
IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 1

Multi-Threaded Reactive Programming—
The Kiel Esterel Processor

Xin Li and Reinhard von Hanxleden, Member, IEEE

Abstract—The Kiel Esterel Processor (KEP) is a multi-threaded reactive processor designed for the execution of programs written
in the synchronous language Esterel. Design goals were timing predictability, minimal resource usage, and compliance to full Esterel
V5. The KEP directly supports Esterel’s reactive control flow operators, notably concurrency and various types of preemption, through
dedicated control units. Esterel allows arbitrary combinations and nestings of these operators, which poses particular implementation
challenges that are addressed here. Other notable features of the KEP are a refined instruction set architecture, which allows to trade
off generality against resource usage, and a Tick Manager that minimizes reaction time jitter and can detect timing overruns.

Index Terms—Reactive systems, concurrency, multi-threading, synchronous languages, Esterel, low-power design, predictability

F

1 INTRODUCTION

MANY embedded systems belong to the class of
reactive systems, which continuously react to in-

puts from the environment by generating corresponding
outputs. The programming of reactive systems typically
requires the use of non-standard control flow constructs,
such as concurrency and exception handling. Most pro-
gramming languages, including languages such as C
and Java that are commonly used in embedded systems,
either do not support these constructs at all, or their use
induces non-deterministic program behavior, regarding
both functionality and timing.

To address this difficulty, the synchronous language
Esterel [2] has been developed to express reactive control
flow in a concise, deterministic manner. This is valuable
for the designer, but also poses implementation chal-
lenges. As Esterel is a domain-independent program-
ming (specification) language, there are a number of
implementation alternatives, each with its advantages
and drawbacks, see also Table 1. An Esterel program is
typically validated via a simulation-based tool set, and
then synthesized to an intermediate language, e. g., C or
VHDL [1]. To build the real system, one typically uses a
commercial off-the-shelf (COTS) processor for a software
implementation, or a circuit is generated for a hardware
implementation. HW/SW co-design strategies have also
been investigated, for example in POLIS [5].

• R. von Hanxleden is with the Department of Computer Science,
Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany. E-Mail:
rvh@informatik.uni-kiel.de.

• X. Li is with the Department of Electrical and Computer Engineering,
University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA. E-
Mail: lixxx914@umn.edu.

Manuscript received June 8, 2007; revised Oct. 30, 2009; accepted Nov. 4,
2009; published online XXX.
Recommended for acceptance by XXX
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-06-0223.
Digital Object Identifier no. XXX. .

Reactive programs are often characterized by very fre-
quent context switches; as it turns out, a context switch
after every three or four instructions is not uncom-
mon [8]. This adds significant overhead to the traditional
compilation approaches, as the restriction to a single
program counter requires the program to manually keep
track of thread control counters using state variables.
Traditional OS context switching mechanisms would be
even more expensive. Furthermore, the handling of pre-
emptions requires a rather clumsy sequential checking
of conditionals whenever control flow may be affected
by a preemption.

To address these difficulties, the recently emerging
reactive processing approach strives for a direct imple-
mentation of Esterel’s control flow and signal handling
constructs. This provides hardware support for han-
dling reactive control flow, alleviating the need for a
compiler that sequentializes the code or for an OS
that emulates concurrency. In this paper, we present
the Kiel Esterel Processor (KEP) reactive architecture.
The development of the KEP was driven by the desire
to achieve predictable, competitive execution speeds at
minimal resource usage, considering processor size and
power usage as well as instruction and data memory.
A key to achieve this goal is the instruction set archi-
tecture (ISA) of the KEP, which allows the mapping
of Esterel programs into compact machine code while
keeping the processor compact. To keep the KEP simple
and light-weight, it currently does not employ classical
acceleration mechanism such as pipelining, other forms
of instruction level parallelism, or caching. Such mecha-
nism can be combined with reactive processing [9], but
typically there is a trade-off between average-case per-
formance and predictability. Still, the worst case reaction
time of the KEP is typically improved by 4x compared to
the MicroBlaze, a COTS RISC processor core, and energy
consumption is also typically reduced to a quarter; see
also Sec. 6.4.

0000–0000/00$00.00 c© 200X IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 2

Hardware Software Co-design Patched Custom
Processor Processor

Architecture

Hardware

Custom
Hardware

Environment

Software

COTS-μC

COTS Assembler

Environment

Co-design

COTS-
μC

COTS Assembler

Environment

Custom
Hardware

Patched Processor

Extended Assembler

Environment

PIC
Core Extension Esterel-μC

Esterel Assembler

Esterel Processor

Environment

Speed ++ – + + +
Selected Berry [1], Berry et al. [2], Balarin et al. Roop et al. Li et al.

References Edwards [3] Edwards et al. [4] [5] [6] [7]
Flexibility – – ++ – +/– +

Esterel Compliance ++ ++ +/– – ++
Logic Area ++/– + + – – +/–

Cost Memory ++ – – – + +
Power Usage ++ – – – – +

Appl. Design Cycle – – ++ +/– ++ ++

TABLE 1
Comparison of Esterel implementation alternatives. ++ represents best; – – means worst.

This paper presents a comprehensive overview of the
KEP architecture and how it meets the challenge to
accurately and efficiently implement the rich, strictly
synchronous semantics of the Esterel language. Beyond
earlier publications [7], [8], [10] that covered different
aspects of the KEP as realized in earlier generations
(see Sec. 3), this paper also presents a detailed treat-
ment of the interaction of concurrency and preemption
(Sec. 5/5.2), and a fairly extensive review of the devel-
opment of reactive processing so far. A full presenta-
tion of the concrete design of the KEP, its validation
and the experimental evaluation, in more detail than is
possible here, can be found in the dissertation of the
first author [11]. Note also that this paper focuses on
the architecture and the ISA of the KEP. Closely related
are the issues of code generation for the KEP and Worst
Case Reaction Time (WCRT) analysis, both of which are
covered elsewhere in detail [12], [13].

The rest of this paper is organized as follows. The next
section provides some basics on the Esterel language.
Sec. 3 discusses related work. Sections 4 and 5 present
the instruction set and the architecture of the KEP.
The validation platform and experimental results are
presented in Sec. 6. The paper concludes in Sec. 7.

2 THE ESTEREL LANGUAGE

THE execution of an Esterel program is divided into
logical instants, or ticks, and communication within

or across threads occurs via signals. At each tick, a
signal is either present (emitted) or absent (not emitted).
The test for the presence of a signal is per default
non-immediate; for example, an await S first pauses for
one tick, and only from the next tick on tests for the

presence of S. There are also immediate variants, for
example, await immediate S tests for S from the same
instant onwards that the statement is entered. Esterel
statements are either transient, in which case they do not
consume logical time, or delayed, in which case execution
is finished for the current tick. Per default statements
are transient, and these include for example emit, loop,
present, or the preemption operators. Delayed statements
include pause, (non-immediate) await, and every.

2.1 Reactive control flow

Esterel’s parallel operator || groups statements in concur-
rently executed threads. The parallel terminates when all
its branches have terminated.

Esterel offers two types of preemption constructs,
abortion and suspension. An abortion kills its body when
a delay elapses. We distinguish strong abortion, which
kills its body immediately (at the beginning of a tick),
and weak abortion, which lets its body receive control for
a last time (abortion at the end of the tick). A suspension
freezes the state of a body in the tick when the trigger
event occurs.

Esterel also offers an exception handling mechanism
via the trap/exit statements. An exception is declared with
a trap scope, and is thrown with an exit statement. An exit
T statement causes control flow to move to the end of the
scope of the corresponding trap T declaration. This is sim-
ilar to a goto statement, however, there are specific rules
when traps are nested or when the trap scope includes
concurrent threads. The following rules apply: if one
thread raises an exception and the corresponding trap
scope includes concurrent threads, then the concurrent
threads will be weakly aborted; if concurrent threads

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 3

1 module EXAMPLE:
2 input S, I , H;
3 output O1, O2;
4 signal A,R in
5 % −−−−−−− Thread 0
6 every S do
7 trap T1 in
8 trap T2 in
9 % −−−−−−− Thread 1

10 [await I ;
11 weak abort
12 suspend
13 sustain R;
14 when H;
15 when immediate A;
16 emit O1;
17 exit T1;
18 ||
19 % −−−−−−− Thread 2
20 await 2 tick ;
21 present R then
22 emit A;
23 end present;
24 exit T2;];
25 % −−−−−−− Thread 0
26 end trap;
27 emit O2;
28 end trap;
29 end every;
30 end signal;
31 end module

(a) Esterel program

1 INPUT S, I, H
2 OUTPUT O1, O2
3 SIGNAL A, R
4 % −−−−−−−−−− Thread 0
5 EMIT TICKLEN, #20
6 AWAIT S
7 A0: ABORT S, A1
8 T1S: T2S: PAR 3, P1
9 PAR 2, P2

10 PARE P3
11 % −−−−−−−−−− Thread 1
12 P1: AWAIT I
13 WABORTI A, A2
14 SUSPEND H, A4
15 A3: EMIT R
16 PRIO 1
17 PRIO 3
18 PAUSE
19 GOTO A3
20 A4: A2: EMIT O1
21 EXIT T1E,T1S
22 % −−−−−−−−−− Thread 2
23 P2: LOAD COUNT, #2
24 AWAIT TICK
25 PRESENT R, A5
26 EMIT A
27 A5: EXIT T2E,T2S
28 % −−−−−−−−−− Thread 0
29 P3: JOIN 0
30 T2E: EMIT O2
31 T1E: HALT
32 A1: GOTO A0

(b) KEP assembler

-
S

O2

S I

R,
A,
O1

S I

RR, A, O1

S I

R

H

O2

(c) Sample execution trace, with inputs above and outputs
below logical tick time line

Fig. 1. EXAMPLE: an Esterel module illustrating Esterel
parallel, preemption, and exception statements.

execute multiple exit instructions in the same tick, the
outermost trap will take priority.

