
SLA++P’07

Worst Case Reaction Time Analysis
of Concurrent Reactive Programs

Marian Boldt Claus Traulsen Reinhard von Hanxleden

Dept. of Computer Science
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40, D-24098 Kiel, Germany
{mabo,ctr,rvh}@informatik.uni-kiel.de

Abstract

Reactive programs have to react continuously to their inputs. Here the time needed to
react with the according output is important. While the synchrony hypothesis takes
the view that the program is infinitely fast, real computations take time. Similar to
the traditional Worst Case Execution Time (WCET), the Worst Case Reaction Time
(WCRT) of a program determines the maximal time for one reaction.

In this paper, we present an algorithm to determine the WCRT of a program written
in the synchronous language Esterel. This value gives an upper bound for the execution
time when the program is executed on a reactive processor. Specifically, we consider the
execution of the Esterel program on the Kiel Esterel Processor (KEP), a reactive processor
that can execute Esterel-like instructions. Here the WCRT directly determines an upper
bound on the instruction cycles per logical tick. The WCRT also gives a guideline for the
execution time when the Esterel program is compiled to software by a simulation-based
approach.

We have implemented the WCRT analysis algorithm as part of an Esterel compiler for
the KEP and have measured an accuracy of analysis results of about 40% on average.

Key words: Synchronous Languages, Esterel, Worst Case Execution
Time, Worst Case Reaction Time, Instantaneous Reachability

1 Introduction

Many embedded systems belong to the class of reactive systems, which continuously
react to inputs from the environment by generating corresponding outputs. For
these systems, exact timing information or at least an upper bound of the execution
time is crucial. To perform an exact Worst Case Execution Time (WCET) analysis
is difficult, and in general not possible for Turing-complete languages. It typically
imposes fairly strong restrictions on the analyzed code, such as a-priori known
upper bounds on loop iteration counts, and even then control flow analysis is often
overly conservative [18,5]. Furthermore, even for a linear sequence of instructions,
typical modern architectures make it difficult to predict how much time exactly the
execution of these instructions consumes, due to pipelining, out-of-order execution,

M.Boldt, C.Traulsen and R. v.Hanxleden

argument-dependent execution times (e. g., particularly fast multiply-by-zero), and
caching of instructions and/or data. Finally, if external interrupts are possible
or if an operating system is used, it becomes even more difficult to predict how
long it really takes for an embedded system to react to its environment. Despite
the advances already made in the field of WCET analysis, it appears that most
practitioners today still resort to extensive testing plus adding a safety margin to
validate timing characteristics. To summarize, performing conservative yet tight
WCET analysis appears by no means trivial and is still an active research area.

One step to make WCET analysis of reactive applications more feasible is to
choose a programming language that provides direct, predictable support for re-
active control flow patterns. One suitable candidate for this is the synchronous
language Esterel [2], which has been developed for programming control-oriented,
embedded systems. It directly supports concurrency and multiple forms of preemp-
tion. Based on the synchrony hypothesis, it offers determinism even for concurrent
components. The execution of Esterel programs is divided into (logical) ticks, each
of which conceptually takes no time. Esterel forbids programs with a potentially
unbounded number of statements to be performed within a tick. This is reflected
in the rule that there cannot be instantaneous loops; within a loop body, each
statically feasible path must contain at least one tick-delimiting instruction. The
restricted nature of Esterel and its sound mathematical semantics allow formal anal-
ysis of Esterel programs and make the computation of a WCET for Esterel programs
achievable.

In addition to choosing a suitable programming language, the feasibility of
WCET analysis crucially depends on the execution platform. A relatively new
approach for control-oriented reactive-systems are reactive processors [22,14,15].
These processors directly support reactive control flow, such as preemption and
concurrency. In this paper we will use the Kiel Esterel Processor (KEP), a reactive
processor based on the synchronous language Esterel, to show that timing analysis
is practical for reactive processors, hence making the reactive processing approach
particularly well suited for hard real-time systems. There are two main factors that
contribute to this, on the one hand the synchronous execution model of Esterel, and
on the other hand the direct implementation of this execution model on a reactive
processor. Furthermore, reactive processors are not designed to optimize (average)
performance for general purpose computations, and hence do not have a hierarchy
of caches, pipelines, branch predictors, etc. This leads to a simpler design and
execution behavior and further facilitates WCET analysis.

As we here are investigating the timing behavior for reactive systems, we are
concerned with computing the maximal time it takes to compute a single reaction,
that is the time from given input events to generated output events. Therefore
we call this analysis a Worst Case Reaction Time (WCRT) analysis. The WCRT
determines the maximal rate for the interaction with the environment. Whether
WCRT can be formulated as a classical WCET problem or not depends on the
implementation approach. If the implementation is based on sequentialization such
that there exist two dedicated points of control at the beginning and the end of
each reaction, respectively, then WCRT can be formulated as WCET problem; this
is the case, for example, if one “automaton function” is synthesized, which is called
during each reaction. If, however, the implementation builds on a concurrent model

2

M.Boldt, C.Traulsen and R. v.Hanxleden

of execution, where each thread maintains its own state of control across reactions,
then WCRT requires not only determining the maximal length of pre-defined in-
struction sequences, as in WCET, but one also has to analyze the possible control
point pairs that delimit these sequences. Thus, WCRT is more elementary than
WCET in the sense that it considers single reactions, instead of whole programs,
and at the same time WCRT is more general than WCET in that it is not limited
to pre-defined control boundaries.

The contribution of this paper is a WCRT analysis of complete Esterel programs
including concurrency and preemption. The analysis computes the WCRT in terms
of KEP instruction cycles, which roughly match the number of executed Esterel
statements. As part of the WCRT analysis, we also present an approach to cal-
culate potential instantaneous paths, which may be used in compiler analyses and
optimizations that go beyond WCRT analysis.

