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Abstract

The scope of this student research project is to find an approach to meta layout
of graphical models, using evolutionary algorithms to learn from user feedback on
created layouts.
This approach strives for two goals. Firstly, it may aid users who want a personal-

ized automatic layout of graphical models. So far, automatic layout primarily relied
on a priori guesses about the users’ personal preferences with respect to layout. If the
users wanted alternative automatic layout, the only way was by manually specifying
layout options. The approach presented here iteratively evolves layout configurations
which lead to different layout proposals. The users are asked for feedback on the
proposals. Configurations that lead to more “appealing” layout results are promoted.
This method gives users the possibility to administer automatic layout of graphical
models without needing to understand the interaction of layout options and their
effect on layout algorithms.
Secondly, this approach gives developers of layout algorithms a means to evaluate

them. It can help to find appropriate default settings for newly developed algorithms.
This thesis presents a first implementation of this evolutionary approach to meta

layout which interacts with other tools from the KIELER project.
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1 Introduction

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is a re-
search project about enhancing the graphical model-based design of complex sys-
tems. KIELER is developed by the Real-Time and Embedded Systems Group of the
University of Kiel.
One of the essential subprojects of KIELER is the KIELER Infrastructure for Meta

Layout (KIML), which deals with the automatic layout of graphical models. Au-
tomatic layout is intended to exonerate users of graphical modeling tools following
the WYSIWYG principle from the cumbersome task of manual layout. While KIELER
supports different types of diagrams that need different types of layout, KIML serves
as the link that connects graphical diagram editors and layout algorithms.
The automatic layout logic is based on a priori knowledge about user preferences

for layout of the graphical model at hand, as well as on user-defined options. There
are many options that can be set manually in order to configure the automatic
layout process in detail. Without advanced knowledge this can be a cumbersome
and frustrating task. Moreover, since automatic layout is intended to disburden the
user, the need to adjust options in detail is contrary to its goal. The better the
default settings reflect the users’ preferences, the more useful is KIML.

The capability of learning layout preferences from user feedback could enable users
to obtain pleasing layout without having to be concerned about different layout
algorithms or layout options, therefore it may be a useful improvement of meta
layout.
The goal of this work is to develop an approach to learn from user feedback on

created layouts in KIELER. Evolutionary algorithms (EAs) shall be used to optimize
layout options that control the creation of layouts.
This thesis presents an add-on to KIML, namely KIML-EVOL, where EVOL stands

for Evolutionary Variation and Optimizing of Layout options. KIML-EVOL is an
approach that uses interactive evolutionary algorithms to learn user preferences for
layout options, so that they can later be used by KIML as default settings. This
is done by proposing layout examples to the user. The judgment supplied by the
user influences the generation of further layout proposals. However, it is not the
layout proposals themselves that are evolved, but the parameter values for the layout
algorithms and the choice of layout algorithms.
Implemented as an Eclipse plug-in, KIML-EVOL can be added to the KIELER frame-

work to interact with KIML.
The rest of this paper is organized as follows: Chapter 1 introduces the concepts

and terminology of EAs, aesthetics metrics, and meta layout. Furthermore, it intro-
duces the technologies used in this project, and presents work related to this thesis.
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1 Introduction

A solution is proposed in Chapter 2, and finally, in Chapter 5, conclusions are drawn
and ideas for future work are presented.

1.1 Evolutionary Algorithms

This section introduces the area of evolutionary algorithms (EAs). It presents the
major types of EAs and the related terminology.

EAs are a family of standardized, stochastic algorithms that aim to find solutions
to optimization problems. They do so by imitating some of the mechanisms that
biologists believe to be effective in the evolution of species. Taking its inspiration
from biology, the terminology of EAs borrows many biological terms. While the use
of EAs also might help to build a deeper understanding of how the biological process
of evolution works, that would only be a side-effect. The main goal is not to simulate
natural evolution as accurately as possible, but rather only as much as is necessary
to solve the optimization problems—which from a biologist view might be considered
a severe oversimplification.

EAs are especially applicable to problems into which one does not yet have much
insight. If there is more reliable knowledge about a problem, more sophisticated algo-
rithms could be tailored instead. By purposefully exploiting the available knowledge,
these would usually find better solutions in shorter time than an EA would. The ad-
vantage of EAs is that they often find sufficiently good solutions in reasonable time.
However, it can usually not be guaranteed that they find optimal solutions.
Historically, there have been several independent approaches that have led to dif-

ferent “flavors” or types of EAs, cf. Whitley [36, p. 817, p. 823]. Beginning in the
1950’s, first applications appeared. Later, attempts have been made to emphasize
the similarities among the major types and to standardize the terms, see for example
Spears et al. [30].
The overall process of EAs basically consists of a loop which is repeated many

times. In each iteration, candidate solutions to the specified optimization problem—
so-called individuals—are generated and evaluated. The constitution of such an
individual is subject to basic design decisions. It depends on the problem at hand
and also on the type of EA that is applied. A useful concept is to distinguish between
the genotype, i.e. the genetic makeup of an individual, and its phenotype, i.e. the
appearance it shows when it is evaluated as a candidate solution.
Specific operations are used that serve to pass advantageous features on to the

individuals of the next iteration, while other operations aim on extinguishing disad-
vantageous features. This is inspired by natural selection, where fitter individuals
have a higher chance of surviving long enough in their environment to pass their
genetic makeup successfully onto their progeny, while less fit individuals tend to be-
come eliminated by their harsh environment. In EA, the role of the environment in
which the individuals struggle for existence is played by the problem that is to be
solved.
While the above-mentioned overall process is more or less the same in all EAs, the
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Figure 1.1: Fitness evaluation in EAs. The fitness function f is used to assign a
fitness value to each member of the population.

implementation of each phase of the process can vary heavily from one algorithm to
another.
The main phases typically used in EAs are initialization, evaluation, selection,

reproduction, survival, and termination.

Initialization An initial population of n individuals is created. Typically, these are
random individuals, i.e. they consist of random elements.

Evaluation The fitness (or quality) of each individual in the population is deter-
mined. This is typically expressed by some positive real number or integer,
where a higher value indicates a fitter individual. Figure 1.1 illustrates the
evaluation phase. The function f that maps individuals to their corresponding
fitness values is called the fitness function. It is often metaphorically referred to
as the fitness landscape, where the “mountain peaks” represent (local) maxima
of the fitness function. Individuals that are located on these peaks are therefore
considered “good” solutions. On the contrary, individuals down in the valleys
are “poor” solutions. The appearance of the landscape depends on the problem;
it can be arbitrarily jagged or smooth. Also the number of valleys, hills and
peaks can vary heavily among different problems.

Survival Which individuals shall survive the current iteration is decided in the sur-
vival phase. The individuals with lowest fitness die, the ones with high fitness
survive. They form the next generation. Some implementations also keep the
fittest individuals of the preceding generation.

Selection Some k ≤ n individuals are chosen as candidates for reproduction. Typi-
cally, individuals with higher fitness are given a greater chance to be selected.

Reproduction From the k selected individuals, offspring are created by using one or
both of the following reproductive operations: crossover and mutation. While

3



1 Introduction

crossover serves to produce new combinations of existing variants, mutation
randomly introduces new variants.

Termination The evolutionary process is repeated until some specified stop criterion
is met. A simple method is to stop after a fixed number of generations has
been calculated. Alternatively, the process could be stopped if the relative
increase of the average fitness falls below a certain value for a specified number
of iterations. In other words, the process is stopped after there has not been
significant improvement for some generations.

As mentioned above, there are many different ways to implement these phases.
For each phase, there have been studies which investigate how to do it better, e. g.
Blickle and Thiele [4] compare different selection schemes. However, there is no “one
size fits all” EA. Instead, it depends on the problem in question, which type of EA
serves best, and how parameters such as mutation rate and population size need to
be set. Although there are some rules of thumbs, the performance of an EA used on
a specific problem cannot always be predicted easily and may need some twiddling
with parameters.

1.1.1 Types of evolutionary algorithms

In the following paragraphs, the major types of EAs are introduced shortly, namely
Genetic Algorithms (GAs), Evolution Strategies (ES), Evolutionary Programming
(EP), and Genetic Programming (GP). Besides these types, hybrid forms and mav-
ericks exist.
For a general overview of EAs, see Spears et al. [30]. Another overview, which

focuses on practical issues, can be found in Whitley [36]. For a more detailed intro-
duction to both GAs and ES consult Dianati et al. [9].

Genetic Algorithms

In GAs, we find a clear distinction between genotype and phenotype. Candidate
solutions to a given optimization problem are encoded as bit vectors. A bit vector
is called a genome or individual, and each bit is called a gene.
A vector of individuals is called a population.
The most important operation used in GAs is crossover. By crossover, two offspring

genomes are created from two given genomes. This is done by copying the genomes
and then splitting the copies at one or more random positions, the split positions. The
sequences are swapped at the split positions. Besides crossover variants with a fixed
number of split positions, there is also a variant where each position independently
has the same chance to be a split position. In other words, for each pair of genes, it is
decided whether to swap them or not. This is called uniform crossover. Three typical
crossover variants for GAs are illustrated in Figure 1.2, namely one-point crossover
or single-point crossover, two-point crossover, and uniform crossover. According to
Dianati et al. [9], single-point crossover is the most applied crossover variant.
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1 0 0 1 1 0 0 1 0

0 0 1 1 1 1 0 0 0

A:

B:

(a) parent genomes

1 0 0 1 00 0 1 1

1 0 0 1 1 1 0 0 0

(b) one-point crossover

1 01 0 0 1 1 1 0

1 0 00 0 1 1 0 0

(c) two-point crossover

1
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(d) uniform crossover

Figure 1.2: Example illustrating crossover in a GA: (a) two parent genomes A and B,
(b) offspring created by one-point crossover, (c) offspring created by two-
point crossover, and (d) offspring created by uniform crossover.