2.2 An Example
Let us consider the EXAMPLE module in Fig. 1a. After the
input/output/local signal declarations, an every block
restarts its body whenever the input signal S is present—
except for the initial tick, when S is ignored, as the every
is not “immediate.” Inside the every block are two nested
trap scopes, an outer trap triggered by T1 (via an exit T1
exception) and an inner T2 trap. The body of the inner
trap contains two parallel threads. Thread 1 initially
waits for the input signal I. Once I has become present
(non-immediately), the sustain R13

1 statement continu-

1. To aid readability, we here use the convention of subscripting
instructions with the line number where they occur.

ously emits the local signal R. However, that sustain is
weakly aborted by A (immediately), and suspended by
H (non-immediately). Once A has triggered the abortion,
O1 is emitted and the exception T1 is thrown. Thread 2
initially idles for two ticks, then emits A if R is present,
and exits the T2 trap.

A possible execution trace is shown in Fig. 1c. All
signals are absent at the initial tick. At the second tick,
the presence of input signal S triggers the start of the
every body, which spawns Threads 1 and 2. Thread 1
stays at the await I, since this is non-immediate, and
Thread 2 stays at the await 2 tick. At the third tick, Thread
1 again cannot proceed, since I is absent, and Thread 2
stays the second tick at the await 2 tick. At the fourth tick,
Thread 1 again does not get an input I; Thread 2 can
proceed, detects R as absent, throws exception T2, and
terminates. This exception aborts Thread 1 and transfers
control to the end of the trap T2 scope, hence O2 gets
emitted and control moves back to the every S loop. The
other possible behaviors that follow the next occurrences
of S are shown in the remainder of the time line. For a
detailed understanding, the reader might also consult
the Esterel primer [14].

3 RELATED WORK

THERE is a by now extensive body of research on
the efficient compilation of Esterel in the vari-

ous domains, a full discussion of which is beyond
the scope of this paper. See for example Potop-
Butucaru/Edwards [15] for a good overview of software
synthesis approaches. We here focus on existing work in
the field of reactive processing, which is a rather recent
development. An earlier overview was presented in [16].

3.1 Sequential reactive processing
The first reactive processor, called REFLIX [6], was pre-
sented by Salcic, Roop et al. in 2002. The REFLIX is
a patched processor, combining a traditional soft micro
controller core (FLIX) with a custom hardware block that
extends the instruction set of the FLIX by certain new,
Esterel-like instructions; see also Table 1. Although the
Esterel-style statements (instructions) supported by the
REFLIX were very limited, it performed better than its
competitors, i. e., the FLIX and other micro controllers.
The REPIC [17] replaced the FLIX by the PIC processor,
which is popular in the industry control domain. Both of
these patched processors are limited by the control path
of the traditional processor. This prevents for example
the proper handling of nested traps, as the control path
there depends on address ranges and parallel relations
of the traps.

In 2004, the authors presented the first prototype
of the KEP [18], now referred to as the “KEP1,” to
our knowledge the first custom reactive processor fully
designed from scratch. The KEP1 was also the first to
correctly handle weak and strong abortion. It included
Watcher units that handle such abortions concurrently to

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 4

(a) Multi-processing (b) Multi-
threading

Fig. 2. Comparison of concurrent reactive architectures.

the regular control flow, i. e., without the need to execute
extra instructions to check for the triggering of abortions
(see also Sec. 5.2. However, the KEP1 did not provide full
concurrency, and logic and arithmetic expression were
also not supported.

In 2005, Z. Salcic et al. presented the REMIC, another
custom processor [19]. In the same year, the KEP2 im-
proved over the KEP1 in that it includes an interface
block that supports the PRE-operator, and can handle
further Esterel-constructs such as variables and local
signals [10]. Furthermore, it contains an ALU and sup-
ports some classical logic and arithmetic expression. The
KEP2 also includes a Tick Manager, which can provide a
constant logical tick length and detects timing overruns;
see also Sec. 5.5.

3.2 Concurrent reactive processing
Perhaps the most distinguishing feature for reactive
processors is whether and how they handle concurrency.
The first generations of reactive processors did not sup-
port Esterel’s concurrency operator directly. Executing
concurrent Esterel programs thus required to transform
them into an equivalent program with a flattened state
space, i. e., was sequentialized by constructing a “product
automaton.”

The EMPEROR [20], [21] introduced the multi-
processing approach for handling concurrency directly.
Here, every Esterel thread is mapped onto an inde-
pendent processor to be executed, and a thread control
unit handles the synchronization and communication
between processors; see also Fig. 2a. The EMPEROR
uses a cyclic executive to implement concurrency, and
allows the arbitrary mapping of threads onto processing
nodes. This approach has the potential to speed up
execution relative to single-processor implementations.
However, this execution model potentially requires to
replicate parts of the control logic at each processor, and
is thus relatively hardware-intensive. Furthermore, it is
difficult to support the arbitrary nesting of concurrency
and preemption. A more efficient concurrency imple-
mentation approach for reactive processing appears to
be multi-threading, which was first employed by the

KEP3, presented in 2006 [7]; see also Fig. 2b and further
explanations in Sec. 5.1. As illustrated in Sec. 6, this
approach scales well to high degrees of concurrency with
minimal resource overhead. By now the multi-threading
approach has also been adopted by the STARPro [9],
which further improves performance by pipelining.

Later in 2006, the KEP3a and its compiler were pre-
sented [8]. The KEP3a has improved over the KEP3
in that it supports exception handling and provides
context-dependent preemption handling instructions.
This paper presents version 4 of the KEP (KEP4), which
compared to earlier generations has an enriched control
path for handling advanced mixed Esterel control struc-
tures, and supports numerous options for generating
processor configurations. The KEP4 and the strl2kasm
compiler fully support Esterel V5. The subsequently
evolved Esterel V7 has numerous extensions, mainly to
support hardware design, but has the same underlying
reactive control flow operations; hence, extending the
KEP approach for Esterel V7 appears to be mostly a com-
piler issue and should not require fundamental changes
of the architecture described here.

3.3 Compilation, WCRT analysis, co-design

Since multi-processing and multi-threaded reactive pro-
cessors employ different strategies to handle Esterel
concurrency, their compilers, which synthesize an Esterel
program to the target reactive processor codes, also use
different approaches to implement the communication
between threads.

For multi-processing, the EMPEROR Esterel Compiler
2 (EEC2) [21] is based on a variant of the graph code
(GRC) format [15], and appears to be competitive even
for sequential executions on a traditional processor.
However, their synchronization mechanism, which is
based on a three-valued signal logic, does not to take
compile-time scheduling knowledge into account, but
replaces it by repeating cycles through all threads un-
til all signal values have been determined. Hence the
compiler needs to generate sync instructions, to ensure
that signals are not tested before they are emitted [20].
In comparison, the multi-threaded implementation ap-
proach implements interleaving by inserting priority
setting instructions at the context switch point.

The compiler for the multi-threaded KEP employs
a priority assignment approach that makes use of a
novel concurrent control flow graph, the Concurrent
KEP Assembler Graph (CKAG). The worst-case size of
the CKAG is quadratic in the size of the corresponding
Esterel program; in practice, namely for a bounded abort
nesting depth, it is linear [12]. Unlike earlier Esterel
compilation schemes, this approach avoids unnecessary
context switches by considering each thread’s actual
execution state at run time. Furthermore, it avoids code
replication present in other approaches. The compilation
for the KEP is further summarized by Li et al. [8] and
presented in detail by Boldt [12].

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 5

Since one key characteristic of the KEP is its timing
predictability, it is feasible to perform a conservative,
yet fairly accurate analysis of its WCRT. A first WCRT
technique was presented in 2005 [10], for the (sequential)
KEP2. An extension to concurrent WCRT analysis was
later presented by Boldt et al. [13]. The analysis of
the WCRT is influenced by the KEP in two ways: the
exact number of instructions for each statement and the
way parallelism is handled. The analysis is performed
on the CKAG. In a first step one computes whether
concurrent threads terminate instantaneously, thereafter
one computes for each statement how many instruction
are maximally executable from it in one logical tick. The
maximal value over all nodes gives us the WCRT of the
program.

The KEP has also been employed as a platform for
HW/SW co-design. Gädtke et al. [22] present an ap-
proach to accelerate reactive processing via an external
logic block that handles complex signal expressions. An
Esterel program is synthesized into a software compo-
nent, running on the KEP, and a hardware component,
consisting of simple combinational logic. The transfor-
mation process involves a two-step procedure, which
first partitions the program at the source level and
subsequently performs the synthesis. An intermediate
logic minimization, at the source code level, facilitates
the synthesis of compact logic blocks.