In the following section, we consider related work. In Section 3 we will give
an introduction into the synchronous model of computation for Esterel and the
KEP. We outline the generation of a Concurrent KEP Assembler Graph (CKAG),
an intermediate graph representation of an Esterel program, which we use for our
analysis. Section 4 explains our algorithm in detail, while Section 5 gives experi-
mental results, comparing the computed number of reactions with values obtained
from exhaustive simulation. The paper concludes in Section 6.

2 Related Work

As mentioned in the introduction, there exist numerous approaches to classical
WCET analysis. For a survey see, e. g., Puschner and Burns [20]. These approaches
usually consider (subsets) of general purpose languages, such as C, and take infor-
mations on the processor designs and caches into account.

Regarding the analysis of synchronous programs, Logothetis, Schneider and Met-
zler [16,17] have employed model checking to perform a precise WCET analysis for
the synchronous language Quartz, which is similar to Esterel. However, their prob-
lem formulation was different from the WCRT analysis problem we are addressing.
They were interested in computing the number of ticks required to perform a cer-
tain computation, such as a primality test, which we would actually consider to be
a transformational system rather than a reactive system [12]. We here instead are
interested in how long it may take to compute a single tick, which can be considered
an orthogonal issue.

One important problem that must be solved when performing WCRT analysis
for Esterel is to determine whether a code-segment is reachable instantaneously or
delayed or both. This is related to the well-studied property of surface and depth
of an Esterel program, i. e., to determine whether a statement is instantaneous
reachable or not, which is also important for schizophrenic Esterel programs [2].
This was addressed in detail by Tardieu and de Simone [23]. They also point
out that an exact analysis of instantaneous reachability has NP complexity. We,
however, are not only interested whether a statement can be instantaneous, but
also whether it can be non-instantaneous.

Beside being executed on a reactive processors, Esterel programs can be syn-
thesized to hardware [1] or compiled into software, e. g., C-code; see Edwards [10]

3

M.Boldt, C.Traulsen and R. v.Hanxleden

for an overview. Currently, the most efficient compilation schemes are simulation
based [9,7,19,11]: the Esterel program is organized according to some kind of graph-
ical structure and its current state is stored in a data-structure on the application
level, e. g., a bit-vector. Based on this vector, the current actions in the graph are
triggered. While this approach produces fairly efficient code, both in size and in ex-
ecution speed, it removes much of the structure from the Esterel-program, making
the WCET analysis as hard as for “normal” C programs.

Ringler [21] considers the WCET analysis of C code generated from Esterel. But
his approach is only feasible for the generation of circuit code [2], which scales well
for large applications, but tends to be slower than the simulation based approach.

Li et al. [14] compute a WCRT of sequential Esterel programs directly on the
source code. However, they did not address concurrency, and their source-level
approach could not consider compiler optimizations. We perform the analysis on
an intermediate level after the compilation, as a last step before the generation of
assembler code. This also allows a finer analysis and decreases the time needed for
the analysis.

The KEP contains a TickManager [14], which monitors how many instructions
are executed in the current logical tick. To minimize jitter, a maximum number
of instructions for each logical tick can be specified. If the current tick needs less
instructions, the start of the next tick is delayed. If the tick needs more instructions,
an error-output is set. Hence a tight, but conservative upper bound of the maximal
instructions for one tick is of direct value for the KEP. See Li et al. [14] for details
on the relation between the maximum number of instruction per logical tick and
the physical timing constraints from the environment perspective.

3 Esterel, KEP and the CKAG

Next we give a short overview of Esterel and the KEP. While our analysis is im-
plemented in the compiler from Esterel to the KEP assembler, it is also of interest
for other execution forms of Esterel. The analysis itself is performed on a graph
representation of Esterel-programs, the CKAG.

3.1 Esterel

The execution of an Esterel program is divided into logical instants, or ticks, and
communication within or across threads occurs via signals; at each tick, a signal
is either present (emitted) or absent (not emitted). Esterel statements are either
transient, in which case they do not consume logical time, or delayed, in which case
execution is finished for the current tick. Per default statements are transient, and
these include for example emit, loop, present, or the preemption operators. Delayed
statements include pause, (non-immediate) await, and every. Esterel’s parallel opera-
tor, ||, groups statements in concurrently executed threads. The parallel terminates
when all its branches have terminated.

Esterel offers two types of preemption constructs. An abortion kills its body
when an abortion trigger occurs. We distinguish strong abortion, which kills its
body immediately (at the beginning of a tick), and weak abortion, which lets its
body receive control for a last time (abortion at the end of the tick). A suspension

4

M.Boldt, C.Traulsen and R. v.Hanxleden

module ExSeq:
input I ;
output R,S;

weak abort
loop

pause;
emit R

end loop
when I;
emit S
end module

tick

In:

Out:

-
R R

I

R
S

(a) Esterel code
and sample trace

module: ExSeq
EMIT _TICKLEN,#6

[L1,W5] WABORT I,A0

[L2,W3] A1

[L2,W3/6] PAUSE

[L3,W5] EMIT R[L5,W2] A0

I

w

[L4,W4] GOTO A1[L5,W2] EMIT S

[L6,W1/1] HALT

(b) CKAG

% module: ExSeq

INPUT I
OUTPUT R,S
EMIT TICKLEN,#6

[L1,W5] WABORT I,A0
[L2,W3/6] A1: PAUSE
[L3,W5] EMIT R
[L4,W4] GOTO A1
[L5,W2] A0: EMIT S
[L6,W1/1] HALT

(c) KEP assembler

− Tick 1 −
! reset ;
% In:
% Out: R
% RT = 3
WABORTL1 PAUSEL2
− Tick 2 −
% In:
% Out: R
% RT = 4
PAUSEL2 EMITL3
GOTOL4 PAUSEL2
− Tick 3 −
% In: I
% Out: R S
% RT = 6
PAUSEL2 EMITL3 GOTOL4
PAUSEL2 EMITL5 HALTL6
− Tick 4 −
% In:
% Out:
% RT = 1
HALTL6

(d) KEP sample
trace

Fig. 1. A sequential Esterel example. The body of the KEP assembler program (without
interface declaration and initialization of the TickManager) is annotated with line numbers
L1–L6, which are also used in the CKAG and in the trace to identify instructions. The
trace shows for each tick the input and output signals that are present and the reaction
time (RT), in instruction cycles.

freezes the state of a body in the instant when the trigger event occurs.