1 0 0 1 1 0 0 1 0

1 0 0 0 1 0 0 1 0

↓

Figure 1.3: Example illustrating mutation in a GA. In this example, the displayed
genome experiences a mutation of one of its genes (highlighted). Its value
changes from 1 to 0.
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Listing 1.1: Typical genetical algorithm
1 initialize();
2 evaluate();
3 while !is_done() {
4 select();
5 crossover();
6 mutate();
7 evaluate();
8 survive();
9 }

The other important operation is called mutation. It serves to bring new values
into the evolutionary process: with some low probability, e. g. 0.01, a gene may
invert its value.
Figure 1.3 shows a genome before and after mutation.
In pseudocode, a typical GA would look like Listing 1.1.

Evolution Strategies

In ES, as introduced by Rechenberg in 1973 and extended by Schwefel in 1981,
candidate solutions to the given optimization problem are usually encoded as fixed-
length vectors of floating point values. As elementary components of the genetic
material, these floating point values play the same role as the single bits in a GA.
Offspring are created by copying an individual and mutating its genes. In contrast
to GAs, mutation here means adding some Gaussian noise to the value of a gene.
Usually crossover is used only as a secondary operator. Originally it was not used at
all.
The evolutionary process is controlled by strategic parameters. For example, the

variance and the probability of the Gaussian noise regulate the amount of mutation.
The strategic parameters may differ among the genes or among the individuals. They
may also change during the evolutionary process. The idea behind these parameters
is to dynamically control the evolutionary pressure, and thus helping the population
escape when it is trapped in a local optimum of the fitness landscape.
A variant of ES are self-adaptive ES. In these algorithms, the strategic parameters

themselves are made subject to evolution by representing them as genes that are
attached to the individuals. These additional genes are then evolved in the same
way as the other genes. For a survey on self-adaptive ES, see Angeline et al. [1].
For ES, several selection schemes along with a special notation have been devel-

oped. From µ parents, ν offspring individuals are created. In (µ, ν)-ES, ν > µ
offspring is generated. None of the parents survive, and the fittest ν individuals of
the offspring form the next generation. In (µ + ν)-ES, parents compete with their
offspring. Parents can survive as long as they are fitter than their offspring.
The original application was a (1 + 1)-ES. The initial population in this imple-

mentation consisted of only one parent individual. From this parent, one offspring
was generated. Then the fitness of both was compared, and the fitter one of them

6



1.1 Evolutionary Algorithms

Listing 1.2: Typical evolution strategies algorithm (without crossover)
1 initialize();
2 evaluate();
3 while !is_done() {
4 select();
5 mutate();
6 evaluate();
7 }

Listing 1.3: Typical evolutionary programming algorithm
1 initialize();
2 evaluate();
3 while !is_done() {
4 select();
5 mutate();
6 evaluate();
7 survive();
8 }

survived. In Listing 1.2, a pseudocode example for a typical ES (without crossover)
is given.

Evolutionary Programming

In EP, as developed by Fogel in 1966, the representation of candidate solutions is
chosen in an especially straightforward, problem-specific way. Genotype and phe-
notype of an individual are virtually the same in this context. For example, if one
wants to find a solution to an instance of the Travelling Salesman Problem (TSP),
where the shortest tour that visits each of a given set of cities exactly once is to be
found, in EP, each candidate solution would be a permuted list of the cities. For
other problems real-valued vectors, graphs, or other suitable structures are used as
individuals.
Offspring are created by applying powerful mutation mechanisms to these indi-

viduals. Since the mutation can be made flexible enough to introduce great variety
in the offspring, recombination is nonessential and in many cases left out in EP,
cf. Whitley [36, p. 825]. A typical EP pseudocode implementation would look like
Listing 1.3.

Genetic Programming

In GP, each individual is a program. The fitness of an individual depends on how well
it solves the problem in question. Operations used in GP are crossover and mutation,
however mutation is omitted in some implementations. The programs are typically
written in a language from the LISP family or another functional language. LISP is
especially suitable for this purpose because it permits easy manipulation of tree-like
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program code, which is typical for GP. However, there are also GP applications that
evolve linear programs or graph-like programs.

GP emerged in the late 1980’s. Fujiko and Dickinson [13], de Garis [7], and
Koza [19] have worked on this approach. GP has been successfully used for dif-
ferent purposes, e. g. to find and evolve heuristics like TSP solvers, particle swarm
optimizers, and even other EAs, but also in computer art, financial trade, medicine,
bioinformatics, and many other fields. For a tutorial to GP that also contains a large
list of resources on GP see Poli et al. [23].

1.1.2 Multi-Objective Evolutionary Computing

Many optimization problems aim at several different goals that are in conflict with
each other, and thus, it is not possible to find a fully optimized solution that satisfies
all goals at the same time. Therefore, one tries to find solutions that cannot be op-
timized further toward a goal without worsening at least one of the other goals. The
problems that share this characteristic are called multiobjective optimization (MOO)
problems, which constitute a large research field of their own. When EAs are applied
on MOO problems, this is called Multiobjective Optimization using Evolutionary
Algorithms (MOEA) or also Evolutionary Multiobjective Optimization (EMOO). For
an analysis on MOEA, see Veldhuizen and Lamont [34]. For a short tutorial on MOEA,
consult Coello [5]. See also Ghosh and Dehuri [14] for a more recent survey on MOEA.

1.1.3 Interactive Evolutionary Computing

In the types of evolutionary algorithms that have been presented in the preceding
sections, once started, the computation runs without human intervention. Repro-
duction and evaluation are done automatically. The results are usually presented
after termination. In contrast, Interactive Evolutionary Computing (IEC) is a sort
of EAs in which a human user aids the evolutionary process by providing some kind
of feedback on the created candidate solutions. This approach is applicable in cases
where it is infeasible or too difficult to devise an appropriate computational fitness
function because of a lack of knowledge about what exactly forms a “good” solution.

Types of IEC

Two types of IEC are distinguished, cf. Takagi [31, p. 1275]. The differences lie in
form and extent of the human intervention.

Narrow definition In IEC of the narrow definition, the user simply provides the fit-
ness values for the generated individuals, instead of having them computed
automatically. In other words: the computed fitness function is replaced by a
human evaluator.

In some systems that follow this definition, the fitness values may be taken from
a small set of typically 4–5 values, while in other systems of this type, values
range from 0 to 100. Higher granularity than that is not used as it exceeds

8
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Figure 1.4: Fitness evaluation in IEC. The quality of the individuals is rated by a
human evaluator.

the accuracy that human evaluators can reasonably achieve. The evaluation
phase is illustrated in Figure 1.4. Compare this to the conventional evaluation
in Figure 1.1, where the fitness values are calculated automatically and with
higher granularity.

Broad definition In the broad definition, the user intervenes in the evolution process
by adjusting mutation rate, freezing the evolution of specific genes, performing
selection (artificial breeding), etc.

Semet [29] provides a literature survey on IEC, putting emphasis on the theory.
For a broad application-oriented survey on IEC, see Takagi [31].

Problems in IEC

The introduction of human intervention entails some specific problems. User fatigue
has been identified as the most important problem in the field of IEC. As opposed
to a machine, the concentrativeness and endurance of a human operator is limited.
After some time, users are neither willing nor capable of producing appropriate
contributions anymore. Typically, first signs of fatigue show after a few minutes.
At the latest after several hours, the point of severe fatigue is inevitably reached; a
continuation of the process would be futile.
As an obvious consequence, the amount of user interactions needs to be reduced.

Compared to traditional evolutionary algorithms, relatively small populations and
only few generations are used in IEC in order not to overburden the user with too
many evaluations. While for conventional evolutionary algorithms population sizes
of 50 or greater are usual, and thousands of generations are evaluated, in IEC we
find typical numbers of at most 10–20 individuals in a population and at most 20–25
generations, leading to at most 20 · 25 = 500 evaluations, cf. Takagi [31, pp. 1276–
1277]. In order to compensate for a decreased number of generations, the convergence
speed must be increased. There are several means to do this. One method uses an

9
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initial population that is derived from the user’s basic preferences instead of being
just random. Another method tries to accelerate the convergence by synthesizing
an optimal extra individual in each iteration, combining the best features of all the
individuals of that generation. A drawback of accelerating the convergence is that
it might lead to premature convergence, i.e. the evolutionary process more likely
arrives at a suboptimal solution.
Various approaches have been proposed to overcome the problem of user fatigue,

see for example Llorà et al. [20], Kamalian et al. [18, 17] (ranking solutions by promo-
tion, demotion and neutral; combination of computed fitness evaluation and sporadic
human interaction), Sáez et al. [28] (reference chromosome, modified crossover oper-
ator with independent probabilities according to user’s selections). Pallez et al. [22]
even use an eye-tracking device to help minimize user interactions.
Another problem that is inherent to IEC is the problem of inaccurate and dispro-

portionate ratings. Users apparently have only a vague understanding of where a
candidate solution should be placed on an absolute scale. While they often manage
to indicate the right qualitative tendency, the exact amount they state seems to be
arbitrary.
Most notably, users tend to assign extreme ratings to candidate solutions that

show some feature they have a strong opinion on. An examination of these ratings
often reveals that they are exaggerated and incommensurate to other ratings the
users have given. Particularly, unjustified low ratings have been observed, cf. Ka-
malian et al. [18]. Even if most of the features of a candidate solution are acceptable
to them, users not necessarily assign a moderate rating to it.
The aforementioned problem is worsened by unsteady preferences: Users might

change their opinion over time. This means that the ratings they have already
provided might become even less appropriate.
This lack of appropriate ratings makes it difficult to establish a ranking of the

solutions that properly reflects the users’ actual preferences. In order to deal with
this problem, it has been proposed to use rating systems with low fitness granularity,
see Semet [29, p. 6].

