
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Designing a Reactive Processor with Esterel v7

A Case Study

Malte Tiedje Claus Traulsen

Dept. of Computer Science
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40, D-24098 Kiel, Germany
{mti,ctr}@informatik.uni-kiel.de

Introduction

Esterel [3] is a synchronous language, developed to model reactive systems with hard real-
time constraints. It offers, beside a precise synchronous semantics, constructs to express
various forms of preemption as well as concurrency. Esterel programs can be either
compiled to VHDL, and then synthesized to hardware, or to C, in order to be executed
on a COTS processor. They can also be executed on a reactive processor, like the Kiel

Esterel Processor (KEP) [2], which directly supports concurrency and preemption. The
KEP was originally designed directly in VHDL. This implementation turned out to be
very efficient. For comparison, we decided to reimplement the KEP, using Esterel as the
description language. We expected the following advantages from this implementation:

• The implementation in Esterel gives a formal reference for the behavior of the KEP.
• Via the C code generation, we also get a software simulation of the KEP, which can be

used for testing the implementation and in classes on reactive processing.
• Having a non-trivial project to evaluate the efficacy and efficiency of designing hardware

with the current Esterel v7, as well as the usability of Esterel-Studio [1]. In particular,
we wanted to test whether efficient hardware could be developed in Esterel, without
prior knowledge in hardware design.

Developing with Esterel v7 and Esterel-Studio

We used the software generation from Esterel for regressions tests. While the generated
code is assured to behave exactly like the generated hardware, the software generation
is much faster. The software can be extended to log its input in a simple trace format.
When an error occurs, these trace file can be executed inside the Esterel-Studio simulator,
to see the internal state of the model when the error occurs.

Esterel-Studio allows to formally verify properties of the program like the equivalence
of different modules and assertions, which can be either written manually, or generated
automatically, e. g., to test for overflows. While a global proof of all assertions is not
possible for medium size projects, the equivalence test turned out to be useful. A simple
and probably inefficient description of a module can be written and tested. Thereafter,
an optimized version of the same module is written, and its equivalence to the original
implementation can be formally proven.

Esterel-Studio also allows early performance evaluation, by giving a rough approx-
imation of the used registers without actually synthesizing the hardware. While these
values can differ from the actual register usage, they indicate whether the implementa-
tion scales.

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs


0

2k

4k

6k

8k

10k

12k

14k

16k

18k

10

14

18

22

26

30

34

38

42

46

KEP-E Register

KEP-E Slices

KEP-E Speed

KEP-V Slices

KEP-V Speed

C
lo

ck
ra

te
 [

M
H

z]

tin
y

sm
all

lar
ge

m
ed

.

R
eg

is
te

r/
Sl

ic
es

Fig. 1: Resource usage of the Esterel (KEP-E) and VHDL
(KEP-V) implementation

Current compilers reject all programs
with cyclic signal dependencies. Unfortu-
nately, it is not always clear what the com-
piler considers as cyclic. Esterel-Studio
tries to mark the cycles in the program
code, but actually finding and solving a cy-
cle is by no means trivial.

The generated hardware is less efficient
than the original implementation of the
KEP, as can be seen in Fig. 1. Note, how-
ever, that the Esterel implementation is a
prototype with less optimizations. While
the register usage computed by Esterel-Studio scales well, the synthesized hardware is
inferior to the VHDL implementation. Subtle changes of the Esterel description can have
a significant influence on the efficiency of the generated hardware. Unfortunately, the
most efficient implementation is often the least readable. In many cases, the compiler
should be able to perform the optimizations internally, and not leave this burden to the
developer. So far the compiler optimizations are performed on a circuit representation of
the program, therefore, the optimization does not scale for larger projects. This can be
avoided, however, by using modular compilation, where the optimizations are performed
on each module separately. Still, an earlier optimization directly on the Esterel level
might be better.

Interfacing existing cores with generated hardware can be problematic. Care has to be
taken, that the inputs are stable at the start of an Esterel tick when they are sampled [4].
These problems can be avoided by using request-acknowledgment mechanisms.

Lessons learned

With Esterel v7, hardware can be described easily and rapidly. While in our experiment
the generated hardware is less efficient than the manually written VHDL code, its perfor-
mance is acceptable for our purposes. We expect that the performance could be increased
significantly by further tuning the code, or—preferably—by making the synthesis tool
smarter about high-level optimizations.

The possibility to formally verify the equivalence of different modules, and in particular
the generation of hard- and software from the same Esterel description proved to be very
useful in practice, since it allowed fast functional testing, without a complete hardware
synthesis.

Currently, we are developing a more dataflow oriented reactive processor. This imple-
mentation makes use of additional design features of Esterel v7, like multi-clocks.

References

[1] Esterel Technologies, Esterel studio (2008), http://www.esterel-eda.com.

[2] Li, X., M. Boldt and R. von Hanxleden, Mapping Esterel onto a multi-threaded embedded processor, in:
Proceedings of the 12th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’06), San Jose, CA, 2006.

[3] Potop-Butucaru, D., S. A. Edwards and G. Berry, “Compiling Esterel,” Springer, 2007.

[4] Tiedje, M., “Beschreibung des Kiel Esterel Prozessors in Esterel,” Diploma thesis, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science (2008), http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/mti-dt.pdf.

http://www.esterel-eda.com
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mti-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mti-dt.pdf

	References