Esterel also offers an exception handling mechanism via the trap/exit statements.
An exception is declared with a trap scope, and is thrown (raised) with an exit

statement. An exit T statement causes control flow to move to the end of the
scope of the corresponding trap T declaration. This is similar to a goto statement,
however, there are further rules when traps are nested or when the trap scope
includes concurrent threads. If one thread raises an exception and the corresponding
trap scope includes concurrent threads, then the concurrent threads are weakly
aborted; if concurrent threads execute multiple exit instructions in the same tick,
the outermost trap takes priority.

A simple sequential Esterel example ExSeq can be found in Figure 1(a). From
the second instant on it will continuously emit the signal R. When the input I occurs,
it emits R one last time. In the same instant, it also emits S and terminates. This
behavior can also be observed in the trace in Figure 1(a), where input I occurs in
the third tick.

For another example, consider ExPar shown in Figure 2(a), which loops over two
parallel threads. The program emits the signals R and S in the first instant, and
since the loop instantaneously restarts its body, it will from the second instant on
continuously emit all three signals R, S, and T.

3.2 The Kiel Esterel Processor

The instruction set of the KEP is very similar to the Esterel language. The Esterel
language distinguishes kernel statements (e. g., emit, pause) and derived statements
(e. g., await, every) [3]. Derived statements are in general just syntactic sugar and

5

M.Boldt, C.Traulsen and R. v.Hanxleden

module ExPar:

output R,S,T;

loop
[

emit R;
||

emit S;
pause;
emit T;

]
end loop

end module

tick

In:

Out:

-
R
S

R
S
T

R
S
T

(a) Esterel

module: ExPar
EMIT _TICKLEN,#11

[L1,W7] A0

[L3,W7] PAR*

[L4,W1] A1

 1

[L5,W2] A2

 1

[L4,W1] EMIT R

[L8,W9/11] JOIN 0

[L5,W2] EMIT S

[L6,W1/2] PAUSE

[L7,W1] EMIT T

[L9,W8] GOTO A0

(b) CKAG

% module: ExPar

OUTPUT R,S,T
EMIT TICKLEN,#11

[L1,W7] A0: PAR 1,A1,1
[L2] PAR 1,A2,2
[L3,W7] PARE A3,1
[L4,W1] A1: EMIT R
[L5,W2] A2: EMIT S
[L6,W1/2] PAUSE
[L7,W1] EMIT T
[L8,W9/11] A3: JOIN 0
[L9,W8] GOTO A0

(c) KEP assembler

− Tick 1 −
! reset ;
% In:
% Out: R S
% RT = 7
PARL1 PARL2 PAREL3
EMITL4 EMITL5 PAUSEL6
JOINL8
− Tick 2 −
% In:
% Out: R S T
PAUSEL6 EMITL7 JOINL8
GOTOL9
PARL1 PARL2 PAREL3
EMITL4 EMITL5 PAUSEL6
JOINL8
− Tick 3 −
% In:
% Out: R S T
PAUSEL6 EMITL7 JOINL8
GOTOL9
PARL1 PARL2 PAREL3
EMITL4 EMITL5 PAUSEL6
JOINL8

(d) Sample trace

Fig. 2. A concurrent example program.

can be reduced to kernel statements. The KEP Instruction Set Architecture (ISA)
includes all kernel statements, and in addition some frequently used derived state-
ments. The KEP ISA also includes valued signals, which cannot be reduced to
kernel statements. The only parts of Esterel v5 that are not part of the KEP ISA
are combined signal handling and external task handling, as they both seem to be
used only rarely in practice; however, adding these capabilities to the KEP ISA
seems relatively straightforward.

Due to this direct mapping from Esterel to the KEP ISA, most Esterel state-
ments can be executed in just one instruction cycle. For more complicated state-
ments, well-known translations into kernel statements exist, allowing the KEP to
execute arbitrary Esterel programs. Part of the KEP instruction set is shown in
Figure 3. The KEP assembler programs corresponding to ExSeq and ExPar and
sample traces are shown in Figures 1(c)/(d) and 2(c)/(d), respectively. Note that
PAUSE is executed for at least two consecutive ticks, and consumes an instruction
cycle at each tick.

The KEP provides a configurable number of Watcher units, which detect whether
a signal triggering a preemption is present and whether the program counter (PC)
is in the corresponding preemption body [15]. Therefore, no additional instruction
cycles are needed to test for preemption. Only upon entering a preemption scope two
cycles are needed to initialize the Watcher, as for example the WABORTL1 instruction
in ExSeq.