1.2 Layout and Meta Layout

In order to comprehend the following introduction to layout and meta layout, it is
important to know the basic terminology of graph theory. We assume here that the
reader is familiar with it.
Graphical modeling is a technique widely used in many fields, e. g. in Model-

Driven Software Development (MDSD). In graphical modeling, system models are
represented using some kind of graphical notation. These models have to be thought
of as abstract concepts that are usually based on graphs in the broadest sense. In
order to support humans who want to grasp the meaning of a model, talk about or
modify it, it is crucial to present the model in some way that aids human consump-
tion. Usually, this is accomplished by drawing a two-dimensional representation of
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the underlying graph, e. g. onto a screen or a chalkboard. Such a visual represen-
tation is called a drawing of the graph. Nodes are typically drawn as circular or
rectangular shapes. Edges are drawn as sequences of connected straight lines, or as
curves. Nodes and edges may have captions that are represented as text. Further
constraints may be imposed on the drawing, e. g.

• directed edges shall follow a preferential direction,

• connected nodes shall be drawn close to each other, and

• nodes and/or edges shall be placed on a grid.

There is no unique drawing for a graph. On the contrary, for a given graph,
virtually infinitely many drawings are possible. However, not always can all the
constraints be fulfilled simultaneously. Moreover, depending on the domain, on the
use-case scenario, and on the personal preferences of the user group, some drawings
are more suitable than others.
Therefore, the goal is to find a suitable layout, i.e. a suitable arrangement of the

elements in the drawing. A layout algorithm is an algorithm that is used to calculate
such a layout. Thus it relieves the user from the burden of doing this manually.
Many different layout algorithms for different types of graphs and graphical models

have been devised. For a bibliography of layout algorithms, see di Battista et al. [8].
Some of these layout algorithms have parameters, e. g. desired layout direction, mini-
mum node distance, and desired aspect ratio. These parameters serve for customizing
an algorithm without changing its implementation.
Dependent on their underlying approach, the layout algorithms can be grouped

into different layout types, e. g. circular, layered, force-directed, or orthogonal. Note
that there are also layout algorithms that do not primarily aim to facilitate human
consumption, e. g. in integrated circuit (IC) design. However, these are beyond
the scope of this thesis. Furthermore, for some diagram types, such as sequence
diagrams, there are rather strict rules for layout, which means that mapping those
diagrams on a graph-like structure for layout is too much of a detour. More direct
layout approaches are needed to produce layout for them which are beyond the scope
of this thesis as well.
Practical aspects of handling graphical system models have been addressed by

Fuhrmann and von Hanxleden [11]. They propose to apply the Model-View-Controller
(MVC) architectural pattern to the pragmatics of model-based system design. Speak-
ing in the terminology of the MVC concept, a concrete drawing of a given model is
called a view on the model.
The meta layout infrastructure that is integrated in KIELER provides an automatic

layout service as an aid in the handling of graphical models with KIELER.
According to Fuhrmann and von Hanxleden [12], the “idea of meta layout is to

synthesize views automatically, thus freeing the user to focus on the model itself.”
As Fuhrmann and von Hanxleden point out, the state of the practice in devising

a graphical model is to manually create a single view of it using a What You See Is

11



1 Introduction

What You Get (WYSIWYG) editor. This view is from then on used to inspect and
modify the model.
In contrast to this widely-used approach, the meta-layout approach presented by

Fuhrmann and von Hanxleden more clearly separates the model from the view. This
makes it possible to synthesize several views of the same model by applying different
layout algorithms to the model.
One could say meta layout affects the layout on an abstract level. This comprises

the choice of an appropriate layout algorithm from a set of already existing lay-
out algorithms and the specification of parameters and constraints for this layout
algorithm.

1.3 Aesthetics metrics

This section explains the concept of aesthetics metrics, which are used in order to
measure and compare the quality of different graph layouts.
In the design of layout algorithms, the question is “How can the given graph be

drawn so that users find it appealing and understand its meaning?”
Every layout algorithm that is designed to facilitate human consumption needs to

produce layouts that adhere to some aesthetic criteria. These are rules that specify
how the layout shall be in order to look “appealing”. For example, “Edge lengths
should be uniform” is an aesthetic criterion, another is “Nodes should not be too
close together”. It is important to know that different aesthetics criteria can conflict
each other. Therefore, it is difficult or even impossible to find layouts that adhere
perfectly to different criteria at the same time. Rather, one needs to trade one
criterion against another. Therefore, it is necessary to find out which criteria are
the most useful ones for human understanding. Purchase et al. [24] have performed
empirical studies on the effect of various layout aesthetics on human understanding
of graphs. They found a significant detrimental influence of edge bends and edge
crossings on the understandability of graphs. Völcker [35] has studied how different
aesthetics metrics influence the preference and understanding of graphical diagrams.
His analysis was restricted to Statecharts, a certain type of graphical diagrams, and
was conducted using Kiel Integrated Environment for Layout (KIEL), the predecessor
of KIELER. For more on layout aesthetics, see e. g. Coleman and Parker [6].
In order to measure the extent to which a drawing conforms to an aesthetic crite-

rion, one can define an aesthetics metric. An aesthetics metric expresses the presence
of an aesthetic in a drawing as a non-negative number. This way, it makes any two
drawings comparable with respect to the criterion. For example, if we have two draw-
ings D and D′, and an aesthetics metric ℵ with ℵ(D) > ℵ(D′), then D is superior
to D′ with respect to ℵ.
Purchase [25] presents continuous formal metrics for measuring the aesthetic pres-

ence in a general graph drawing for seven aesthetic criteria. With continuous metrics,
the extent to which an aesthetic is present in a drawing can be conveyed. The met-
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rics proposed by Purchase are scaled to lie between 0 and 1, in order to make the
metric values independent of the nature of the underlying graphs.
More recently, Bennett et al.[2] give a survey on the research in the area of aesthetic

heuristics.

1.4 Used Technologies

This section lists the technologies which EVOL makes use of.

Eclipse Eclipse1 is an open-source extensible integrated development environment
(IDE) written in Java. Extensions which contribute functionality to Eclipse may be
added via plug-ins and an extension-point mechanism.

Kiel Integrated Environment for Layout Eclipse Rich Client KIELER is a research
project about enhancing the graphical model-based design of complex systems that
is developed by the Real-Time and Embedded Systems Group2 of the University of
Kiel.

KIELER Infrastructure for Meta Layout KIML3 is a subproject of KIELER that deals
with the automatic layout of graphical models.
Following the concept of meta layout as explained in Section 1.2, KIML manages

the use of different layout algorithms, which are classified in KIML by their underlying
approach, (e. g. layered, force, etc.). Graphical diagrams are classified by their type,
e. g. class diagram, state machine, or data flow diagram.
When automatic layout is requested for a specific diagram or diagram part, KIML

decides which layout algorithm to use on this item and how to configure the algo-
rithm. Then KIML delegates the layout task to the algorithm. The result of the
automatic layout process is an instance of a data structure called layout graph. Ac-
cording to the KIML project website3, a layout graph is an “internal representation
of the graph structure of the current diagram, built on the KGraph model.” This
layout graph contains concrete coordinates for the diagram elements. In a final step,
the layout is imposed on the diagram, i.e. the coordinates from the layout graph are
assigned to the corresponding diagram elements.

KIELER Graph Analysis (GrAna) GrAna is a KIELER plug-in that provides a frame-
work to analyze graphs and graph diagrams, given as KGraphs (graph representation
with hierarchy) as defined by the KIELER core. GrAna comes with a set of predefined
analysis providers, which can be used to determine properties of the graph such as
node count, edge count and node degree, but also properties of a specific drawing
of the graph, such as edge crossings count, average edge length and many more.

1http://www.eclipse.org/
2http://www.informatik.uni-kiel.de/rtsys/
3http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML
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Further analysis providers may be added to GrAna via the Eclipse extension-point
mechanism. Thus, GrAna can be used to implement aesthetics metrics based on
diagram analyses.
For a detailed description of GrAna, see Rieß [26].