3.4 Further related work

The KEP series of processors focuses on reactive control
flow. There are also other architectures, such as the Kiel
Lustre Processor (KLP) [23], that focus on data-flow and
its efficient execution via parallelization.

Timing predictability is also the focus of the Precision
Timed Architecture [24] developed at UC Berkeley and
Columbia University. This architecture is also multi-
threaded, with true parallelism, and employs physical
time for thread synchronization. The PRET-C proposal
[25] extends a traditional core with an external thread
scheduling unit, and uses a synchronous programming
model.

Related to the KEP ISA, there also have been recent
proposals for expressing synchronous concurrency by a
small set of operators embedded in a host language, such
as LuSteraL [26] or SyncCharts in C [27]; see also the
Conclusions.

4 THE KEP INSTRUCTION SET ARCHITEC-
TURE

A T the Esterel level, one distinguishes kernel state-
ments and derived statements; the derived statements

are basically syntactic sugar, built up from the kernel
statements. Any set of Esterel statements from which
the remaining statements can be constructed could be
considered a valid set of kernel statements. The accepted
set of Esterel kernel statements has indeed evolved

over time; for example, the halt statement used to be
considered a kernel statement, but is now considered
to be derived from loop and pause. We here adopt the
definition of kernel statements from the v5 standard [14].
The process of expanding derived statements into equiv-
alent, more primitive statements—which may or may not
be kernel statements—is also called dismantling. When
designing an instruction set architecture to implement
Esterel-like programs, it would in principle suffice to just
implement the kernel statements—plus some additions
that go beyond “pure” Esterel, such as valued signals,
local registers, and support for complex signal and data
expressions. However, we decided against that, in favor
of an approach that includes some redundancy among
the instructions to allow more compact and efficient
object code.

The resulting KEP ISA is summarized in Table 2,
which also illustrates the relationship between Esterel
statements and the KEP instructions. The KEP uses a
36-bit wide instruction word and a 32-bit data bus. The
corresponding instruction encoding is described else-
where [11]. The KEP ISA has the following character-
istics:
• All the kernel Esterel statements, and some fre-

quently used derived statements, can be mapped to
KEP instructions directly. For the remaining Esterel
(V5) statements there exist dismantling rules that
allow the compiler to generate KEP code, including
general signal expressions (see [12]).

• The control statements are fully orthogonal, their be-
havior matches the Esterel semantics in all execution
contexts.

• Common Esterel expressions, in particular all of the
delay expressions (i. e., standard, immediate, and
count delays), can be represented directly. Valued
signals and other signal expressions, e. g., the previ-
ous value of a signal and the previous status of a
signal, are also directly supported.

• All instructions fit into one instruction word and can
be executed in a single instruction cycle, except for
instructions that contain count delay expressions,
which need an extra instruction word and take
another instruction cycle to execute.

The KEP also handles schizophrenic programs
correctly—if an Esterel statement must be executed mul-
tiple times within a tick, the KEP simply does so [8].

4.1 General Code Generation
An Esterel program is compiled into a KEP assem-
bler program (.kasm) by the KEP Esterel compiler
(strl2kasm) [12], which uses the front-end of the CEC
for parsing and module expansion. In a second step,
the KEP assembler compiler (kasm2ko) [28] compiles the
assembler program into binary machine code. This in-
cludes, for example, the mapping of input/output/local
signals to signal registers, and the selection of appro-
priate Watchers (see Sec. 5.2). The compiler also detects

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 6

Mnemonic, Operands Esterel Syntax Notes

INPUT[V] S input S [:integer] Input declaration.
OUTPUT[V] S output S [:integer] Output declaration.
SETV S, #data|reg Set the initial value of S; similar to EMIT, but does not affect presence.

PAR Prio, startAddr [, ID] [Fork and join, specifying the address range and the priority for each
forked thread; see also Sec. 5.1.
Optionally, one can specify the ID of the created thread.

PARE endAddr p1 || . . . || pn

JOIN Prio]
PRIO Prio Set the priority of the current thread.

[L|T][W]ABORT [n,] Sexp, endAddr [weak] abort . . . when n Sexp If Sexp is present, strongly/weakly abort the block ranging up to
endAddr. The prefix [L|T] denotes the type of watcher to use, see also
Sec. 5.2. L: Local Watcher; T: Thread Watcher; none: general Watcher.[L|T][W]ABORTI Sexp, endAddr

[weak] abort . . . when
immediate Sexp

SUSPEND[I] Sexp, endAddr
suspend . . . when
[immediate] Sexp If Sexp is present, suspend the block ranging up to endAddr.

EXIT endAddr, startAddr trap T in . . . exit T . . . end trap Exit from a trap of specified scope. Unlike GOTO, check for concurrent
EXITs and terminate enclosing ||.

PAUSE pause
Wait for a signal. AWAIT TICK is equivalent to PAUSE.AWAIT [n,] Sexp await [n] Sexp

AWAIT[I] Sexp await [immediate] Sexp

CAWAITS await
Wait for several signals in parallel. A compound statement, bracketed
by CAWAITS and CAWAITE, with one CAWAIT[I] instruction per signal.CAWAIT[I] S, addr case [immediate] Sexp do

CAWAITE end

SIGNAL S signal S in . . . end Initialize a local signal S.
EMIT S [, {#data|reg}] emit S [(val)] Emit (valued) signal S.
SUSTAIN S [, {#data|reg}] sustain S [(val)] Sustain (valued) signal S.
PRESENT S, elseAddr present S then . . . end Jump to elseAddr if S is absent.

NOTHING nothing Do nothing.
HALT halt Halt the program.
GOTO addr loop . . . end loop Jump to addr.

EMIT TICKLEN, #data|reg Set the tick length.
LOAD COUNT, n Load data for count delays.
LOAD UINT32REG, #data32 Load a 32-bit immediate data to an intermediate register.

CLRC/SETC Clear/set carry bit.
LOAD reg, n reg := n Load/store register.
{SR[C]|SL[C]|NOTR} reg Shift (with carry)/negate.
{ADD[C]|SUB[C]|MUL} reg, n +, -, * Add, subtract (with carry), multiply. Division must be emulated.
{ANDR|ORR|NOTR|XORR} reg, n and, or, not, xor Logical operations.
CMP[S] reg, n

>, <, <=, >=, <>, = Compare (with sign), branch conditionally.
JW cond, addr

TABLE 2
Overview of the KEP Esterel-type instruction set architecture. Esterel kernel statements are shown in bold. A signal
expression Sexp can be one of the following: 1. S: signal status (present/absent); 2. PRE(S): previous status of signal;
3. TICK: always present. A numeral n can be one of the following: 1. #data: immediate data; 2. reg: register contents;

3. ?S: value of a signal; 4. PRE(?S): previous value of a signal.

whether the targeted KEP version does not have enough
resources available, e. g., not enough watchers or signals.

The KEP assembler code for the EXAMPLE is shown in
Fig. 1b. Similar to the Esterel module, a KEP program
always starts at the input/output definition. Lines 1 to
3 define input signals S and I, output signal O, and
local signals A and R. The following EMIT TICKLEN, #20
instruction assigns the tick length of this program as
fixed 20 instruction cycles, as determined by the WCRT
analysis [13]; see also Sec. 5.5.

For the program body, the generation of the KEP
assembler for the EXAMPLE module is in general straight-
forward. As mentioned before, most common Esterel

statements can almost literally be translated into corre-
sponding KEP instructions, and there are direct equiv-
alence rules for the remaining statements. In EXAMPLE,
two dismantling rules, i. e., the every translation rule and
the sustain translation rule are employed. Note that due
to the signal dependencies involving R, we cannot use
the KEP’s atomic SUSTAIN instruction [12].

4.2 Concurrency
A concurrent Esterel statement with n concurrent threads
joined by the ||-operator is translated into KEP assembler
as follows. First, threads are forked by a sequence of n
PAR instructions and one PARE instruction. Each PAR

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 7

instruction creates one thread and assigns it a non-
negative priority Prio and a start address startAddr. The
end address of the thread is either given implicitly by the
start address specified in a subsequent PAR instruction,
or, if there is no more thread to be created, it is specified
as endAddr in a PARE instruction. A thread address range
ranges from the start address to the end address. The
code block for the last thread is followed by a JOIN
instruction, which waits for the termination of all forked
threads and concludes the concurrent statement. The
example in Fig. 1b illustrates this: lines 12–21 constitute
Thread 1, Thread 2 spans lines 23–27, and the remaining
instructions belong to the main thread, Thread 0.

The main thread always has priority 1, which is the
lowest possible priority. The priority of the other threads
is assigned when the thread is created (with the afore-
mentioned PAR instruction), and can be changed subse-
quently by executing a priority setting instruction (PRIO).
A thread keeps its priority across delay instructions; that
is, at the start of a tick it resumes execution with the
priority it had at the end of the previous tick.

When a concurrent statement terminates, through reg-
ular termination of all concurrent threads or via an
exception/abort, the priorities associated with the ter-
minated threads also disappear, and the priority of the
main thread is restored to the priority upon entering the
concurrent statement.