To implement concurrency, the KEP employs a multi-threaded architecture,
where each thread has an independent program counter (PC) and threads are sched-
uled according to their statuses and dynamically changing priorities. To begin of
each instruction-cycle, the enabled thread with the highest priority is selected and
executed. The scheduler is very light-weight. In the KEP, scheduling and context
switching do not cost extra instruction cycles, only changing the priority of a thread

6

M.Boldt, C.Traulsen and R. v.Hanxleden

Mnemonic, Operands Esterel Syntax Cycles Notes

PAR prio1, startAddr1, id1

. . .
PAR prion, startAddrn, idn

PARE endAddr
startAddr1:
. . .
startAddr2:

. . .
startAddrn:
. . .
endAddr :
JOIN

[
p1

||
...
||

pn

]

9=; n + 1

1

For each thread, one PAR is needed
to define the start address, thread
id and initial priority. The end of
a thread is defined by the start ad-
dress of the next thread, except for
the last thread, whose end is de-
fined via PARE.
The cycle count of a fork node de-
pends on the count of threads.

PRIO prio 1 Set current thread priority to prio.

[W]ABORT[I, n] S, endAddr
. . .
endAddr :

[weak] abort
. . .

when [immediate, n] S

2

SUSPEND[I,n] S, endAddr
. . .
endAddr :

suspend
. . .

when [immediate, n] S

2

startAddr :
. . .
EXIT exitAddr startAddr
. . .
exitAddr:

trap T in
. . .
exit T
. . .

end trap

1

Exit from a trap, star-
tAddr/exitAddr specifies trap
scope. Unlike GOTO, check for
concurrent EXITs and terminate
enclosing ||.

PAUSE pause 1 Wait for a signal. AWAIT TICK is
equivalent to PAUSE.AWAIT [I, n] S await [immediate, n] S 1

SIGNAL S signal S in . . . end 1 Initialize a local signal S.

EMIT S [, {#data|reg}] emit S [(val)] 1 Emit (valued) signal S.

SUSTAIN S [, {#data|reg}] sustain S [(val)] 1 Sustain (valued) signal S.

PRESENT S, elseAddr present S then . . . end 1 Jump to elseAddr if S is absent.

HALT halt 1 Halt the program.

addr : . . . GOTO addr loop . . . end loop 1 Jump to addr.

Fig. 3. Overview of the KEP instruction set architecture, and their relation to Esterel
and the number of processor cycles for the execution of each instruction.

costs an instruction. For each thread, a PAR instruction is executed, to initialize
the program counter and the priority and to define the thread id. Thereafter one
PARE instruction is executed, which denotes the end of the parallel scope. During
each instant in which one parallel thread is active, also the JOIN must be executed,
in order to determine whether the threads have terminated.

3.3 The Concurrent Kep Assembler Graph (CKAG)

The WCRT analysis is not directly performed on the Esterel level, but on an in-
termediate data structure, the CKAG. The CKAG is a directed graph composed
of various types of nodes and edges to match KEP program behavior. It is used
during compilation from Esterel to KEP assembler, for, e. g., dead code elimination,
priority assigning [13], optimizations and the WCRT analysis.

The CKAG distinguishes transient nodes, which represent instantaneous exe-
cution, delay nodes, which represent statements that may hold for more than one

7

M.Boldt, C.Traulsen and R. v.Hanxleden

EMIT S

suc_c

(a) transient

A0

suc_c

(b) label

PAUSE

suc_c suc_s

s

suc_w

w

suc_e

e

(c) delay

PAR*

suc_c

(d) fork

JOIN

suc_c suc_e

(e) join

Fig. 4. Nodes and edges of a Concurrent KEP Assembler Graph (CKAG).

tick, and fork and join nodes, which represent concurrency (see Figure 4). Given
a CKAG node n, the set n.suc c denotes the set of sequential control flow succes-
sors (represented in the CKAG as solid edges). Successors reached via preemptions
are n.suc s for strong aborts, n.suc w for weak aborts, and n.suc e for exceptions
(exit), represented as dashed edges; they are marked with small tail labels s, w and
e, respectively. The CKAGs corresponding to ExSeq and ExPar can be found in
Figures 1(b) and 2(b), respectively.

The CKAG is built from Esterel source by traversing recursively over its Abstract
Syntax Tree (AST) generated by the Columbia Esterel Compiler (CEC) [8]. Visiting
an Esterel statement results in creating the according CKAG node. A node typically
contains exactly one statement, except label nodes containing just address labels
and fork nodes containing one PAR statement for each child thread initialization
and a PARE statement. When a delay node is created, additional preemption edges
are added according to the abortion/exception context.

To preserve the signal-dependencies in the execution, additional priority assign-
ments (PRIO statements) might be introduced by the compiler. To assure schedu-
lability, the program is completely dismantled, i. e., transformed into kernel state-
ments. In this dismantled graph the priority assignments are inserted. A subsequent
“undismantling” step before the computation of the WCRT detects specific patterns
in the CKAG and collapses them to more complex instructions, such as AWAIT or
SUSTAIN, which are also part of the KEP instruction set.

4 Worst Case Reaction Time (WCRT)

Given a KEP program we define its WCRT as the maximum number of KEP cycles
executable in one instant. Thus WCRT analysis requires finding the longest in-
stantaneous path in the CKAG, where the length metric is the number of required
KEP instruction cycles. We abstract from signal relationships and might therefore
consider unfeasible executions. Therefore the computed WCRT can be pessimistic.
We first present, in Section 4.1, a restricted form of the WCRT algorithm that does
not handle concurrency yet. The general algorithm requires an analysis of instant
reachability between fork and join nodes, which is discussed in Section 4.2, followed
by the presentation of the general WCRT algorithm in Section 4.3.