1.5 Related Work

Various approaches have been proposed that use EAs for graph layout. In these
approaches, an individual typically either represents the graph structure, or a list
of node positions. Given a graph as input, the algorithm is applied in order to find
a “good” concrete layout for this graph. The understanding of “good” is typically
defined implicitly in the fitness function.
Some of the approaches solve rather specific layout problems, i.e. they target

specific graph types or specific aesthetics. For example, von Gudenberg et al. [16]
have implemented an EA for the layout of Unified Modeling Language (UML) class
diagrams. Groves et al. [15] experiment with GAs to draw directed graphs. Their
specific goal is to minimize edge crossings and upward edges. Utech et al. [33] have
used an EA to optimize the layering and the ordering of directed acyclic graphs.
Other authors are aimed at more general solutions, i.e. solutions which are more

independent of specific graph types or aesthetics. Rosete et al. [27] develop a gen-
eral approach for Graph Drawing, using (1 + 1)-ES. Tettamanzi [32] presents an
algorithm for drawing undirected graphs according to a number of aesthetic criteria.
Coleman and Parker [6] view the task of graph layout as a MOO. Based on a gen-
eral aesthetics function that is the composition of one or more possibly conflicting
numerical layout aesthetics, they present the “Aesthetic Graph Layout (AGLO)”, a
method which serves to optimize this aesthetics function. They conclude that their
layout method is “general, flexible and uniform”, and moreover “provides a means for
trading off between conflicting aesthetics”.
Some authors ask for user interaction in order to take personal preferences into

account. Biedl et al. [3] propose a “multidrawing” approach for graphs. Their imple-
mentation uses a spring force layout algorithm which produces a number of drawings,
emphasizing inherent symmetry of a given graph. These drawings are presented si-
multaneously to the user, so that he or she may pick the “best” one of the generated
layouts. Masui [21] uses GP to learn layout constraints from “good” and “bad” layout
examples presented by the user. Do Nascimento et al. [10] present an interactive GA
for directed graph drawing. The user may contribute by providing hints, such as
indicating which region shall be improved primarily, imposing constraints for node
orders, or manually setting the position of nodes.
As opposed to the cited approaches, the work presented here applies optimizations

not on concrete layouts, but on a more abstract level, which includes independence
of concrete diagram types and layout algorithms.
Based on the idea that already many layout algorithms exist that are capable of

producing nice layouts, and which just need to be picked and configured properly in
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order to comply to requirements set by use-case scenario or by specific user prefer-
ences, this approach focuses on finding out how their configuration can be optimized
in order to produce better layouts. An objective analysis of concrete diagram lay-
outs based on continuous metrics, as well as interactive subjective rating of concrete
layouts are part of the concept.
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2 KIML-EVOL: Evolutionary Meta
Layout

This chapter provides a deeper insight into the problem statement and proposes an
approach to the topic of evolutionary meta layout.
First, we need to take a look at the relevant parts of KIML, since this project is

intended to be an add-on to KIML.
KIML manages a set of entities that are called layout providers. Each layout

provider can perform one or more layout algorithms on the child nodes of a given
node in a graphical diagram editor. The layout providers are added to KIML by ex-
tending a certain abstract class and using the layoutProviders extension point. They
are classified into different layout types, depending on the approach of the layout
algorithms, e. g. force-directed, hierarchical or circular. The list of layout types used
in KIML is extensible.
One may request automatic layout for a given diagram or diagram part. This

can be done via a user interface (UI) or programmatically. Moreover, KIML allows
the user to specify layout options for the parts of the diagram on which the layout
process shall be performed. These layout options affect the automatic layout process.
Thus, they enable the users to express their preferences in form of adjustments of
the default automatic layout. Some of the layout options are defined by KIML, while
others are contributed by the layout providers. A layout option consists of a unique
identifier, a data type and a target specification. The identifier serves to identify
and discern the layout options from each other. The data type specifies the type of
the value the option can have. In the current implementation, KIML distinguishes
between boolean, integer, floating-point, string, and enumeration valued options.
The target specification indicates which targets are affected by the option. A layout
option may apply to either nodes, ports, edges, labels, or entire diagrams. While
some of the options apply only to certain algorithms or certain diagram types, others
apply to general graphs, regardless of diagram type and layout algorithm.
A set of layout options is called a layout configuration. A layout configuration

can be used to request values for the options that it contains. The values are either
assigned beforehand or calculated on demand. A specific layout configuration used
to calculate a layout for a specific diagram usually produces the same layout result
every time it is done, i.e. the layout is reproducible.
We can use this to build a system that uses an EA in order to explore the meta-

layout search space by evolving layout configurations.
First of all, we need a genetic representation of meta layout information. For this,

we need to draw a line between what shall be evolved and what shall be part of the
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environment. A question that needs to be answered is whether the diagram should
be a fixed part of the environment, or whether it should be subject to evolution.
The author finds it reasonable to fix a specific diagram as a part of the environment.

On the other hand it could also be of interest to encode the diagram or diagram type,
e. g. to find a suitable diagram for a fixed layout configuration. However, the actual
benefit thereof seems rather questionable.
Therefore, we focus on evolving layout configurations for a given diagram. We

only need to define a genetic encoding of layout configurations and an evolutionary
process that can be used to evolve them.
This is based on the assumption that specific layout configurations lead to repro-

ducible layout when used on a specific diagram. However, this is not the case for all
layout algorithms: some layout algorithms heavily depend on pseudorandom values.
For example, the Fruchterman-Reingold algorithm places nodes on pseudorandom
locations somewhere near their original positions. The pseudorandom values used
in these algorithms are generated internally, based on some random seed number s,
which may or may not be settable by the user. For a fixed s, the generated sequence
of pseudorandom numbers will be the same every time the algorithm is run, resulting
in the same layout, while for a different s, a different sequence will be generated in
each run, resulting in a different layout. This means that for the same input graph
and layout option settings, but a different s, the resulting layout is not necessarily
identical. Five layouts of a small graph are shown in Figure 2.1 to exemplify this.
Even though the differences among them are apparent, they have been generated
using exactly the same layout configuration.

Figure 2.1: Different results of a randomized layout algorithm using the same options

In some cases the differences between two runs using the same settings can be even
bigger than those between two runs using slightly different settings. This states a
problem for optimizers that depend on a fitness function—as do EAs—, for it adds s
as another parameter to the fitness function.
In order to preserve the effectiveness of the optimizer and prevent it from being

disoriented, it is favorable to use a fixed value of s. If s cannot be controlled by
the caller, then there is in effect no proper fitness function, but only something
like a fitness relation that yields irreproducible values. Therefore, we advocate that
randomized layout algorithms be designed in a way that does not allow the results
to vary wildly. Despite the randomness, they should at least remain predictable to
a certain extent. For “rampant” layout algorithms, we can expect the optimization
process to be less effective. However, it is unclear how serious this problem is in
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practice. Dealing with this exceptional case is subject to future work.
So far we have described the existing elements of the KIML framework we want

to use; now how does user feedback come into play? In order to enable the user
to interactively provide feedback, a UI is needed. The UI should display created
layout proposals in an appropriate fashion. It seems reasonable that this should be
in a graphical way, much like how conventional automatic layout is done in KIML.
Furthermore, the UI should enable the user to rate these proposals. It is common
practice to provide such an input by buttons, sliders, text boxes, or similar controls.
For this purpose, an appropriate means could be a pair of buttons to promote or
demote a proposal. Another suitable way could be a slider that allows one to set a
value between 0 and 100%.
Since user fatigue is the main problem in IEC, we should find a way to reduce

the amount of user interaction. We assume that there is a relation between the
measurable aesthetic features of diagrams and the user’s subjective concept of layout
quality. If we used a set of aesthetics metrics and if we knew the relative influence of
the metrics on the user’s opinion from ratings the user has already provided, then we
could try to predict the ratings that the user would assign to newly created layouts.
If our predicted ratings match the user’s opinion, then the user would not need to
provide so many ratings. Thus, a rating prediction system could spare the user a lot
of interaction.
In summary, the problem statement is to build a system consisting of an EA frame-

work that is used to evolve layout configurations, a user interface that is used to
collect user feedback, and a subsystem for rating prediction.
This section has elaborated the problem statement. Given the aforementioned

requirements and the technologies listed in Section 1.4, how could a solution look
like? An approach to solve this question is proposed in the following sections. The
presented approach to evolutionary meta layout has the full name KIML-EVOL, from
now on called EVOL. The following section explains the concepts and design decisions
for EVOL. The UI that had to be implemented so that user feedback can be collected
is presented in Chapter 4.

2.1 Representation of Data

The basic idea of the presented approach is to model layout options as genes. An
implementation of an EA produces an initial population of layout option genomes.
Each individual of this population is a candidate solution, consisting of a list of genes.
For each layout option that is to be learnt, every individual has exactly one gene. In
each gene, a value for the respective option is encoded.

Genes For the design of genes, we can consider a gene as a kind of container that
holds a value. The properties of this value depend on the layout option. The set of
valid assignments differs from one option to another. For example, a layout option
called layout direction could accept one of the following values: up, down, left and
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right. Any other values are invalid for this option. A gene that encodes a value for
this specific option must adhere to this restriction, that means its value must be
equal to one of the above-mentioned values, otherwise it would render the solution
infeasible. This restriction not only applies to this gene, but it propagates to all
copies and variations of the gene that result from evolutionary operations. This
means that evolutionary operations that work on gene level have to regard the types
of the genes.