The priority assigned during the creation of a thread
and by a particular PRIO instruction is fixed. However,
due to the non-linear control flow, it is still possible that a
given statement may be executed with varying priorities.
In principle, the architecture would therefore allow a
fully dynamic scheduling. However, we here assume
that the given Esterel program can be executed with a
statically determined schedule, which requires that there
are no cyclic signal dependencies. This is a common
restriction, imposed for example by the Columbia Es-
terel Compiler (CEC) [4]; see Li et al. [8] for further
elaborations on causality/constructiveness and static vs.
dynamic scheduling, and Lukoschus et al. [29] for an
approach to expand cyclic, yet constructive programs
into equivalent acyclic programs.

4.3 Handling Signal Dependencies
The signal-based communication employed by Esterel
demands that signals have a unique presence/absence
status throughout a tick, which is also why this strictly
synchronous semantics is sometimes referred to as fixed-
point semantics. This implies that a signal status should
only be tested/read (e. g., with PRESENT) once all poten-
tial emitters/writers (e. g., EMIT) have executed. Assuring
this also allows a proper reaction to signal absence. We
also say that there is a dependency between the statements
that (may) emit some signal (the dependency sources) and
the statements where that signal is tested (the dependency
sinks) [30].

In a concurrent setting, this implies that threads must
be executed in an order that obeys these dependencies.

Hence, a non-trivial aspect of code generation is the
assignment of thread ids and priorities, as these govern
the thread scheduling (see also Sec. 5.1). To understand
how these priorities are assigned, we consider the thread
scheduling constraints that must be obeyed to run the
EXAMPLE module faithful to Esterel’s semantics. The two
threads enclosed in the every block can communicate
back and forth via the R and A signals, within a logical
tick, which makes thread scheduling non-trivial.

First, let us consider the dependency involving R. It
is clear which instruction is the dependency source: the
EMIT R15 instruction. It is also obvious that the PRESENT
R25 instruction is the dependency sink. This allows us to
formulate the first dependency present in the EXAMPLE
module: whenever the EMIT R15 and the PRESENT R25
instructions are executed within the same logical tick,
the execution of the EMIT must precede the execution of
the PRESENT.

As for the dependency involving A, its dependency
source is the EMIT A26 in Thread 2. However, it is less
obvious which is the dependency sink, which we have
defined above as the “statements where these signals are
tested.” Thread 1 reacts to A when it has entered the
weak abort block, in that case A triggers the abort. Hence,
whenever we execute a statement in that block ranging
from WABORTI13 to the label A220, we should also watch
for the presence of A. However, closer inspection yields
that as this is a weak abort, it suffices to check at the end
of each logical tick whether the block is aborted, that
is, whenever we execute a delayed instruction. In this
case, the only delayed instruction in the abort block is
the PAUSE18, which therefore constitutes the dependency
sink for A.

In the EXAMPLE, the first dependency is met by start-
ing Thread 1 with a higher priority (3) than Thread 2
(priority 2). The second dependency is met by the PRIO
116 and PRIO 317 instructions, which hand control from
Thread 1 to Thread 2 and back.

Dependency analysis at the Esterel level is decidable
(unlike at the KASM level), but a proper analysis that
covers all aspects of the Esterel language is rather in-
tricate. A detailed treatment of this is found in the
documentation of the strl2kasm compiler [12].

5 THE KEP PROCESSOR ARCHITECTURE

NATURALLY, a given application has specific require-
ments regarding the computational resources. In

the KEP, these resources include for example thread
management and preemption capabilities. The KEP de-
sign is freely configurable, and scalable to arbitrary de-
grees of concurrency, preemption nestings, signal counts,
etc. A KEP can thus be configured specifically for a given
application. However, just as one may use a classical
processor with some fixed, conservatively large memory
resources for a range of applications, one may also use
a “typical” KEP configuration without detailed prior

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 8

Thread Block

Kiel Esterel Processor 3

In
ne

r b
us

(D
at

a/
A

dd
r)

Instruction Memory

Instruction
Fetch

Address
Multiplexer

 Tick, TickWarn
&

InstrClk

Reset

OscClk

Decoder
&

Controller

Reactive
Block

In
ne

r
Ti

ck
 a

nd

C
on

tro
l

S
ig

na
ls

Register
File

Interface
block

ALU

MUXMUX

Tick
Manager

Input/output
 Signals

Thread
Controller

subPC
Register

File

Fig. 3. Overview of the KEP architecture.

knowledge about the application. For example, all the
benchmarks used here have been done with a fixed con-
figuration, except when assessing hardware scalability.

The architecture of the KEP, shown in Fig. 3, is
inspired by the three layers that constitute a reactive
program [2], i. e., the interface layer, the reactive kernel, and
the data handling layer. An Interface Block handles input
reception and output production. The classical computa-
tions are performed by the Data Handling Block, consisting
of the Register File, ALU and related components. The
implementation of Esterel’s reactive control statements
relies on the cooperation of the KEP’s Decoder & Controller,
Reactive Block and Thread Block, which together form the
Reactive Core (RC). The RC contains dedicated hardware
units to handle concurrency, preemption, exceptions, and
delays. In the following, we will briefly discuss each of
these in turn.

5.1 Handling Concurrency

To implement concurrency, the KEP employs a multi-
threaded architecture. Threads are scheduled in an inter-
leaved fashion according to their statuses and dynam-
ically changing priorities. The context of each thread
is very light weight, it mainly consists of a program
counter (PC), its priority, and two status flags (see
below). All data are shared, consistent with Esterel’s
broadcast semantics. The scheduler is very light-weight.
Scheduling and context switching do not cost extra
instruction cycles, only changing a thread’s priority costs
an instruction. The priority-based execution scheme al-
lows on the one hand to enforce an ordering among
threads that obeys the constraints given by Esterel’s
semantics (see Sec. 4.3), but on the other hand avoids
unnecessary context switches. If a thread lowers its pri-
ority during execution but still has the highest priority,
it simply keeps executing.

The Thread Block is responsible for managing threads,
as illustrated in Fig. 4a. The SyncChart formalism [31]

(a) Status of the whole program, as managed by the Thread
Block

(b) Execution status of a single thread

Fig. 4. Execution model of the KEP.

used here2 consists of hierarchical finite state machines,
bold state borders denote initial state at each hierarchy
level. Upon program start, the main thread is enabled
(forked), and the program is considered running. Subse-
quently, for each instruction cycle (instrClock), the Thread
Block decides which thread ought to be scheduled for
execution in this instruction cycle. It schedules the thread
with the highest priority among all active threads; if
there are multiple threads that have highest priority,
the thread with the highest id is scheduled. If there are
still enabled threads, but none is active anymore (see
below), the next tick is started. If no threads are enabled
anymore, the whole program is terminated.

The execution status of a single thread is illustrated
in Fig. 4b. Two flags are needed to describe the status
of a thread. One flag indicates whether the thread is
disabled or enabled. Initially, only the main thread (Thread
0) is enabled. Other threads become enabled whenever
they are forked, and they become disabled again when
they are joined after finishing all statements in their
body, or when the preemption control tries to set its
program counter to a value which is out of the thread ad-
dress range. The other flag indicates whether the thread
should still be scheduled within the current logical tick
(the thread is active) or not (inactive). Active threads are
initially preempted, and become executing when they are
scheduled.

The control of a thread can never exceed its address
range, and if a thread still tries to do so, it will be ter-
minated immediately. This mechanism allows a simple
solution for handling arbitrary preemption and concur-
rency nests. For example, if a thread nest is aborted, each
thread will try to jump to the end of the abortion block,

2. Diagrams synthesized by the SyncChart editor of Kiel Integrated
Environment for Layout Eclipse Rich Client (KIELER), available at http:
//www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://www.informatik.uni-kiel.de/rtsys/kieler/

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 9

which will be beyond its address range, and hence the
thread will be terminated.

5.2 Handling Preemption

According to the Esterel semantics, a preemption (abor-
tion or suspension) is enabled when control is in its body,
and disabled when control is outside of its body. When a
preemption is enabled, the corresponding trigger signal is
watched and the module can react to the presence of it
(is active). Otherwise, the signal does not cause preemp-
tion. We call this scheme Inside/Outside Preemption Range
Watching (IOPRW).

The RC provides a configurable number of Watcher
units, which detect whether a signal triggering a pre-
emption is present and whether the program counter
(PC) is in the corresponding preemption body [7]. If
during execution of the program the PC is within the
watched range and the trigger signal is present, the
Watcher triggers the corresponding changes in the control
flow. Note that Esterel allows the arbitrary nesting of
preemption blocks of different types, for example a
strong abortion may be nested within another weak
abortion, which may be nested in a suspension. The
Reactive Block is responsible for coordinating the Watcher
blocks in a way that reflects the Esterel semantics. Each
Watcher in the Reactive Block is assigned an index number,
which also defines its priority. A Watcher can be overrid-
den by another Watcher with higher priority. Considering
the preemption nest structure, it becomes clear that the
higher priority preemption has a wider address range
which covers all the lower priority ones. Therefore, the
earlier preemption instruction in a preemption nest will
be assigned to the higher priority Watcher. Note that
with this approach, it is not necessary to continuously
execute special Checkabort instructions [17] that check on
the status of each watcher, meaning that the program
does not slow down when entering a (nested) abortion
block. The Watcher modules operate autonomously, thus
also offering a certain type of concurrency (with true par-
allelism) beyond the concurrency operator (implemented
by interleaved multi-threading).