4.1 Sequential WCRT Algorithm

First we present a WCRT analysis of sequential CKAGs (no fork and join nodes).
Consider the ExSeq example in Figure 1(a) again. The longest possible execution

8

M.Boldt, C.Traulsen and R. v.Hanxleden

1 int getWcrtSeq(g) // Compute WCRT for sequential CKAG g

2 forall n ∈ Nodes do n.inst := n.next := ⊥ end
3 getInstSeq(g.root)

4 forall d ∈ DelayNodes do getNextSeq(d) end
5 return max ({g.root.inst}

S
{d.next : d ∈ DelayNodes})

6 end

1 int getInstSeq(n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then
3 if n ∈ TransientNodes ∪ LabelNodes then
4 n.inst := max {getInstSeq(c) : c ∈ n.suc c} + cycles(n.stmt)

5 elif n ∈ DelayNodes then
6 n.inst := max {getInstSeq(c) : c ∈ n.suc w ∪ n.suc e} + cycles(n.stmt)

7 fi
8 fi
9 return n.inst

10 end

1 int getNextSeq(d) // Compute statements instantaneously reachable from delay node d at tick start

2 if d.next = ⊥ then
3 d.next := max {getInstSeq(c) : c ∈ d.suc c ∪ d.suc s} + cycles(d.stmt)

4 fi
5 return d.next

6 end

Fig. 5. WCRT algorithm, restricted to sequential programs. The nodes of a CKAG g
are given by Nodes = TransientNodes ∪ LabelNodes ∪ DelayNodes ∪ ForkNodes ∪
JoinNodes, g.root indicates the first KEP statement. cycles(stmt) returns the number of
instruction cycles to execute stmt, see third column in Figure 3.

occurs when the signal I becomes present, as is the case in Tick 3 of the example
trace shown in Figure 1(d). Since the abortion triggered by I is weak, the abort body
is still executed in this instant, which takes four instructions: PAUSEL2, EMITL3, the
GOTOL4, and PAUSEL2 again. Then it is detected that the body has finished its
execution for this instant, the abortion takes place, and EMITL5 and HALTL6 are
executed. Hence the longest possible path takes six instruction cycles.

The sequential WCRT is computed via a Depth First Search (DFS) traversal
of the CKAG, see the algorithm in Figure 5. For each node n a value n.inst
is computed, which gives the WCRT from this node on in the same instant when
execution reaches the node. For a transient node, the WCRT is simply the maximum
over all children plus its own execution time.

For non-instantaneous delay nodes we distinguish two cases within a tick: control
can reach a delay node d, meaning that the thread executing d has already executed
some other instructions in that tick, or control can start in d, meaning that d must
have been reached in some preceding tick. In the first case, the WCRT from d
on within an instant is expressed by the d.inst variable already introduced. For
the second case, an additional value d.next stores the WCRT from d on within
an instant; “next” here expresses that in the CKAG traversal done to analyze the
overall WCRT, the d.next value should not be included in the current tick, but in
a next tick. Having these two values ensures that the algorithm terminates in the
case of non-instantaneous loops: to compute d.next we might need the value d.inst.

For a delay node, we also have to take abortions into account. The handlers

9

M.Boldt, C.Traulsen and R. v.Hanxleden

(i. e., their continuations—typically the end of an associated abort/trap scope) of
weak abortions and exceptions are instantaneously reachable, so their WCRTs are
added to the d.inst value. In contrast, the handlers of strong abortions cannot be
executed in the same instant the delay node is reached, because according to the
Esterel semantics an abortion body is not executed at all when the abortion takes
place. On the KEP, when a strong abort takes place, the delay nodes where the
control of the (still active) threads in the abortion body resides are executed once,
and then control moves to the abortion handler. In other words, control cannot
move from a delay node d to a (strong) abortion handler when control reaches d,
but only when it starts in d. Therefore, the WCRT of the handler of a strong
abortion is added to d.next, and not to d.inst.

We do not need to take a weak abortion into account for d.next, because it
cannot contribute to a longest path. An abortion in an instant when a delay node
is reached will always lead to a higher WCRT than an execution in a subsequent
instant where a thread starts executing in the delay node.

The resulting WCRT for the whole program is computed as the maximum over
all WCRTs of nodes where the execution may start. These are the start node and
all delay nodes. To take into account that execution might start simultaneously in
different concurrent threads, we also have to consider the next value of join nodes.

Consider the example ExSeq in Figure 1. Each node n in the CKAG g is anno-
tated with a label “W〈n.inst〉” or, for a delay node, a label “W〈n.inst〉/〈n.next〉.”
In the following, we will refer to specific CKAG nodes with their corresponding
KEP assembler line numbers L〈n〉. It is g.root = L1. The sequential WCRT com-
putation starts initializing the inst and next values of all nodes to ⊥ (line 2 in
getWcrtSeq, Figure 5). Then getInstSeq(L1) is called, which computes L1.inst := max

{ getInstSeq(L2) } + cycles(WABORTL1). The call to getInstSeq(L2) computes and re-
turns L2.inst := cycles(PAUSEL2) + cycles(EMITL5) + cycles(HALTL6) = 3, hence L1.inst
:= 3 + 2 = 5. Next, in line 4 of getWcrtSeq, we call getNextSeq(L2), which computes
L2.next := getInstSeq(L3) + cycles(PAUSEL2). The call to getInstSeq(L3) computes
and returns L3.inst := cycles(EMITL3) + cycles(GOTOL4) + L2.inst = 1 + 1 + 3 =
5. Hence L2.next := 5 + 1 = 6, which corresponds to the longest path triggered
by the presence of signal I, as we have seen earlier. The WCRT analysis therefore
inserts an “EMIT TICKLEN, #6” instruction before the body of the KEP assembler
program to initialize the TickManager accordingly.

4.2 Instantaneous Statement Reachability for Concurrent Esterel Programs

It is important for the WCRT analysis whether a join and its corresponding fork can
be executed within the same instant. The algorithm for instantaneous statement
reachability computes for a source and a target node whether the target is reachable
instantaneously from the source. Source and target have to be in sequence to each
other, i. e., not concurrent, to get correct results.