Individuals As stated before, an individual is modeled as a list of genes, one gene for
each layout option that is to be learnt. Since this set of layout options may vary, it is
reasonable to allow individuals of arbitrary size. Furthermore, one needs to answer
the question whether individuals should consist merely of their genetic information,
which would make them rather plain and “light-weight”, or whether an individual
should be enriched with additional properties, e. g. its rating. In the latter case, one
would not need external data structures to store additional information about the
individuals. Everything could be stored at hand, in the individuals themselves.

Populations A population should be seen as a list or a set of individuals. A question
that should be answered is whether this should be mutable after creation. As we
have seen in Section 1.1, the population size in an IEC should be limited to not more
than 20 individuals, otherwise we would provoke user fatigue. A population size of
about 10 individuals makes it possible to display meaningful information about each
individual on the screen at the same time.

2.2 Evaluation of Individuals

Having established what constitutes an individual, the question arises how such an
individual should be evaluated in order to determine its fitness.
The values the individual encodes for the layout options need to be used as parame-

ter values for a layout algorithm. This is done by synthesizing a layout configuration.
The choice of the layout algorithm itself may also be encoded in the individual.
The layout algorithm is subsequently applied to the diagram that is opened in

the current editor. These steps are performed using methods that are provided by
KIML. From each application of the layout algorithm we retrieve a layout proposal
in form of a layout graph. The layout graph is used to impose its layout information
on the diagram, which gives a new drawing of the underlying model. This drawing
can be considered as the phenotype of the individual. The phenotype embodies
how an individual appears to the user. Since this appearance is the target of our
optimization, the numerical fitness of the respective individual must be derived from
the phenotype. However, one must keep in mind that the same genome, applied
to a different diagram, could have a very different appearance. For example, some
individuals might produce very appealing layout results on small diagrams, but messy

20



2.2 Evaluation of Individuals

results on large, complicated diagrams. Therefore, the optimizations achieved on a
certain diagram are not necessarily generalizable.

Automatic Measurement In the previously described step, a layout algorithm pro-
duced a layout proposal in form of a layout graph using the layout configuration
encoded in an individual. This layout graph relates to both the individual and the
diagram it was targeted at. The layout graph is subsequently analyzed by performing
an automatic analysis using GrAna, according to some continuous aesthetics metrics
which follow the concept of described in Section 1.3.
The measurement process yields a map of aesthetic features and corresponding

measurement results. Each result is a real number that is scaled to lie in the interval
of [0, 1]. The value conveys the extent to which a certain aesthetic criterion is present
in the layout. If the layout conforms perfectly to a criterion, then the respective value
is 1. In contrast, if the layout does not conform to a criterion at all, then the value
is 0.

Automatic Rating After automatic measurement has produced measurement re-
sults for a drawing, these measurement results form the basis of automatic rating.

The concept of automatic rating is to automatically predict the fitness of an indi-
vidual. Note that while the actual fitness is provided by the user and thus dependent
on the user’s personal preferences, automatic rating might support the user by pre-
dicting the rating. The more accurately the prediction conveys the user’s preferences,
the less work the user has to do. This is based on the assumption that the user’s
preferences somehow relate to the perceivable features of the drawing that can be
measured by an automatic diagram analysis.
One way to obtain an automatic rating from the measurements is the following.
Let k be the number of measured features, and m = (m1,m2, . . . ,mk) be the

measurement results. To let each measurement contribute a specific amount to the
rating, the weighted sum of the results is calculated. We use a vector of positive
constants w = (w1, w2, . . . , wk) as weights, and define an automatic rating proposal

r =

k∑
i=1

wimi .

The assignment of w determines how important each measured feature is to the
user. This method is called additive composition, cf. Coleman and Parker [6].

User Rating Each time the EA has produced a new population, it is the user’s turn
to rate the new individuals, depending on the opinion he or she has on the respective
layout. The UI needs to provide suitable methods for assigning ratings to individuals.
As the automatic rating prediction also provides rating proposals for all individuals,
it is not necessary to rate each individual manually. If the user provides a rating for
an individual, this overrides the value proposed by the rating prediction. Otherwise,
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the proposed value is accepted as rating for the individual. The ratings serve as
actual fitness values for the individuals.

2.3 Evolutionary Process

The evolutionary framework implemented here tries to separate the evolutionary
operations and the concrete implementation, not polluting the framework with too
many problem-specific details. On the other hand, the amount of abstraction should
be restricted to keep usage and maintenance manageable.
The compromise that has been found here makes it possible to use the framework

both for the evolution of layout options and for the evolution of rating prediction
without rendering it impractical by making it overly complicated.

Initialization Every evolutionary process begins with an initial population. A new
population is created based on the layout configuration of the current diagram view.

Recombination and Mutation EVOL makes use of two genetic operators that gen-
erate new offspring: recombination and mutation.
Mutation is a means to bring new values into the evolutionary process. In EVOL,

we must regard the different types of genes. For example, a gene encoding a floating-
point valued option would be mutated differently from a gene encoding an enumer-
ation valued option.
As stated in Section 1.1, recombination (often called crossover) of two or more

parent individuals creates a new genome based on the genes of the parents. Note that
the individuals must belong to the same problem instance, i.e. they must encode the
same options in the same canonical order.
Again, the different types of genes must be taken into account, because different

recombination schemes are possible for different types. The most simple way is just
taking the values from the parents and deciding in a random fashion which of the
parents’ values to use. This approach, as exemplified in Figure 2.2(a), works for all
types of genes.
For integer and floating-point valued genes it is possible to calculate an average of

the parents’ values, and put this into the offspring individual. If this method is used
consistently for all genes, the offspring can be considered as being on the common
barycenter of its parents. See Figure 2.2(b) for an example.

Selection The next question is which selection mechanism is appropriate for the
evolutionary process in EVOL. Should we use a ranking selection, in which the best k
individuals of the population are granted an equal chance of producing offspring, or
should fitness-proportional selection be used, i.e. the chance of producing offspring
is proportional to the fitness?
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Figure 2.2: Examples for two different types of recombination:
(a) Recombination by simple crossover (b) Recombination using average
values

The ranking selection mechanism, which is easiest to implement, strictly prevents
reproduction of the individuals with the lowest ratings. It relies on the accuracy of
the coarse tendency of the given ratings.
For fitness-proportional selection, the accuracy of the relation between the rat-

ings in the population is more important. When all ratings are similar, even the
individuals with lowest ratings are conceded a fair chance of reproducing.
For the purpose of this project, ranking selection appears more suitable, because

the fitness values are not too reliable, and we would not want to lose diversity because
of inappropriate fitness values. By this choice, we accept that the individuals with
lowest ratings in a population are never allowed to reproduce.

Diversity As evolution goes on, the populations might become more uniform, i.e.
most of the genomes share equal or similar genes. This is because random mutations
applied to high-fitness individuals are more likely to produce inferior individuals
which do not reproduce. Thus, advantageous mutations become more rare. Crossover
of similar genomes produces even more similar genomes.
The lack of diversity bears the danger of not exploiting the solution space exten-

sively enough, leading to premature convergence. There might be better solutions
that are missed, because they are very different from the genomes in the current pop-
ulation. Furthermore, having too many similar genomes might provoke user fatigue.
Monotony can be very tiring to humans and should therefore be avoided. Thus, it
seems reasonable to check whether the population contains genomes that are “too
similar” to each other. Only one representative of a group of similar genomes needs
to be retained. The others may be discarded.
But how do we know when two genomes are too similar? We need a distance

function for genomes, a distance metric.
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Distance Metric for Genomes When designing a distance metric for genomes,
the type of the genes needs to be considered, as in the design of mutation and
recombination operators. Typically, slightly changing the value of an integer valued
option does not affect the layout as much as does the variation of an enumeration
valued option. For example, changing the layout option minimum node distance
from 60 to 58 allows the algorithm to subtly place the nodes a little closer together,
but changing the layout direction from right to up causes the whole diagram to turn
90 degrees counterclockwise. Provided the diagram is rotationally asymmetric, the
differences concerning the node positions and edge directions should catch even an
extremely unheeding user’s eye, though except for the rotation, the layout is actually
the same.
On the other hand, if one increased the minimum node distance by a larger amount,

say from 60 to 4000, the effect on the layout would possibly be stronger than the
effect of changing the layout direction. Somewhere in between, there is a fuzzy range
in which both changes appear equally strong.
Of course this cannot be said in general, as it would be easy to devise a layout

algorithm that shows arbitrary behavior. Layout options can interfere with each
other, amplifying or weakening each other. In some cases, a slight change of a single
option can have an enormous effect on the layout, while a moderate variation of 5
other options leads to no conceivable difference. This may be a flaw in the layout
algorithm, but it may also be intentional. For example, there may be a boolean
option that enables or disables the effectiveness of some other options. Moreover,
the effectiveness of layout options may depend on properties of the graph for which
layout is calculated. For example, if the graph consists only of isolated nodes, any
options targeting the layout of edges would presumably have no observable effect,
since there are no edges. If on the other hand the graph had higher density, the same
options related to edge layout might well have a considerable effect on the drawing.
All in all, one should not make too strict assumptions on how strong the changing

of an option would affect the layout. The assumptions we make here are the following.

