets to reuse the tsID of the
parent thread. Similarly, after the join, the resuming parent thread
reuses the tsID of the child thread performing the join. This implies
that the forking of a single thread requires neither an extra tsID nor
the associated bookkeeping information (resumption address etc.),
which is one of the aspects where SCLP is more efficient than the
original Synchronous C [31].

Fig. 9 shows the SCLP version of ABO, along with selected
SCLP macro definitions and the result of macro-expanding ABO
(gcc -E). The continuation point for the thread with prioID p is
stored in pc[p]. The prioID of the currently running thread is
cid. The threads that still have work to do in the current tick

are represented in a bit-vector active, similarly enabled indicates
threads that have not terminated yet. Thus the enabled bits are
the inverse of the m (“empty”) flags computed in the data-flow
approach. The macros presented here represent the bit vectors with
scalars, thus the word size limits the maximum prioID; we have
also developed alternative macros that use arrays instead and thus
do not have that limitation.

6. Implementation and Experiments
As this paper is about a new modeling language, there are only
limited quantitative comparison points. However, there are some

0" 5" 10" 15" 20" 25" 30"

AVERAGE"
reactor"control"

cabin"
reincarna6on"

shi9er3" Extended"
Core"

0" 5" 10" 15" 20" 25"

0" 2" 4" 6" 8"

AVERAGE"
reactor"control"

cabin"
reincarna6on"

shi9er3"
Priority"
DataCFlow"

0" 20" 40" 60" 80" 100"

Figure 10. Number of states (left) and transitions (right), Extended
SCCharts vs. equivalent Core SCCharts.

0	
 5	
 10	
 15	
 20	
 25	
 30	

AVERAGE	

reactor	
 control	

cabin	

reincarna6on	

shi9er3	
 Extended	

Core	

0	
 5	
 10	
 15	
 20	
 25	

0	
 2	
 4	
 6	
 8	

AVERAGE	

reactor	
 control	

cabin	

reincarna6on	

shi9er3	

Priority	

Data-­‐Flow	

0	
 20	
 40	
 60	
 80	
 100	

Figure 11. Clock cycles per tick (left) and executable size in
KBytes (right), priority vs. data-flow low-level compilation.

questions to ask that warrant practical experimentation. To answer
these, we have implemented the compilation stacks just described
as part of the KIELER Eclipse-based open-source modeling en-
vironment3. All phases, from Extended SCCharts to C/VHDL, are
implemented as model-to-model transformations written in Xtend4.
SCCharts and intermediate SCChart/SCG models are visualized
with KLighD [23], with fully automatic layout; this includes all
SCChart figures in this paper.

First of all, there is the question of correctness. As stated in
Sec. 7, SCCharts are a conservative extension of SyncCharts. Thus
valid SyncCharts should also be valid SCCharts, with the same be-
havior. To that end, we have collected >100 validation benchmarks
with input and output traces during the course of developing SC-
Charts and the transformations presented here, and we have val-
idated that the SCCharts compiler does produce the same result
as both another SyncChart-to-Synchronous C compiler [29] and,
where traces were available, Esterel Studio.

Another question to ask is how much Extended SCChart mod-
els increase when transforming them to Core SCCharts. In Fig. 10
we compare the number of nodes and transitions for some bench-
marks suggested by Traulsen et al. [29]. On average, the Extended
SCCharts model has 42% fewer states and 53% fewer transitions
than the equivalent expanded Core SCCharts model. Thus, the ex-
pansion leads to a model size increase, which is not surprising as
the main motivation for the SCChart extensions is to express com-
plex behavior in a more compact, abstract manner than is possible
with Core SCCharts only. However, the expansions do not cause
model size explosion either, which confirms that the Core SCChart
operations capture the essence of the MoC. It also suggests that the
generic transformations are reasonably efficient, although an expert
modeler might in certain cases produce even more compact Core
SCCharts.

For the same set of benchmarks, Fig. 11 compares for low-
level synthesis the priority synthesis approach with the data-flow
approach. The measurements were made on an Intel Core 2 Duo
P8700 (2.53GHz) architecture. At least for these small-to-medium
size benchmarks, the data-flow approach is faster; it has to compute
more than the priority approach, as it always simulates the whole
program, but its very linear control flow structure allows very fast
execution. E. g., branching can be implemented with conditional

3 http://www.informatik.uni-kiel.de/rtsys/kieler/
4 http://www.eclipse.org/xtend/

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 10 2014/4/7

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://www.eclipse.org/xtend/

0	

5	

10	

15	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	

Priority	

Data-­‐Flow	

Figure 12. Jitter comparison (in msec) of low-level synthesis ap-
proaches, for cabin running 100 ticks.

moves rather than conditional jumps, which avoids branch mispre-
diction penalties and thus helps modern, deeply pipelined architec-
tures. The size differences are less significant.