The KEP Watchers are designed to permit arbitrary
nesting of preemptions, and also the combination with
the concurrency operator. However, in practice this of-
ten turns out to be more general than necessary, and
hence wasteful of hardware resources. Therefore, the
KEP includes several versions of the Watcher, with a
correspondingly refined ISA. The least powerful, but also
cheapest variant is the Thread Watcher, which belongs
to a thread directly, and can neither include concur-
rent threads nor other preemptions. An intermediate
variant is the Local Watcher, which may include concur-
rent threads and also preemptions handled by a Thread
Watcher, but cannot include another Local Watcher. The
default Watcher is the most general, which can handle
all execution contexts.

1 module Trap1:
2 output O;
3 % −−−−−−− Thread 0
4 trap T1 in [
5 % −−−−−−− Thread 1
6 nothing;
7 ||
8 % −−−−−−− Thread 2
9 trap T2 in [

10 % −−−−−−− Thread 3
11 exit T2;
12 ||
13 % −−−−−−− Thread 4
14 exit T1;
15 % −−−−−−− Thread 2
16] end trap;
17 emit O
18 % −−−−−−− Thread 0
19] end trap;
20 halt ;
21 end module

(a) Trap1: Thread 2
does not emit O, as
exception T1 is thrown
within Thread 2

1 module Trap2:
2 output O;
3 % −−−−−−− Thread 0
4 trap T1 in [
5 % −−−−−−− Thread 1
6 exit T1;
7 ||
8 % −−−−−−− Thread 2
9 trap T2 in [

10 % −−−−−−− Thread 3
11 exit T2;
12 ||
13 % −−−−−−− Thread 4
14 nothing;
15 % −−−−−−− Thread 2
16] end trap;
17 emit O
18 % −−−−−−− Thread 0
19] end trap;
20 halt ;
21 end module

(b) Trap2: Thread 2
emits O, as exception
T1 is thrown by con-
current Thread 1

Fig. 5. Interaction of concurrency and exception handling.

5.3 Handling Exceptions
The KEP does not need an explicit equivalent to the
trap statement, but it provides an EXIT statement that
specifies a trap scope. If a thread executes an EXIT
instruction, it tries to perform a jump to the end of the
trap scope. If that address is beyond the range of the
current thread, control is not transferred directly to the
end of the trap scope, but instead to the JOIN instruction
at the end of the current thread. If other threads that
merge at this JOIN are still active, they will still be
allowed to execute within the current logical tick. This is
dictated by the Esterel semantics, which specifies them
as a variant of weak aborts.

It is possible that some concurrent threads were exe-
cuted before executing the EXIT in the current tick and
have become inactive. Hence, they cannot directly re-
spond to the exception because they will not be awoken
in that tick. Such a situation will be detected at the join
point. If there is an active exception, all branch threads
that wait at this join point will be set to disabled.

As for trap nests, the question is how to determine
which one ought to take priority. The Esterel semantics
specifies that outer traps take priority over inner ones.
Hence, a simple idea is that the outer trap, which has
the larger address range, will override the inner one.
Unfortunately, this strategy is too simplistic to satisfy all
cases. Compare the Trap1 and Trap2 examples in Fig. 5. As
illustrated there, one must not only consider trap nesting
structures, but also the concurrency relationships among
the threads involved.

To handle this issue, a thread also keeps track of
its parent thread. If the PC resides inside of the scope

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 10

of a trap, the corresponding exception will be active.
When several exceptions are all active, the KEP will
compare their parent thread to determine whether they
belong to a group of concurrent threads. If they have
the same parent thread, the outer trap will cancel the
inner one, as in the Trap1 example. Otherwise the Esterel
semantics requires to respond to the inner one first, as
in Trap2. Furthermore, an inheritance strategy is used
when a trap crosses several threads. At the join point,
if a thread finds there is an active exception which is
emitted by its child thread, it will inherit this exception
by adopting the parent thread of this exception as its
parent thread, i. e., it will propagate this exception as
being emitted by itself. Once all joining threads have
completed within the current tick, control is transferred
to the end of the trap scope—unless there is another
intermediate JOIN instruction. This process continues
until control has reached the thread that has declared
the trap.

5.4 Handling Delays

Delay expressions are used in temporal statements, e. g.,
await or abort. There are three forms of delay expressions:
standard delays, immediate delays, and count delays. A
delay may elapse in some later tick, or in the same tick
in the case of immediate delays. In the KEP, the await
statement is implemented via the AWAIT component.
Every thread has its own await-component to store the
parameters of the await-type statement, e. g., the value
of count delays. For the preemption statements, every
Watcher (including its trimmed-down derivatives) also
has an independent counter to handle the delays.

5.5 The Tick Manager and Energy Saving

One of the distinguishing features of the KEP is the
Tick Manager. It can autonomously ensure that logical
ticks, which for a deployed KEP correspond to one read
inputs/compute outputs reaction cycle, are computed at
a fixed rate, given a fixed clock frequency. Furthermore,
the Tick Manager internally monitors timing violations.
The strl2kasm compiler performs a conservative WCRT
analysis to determine the tick frequency, and timing
violations should never occur [13]. Hence, when using
this compiler, the timing violation monitoring can be
considered a redundant self-checking run-time mecha-
nism to enhance robustness.

The Tick Manager is activated by setting the pre-defined
valued signal TICKLEN to a certain value. This is typi-
cally at the beginning of the program, but may also be
done later at run time. The activation of the Tick Manager
is optional; if TICKLEN is not set to any value, the KEP
is in “free running” mode and starts computing the next
tick as soon as the current one is finished. This will
typically be faster on average; however, it will result in
a jitter of the reaction time, which is often undesirable
from a control perspective.

1 INPUT D;
2 OUTPUT
3 A,B,C;
4 EMIT
5 TICKLEN, #3;
6 EMIT A;
7 EMIT B;
8 PAUSE;
9 EMIT A;

10 EMIT B;
11 EMIT C;
12 AWAIT D;

(a) KEP
Assembler

(b) Timing diagram, for input D absent;
TickWarn indicates a timing violation in
the second tick, fourth instruction

Fig. 6. The Tick Manager detects a timing overrun.

As the KEP instruction cycles require a fixed number
of clock cycles, providing a value for TICKLEN can also
alleviate the need for the environment to provide a timer
that starts the ticks in regular intervals. An external timer
is only needed if the clock rate is not stable enough
for the application, e. g., due to energy-saving frequency
scaling.

If a tick is finished in less than TICKLEN instruction
cycles, the KEP idles for the remaining cycles before
starting the next tick. If, on the other hand, a tick is
not finished within TICKLEN cycles, this is considered
a tick length timing violation. Such timing violations are
signaled to the environment via a special signal, Tick-
Warn, with a dedicated output pin; this signal remains
present until the next reset of the processor. Furthermore,
the self-monitoring makes it easy for the environment
to detect any timing violations. The WCRT analysis
aims to determine a conservative, yet tight value for

TICKLEN. How a given value for TICKLEN translates to
concrete bounds on physical reaction times also depends
on the interface with the environment, as described
elsewhere [10].

Fig. 6 illustrates the KEP timing behavior for a small
example. In OVERRUN, the first EMIT statement sets

TICKLEN to three; in other words, the module claims
that at most three KEP instructions suffice to compute
one logical tick. For the input scenario of signal D always
absent, the KEP produces the timing shown in Fig. 6b.
In this example, the program is running on a KEP imple-
mented on a Memec V2MB1000 Development Board at a
rate of Tosc = 41.67ns, the waveform was recorded by an
Agilent 1683A Logic Analyzer. In the example, the first
logical tick lasts three instruction cycles. In the second
tick, the controller has to execute five instructions until
the AWAIT statement is executed. Hence, the Tick Manager
will set the TickWarn processor pin high when the fourth
instruction cycle is executed to indicate the tick length
timing violation.

For controller programming, the main goal of Esterel,
the control signals tend to be more often absent than
present [14]. The condition of all signals being absent

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 11

is called a blank event. Even though Esterel does allow
to specify reactions for signal absence, typically very
few instruction cycles are required for executing a blank
event (see also Sec. 6.5). To make the KEP benefit from
this when less than TICKLEN instructions have been
executed and there are no instructions needed for the
current tick, i. e., all threads are inactive, an IDLE signal
will be broadcast to gate the clock of other elements for
power reduction [32].

6 VALIDATION AND EXPERIMENTAL RESULTS

To validate the correctness of the KEP and its compiler
and to evaluate its performance, we employ an evalua-
tion platform whose structure is shown in Fig. 7. The
user interacts via a host work station with an FPGA
board, which contains the KEP as well as some testing
infrastructure. First, an Esterel program is compiled into
an KEP object file (.ko) which is uploaded to the FPGA
board. Then, the host provides input events to the KEP
and reads out the generated output events. This also
yields the number of instructions per tick, from which
we can deduce the WCRT for the given trace. This
measures performance, and allows to validate strl2kasm’s
WCRT analysis with respect to its safety (never un-
derestimates) and accuracy (as little overestimates as
possible). The input events can be either provided by
the user interactively, or they can be supplied via a .esi
file. The host can also compare the output results to an
execution trace (.eso). We use EsterelStudio V5.0 to com-
pute input/output trace files with state and transition
coverage, except for the eight but benchmark, for which
the generation of the transition coverage trace took
unacceptably long and we restricted ourselves to state
coverage. This comparison to a reference implementation
proved a very valuable aid in validating the correctness
of both the KEP and its compiler. The regression test
suite currently includes well over 400 Esterel programs.