In simple cases like EMIT or PAUSE the sequential control flow successor is ex-
ecuted in the same instant respectively next instant, but in general the behavior
is more complicated. The parallel, e. g., will terminate instantaneously if all sub-
threads are instantaneous or an EXIT will be reached instantaneously; it is not-
instantaneous if at least one sub-thread is not instantaneous.

10

M.Boldt, C.Traulsen and R. v.Hanxleden

The complete algorithm is presented in detail elsewhere [4]. The basic idea is to
compute for each node three potential reachability properties: instantaneous, not-
instantaneous, exit-instantaneous. Note that a node might be as well (potentially)
instantaneous as (potentially) non-instantaneous, depending on the signal status.
Computation begins by setting the instantaneous predicate of the source node to
true and the properties of all other nodes to false. When any property is changed,
the new value is propagated to its successors. If we have set one of the properties
to true, we will not set it to false again. Hence the algorithm is monotonic and
will terminate. Its complexity is determined by the amount of property changes
which are bounded to three (three boolean) for all nodes, so the complexity is
O(3 ∗ |Nodes|) = O(|Nodes|).

The most complicated computation is the property instantaneous of a join node
because several attributes have to be fulfilled for it to be instantaneous:

• For each thread, there has to be a (potentially) instantaneous path to the join
node.

• The predecessor of the join node must not be an EXIT, because EXIT nodes are
no real control flow predecessors. At the Esterel level, an exception (exit) causes
control to jump directly to the corresponding exception handler (at the end of
the corresponding trap scope); this jump may also cross thread boundaries, in
which case the threads that are jumped out of and their sibling threads threads
terminate. To emulate this at the KEP level, an EXIT instruction does not jump
directly to the exception handler, but first executes the JOIN instructions on
the way, to give them the opportunity to terminate threads correctly. If a JOIN

is executed this way, the statements that are instantaneously reachable from it
are not executed, but control instead moves on to the exception handler, or to
another intermediate JOIN. To express this, we use the third property besides
instantaneous and non-instantaneous: exit-instantaneous.

Roughly speaking the instantaneous property is propagated via for-all quanti-
fier, not instantaneous and exit instantaneous via existence-quantifier.

Most other nodes simply propagate their own properties to their successors.
The delay node propagates in addition its non-instantaneous predicate to its de-
layed successors and exit nodes propagate exit-instantaneous reachability, when
they themselves are reachable instantaneously .

4.3 General WCRT Algorithm

The general algorithm, which can also handle concurrency, is shown in Figure 6.
It emerges from the sequential algorithm that has been described in Section 4.1 by
enhancing it with the ability to compute the WCRT of fork and join nodes. Note
that the instantaneous WCRT of a join node is needed only by a fork node, all
transient nodes and delay nodes do not use this value for their WCRT. The WCRT
of the join node has to be accounted for just once in the instantaneous WCRT of
its corresponding fork node, which allows the use of a DFS-like algorithm.

The instantaneous WCRT of a fork node is simply the sum of the instantaneously
reachable statements of its sub-threads, plus the PAR statement for each sub-thread
and the additional PARE statement.

11

M.Boldt, C.Traulsen and R. v.Hanxleden

1 int getWcrt(g) // Compute WCRT for a CKAG g

2 forall n ∈ Nodes do n.inst := n.next := ⊥ end
3 forall d ∈ DelayNodes do getNext(d) end
4 forall j ∈ JoinNodes do getNext(j) end // Visit according to hierarchy (inside out)

5 return max ({getInst(g.root)}
S
{n.next : n ∈ DelayNodes ∪ JoinNodes})

6 end

1 int getInst (n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then
3 if n ∈ TransientNodes ∪ LabelNodes then
4 t.inst := max {getInst(c) : c ∈ suc c \ JoinNodes} + cycles(n.stmt)

5 elif n ∈ DelayNodes then
6 n.inst := max {getInst(c) : c ∈ suc w ∪ suc e \ JoinNodes} + cycles(n.stmt)

7 elif n ∈ ForkNodes then
8 n.inst :=

P
t∈n.suc c t.inst + cycles(n.par stmts) + cycles(PARE)

9 prop := reachability(n, n.join) // Compute instantaneous reachability of join from fork

10 if prop.instantaneous or prop.exit instantaneous then
11 n.inst += getInst(n.join)

12 elif prop.not instantaneous then
13 n.inst += cycles(JOIN) // JOIN is always executed

14 fi
15 elif n ∈ JoinNodes then
16 n.inst := max{getInst(c) : c ∈ suc c ∪ suc e} + cycles(n.stmt);

17 fi
18 fi
19 return n.inst

20 end

1 int getNext(n) // Compute statements instantaneously reachable from delay node d at tick start

2 if n.next = ⊥ then
3 if n ∈ DelayNodes then
4 n.next := max {getInst(c) : c ∈ suc c ∪ suc s \ JoinNodes} + cycles(n.stmt)

5 elif n ∈ JoinNodes and (n.fork, n).not instantaneous then
6 n.next := n.inst +

P
t∈n.fork.suc c max{n.next : t.id = n.id}

7 fi
8 fi
9 return n.next

10 end

Fig. 6. General WCRT algorithm.

Like delay nodes, join nodes also have a next value. When a fork/join pair
(f, j) could be non-instantaneous then we have to compute a WCRT j.next for the
next instants analogously to the delay nodes. Its computation requires first the
computation of all sub-thread next WCRTs. Then we simply sum the maximum
value for every thread. If the parallel does not terminate instantaneously, all directly
reachable states are reachable in the next instant. Therefore we have to add the
execution time for all statements that are instantaneously reachable from the join
node. Note that the computation is independent from the scheduling.