Fig. 12 illustrates for one of the benchmarks the execution times
per reaction for a sequence of reactions. Not surprisingly, the exe-
cution times of the priority approach show a significant variance,
i. e., a high jitter. The data-flow approach has a much steadier re-
sponse time (and is faster on average), as there is basically no in-
ternal control flow that depends on the inputs and the internal state.

7. Related Work
The proper handling of concurrency has a long tradition in com-
puter science, yet, as argued succinctly by Hansen [13] or Lee [16],
still has not found its way into mainstream programming languages
such as Java. Synchronous languages were largely motivated by
the desire to bring determinacy to reactive control flow, which cov-
ers concurrency and preemption [4]. Syntax and semantics of SC-
Charts have taken much inspiration from André’s SyncCharts [2],
introduced as Safe State Machines (SSMs) in Esterel Studio, and its
predecessor Argos [18]. SyncCharts combines a statechart syntax
with a semantics very close to the synchronous, textual language
Esterel [5]. Colaço et al. [7, 8] have presented a SyncCharts/SSM
variant, now implemented in the Safety Critical Application De-
velopment Environment (SCADE), whose semantics is an exten-
sion of the synchronous data-flow semantics of Lustre [12]. They
use an elegant construct that basically refines boolean clocks into
“state clocks.” The functional synchronous Lucid Synchrone [8]
allows the definition of local names, which can be used to encode
sequential orderings, as in let x = . . . in x = x + 1; the same effect
can be achieved by converting a program into static single assign-
ment (SSA) form [3]. In Lucid Synchrone, this is motivated also
by the desire to sequentialize external function calls with side ef-
fects, such as “print.” Caspi et al. [6] have extended Lustre with a
shared memory model. However, they adhere to the current syn-
chronous model of execution in that they forbid multiple writes
even when they are sequentially ordered. Unlike these SyncCha-
rts/Lustre variants, SCCharts presented here are not restricted to
constructiveness in Berry’s sense [5], but relax this requirement to
sequential constructiveness (SC). Thus SCCharts are a conserva-
tive extension of SyncCharts, in the sense that Berry-constructive
SyncCharts are also valid SCCharts, but there is a large class of
valid SCCharts that are perfectly determinate under SC schedul-
ing but would be rejected by a SyncCharts compiler. In a nutshell,
like Harel has [14] stated “statecharts = state-diagrams + depth +
orthogonality + broadcast communication,” one may say “Sync-
Charts = statecharts syntax + Esterel semantics” and “SCCharts =
SyncCharts + sequential constructiveness + extensions,” where the
extensions are mostly drawn from SCADE (e. g., deferred transi-
tions) and Quartz [24]/Esterel v7 (e. g., weak suspend).

Edwards [9] and Potop-Butucaru et al. [20] provide good
overviews of compilation challenges and approaches for concurrent
languages, including synchronous languages. We present an alter-
native compilation approach that handles most constructs that are

challenging for a synchronous languages compiler by a sequence
of model-to-model transformations, until only a small set of Core
SCChart constructs remains. This applies in particular to aborts in
combination with concurrency, which we, as part of the high-level
compilation phase, reduce to (normal) terminations. Compared to
existing approaches, this significantly simplifies down-stream com-
pilation.

More specifically, the problem of compiling SCCharts is closely
related to the compilation of Esterel, modulo the additional lib-
erty provided by sequential constructiveness and some specific lan-
guage constructs that are not common to both languages. For ex-
ample, state transitions correspond to gotos, which are not present
in Esterel, but which have been proposed as extensions there, in
fact largely motivated by the desire to compile state machines di-
rectly into Esterel [27]. Conversely, Esterel has traps that are not
present in SCCharts, but that can be encoded with aborts [21].
Our SCG, which results from the high-level compilation phase, is
closely related to the concurrent control-flow graph (CCFG) used
by the Columbia Esterel Compiler (CEC) as intermediate repre-
sentation [9], the main difference being that we permit arbitrary
control flow including loops and that we have more refined types
of data dependencies. The SCG is also related to the GRaph Code
(GRC) [20] that, like the CCFG, has a separate structure to keep
state across tick boundaries (“reconstruction tree”). In comparison,
the SCG has a rather simple means to express state, namely regis-
ters that correspond to the non-transient SCChart states. This corre-
sponds to a one-hot encoding of the possible continuation points of
each thread. In the priority-based low-level synthesis approach, this
one-hot encoding is condensed into one program counter per active
thread. In summary, there are numerous ways to compile the SCG
to hardware or software, and we expect that much of the earlier
work on Esterel compilation could also be applied, with some mod-
ifications, to the SCG; the two low-level synthesis paths presented
here present rather straightforward options, with little compile-time
partial evaluation.