FPGA BoardUser
strl2kasm

.log

.eso

.kokasm2ko

.strl

Output

.esi InputTickGen

ProtocolGen

Host
.kasm

EStudio

T
es

t D
ri

ve
r

KEP Assembler

Processor
Kiel Esterel

Environment

Fig. 7. The KEP evaluation platform.

6.1 Concurrency Analysis
To evaluate the performance of the KEP, we selected
eleven standard test cases, from the Estbench3 suite and
other sources [5], [33]. These benchmarks are typical
Esterel applications, which not only contain reactive

3. http://www1.cs.columbia.edu/∼sedwards/software/estbench-1.
0.tar.gz

Esterel source KEP
Module LOC Threads Code CKAG
Name Count Max Max size Dep. Max PRIO

depth conc. (words) count priority instr’s
abcd 160 4 2 4 164 36 3 30

abcdef 236 6 2 6 244 90 3 48
eight but 312 8 2 8 324 168 3 66
chan prot 42 5 3 4 62 4 2 10

reactor ctrl 27 3 2 3 34 5 1 0
runner 31 2 2 2 27 0 1 0

example 20 2 2 2 28 2 3 6
ww button 76 13 3 4 95 0 1 0
greycounter 143 17 3 13 343 53 6 58

tcint 355 39 5 17 379 65 3 20
mca200 3090 59 5 49 8650 129 11 190

TABLE 3
Concurrency analysis of benchmarks.

Sheet1

Page 1

KEP (Peak) KEP (Blank)
69 13 8
74 13 7

eight_but 74 13 7
70 28 12

reactor_ctrl 76 20 13
runner 78 14 2
example 77 25 9

81 13 4
78 44 33

Frequency [MHz] HW [Slices]
Unrefined Refined Unrefined Refined

88,04 105,8 376 332
84,33 103,7 506 370

eight_but 83,06 100,87 eight_but 623 418
111,73 111,73 254 270

reactor_ctrl 107,68 111,37 reactor_ctrl 276 259
runner 99,44 97,44 runner 354 320
example 111,73 109,49 example 249 283

82,71 100,87 629 383
87,64 106,17 470 412
90,49 99,89 433 422

mca200 66,49 90,2 mca200 1253 798

MicroBlaze
abcd
abcdef

chan_prot

ww_button
greycounter

abcd abcd
abcdef abcdef

chan_prot chan_prot

ww_button ww_button
greycounter greycounter
tcint tcint

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

0 10 20 30 40 50 60 70 80 90

MicroBlaze

KEP (Peak)

KEP (Blank)

Energy Consumption [mW]

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

tcint

mca200

0 20 40 60 80 100 120

Unrefined

Refined

Frequency [MHz]

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

tcint

mca200

0 200 400 600 800 1000 1200 1400

Unrefined

Refined

HW [Slices]

Sheet1

Page 1

KEP (Peak) KEP (Blank)
69 13 8
74 13 7

eight_but 74 13 7
70 28 12

reactor_ctrl 76 20 13
runner 78 14 2
example 77 25 9

81 13 4
78 44 33

Frequency [MHz] HW [Slices]
Unrefined Refined Unrefined Refined

88,04 105,8 376 332
84,33 103,7 506 370

eight_but 83,06 100,87 eight_but 623 418
111,73 111,73 254 270

reactor_ctrl 107,68 111,37 reactor_ctrl 276 259
runner 99,44 97,44 runner 354 320
example 111,73 109,49 example 249 283

82,71 100,87 629 383
87,64 106,17 470 412
90,49 99,89 433 422

mca200 66,49 90,2 mca200 1253 798

MicroBlaze
abcd
abcdef

chan_prot

ww_button
greycounter

abcd abcd
abcdef abcdef

chan_prot chan_prot

ww_button ww_button
greycounter greycounter
tcint tcint

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

0 10 20 30 40 50 60 70 80 90

MicroBlaze

KEP (Peak)

KEP (Blank)

Energy Consumption [mW]

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

tcint

mca200

0 20 40 60 80 100 120

Unrefined

Refined

Frequency [MHz]

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

tcint

mca200

0 200 400 600 800 1000 1200 1400

Unrefined

Refined

HW [Slices]

Fig. 8. Clock frequencies and hardware costs with and
without ISA refinement.

statements, but also include arithmetic and logical data
handling. However, we leave out programs that make
use of the pre operator, since the CEC currently does not
support it [4].

To characterize each benchmark with respect to its use
of concurrency constructs, Table 3 lists the counts and
depths of them. For the KEP, the table shows the number
of dependencies found, the used number of priority
levels (the KEP provides up to 255), and the number
of used PRIO instructions. In most cases, the maximum
priority used is three or less, indicating relatively few
priority changes per tick. For example, eight buttons has
168 dependencies, but the maximum priority used is 3.
On the other hand, greycounter, with 53 dependencies,
requires a maximum priority of 6.

6.2 Preemption Analysis and Watcher Comparison
Typically, the preemption constructs tend to be sequen-
tial or concurrent rather than being nested. For example,
the mca200 employs 64 preemption statements, however,
the maximum depth of the preemption nest is just 4. As
it turns out, most of the preemptions can be handled by
the cheapest Watcher type, the Thread Watcher.

To assess the savings of watcher refinement, we syn-
thesized different variants of the Reactive Core for each
benchmark, with and without watcher refinement, see

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 12

Esterel MicroBlaze KEP
Module LOC Code+Data (b) Code (w) Code+Data (b)
Name V5 V7 CEC abs. rel. abs. rel.

[1] [2] (best) [3] [3]/[1] [4] [4]/[2]
abcd 160 6680 7928 7212 164 1.03 738 0.11

abcdef 236 9352 9624 9220 244 1.03 1098 0.12
eight but 312 12016 11276 11948 324 1.04 1458 0.13
chan prot 42 3808 6204 3364 62 1.48 279 0.08

reactor ctrl 27 2668 5504 2460 34 1.26 153 0.06
runner 31 3140 5940 2824 27 0.87 121 0.04

example 20 2480 5196 2344 28 1.4 126 0.05
ww button 76 6112 7384 5980 95 1.25 427 0.07
greycounter 143 7612 7936 8688 343 2.4 1549 0.2

tcint 355 14860 11376 15340 379 1.07 1707 0.15
mca200 3090 104536 77112 52998 8650 2.8 39717 0.75

TABLE 4
Memory usage comparison between KEP and

MicroBlaze implementations. “(b)” refers to
measurements in bytes, “(w)” to words.

Fig. 8. In most cases, having refined watcher types
available uses less resources and allows to increase the
frequency, and its benefits increase with the scale of
the modules. For the industry size mca200 benchmark,
refined watchers reduce hardware usage by 36%, and
raise the maximum frequency also by 36%. Another
benefit of the refined preemption handling architecture
is that it keeps the performance stable. If there are no
refined watcher types, there is a 40% gap between the
highest (112MHz) and the lowest (66MHz) frequency.
With refined watchers available, the frequency only de-
grades by about 19% (from 112MHz to 90MHz).

6.3 Memory Usage

Table 4 compares executable code size and RAM usage
between the KEP and the MicroBlaze implementations.
For the MicroBlaze, we used three different Esterel com-
pilers (V5, V7, and CEC), and compared ourselves to the
best of these. To assess the size of the KEP code related
to the Esterel source, we compare the code size in words
with the Esterel Lines of Code (LOC, before dismantling,
without comments). We notice that the KEP code is very
compact, with a word count close to the Esterel source.
For comparison with the MicroBlaze, we compare the
size of Code + Data, in bytes, and notice that the KEP
code is typically an order of magnitude smaller than
the MicroBlaze code. Furthermore, the more compact
state encoding reduces the data memory requirements.
The KEP implementation results on average in an 83%
reduction of memory usage (codes and RAM size) when
compared with the best result of the MicroBlaze imple-
mentation. As for the mca200, the memory reduction of
the KEP implementation is not so dramatic as that of
other cases. The reason is that the mca200 contains lots
of data handling—which is not a very strong point of
the KEP.

a
b

cd

a
b

cd
e
f

e
ig

h
t_

b
u

t

ch
a
n

_p
ro

t

re
a
ct

o
r_

ct
rl

ru
n

n
e
r

e
x
a
m

p
le

w
w

_b
u

tt
o
n

g
re

y
co

u
n

te
r

tc
in

t

m
ca

2
0

0

1

10

100

1000

10000

100000

WCRT-V5

ACRT-V5

WCRT-V7

ACRT-V7

WCRT-CEC

ACRT-CEC

WCRT-KEP

ACRT-KEP

R
e
a
ct

io
n
 T

im
e
s

(C
lo

ck
 C

y
cl

e
s)

Fig. 9. The worst-/average-case reaction times (in clock
cycles) for the KEP and MicroBlaze implementations.
Note the logarithmic scale.