The whole algorithm computes first the next WCRT for all delay and join nodes;
it computes recursively all needed inst values. Thereafter the instantaneous WCRT
for all remaining nodes is computed. The result is simply the maximum over all
computed values.

Consider the example in Figure 2. First we note that the fork/join pair is always
non-instantaneous, due to the cycles(PAUSEL6) statement. We compute L6.next =
cycles(PAUSEL6) + cycles(EMITL7) = 2. From the fork node L3, the PAR and PARE

12

M.Boldt, C.Traulsen and R. v.Hanxleden

statements, the instantaneous parts of both threads and the JOIN are executed,
hence L3.inst = 2 × cycles(PAR) + cycles(PARE) + cycles(JOIN) + L4.inst + L5.inst =
2 + 1 + 1 + 1 + 2 = 7. Therefore, the WCRT of the program is L8.next = L6.next +
L8.inst = 2 + 9 = 11. Note that the JOIN statement is executed twice.

A known difficulty when compiling Esterel-programs is that due to nesting of
exceptions and concurrency, statements might be executed multiple times in one
instant. This problem, also known as reincarnation, is handled correctly by our
algorithm. Since we compute nested joins from inside to outside, the same state-
ment may effect both the instantaneous and non-instantaneous WCRT, which are
added up in the next join. This exactly matches the possible control-flow in case of
reincarnation. Even when a statement is executed multiple times in an instant, we
compute a correct upper bound for the WCRT.

Regarding the complexity of the algorithm, let n := |Nodes|, d := |DelayNodes|,
f := |ForkNodes| and j := |JoinNodes|. For each node its WCRT’s inst and next
are computed at most once, and for all fork nodes a fork-join reachability analysis
is additionally made, which has itself O(n). So we get altogether a complexity of
O(n + d + j) + O(f ∗ n) = O(2 ∗ n) + O(n2) = O(n2).

5 Experimental Results

The WCRT analysis is implemented in the KEP compiler. It automatically inserts a
correct EMIT TICKLEN instruction at the beginning of the program. To validate our
approach, we used Esterel-Studio to generate test cases for Esterel programs, which
cover all states and transitions. The programs were executed on the KEP with the
test cases as input. We measured the maximal reaction time during these executions
and compared it to the computed value. The Esterel programs in Table 1 are taken
from the Estbench [6]. We never underestimated the WCRT, and our results are on
average 38% too high. For each program, the lines of code, the computed WCRT
and the measured WCRT with the resulting difference is given. We also give the
average WCRT analysis time on a standard PC (AMD Athlon XP, 2.2GHz, 512 KB
Cache, 1GB Main Memory); as the table indicates, the analysis takes only a couple
of milliseconds.

The table also compares the Average Case Reaction Time (ACRT) with the
WCRT. The ACRT is on average about two thirds of the WCRT, which is relatively
high compared to traditional architectures. In other words, the worst case on the
KEP is not much worse than the average case, and padding the tick length according
to the WCRT does not waste too much resources. On the same token, designing for
worst-case performance, as typically must be done for hard real-time systems, does
not cause too much overhead compared to the typical average-case performance
design. Finally, the table also lists the number of scenarios generated by Esterel-
Studio and accumulated logical tick count for the test traces.

6 Conclusions and Further Work

We have presented the WCRT analysis of reactive programs written in the Esterel
language. The analysis is performed on a graph representation, the Concurrent KEP
Assembler Graph (CKAG). In a first step we compute whether concurrent threads

13

M.Boldt, C.Traulsen and R. v.Hanxleden

Module name LoC WCRT tan ACRT Test Ticks

WCest WCact rest−act [ms] ACact AC/WC cases

abcd 152 56 44 27% 1.0 28 64% 161 673

abcdef 232 84 68 24% 1.5 42 62% 1457 50938

eight buttons 312 112 92 22% 2.0 57 62% 13121 45876

channel protocol 57 49 38 29% 0.4 19 50% 114 556

reactor control 24 24 15 60% 0.2 12 80% 6 20

runner 26 10 7 43% 0.3 4 57% 131 2548

tcint 410 192 138 39% 2.8 86 62% 148 1325

Table 1
Experimental results. The WCest and WCact data denote the estimated and actual

WCRT, respectively, measured in instruction cycles. The ratio
rest−act := WCest/WCact − 1 indicates by how much our analysis overestimates the

WCRT. ACact is the actual Average Case Reaction Time (ACRT), AC/WC
(= ACact/WCact) gives the ratio to the WCRT. Test cases and Ticks are the number of

different scenarios and logical ticks that were executed, respectively.

terminate instantaneously, thereafter we are able to compute for each statement
how many instruction are maximally executable from it in one logical tick. The
maximal value over all nodes gives us the WCRT of the program. The analysis
considers concurrency and the multiple forms of preemption that Esterel offers. The
asymptotic complexity of the WCRT analysis algorithm is quadratic in the size of
the program; however, experimental results indicate that the overhead of WCRT
analysis as part of compilation is negligible. We have implemented this analysis
as part of a compiler from Esterel to KEP assembler, and use it to automatically
compute an initialization value for the KEP’s TickManager. This allows to achieve
a high, constant response frequency to the environment, and can also be used to
detect hardware errors by detecting timing overruns.

Our analysis is safe, i. e., conservative in that it never underestimates the WCRT,
and it does not require any user annotations to the program. In our benchmarks it
overestimates the WCRT on average by about 40%. This is already competitive with
the state of the art in general WCET analysis, and we expect this to be acceptable
in most cases. However, there is still significant room for improvement. So far, we
are not taking any signal status into account, therefore our analysis includes some
unreachable paths. Considering all signals would lead to an exponential growth
of the complexity, but some local knowledge should be enough to rule out most
unreachable paths of this kind. Also a finer grained analysis of which parts of
parallel threads can be executed in the same instant could lead to better results.
However, it is not obvious how to do this efficiently.