8. Wrap-Up
SCCharts combine the intuitive nature of statecharts with the se-
quentially constructive model of computation, which naturally ex-
tends the sound basis of synchronous concurrency with sequen-
tial variable accesses. The core of SCCharts is defined by a very
small set of operations, primarily state machines plus hierarchy,
where superstates can be left with a join-like termination of their
sub-states. Based on these core operations, we derive a number
of high-level constructs, notably different types of aborts, through
simple model-to-model transformations that largely preserve the
write-things-once principle and thus keep the SCCharts compact.

The flexible yet determinate semantics of SCCharts makes them
particularly suitable for safety-critical applications. This is aug-
mented by direct synthesis paths to both software and hardware,
which run in linear time, scale well, and where all intermediate
steps are open to inspection. We have presented two alternatives for
the low-level transformation that map from the SCG to C/VHDL:
1) the data-flow approach, which directly maps SCChart elements
to data-flow elements or code and which is a sensible default strat-
egy in most cases, and 2) the priority approach, which produces
software only, but accepts a larger class of programs and for very
large programs has asymptotically better performance. One char-
acteristic of the SCG-based, step-wise synthesis proposed here is
that there are no conceptual breaks between SCCharts and the low-
level implementation. This drastically facilitates, for example, the
handling of signals and the signal reincarnation problem, which
we can handle at the SCChart/SCG level with linear overhead [1],
whereas handling signal reincarnation at the Esterel level has po-
tentially quadratic overhead [28]. Many further details, including

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 11 2014/4/7

detailed descriptions of the Extended SCChart features and of the
synthesis approaches, were omitted here for space constraints but
are found elsewhere [32].

Future work includes further exploration of model-to-model op-
timizations, applying our synthesis approach to Esterel-like lan-
guages, optimized tsID/priority assignments, experimentation with
industry-scaled applications, and further improvements to the auto-
matic layout of SCCharts and SCGs.

Acknowledgments
This work was supported by the German Science Foundation (DFG
HA 4407/6-1 and ME 1427/6-1) as part of the PRETSY project. We
also thank our reviewers for their valuable comments and sugges-
tions to improve the presentation of this paper.

References
[1] J. Aguado, M. Mendler, R. von Hanxleden, and I. Fuhrmann. Ground-

ing synchronous deterministic concurrency in sequential program-
ming. In Proceedings of the 23rd European Symposium on Program-
ming (ESOP’14), Grenoble, France, Apr. 2014.

[2] C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR–
2003–24–FR, I3S Laboratory, Sophia-Antipolis, France, April 2003.

[3] A. W. Appel. SSA is functional programming. SIGPLAN Not., 33(4):
17–20, Apr. 1998. ISSN 0362-1340.

[4] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone. The Synchronous Languages Twelve Years Later.
In Proc. IEEE, Special Issue on Embedded Systems, volume 91, pages
64–83, Piscataway, NJ, USA, Jan. 2003. IEEE.

[5] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language, and Interaction: Essays in Honour
of Robin Milner, pages 425–454, Cambridge, MA, USA, 2000. MIT
Press. ISBN 0-262-16188-5.

[6] P. Caspi, J.-L. Colaço, L. Gérard, M. Pouzet, and P. Raymond. Syn-
chronous Objects with Scheduling Policies: Introducing safe shared
memory in Lustre. In ACM International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’09), pages 11–
20, Dublin, Ireland, June 2009. ACM.

[7] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of
synchronous data-flow with State Machines. In ACM International
Conference on Embedded Software (EMSOFT’05), pages 173–182,
New York, NY, USA, Sept. 2005. ACM.

[8] J.-L. Colaço, G. Hamon, and M. Pouzet. Mixing signals and modes in
synchronous data-flow systems. In ACM International Conference on
Embedded Software (EMSOFT’06), pages 73–82, Seoul, South Korea,
Oct. 2006. ACM.

[9] S. A. Edwards. Tutorial: Compiling concurrent languages for sequen-
tial processors. ACM Transactions on Design Automation of Elec-
tronic Systems, 8(2):141–187, Apr. 2003.

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–349, 1987. ISSN 0164-
0925.

[11] H. Fuhrmann and R. von Hanxleden. On the pragmatics of model-
based design. In Foundations of Computer Software. Future Trends
and Techniques for Development—15th Monterey Workshop 2008,
Budapest, Hungary, September 24–26, 2008, Revised Selected Papers,
volume 6028 of LNCS, pages 116–140, 2010. .