6.4 Execution Times
The improvement in execution time of the KEP im-
plementation is shown in Fig. 9. Compared with the
best result of the MicroBlaze implementations, the KEP
typically obtains more than 4x speedup for the WCRT,
and more than 5x for the Average Case Reation Time
(ACRT). For a fair comparison, the time is measured
based on the system clock. If the comparison is based on
the instruction cycles, the KEP will achieve 12x speedup
for the WCRT and more than 15x for the ACRT.

The MicroBlaze uses several levels of memory. Here
we employed an FPGA chip with a large on-chip mem-
ory to implement the MicroBlaze system. Hence, all
of the MicroBlaze programs could be loaded into the
on-chip memory to make sure that the memory access
time is minimal. The MicroBlaze implementation bene-
fits from this, because if the implementation is based on
an FPGA which has smaller scale on-chip memory, the
KEP program is still likely to fit into the on-chip memory.

6.5 Power Usage
To compare the energy consumptions, we choose the Xil-
inx 3S200-4ft256 as FPGA platform. This requires 37mW
as quiescent power for the chip itself. The MicroBlaze is
assumed to run at 50MHz, and the peak power of the Mi-
croBlaze is calculated by the frequency and the hardware
resources of the MicroBlaze system via Xilinx WebPower
Version 8.1.01. Based on the findings presented in Fig. 9,
we calculate the minimal clock frequencies of the KEP
to achieve the same WCRT of corresponding MicroBlaze
for each benchmark, then calculate the peak power of
the KEP implementation.

For most blank events, the action of an Esterel module
is very simple—it tests the presence of awaited sig-
nals, and then finishes this tick because those await
statements are not terminated. For the KEP, since the
elapsed instruction cycle count for those actions is far
from the assigned tick length, the system will turn to
the idle state for saving power. Although the MicroBlaze
has no low-power operating mode that can be used to
conserve processor energy (e. g., like the wait-state of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 13

Sheet1

Page 1

KEP (Peak) KEP (Blank)
69 13 8
74 13 7

eight_but 74 13 7
70 28 12

reactor_ctrl 76 20 13
runner 78 14 2
example 77 25 9

81 13 4
78 44 33

Frequency [MHz] HW [Slices]
Unrefined Refined Unrefined Refined

88,04 105,8 376 332
84,33 103,7 506 370

eight_but 83,06 100,87 eight_but 623 418
111,73 111,73 254 270

reactor_ctrl 107,68 111,37 reactor_ctrl 276 259
runner 99,44 97,44 runner 354 320
example 111,73 109,49 example 249 283

82,71 100,87 629 383
87,64 106,17 470 412
90,49 99,89 433 422

mca200 66,49 90,2 mca200 1253 798

MicroBlaze
abcd
abcdef

chan_prot

ww_button
greycounter

abcd abcd
abcdef abcdef

chan_prot chan_prot

ww_button ww_button
greycounter greycounter
tcint tcint

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

0 10 20 30 40 50 60 70 80 90

MicroBlaze

KEP (Peak)

KEP (Blank)

Energy Consumption [mW]

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

tcint

mca200

0 20 40 60 80 100 120

Unrefined

Refined

Frequency [MHz]

abcd

abcdef

eight_but

chan_prot

reactor_ctrl

runner

example

ww_button

greycounter

tcint

mca200

0 200 400 600 800 1000 1200 1400

Unrefined

Refined

HW [Slices]

Fig. 10. Energy consumption of KEP and MicroBlaze.

PowerPC405), we still assume it can use some additional
circuit to manage its power usage by blocking its clock
to satisfy the fixed tick length feature. Note that the real
tick length for a blank event depends on the state of
the program of the previous tick. The average power
usage of blank events is also estimated by an extended
esi file, which inserts a blank event between every two
original ticks. Fig. 10 shows that the KEP reduces energy
usage on average by 75%. The reduction becomes even
more significant for blank events. Energy consumptions
of the MicroBlaze system are similar for different events.
However, the reactive architecture makes the power
usage of the KEP 52% lower than its peak power. Hence,
in this case, the KEP achieves 86% power savings.

7 CONCLUSIONS & OUTLOOK

W E have presented the KEP, a multi-threaded pro-
cessor, which allows the efficient, predictable

execution of concurrent Esterel programs. The multi-
threaded approach poses specific compilation chal-
lenges, in particular in terms of scheduling, and we have
presented an analysis of the task at hand as well as an
implemented solution. As the experimental comparison
with a 32-bit commercial RISC processor indicates, the
approach presented here has advantages in terms of
memory use, execution speed, and energy consumption.
An Esterel description of the KEP is available as open
source4.

To accurately capture the Esterel semantics in a re-
active processing setting is not trivial, as has become
evident from earlier (failed) attempts. So far, we are
relying on extensive experimental validation to ensure
correctness, as described in Sec. 6; a formal treatment of
the reactive processing approach is underway [34].

It would be interesting to implement a virtual machine
that has an instruction set similar to the KEP; see also the
recent proposal by Plummer et al. [35]. Furthermore, the
underlying model of computation, with threads keeping
their individual program counters and a priority based
scheduling, can also be emulated by classical processors.
In fact, the recent SyncCharts in C (SC) proposal [27]
defines a set of operators for reactive control flow that
follow the KEP’s execution model quite closely. The

4. http://www.informatik.uni-kiel.de/rtsys/kep/

main differences are that SC does not support traps (a
simplification of SyncCharts compared to Esterel) and
that the thread id/priority mechanism is reduced to
only ids, which serve as priorities as well. Interestingly,
the current reference implementation for SC5 can take
advantage of machine instructions for arithmetic opera-
tions that are typically not available at the program level.
Specifically, on the x86, the scheduler uses a bit vector
to represent active threads and the bsr (Bit Scan Reverse)
assembler instruction to determine the active thread with
the highest id.

The SC operators are directly embedded in regular C,
no prior compilation or OS support is necessary; hence,
in a way, SC uses the ISA of a traditional processor in
a reactive processing manner. At least in terms of code
compactness, this approach could be competitive with
the custom reactive processing approach; to what extent
it can match reactive processing in terms of performance,
power consumption and predictability is still open for
investigation.

ACKNOWLEDGMENTS

This work has benefited from discussions with many
people, in particular Michael Mendler and Stephen Ed-
wards. We would also like to thank Marian Boldt for
developing the strl2kasm compiler, Özgün Bayramoglu
and Hauke Fuhrmann for the KIELER visualization, and
the reviewers for providing very valuable feedback on
this manuscript.

REFERENCES
[1] G. Berry, “Esterel on Hardware,” Philosophical Transactions of the

Royal Society of London, vol. 339, pp. 87–104, 1992.
[2] G. Berry and G. Gonthier, “The Esterel synchronous program-

ming language: Design, semantics, implementation,” Science of
Computer Programming, vol. 19, no. 2, pp. 87–152, 1992.

[3] S. A. Edwards, “High-Level Synthesis from the Synchronous
Language Esterel,” Proceedings of the International Workshop of Logic
and Synthesis (IWLS), Jun. 2002.

[4] S. A. Edwards and J. Zeng, “Code generation in the Columbia
Esterel Compiler,” EURASIP Journal on Embedded Systems, vol.
Article ID 52651, 31 pages, 2007.

[5] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. M. Sentovich,
B. Tabbara, M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-
Vincentelli, and K. Suzuki, Hardware-Software Co-Design of Embed-
ded Systems, The POLIS Approach. Kluwer Academic Publishers,
Apr. 1997.

[6] Z. A. Salcic, P. S. Roop, M. Biglari-Abhari, and A. Bigdeli, “RE-
FLIX: A processor core for reactive embedded applications,” in
Proceedings of the 12th International Conference on Filed Programmable
Logic and Applications (FPL-02), ser. Lecture Notes in Computer
Science, M. Glesner, P. Zipf, and M. Renovell, Eds., vol. 2438.
Montpellier, France: Springer, Sep. 2002, pp. 945–945.

[7] X. Li and R. von Hanxleden, “A concurrent reactive Esterel
processor based on multi-threading,” in Proceedings of the 21st
ACM Symposium on Applied Computing (SAC’06), Special Track
Embedded Systems: Applications, Solutions, and Techniques, Dijon,
France, April 23–27 2006.

[8] X. Li, M. Boldt, and R. von Hanxleden, “Mapping Esterel onto
a multi-threaded embedded processor,” in Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’06), San Jose, CA, Oc-
tober 21–25 2006.

5. http://www.informatik.uni-kiel.de/rtsys/sc/

http://www.informatik.uni-kiel.de/rtsys/kep/
http://www.informatik.uni-kiel.de/rtsys/sc/

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, MONTH YEAR 14

[9] S. Yuan, S. Andalam, L. H. Yoong, P. S. Roop, and Z. Salcic,
“STARPro—a new multithreaded direct execution platform for
Esterel,” in Proceedings of Model Driven High-Level Programming of
Embedded Systems (SLA++P’08), Budapest, Hungary, Apr. 2008.