Our analysis is influenced by the KEP in two ways: the exact number of in-
structions for each statement and the way parallelism is handled. At least for
non-parallel programs our approach should be of value for other compilation meth-
ods for Esterel as well, e. g., simulation-based code generation. A virtual machine
with similar support for concurrency could also benefit from our approach. We
would also like to generalize our approach to handle different ways to implement

14

M.Boldt, C.Traulsen and R. v.Hanxleden

concurrency. A WCRT analysis directly on the Esterel level gives information on
the longest possible execution path. Together with a known translation to C, this
WCRT information could be combined with a traditional WCET analysis, which
takes caches and other hardware details into account.

References

[1] Berry, G. Esterel on Hardware. Philosophical Transactions of the Royal Society of
London 339 (1992), 87–104.

[2] Berry, G. The Constructive Semantics of Pure Esterel. Draft Book, 1999.

[3] Berry, G. The Esterel v5 Language Primer, Version v5 91. Centre de Mathématiques
Appliquées Ecole des Mines and INRIA, 06565 Sophia-Antipolis, 2000.

[4] Boldt, M. Worst-case reaction time analysis for the KEP3. Study thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, Nov. 2007. To
appear.

[5] Burns, A., and Edgar, S. Predicting computation time for advanced processor
architectures. In Proceedings of the 12th Euromicro Conference on Real-Time
Systems (EUROMICRO-RTS 2000) (2000).

[6] Estbench Esterel Benchmark Suite. http://www1.cs.columbia.edu/~sedwards/
software/estbench-1.0.tar.gz.

[7] Closse, E., Poize, M., Pulou, J., Venier, P., and Weil, D. SAXO-RT: Interpreting
Esterel semantic on a sequential execution structure. In Electronic Notes in
Theoretical Computer Science (July 2002), F. Maraninchi, A. Girault, and E. Rutten,
Eds., vol. 65, Elsevier.

[8] Edwards, S. A. CEC: The Columbia Esterel Compiler. http://www1.cs.columbia.
edu/~sedwards/cec/.

[9] Edwards, S. A. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21, 2
(Feb. 2002).

[10] Edwards, S. A. Tutorial: Compiling concurrent languages for sequential processors.
ACM Transactions on Design Automation of Electronic Systems 8, 2 (Apr. 2003),
141–187.

[11] Edwards, S. A., Kapadia, V., and Halas, M. Compiling Esterel into static discrete-
event code. In International Workshop on Synchronous Languages, Applications, and
Programming (SLAP’04) (Barcelona, Spain, Mar. 2004).

[12] Harel, D., and Pnueli, A. On the development of reactive systems. Logics and
models of concurrent systems (1985), 477–498.

[13] Li, X., Boldt, M., and von Hanxleden, R. Mapping Esterel onto a multithreaded
embedded processor. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) (San Jose, CA, USA, October 21–25 2006).

15

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/

M.Boldt, C.Traulsen and R. v.Hanxleden

[14] Li, X., Lukoschus, J., Boldt, M., Harder, M., and von Hanxleden, R. An
Esterel Processor with Full Preemption Support and its Worst Case Reaction Time
Analysis. In Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES) (New York, NY, USA, Sept. 2005),
ACM Press, pp. 225–236.

[15] Li, X., and von Hanxleden, R. A concurrent reactive Esterel processor based on
multi-threading. In Proceedings of the 21st ACM Symposium on Applied Computing
(SAC’06), Special Track Embedded Systems: Applications, Solutions, and Techniques
(Dijon, France, April 23–27 2006).

[16] Logothetis, G., and Schneider, K. Exact high level WCET analysis of synchronous
programs by symbolic state space exploration. In Design, Automation and Test in
Europe (DATE) (Munich, Germany, March 2003), IEEE Computer Society, pp. 196–
203.

[17] Logothetis, G., Schneider, K., and Metzler, C. Exact low-level runtime analysis
of synchronous programs for formal verification of real-time systems. In Forum on
Design Languages (FDL) (Frankfurt, Germany, 2003), Kluwer.

[18] Malik, S., Martonosi, M., and Li, Y.-T. S. Static timing analysis of embedded
software. In DAC ’97: Proceedings of the 34th annual conference on Design
automation (1997), ACM Press, pp. 147–152.

[19] Potop-Butucaru, D., and de Simone, R. Optimization for faster execution of Esterel
programs. Kluwer Academic Publishers, Norwell, MA, USA, 2004, pp. 285–315.

[20] Puschner, P., and Burns, A. A review of worst-case execution-time analysis
(editorial). Real-Time Systems 18, 2/3 (2000), 115–128.

[21] Ringler, T. Static worst-case execution time analysis of synchronous programs. In
ADA-Europe- 5. International Conference on Reliable Software Technologies (2000).

[22] Roop, P. S., Salcic, Z., and Dayaratne, M. W. S. Towards Direct Execution of
Esterel Programs on Reactive Processors. In 4th ACM International Conference on
Embedded Software (EMSOFT 04) (Pisa, Italy, Sept. 2004).

[23] Tardieu, O., and de Simone, R. Instantaneous termination in pure Esterel. In Static
Analysis Symposium (San Diego, California, June 2003).

16

	Introduction
	Related Work
	Esterel, KEP and the CKAG
	Esterel
	The Kiel Esterel Processor
	The Concurrent Kep Assembler Graph (CKAG)

	Worst Case Reaction Time (WCRT)
	Sequential WCRT Algorithm
	Instantaneous Statement Reachability for Concurrent Esterel Programs
	General WCRT Algorithm

	Experimental Results
	Conclusions and Further Work
	References