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, Sept. 1991.

[13] P. B. Hansen. Java’s insecure parallelism. SIGPLAN Not., 34(4):38–
45, Apr. 1999. ISSN 0362-1340.

[14] D. Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231–274, June 1987.

[15] D. Harel and A. Naamad. The STATEMATE semantics of statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):
293–333, Oct. 1996.

[16] E. A. Lee. The problem with threads. IEEE Computer, 39(5):33–42,
2006.

[17] J. Lukoschus and R. von Hanxleden. Removing cycles in Esterel
programs. EURASIP Journal on Embedded Systems, Special Issue
on Synchronous Paradigms in Embedded Systems, 2007. Article ID
48979, 23 pages.

[18] F. Maraninchi. The Argos language: Graphical representation of
automata and description of reactive systems. In IEEE Workshop on
Visual Languages, Oct. 1991.

[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[20] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel.

Springer, May 2007.
[21] S. Prochnow, C. Traulsen, and R. von Hanxleden. Synthesizing

Safe State Machines from Esterel. In Proceedings of ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’06), Ottawa, Canada, June 2006.

[22] T. Reenskaug. Models – Views – Controllers, Dec. 1979. Xerox PARC
technical note.

[23] C. Schneider, M. Spönemann, and R. von Hanxleden. Just model!
– Putting automatic synthesis of node-link-diagrams into practice.
In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’13), San Jose, CA, USA, 15–
19 Sept. 2013.

[24] K. Schneider. Embedding imperative synchronous languages in inter-
active theorem provers. In Conference on Application of Concurrency
to System Design (ACSD), pages 143–156, Newcastle upon Tyne, UK,
June 2001. IEEE Computer Society.

[25] J. T. Schwartz. Ultracomputers. ACM Trans. Program. Lang. Syst., 2
(4):484–521, Oct. 1980.

[26] T. R. Shiple, G. Berry, and H. Touati. Constructive Analysis of
Cyclic Circuits. In Proc. European Design and Test Conference
(ED&TC’96), Paris, France, pages 328–333, Los Alamitos, Califor-
nia, USA, Mar. 1996. IEEE Computer Society Press.

[27] O. Tardieu. Goto and concurrency—introducing safe jumps in Es-
terel. In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP’04), Barcelona, Spain, Mar. 2004.

[28] O. Tardieu and R. de Simone. Curing schizophrenia by program
rewriting in Esterel. In Proceedings of the Second ACM-IEEE In-
ternational Conference on Formal Methods and Models for Codesign
(MEMOCODE’04), San Diego, CA, USA, 2004.

[29] C. Traulsen, T. Amende, and R. von Hanxleden. Compiling Sync-
Charts to Synchronous C. In Proceedings of the Design, Automation
and Test in Europe Conference (DATE’11), pages 563–566, Grenoble,
France, Mar. 2011. IEEE.

[30] M. von der Beeck. A comparison of Statecharts variants. In H. Lang-
maack, W. P. de Roever, and J. Vytopil, editors, Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages
128–148. Springer-Verlag, 1994.

[31] R. von Hanxleden. SyncCharts in C—A Proposal for Light-Weight,
Deterministic Concurrency. In Proc’ Int’l Conference on Embedded
Software (EMSOFT’09), pages 225–234, Grenoble, France, Oct. 2009.
ACM.

[32] R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler,
J. Aguado, S. Mercer, and O. O’Brien. SCCharts: Sequentially Con-
structive Statecharts for safety-critical applications. Technical Report
1311, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, Dec. 2013. ISSN 2192-6247.

[33] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt,
I. Fuhrmann, C. Motika, S. Mercer, O. O’Brien, and P. Roop. Se-
quentially Constructive Concurrency—A conservative extension of
the synchronous model of computation. ACM Transactions on Embed-
ded Computing Systems, Special Issue on Applications of Concurrency
to System Design, 2014. To appear.

SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications 12 2014/4/7

	Introduction
	The SCCharts Language
	Interface Declarations
	States and Transitions
	Hierarchy and Concurrency
	Termination
	The ABO Example
	Extended SCCharts
	Sequential Constructiveness
	Sequential Constructiveness beyond ASC
	SCCharts Pragmatics

	High-Level Compilation
	Step 1: Expand Extended SCCharts
	Step 2: Normalize SCCharts
	Step 3: Map to SC Graph

	Data-Flow Low-Level Compilation
	Priority-Based Low-Level Compilation
	Thread segment IDs, Node Priorities, prioIDs
	The SCLP Operators

	Implementation and Experiments
	Related Work
	Wrap-Up