[10] X. Li, J. Lukoschus, M. Boldt, M. Harder, and R. von Hanxleden,
“An Esterel Processor with Full Preemption Support and its Worst
Case Reaction Time Analysis,” in Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’05). San Francisco, CA, USA: ACM Press, Sep.
2005, pp. 225–236.

[11] X. Li, “The Kiel Esterel Processor: A multi-threaded reactive
processor,” Ph.D. dissertation, Christian-Albrechts-Universität zu
Kiel, Faculty of Engineering, Jul. 2007, http://eldiss.uni-kiel.de/
macau/receive/dissertation diss 00002198.

[12] M. Boldt, “A compiler for the Kiel Esterel Processor,” Diploma
thesis, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, Dec. 2007, http://rtsys.informatik.uni-kiel.
de/∼biblio/downloads/theses/mabo-dt.pdf.

[13] M. Boldt, C. Traulsen, and R. von Hanxleden, “Worst case reaction
time analysis of concurrent reactive programs,” Electronic Notes in
Theoretical Computer Science, vol. 203, no. 4, pp. 65–79, Jun. 2008,
proceedings of the International Workshop on Model-Driven
High-Level Programming of Embedded Systems (SLA++P’07),
March 2007, Braga, Portugal.

[14] G. Berry, The Esterel v5 Language Primer, Version v5 91, Centre
de Mathématiques Appliquées Ecole des Mines and INRIA,
06565 Sophia-Antipolis, 2000, ftp://ftp-sop.inria.fr/esterel/pub/
papers/primer.pdf.

[15] D. Potop-Butucaru, S. A. Edwards, and G. Berry, Compiling Esterel.
Springer, May 2007.

[16] R. von Hanxleden, X. Li, P. Roop, Z. Salcic, and L. H. Yoong,
“Reactive processing for reactive systems,” ERCIM News, vol. 67,
pp. 28–29, Oct. 2006.

[17] P. S. Roop, Z. Salcic, and M. W. S. Dayaratne, “Towards Direct
Execution of Esterel Programs on Reactive Processors,” in 4th
ACM International Conference on Embedded Software (EMSOFT’04),
Pisa, Italy, Sep. 2004.

[18] X. Li and R. von Hanxleden, “The Kiel Esterel Processor - a semi-
custom, configurable reactive processor,” in Synchronous Program-
ming - SYNCHRON’04, ser. Dagstuhl Seminar Proceedings, S. A.
Edwards, N. Halbwachs, R. v. Hanxleden, and T. Stauner, Eds.,
no. 04491. Internationales Begegnungs- und Forschungszentrum
(IBFI), Schloss Dagstuhl, Germany, 2005, http://drops.dagstuhl.
de/opus/volltexte/2005/159.

[19] Z. A. Salcic, D. Hui, P. S. Roop, and M. Biglari-Abhari, “REMIC:
Design of a reactive embedded microprocessor core.” in Proceed-
ings of the 10th Asia and South Pacific Design Automation Conference
(ASP-DAC), Shanghai, China, 2005, pp. 977–981.

[20] M. W. S. Dayaratne, P. S. Roop, and Z. Salcic, “Direct Execution
of Esterel Using Reactive Microprocessors,” in Proceedings of Syn-
chronous Languages, Applications, and Programming (SLAP’05), Apr.
2005.

[21] L. H. Yoong, P. Roop, and Z. Salcic, “Compiling Esterel for
distributed execution,” in Proceedings of Synchronous Languages,
Applications, and Programming (SLAP’06), Vienna, Austria, Apr.
2006.

[22] S. Gädtke, C. Traulsen, and R. von Hanxleden, “HW/SW Co-
Design for Esterel Processing,” in Proceedings of the International
Conference on Hardware-Software Codesign and System Synthesis
(CODES+ISSS’07), Salzburg, Austria, Sep. 2007.

[23] C. Traulsen and R. von Hanxleden, “Reactive parallel processing
for synchronous dataflow,” in Proceedings of the 25th Symposium
On Applied Computing (SAC’10), Special Track Embedded Systems:
Applications, Solutions, and Techniques, Sierre, Switzerland, Mar.
2010.

[24] S. A. Edwards and E. A. Lee, “The case for the Precision Timed
(PRET) machine,” in Proceedings of the 44th Design Automation
Conference, San Diego, CA, USA, Jun. 2007, pp. 264–265.

[25] P. S. Roop, S. Andalam, R. von Hanxleden, S. Yuan, and
C. Traulsen, “Tight WCRT analysis for synchronous C programs,”
in Proceedings of the International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (CASES’09), Grenoble,
France, Oct. 2009.

[26] M. Mendler and M. Pouzet, “Uniform and modular composition
of data-flow & control-flow in the lazy λ-calculus,” Presentation at
the International Open Workshop on Synchronous Programming
(SYNCHRON’08), Aussois, France, Dec. 2008.

[27] R. von Hanxleden, “SyncCharts in C—A Proposal for Light-
Weight, Deterministic Concurrency,” in Proceedings of the Inter-
national Conference on Embedded Software (EMSOFT’09), Grenoble,
France, Oct. 2009.

[28] X. Li and R. von Hanxleden, “KEP2 (Kiel Esterel Processor
2): The Esterel Processor,” Christian-Albrechts-Universität Kiel,
Department of Computer Science, Technical Report 0506, Apr.
2005.

[29] J. Lukoschus and R. von Hanxleden, “Removing cycles in Esterel
programs,” EURASIP Journal on Embedded Systems, Special Issue on
Synchronous Paradigms in Embedded Systems, 2007, http://www.
hindawi.com/getarticle.aspx?doi=10.1155/2007/48979.

[30] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transactions
on Programming Languages and Systems, vol. 9, no. 3, pp. 319–349,
1987, http://doi.acm.org/10.1145/24039.24041.

[31] C. André, “SyncCharts: A visual representation of reactive be-
haviors,” I3S, Sophia-Antipolis, France, Tech. Rep. RR 95–52,
rev. RR 96–56, Rev. April 1996, http://www.i3s.unice.fr/∼andre/
CAPublis/SYNCCHARTS/SyncCharts.pdf.

[32] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design
techniques for system-level dynamic power management,” in
Readings in hardware/software co-design. Norwell, MA, USA:
Kluwer Academic Publishers, 2002, pp. 231–248.

[33] G. Berry, The Esterel v5 Language Primer, 1999, ftp://ftp-sop.inria.
fr/meije/esterel/papers/primer.ps.

[34] C. Traulsen, “The Kiel Reactive Processor (KReP),” Ph.D. disser-
tation, Christian-Albrechts-Universität zu Kiel, Faculty of Engi-
neering, in preparation.

[35] B. Plummer, M. Khajanchi, and S. A. Edwards, “An Esterel virtual
machine for embedded systems,” in International Workshop on
Synchronous Languages, Applications, and Programming (SLAP’06),
Vienna, Austria, Mar. 2006.

Xin Li obtained his B. S. in Measurement Tech-
nology and Instrument Design in 1996 and his
M. Sc. in Mechanical and Electronic Engineering
in 2000, both from Wuhan University of Tech-
nology, P. R. China. Until 2003 he was lecturer
in the School of Mechanical and Electronic En-
gineering at Wuhan. He completed his Ph. D.
at the Dept. of Computer Science of Christian-
Albrechts-Universitä Kiel, in 2007. He now is
with the Laboratory for Advanced Research in
Computing Technology and Compilers in the

Dept. of Electrical and Computer Engineering at the University of
Minnesota. His current research interests focus on embedded system
design and reactive processing. He holds two patents.

Reinhard von Hanxleden studied Computer
Science and Physics at the Christian-Albrechts-
Universität (CAU) Kiel from 1985 to 1988 and
completed his M. Sc. in CS at The Pennsylva-
nia State University in 1989. He performed his
doctoral studies at the CS Dept./Center for Re-
search on Parallel Computation at Rice Univer-
sity in the field of data-parallel compilation until
1994, with the Ph. D. conferred in 1995. He sub-
sequently joined Daimler Chrysler research, un-
til 2000 with the Responsive Systems in Berlin,

afterwards with Airbus in Hamburg and Toulouse. He joined the CAU CS
faculty in 2001 as head of the real-time/embedded systems group. His
interests include model-based design, concurrency and synchronous
programming. He is currently involved in the IEEE standardization of
the Esterel language and is a member of ACM, IEEE, and GI.

http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
http://drops.dagstuhl.de/opus/volltexte/2005/159
http://drops.dagstuhl.de/opus/volltexte/2005/159
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979
http://doi.acm.org/10.1145/24039.24041
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps

	Introduction
	The Esterel Language
	Reactive control flow
	An Example

	Related Work
	Sequential reactive processing
	Concurrent reactive processing
	Compilation, WCRT analysis, co-design
	Further related work

	The KEP Instruction Set Architecture
	General Code Generation
	Concurrency
	Handling Signal Dependencies

	The KEP Processor Architecture
	Handling Concurrency
	Handling Preemption
	Handling Exceptions
	Handling Delays
	The Tick Manager and Energy Saving

	Validation and Experimental Results
	Concurrency Analysis
	Preemption Analysis and Watcher Comparison
	Memory Usage
	Execution Times
	Power Usage

	Conclusions & Outlook
	References
	Biographies
	Xin Li
	Reinhard von Hanxleden