• The more genes differ in a pair of genomes, the higher their distance should
be.

• A relatively large change of a floating-point valued option should imply a higher
distance than a merely slight change.

• The change of the layout algorithm should mean a large distance.

• A difference in the layout type of the algorithms should have even more impact
on the distance.

An alternative approach would be to compare the phenotypes—i.e. the actual
drawings—instead of the genes of the individuals. The advantage would be that
it could ensure that the drawings which are presented to the user always appear
different from each other. This might help to prevent user fatigue. The disadvantages
are that firstly this approach would require much higher computational effort, and
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secondly it might lead to premature convergence, since the genotype space is likely to
be not exploited extensively enough. For these reasons, in the first implementation
of EVOL we refrain from comparing the drawings and stick to comparing the genes.
However, another interesting approach could be to compare the measurable fea-

tures of the drawings. Drawings that differ in many features should be considered
more different as compared to drawings that differ only in few features. Note that
a user might find two drawings equally appealing even though they differ in many
features. Although these features are usually aggregated values and therefore can
cover merely a subset of the possible differences between two drawings, the amount
of differences they reveal should be sufficient in practice. Since these features are an-
alyzed anyway, the computational overhead introduced by this approach would only
come from the comparison of the features, which—except for very small graphs—is
far less costly than the comparison of the entire drawings.

2.4 Evolutionary Rating Predictors

In Section 2.2, the concept of automatic rating was introduced. The automatic rating
for an individual was obtained by calculating the weighted sum of the measured
features of the respective drawing. But where do the weights come from that are
needed for this approach? They depend on the user’s personal preferences for the
domain, and thus cannot be known in advance. However, one could try to learn
them from the feedback the user provides on the drawings.

EVOL implements an approach that tries to learn appropriate weights by using
an EA. It makes use of the ratings the user provides on the graph drawings. The
algorithm evolves a population of rating predictors. Each rating predictor is a genome
consisting of weight genes. Each weight gene encodes a weight, which is a floating-
point value. From each rating predictor an automatic rating can be calculated using
the the weights encoded by the predictor. In most cases, different rating predictors
will yield different ratings.
We denote the mismatch between the rating rp that is predicted by a rating pre-

dictor p and the actual rating ru that is given by the user as the prediction error
ep = rp − ru.
The prediction error can be positive or negative, depending on whether the pre-

dicted rating was too high or too low. However, this is irrelevant when we want to
determine the quality of the predictor, so we consider the absolute value |ep| of the
error. For a “good” predictor this would be a small value, and for a “bad” predictor
it would be a big value, so the goal here is to minimize |ep|.

For a fitness function, according to convention (see Section 1.1), it should be vice
versa: the better the predictor, the higher its fitness value. Nonetheless, we can use
|ep| to determine the fitness by subtracting |ep| from a constant value M that is big
enough that the fitness value is always positive.
Thus, we define the fitness function by setting f(p) :=M − |ep|.
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2.5 Handling of Multiple Diagrams

As stated before, the evaluation of individuals on a single diagram is not necessarily
generalizable. To address this problem, one could try to apply each individual to a
set of several different diagrams. In Eclipse, it is possible to open several diagrams
at the same time, using several diagram editor windows. It is also not too difficult
to extend the application of the layout algorithm to several diagram editor windows.
However, this multi-editor approach is nonetheless tricky to implement, as the devil is
in the details. For example, one needs to answer the question how to determine which
diagram editor windows should be affected. What should happen if the user decides
to minimize or close some of the editor windows? What if he or she opens new ones?
A straightforward solution would be to dynamically find out which diagram editor
windows are visible every time an individual is applied, and calculate layout for all
of them successively or concurrently. Another solution could incorporate a diagram
viewers list which controls for which diagrams layout should be calculated. The user
would be required to add and remove diagram viewers from the list. Configurable
predefined sets of viewers could assist in this task.
Another question is that of zoom level, size, and position of the different diagram

viewer windows. Should the zoom level be coupled in all the windows, or should the
user be allowed to set it differently for each window? How should the windows be
sized and arranged? Should we give the user the freedom to arrange the windows as
he or she likes, or would it be better to arrange them automatically in a canonical
way, e. g. in tiles of the same size?
Yet another question is how multi-editor evaluation and automatic rating should

interact. If we allow each individual to perform in several editor windows, there is
no more a one-to-one relationship from the rating of an individual to its phenotype
in an editor, but now each individual appears in multiple editors. Clearly, the rating
of an individual should cover all its appearances. But should it be in equal measure,
or should it for example be weighted according to the size of the graphs on which
the diagrams are based?
Moreover, the automatic rating would need diagram analysis results from all the

diagrams. Then the next question is, where should these results be collected? Should
the results from all the diagrams be aggregated somehow before providing them to
the rating predictors, or should the rating prediction treat each diagram individually,
and finally the total rating would be combined from the ratings of each diagram?
While the latter approach seems more reasonable at first sight, the former one might
possibly produce similar results while having better computational complexity.
Then, how should the ratings provided by the user be fed back to the rating

predictors in order to train them? How can the user ratings be related to the diagram
analysis results from the different diagrams?
Finding a solution that properly combines multi-diagram evaluation and adequate

automatic rating is quite complex and goes beyond the scope of this work.
Apart from these above-mentioned conceptual problems, the multi-diagram ap-

proach also bears the drawback that it makes the evaluation task more difficult and
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cumbersome for the user, as he or she needs to rate several diagrams at the same
time.

2.6 Saving and Loading Evolution Configurations

The results of evolutionary meta layout are evolution configurations which can be
used ad hoc, i.e. applied to the diagram in the current editor. This modification
can be made persistent by saving the diagram. If the user saves the diagram, KIML
stores the layout configuration persistently in the notation model of the diagram.
This way, the layout configuration is linked to the diagram.
Note that the particular configuration has been learnt from the preferences of the

user who has provided feedback on the layout for a specific diagram, so it is not only
related to the diagram and the underlying graph, but also to the particular user.
Based on the assumption that this configuration can be of value for other users

or other graphs or other diagrams, one could think of a generalization process which
would make it possible to transfer the configuration.
In order to transfer the results, one needs a way to store the configurations per-

manently, but independent of a certain diagram. Therefore, one needs to answer
the question how configurations should be linked with higher-level targets. Higher-
level targets could be editor identifiers, diagram types, specific diagrams or models.
A rather technical question is the link direction: Should the configuration carry a
link to its associated targets, or the other way round, or both? Concerning the link
target, a first analysis of the possibilities gives some answers.

• Linking with editor identifier: If we take multi-editor mode into account, where
the same configuration can be used for several editors at the same time, this
means we would have to either associate a collection of several editor identifiers
to each configuration, or independently associate the same configuration to
several editor identifiers.

• Linking with diagram type: It seems reasonable that one would not want the
same configuration for all diagram types, but possibly a specific configuration
can be used for several types. It is presumably a good idea if the configuration
“knew” to which diagram types it may be applied.

• Linking to specific diagram or model: To make configurations useful, this
should be implemented in a way that makes it possible to link each config-
uration to several diagrams.

It is conceivable that the usefulness of each of the above-mentioned links may vary
according to the circumstances. Therefore, high flexibility is advisable if one wants
to persist and transfer layout configurations. In this work, a preliminary solution is
included: EVOL offers a method for storing the layout configuration of the current
individual in a text file. Developing a more sophisticated approach would possibly
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imply to enhance the modeling and management of layout configurations in KIML.
Further work on this is necessary.
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This chapter describes the implementation of EVOL. Firstly the structure of the
implementation is introduced, and secondly the plug-in interface is described. The
last two parts of this section cover how automatic measurement and multi-diagram
mode are implemented in EVOL.

3.1 Structure

EVOL consists of six Java packages, which are described in the following paragraphs.
For the sake of brevity, the prefix “de.cau.cs.kieler.kiml.” of the package
names is omitted.

evol The core classes of the plug-in are defined in this package. The computational
model of EVOL is contained in the class EvolModel. An instance of this class
models the data that are intended to be displayed in the Evolution view. The
model basically consists of an instance of an evolutionary algorithm, a popula-
tion, and a current individual. Additionally it manages a population of rating
predictors that is evolved separately.

evol.genetics This package contains a part of the evolutionary framework. Es-
sentially, it defines the data structures for genes, genomes, and populations.

evol.alg This package provides an abstract evolutionary algorithm and a basic
concrete implementation of an evolutionary algorithm. This implementation
uses the evolutionary data structures defined in the previous package.

evol.ui This package contains the UI classes, among which EvolView is the most
important, because it implements the main component of the UI, the Evolution
view.

evol.handlers In this package, command handlers are implemented, which extend
AbstractHandler (from the Eclipse package org.eclipse.core.commands),
so they can be used as default handlers to commands as specified by the
org.eclipse.ui.commands extension point. These handlers define behavior
to manipulate the evolution model. The handlers can be triggered for instance
by clicking on the respective command buttons in the view.

• The ResetHandler performs a reset of the model, i.e. a new population
is created and the evolutionary algorithm is started.
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• The ChangeRatingHandler serves the purpose of allowing the user to
promote or demote the currently selected individual from the model by
assigning a new rating to it. In the presented implementation, this handler
uses a parameter called ...evol.amount, which specifies the value that
shall be added to the current rating. The value may be negative. Thus,
both the Favor and the Disregard button trigger this command, but with
a different value for the amount.

• The AutoRateAllHandler is a command for performing automatic rating
on the current population. It successively computes a rating proposal for
each individual, based on the layout that is calculated.

• Finally, the EvolveHandler serves the purpose of performing a step of the
evolutionary algorithm, thus proceeding to the next generation of layout
option genomes.

evol.metrics This package provides seven aesthetics metrics and some auxiliary
analyses that all implement the interface IAnalysis which is defined by GrAna.
This means they can be added as graph analyses for GrAna via the correspond-
ing extension point. The property category of the extension element must be
set to ...evol.metricCategory for each metric, so that EVOL can discern
metrics and auxiliary analyses.

The only method these classes exhibit is an implementation of doAnalysis,
which in this case returns a floating-point value.

3.2 Extension Point for Evolution Data

EVOL defines an extension point named evolutionData that allows one to specify
which layout options can be learnt, plus how they should be mutated. The probability
distribution may be either Gaussian or uniform. This extension point references the
KIML layout options defined by ...layoutProviders. This means that the layout
options need to be defined in KIML beforehand.

3.3 Automatic Measurement

EVOL uses GrAna to measure aesthetics of graph drawings. For this purpose, EVOL
adds some special analysis providers to GrAna via the Eclipse extension-point mech-
anism. These special analysis providers defined by EVOL are called metrics. While
GrAna allows analysis providers to produce results of arbitrary type and complexity,
the metrics have in common that their result is a simple Float object. This Float
object is normalized so that its value is within the interval of [0, 1].
In the following, we take a closer look on the setup of such a metric.
Listing 3.1 exemplifies how a typical metric is implemented. The interface that is

to be implemented is IAnalysis from the GrAna package, which defines a public
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Listing 3.1: Typical analysis provider
1 // import declarations ommitted for brevity
2

3 /**
4 * Identifier for "edge count analysis".
5 */
6 private static final String GRANA_EDGE_COUNT
7 = "de.cau.cs.kieler.kiml.grana.edgeCount";
8

9 /**
10 * Identifier for "edge direction analysis".
11 */
12 private static final String GRANA_EDGE_DIRECTION_COUNT
13 = "de.cau.cs.kieler.kiml.grana.edgeDirections";
14

15 public class UpwardnessMetric implements IAnalysis {
16

17 /**
18 * Returns a Float object that indicates the degree of ’upwardness’
19 * in the given KGraph within the range of (0.0, 1.0), where 0.0 means
20 * no upwardness and 1.0 means maximum upwardness.
21 * This metric is based on the edge count and on the edge
22 * direction analysis.
23 */
24 public Object doAnalysis(
25 final KNode parentNode,
26 final Map<String, Object> results,
27 final IKielerProgressMonitor progressMonitor)
28 throws KielerException {
29

30 progressMonitor.begin("Upwardness metric analysis", 1);
31

32 Float result;
33

34 try {
35 // load numbers from analyses
36 Object edgesResult = results.get(GRANA_EDGE_COUNT);
37 int totalEdgesCount = (Integer) edgesResult;
38

39 Object[] edgeDirectionResult
40 = (Object[]) results.get(GRANA_EDGE_DIRECTION_COUNT);
41 int upwardEdgesCount = (Integer) edgeDirectionResult[0];
42

43 if (totalEdgesCount > 0) {
44 result = (float) upwardEdgesCount / totalEdgesCount;
45 } else {
46 result = 1.0f;
47 }
48

49 } finally {
50 // We must close the monitor.
51 progressMonitor.done();
52 }
53

54 return result;
55 }
56 }
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method named doAnalysis. This method is called by GrAna when the analysis
is requested. The parameter parentNode specifies the parent node of the layout
graph to be processed. By results, a map of results from auxiliary analyses may
be passed. GrAna provides for defining analyses that base on the result of other
analyses for reasons of efficiency. The requested analyses are scheduled in a way that
respects the respective dependencies.
As many metrics relate to basic features such as the number of nodes, it is more

efficient to base those metrics on auxiliary analyses which are performed first. In this
case, the edge count analysis and the edge directions analysis are used as auxiliary
analyses.
A progress monitor is passed by progressMonitor. The implementation of

doAnalysis is expected to report progress to the monitor.

Listing 3.2: Section of plugin.xml
1 <extension point="de.cau.cs.kieler.kiml.grana.analysisProviders">
2 <provider
3 category="de.cau.cs.kieler.kiml.evol.metricCategory"
4 class="de.cau.cs.kieler.kiml.evol.metrics.UpwardnessMetric"
5 description="Measures the fraction of upward edges."
6 id="de.cau.cs.kieler.kiml.evol.upwardnessMetric"
7 name="Upwardness Metric">
8 <dependency
9 analysis="de.cau.cs.kieler.kiml.grana.edgeCount">

10 </dependency>
11 <dependency
12 analysis="de.cau.cs.kieler.kiml.grana.edgeDirections">
13 </dependency>
14 </provider>
15 <provider>...</provider>
16 ...
17 <provider>...</provider>
18 </extension>

In order to use this metric, EVOL needs to provide GrAna some information about
it. The respective section of the plugin.xml for EVOL which makes the metric ac-
cessible for GrAna looks as is shown in Listing 3.3. Note that the category reads
....evol.metricCategory, as required by EVOL. Moreover, note that two depen-
dencies are stated here, which indicate the use of the two auxiliary analyses.

3.4 Multi-Diagram Mode

Despite the problems that are associated with the multi-diagram evaluation and that
are discussed in Section 2.5, a multi-diagram mode is implemented in EVOL.
When this multi-diagram mode is switched on, each individual is successively

applied to all the diagrams in the open editor windows, i.e. individually calculated
layouts are imposed on the respective diagrams.
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This chapter describes the EVOL UI, which is integrated into the Eclipse GUI.

The main component of the EVOL UI is the Evolution view. It consists of a table
viewer and a tool bar. A screenshot of the Evolution view in combination with other
KIELER components is shown in Figure 4.1. The following sections describe the
elements of the Evolution view in particular.

Figure 4.1: Screenshot of the Evolution view (top left) in combination with the KIML
Layout view (bottom left) and a diagram editor (right) in KIELER
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4.1 Population Table Viewer

The largest component of the Evolution view is the population table viewer. This
table viewer shows the individuals of the current population, one per row. It has
three columns. The first column contains the identifier of the individual. This
allows one to identify an individual after its position in the table has changed. The
identifier is an alphanumeric string which consists of the number of the generation
the individual belongs to, followed by a period (.) and some hash code that has
been calculated for the individual. The hash code serves the purpose of making the
identifier of each individual practically unique. The generation number is added so
that a distinction can be drawn between old and new individuals. For example,
4.e23a2ecd might be such an identifier. The individual carrying that name belongs
to the fourth generation, hence the initial 4.
The second column shows the percentaged rating of the individual, rounded to an

integer. A higher number means a better rating.
The third column shows the name of the layout algorithm that is encoded in the

individual.
One individual can be selected at a time. This individual is referred to as the

current individual.
Clicking on an individual in the population table view triggers the application of

the respective layout on the diagram in the editor or editors.

4.2 Tool Bar

At the top of the Evolution view is the tool bar. It provides some command buttons
that can be used to control the evolutionary algorithm and to inspect the candidate
solutions that are generated.

Single/Multiple Editors By clicking this toggle button, the user may switch be-
tween current editor mode and all editors mode. In current editor mode, layout is
calculated only for the diagram in the currently active editor, whereas it is applied
to all visible diagram editors in all editors mode.

Favor By clicking Favor, the user can increase the rating of the current individual
in order to promote it.

Disregard The Disregard button serves to demote the current individual. Its rating
is decreased when the user clicks this button.

Evolve The most important button is Evolve. Clicking Evolve performs a step of
the evolutionary algorithm. This produces a new population, based on the current
population and the given ratings, that is subsequently displayed in the population
table view. The first of the new individuals becomes the new current individual.
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Reset The evolutionary model can be reset by clicking Reset. This makes the
evolutionary algorithm re-initialize. The current population is discarded entirely
and a new one is created.

Auto-rate All As the name suggests, the Auto-rate All button serves to re-calculate
an automatic rating for each individual of the current population. This refreshes all
the automatic ratings in the view.

Info Clicking the Info button provides detailed information about the population.
This can be used by experienced users, e. g. for debugging purposes.

4.3 Preference Page

A rather hidden part of the EVOL UI is its preference page. In Eclipse, preference
pages serve as a means of setting user preferences for plug-ins. The preference page
can be accessed via the Eclipse menu bar. Select Window→Preferences to open the
preferences dialog. In this dialog, select KIELER and then KIML Evolutionary from
the list. This brings out the preference page for EVOL. The following preferences
may be set for EVOL.

Population size The population size is the number of individuals that are created
initially when the EA is started. This should be a small positive integer value.
Its maximum value is defined in the plug-in.

Set layout provider This option indicates whether EVOL is allowed to set the layout
provider when applying an individual to an editor.

Further options could be added to EVOL by adding appropriate field editors to
EvolPreferencePage.java. Default values for these options can be set in Evol-

PreferenceInitializer.java. The preference constants that identify the options
should be defined in EvolPlugin.java. Say for example we want to add an option
for the mutation application probability. Then we would add a preference constant
for it in EvolPlugin.java, say mutationApplicationProbability, which serves
as identifier. In EvolPreferenceInitializer, we find the method initialize-

DefaultPreferences(). As the name suggests, it initializes the preferences with
default values. Here we would insert a line to write the initial value for the mutation
application probability into the preference store. To make the new option visible
in the preference page, a corresponding field editor needs to be added in Evol-

PreferencePage.java. An appropriate choice for this option might be a Float-

FieldEditor, as found in the KIELER UI package.
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This thesis has presented EVOL, an approach to meta layout that uses EAs. EVOL
contributes to the KIELER project as an add-on to KIML.

EVOL contains an EA framework that is used to evolve layout configurations, a UI to
collect user feedback on created layouts, and an automatic rating prediction system
which supports the user by providing rating proposals based on layout metrics.

5.1 Potential Applications

Two main applications of the presented approach can be thought of. One potential
application of EVOL could be as a support for users who use automatic layout, but
are not satisfied with the results produced with the default settings. This means
that they need the automatic layout to be configured individually. EVOL can help
those users in the configuration of automatic layout. Using EVOL, there is no need
to understand what the layout options mean and how they should be set. It is
not necessary for a user to know which layout options are available. It is not even
necessary to know anything about layout options. Users can rely on EVOL to find
some suitable settings that create “nice” layout results according to their likings.
Another potential application could be to use EVOL in the development of layout

algorithms. EVOL can support developers of layout algorithms by finding suitable
default values for the parameters that control the layout process. Moreover, EVOL
can be used as an aid in the evaluation of layout algorithms, especially for testing
robustness. As various random combinations of layout settings are tested, the ro-
bustness of layout algorithms is put to the test—also for combinations of settings
the developer may not have thought of. Thus, hidden flaws in the algorithm may
be revealed. Furthermore, this approach can be used to test the robustness toward
invalid settings. For this purpose, the developer would permit the settings to take
invalid values, and then see how the algorithm copes with one or more invalid set-
tings. Moreover, EVOL may suggest how competitive a newly developed algorithm
is in comparison to others. If an algorithm produces competitive results, these will
likely endure the evolutionary process. Therefore, survival of layout configurations
that contain the choice for a certain algorithm suggests that this algorithm is com-
petitive. However, future work could enhance this use case by introducing advanced
methods for comparison and evaluation, e. g. simultaneous evaluation of multiple
individuals.
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5.2 Future Work

In the course of this project it has been established that the field of meta layout
provides a plethora of possibilities for future work.
This section presents some of the various ideas that arise from the work with EVOL.

Randomized Layout Algorithms Need to Be Tamed As stated in Chapter 2,
randomized layout algorithms without a controllable random seed number s are a
problem for optimizers, because their resulting layouts may be different in every
run, and therefore, the resulting fitness values are not reproducible. It is possible
that an exceptional layout is produced and rated. This problem could be mitigated
by running the layout algorithm repeatedly with the same options, analyzing the
resulting layouts and computing the average fitness of the several runs, thus hopefully
obtaining fitness values that are sufficiently independent of the concrete settings of s.
The user would also need to rate a number of layouts instead of only one. The
drawbacks of this approach would be the loss of efficiency caused by the additional
amount of running time that is needed for the extra runs, and the extra work the user
would have to do. Apart from that, we recommend the developers of randomized
layout algorithms to set rigorous limits to the random behavior in order to keep
things controllable.

Rating Prediction Needs to Be Improved While the concept of rating predictors
appears to be a helpful means which already produces results of passable quality, it
still has a lot of improvement opportunities. Firstly, the author presumes that there
is room for enhancing the accuracy and convergence speed of the rating prediction.
Considering results from MOEA research could help in that task. Moreover, the rating
prediction should be made more transparent. So far it takes place behind curtains.
The user may control it only indirectly and has no insight in its “magical” interior.
For a novice user, this is presumably the desired behavior, in that it keeps the UI
simple, but advanced users might like to inspect and adjust the rating prediction.
Moreover, one could think of persisting the learnt priorities of the metrics, in order
to use them in subsequent runs or make them available to other users. Furthermore,
it would be nice if one could automatically identify which layout options have an
impact on which features of the drawing. One could then selectively optimize these
options toward a defined goal, like “Maximize symmetry” or “Minimize used area”,
or whatever metric is preferred by the user. It might be worth considering to make
use of Artificial Neural Networks (ANNs) for that purpose.

More Metrics Are Needed The set of metrics that is shipped with EVOL contains
metrics for some of the most important aesthetics mentioned in literature, such
as “minimize edge crossings” and “minimize edge bends”, see Purchase et al. [25].
However, this set should be extended, in order to cover more use cases and special
preferences. Among the interesting features that may influence the perception of a
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drawing which are not covered yet are the angles between adjacent incident edges,
and inherent symmetry. Purchase et al. propose both a metric for maximizing the
minimum angle between edges leaving a node, and a symmetry metric. However,
they state that the latter one is very computationally expensive.
Another interesting metric that has not been implemented yet is that of white-

space percentage. This would give the ratio of how much of the area of the bounding
box around the diagram is not occupied by the nodes’ drawing.
Concerning the handling of metrics, it should be possible to configure which metrics

EVOL should use. Thus computationally expensive metrics could be switched off by
default. The user could be given the possibility to switch them on, e. g. by an option
on the preference page.

Regard the Structure of Input Graphs By the use of aesthetics metrics, observ-
able features in the appearance of graph drawings are measured. The automatic
rating mechanism implemented in EVOL learns how important the user finds which
aesthetic. This way, the output of layout algorithms is classified according to the
weighted metrics.
However, it might be interesting to find out how the structure and type of the

input graphs influence the user’s preferences. For example, one may assume that a
user might want a different layout for a graph with many nodes, as opposed to a
small graph. In the same way, the user’s preference might be dependent of density,
planarity, number of self-loops, hierarchy depth, etc.
Exploiting a priori knowledge about the graph structure could possibly aid in

finding a better initial population for the evolutionary process. Moreover, it is known
that some layout algorithms are not designed for general graphs, but for certain types
of graphs; e. g. an algorithm for tree layout is not apt for general graphs, except for
trees. Depending on its robustness, it would produce “miserable” layout results or it
might even crash if it is applied to a non-tree graph. Thus, if one knows in advance
that a given graph does not fulfill the requirements for a certain layout algorithm,
then it is clear that this algorithm would not be able to produce appealing output
at all. The algorithm should therefore be excluded from the evolutionary process
automatically. Since the GrAna framework provides not only drawing analyses, but
also graph analyses, it could be used to obtain the necessary knowledge about the
graph structure.

Support For Hierarchical and Partial Options Should Be Added to Evolution
While KIML supports hierarchical layout, which means that layout options may be
assigned to child parts of a hierarchical diagram, EVOL only supports options that
apply to the whole diagram. It is conceivable that users’ preferences may vary with
the level of hierarchy. Furthermore, layout options should be considered that are set
individually for some or all nodes, edges, or ports instead of the whole diagram. An
approach to this could possibly benefit from the introduction of tree-like individuals,
i.e. individuals with an internal structure that reflects the hierarchy of layout options.
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Special properties of particular diagram types should be taken into account. For
example Synccharts always have a particular top-level node.

General Persistency Concept for Evolution Configurations More basic work needs
to be done on a more general concept for loading and saving of evolution configura-
tions. It is to be found out what kind of information one should store and where to
store it, e. g. in some type of file or in a database. One needs to consider how this
is to be integrated into KIML.

Provide More Genetic Information in the Population Table The Population View
could be improved so that it shows more details about the individuals, especially the
values encoded in the genes. This could be achieved by adding more columns to
the view. The user should be put into a position to hide or show these additional
columns selectively. Alternatively the population could be displayed in a tree viewer,
which may also have columns. A tree viewer would have the advantage that it could
also be used to display tree-like individuals.
Furthermore, an additional view could be provided that is linked with the Popula-

tion View and shows even more details about the current individual in a one property
per row fashion.

Allow More User Intervention in Evolution The presented implementation of
EVOL allows the user to influence the evolution of layout configurations to some
extent by iterating stepwise through the evolutionary algorithm and rating the pre-
sented proposals. For an advanced user it would be desirable to have more opportu-
nities to intervene, for example being able to adjust the variance for a layout option,
or to select two or more interesting individuals for recombination explicitly, or to
compose entire populations from interesting examples.

Evaluate Multiple Individuals Simultaneously The number of individuals the user
may evaluate at a time is limited to one. Although by multi-diagram mode it is
possible to view the current individuals applied to multiple diagrams, each in its
own editor window, this is still limited to one individual. In order to compare two
individuals on the same graph, the user has to switch back and forth between the
individuals. To overcome this limitation, an approach is needed to present several
diagrams of the same model side by side in the same viewer or in adjacent viewers.
Each diagram would have to be zoomed to a small level. This would not only facilitate
comparisons between individuals, but one could also think of a rating mode where
the user is shown several individuals at a time and is asked just to pick the one he
or she prefers.

Further Integration into KIELER Currently, the EVOL UI brings its own tool bar
which contains controls that are defined for EVOL only. To make EVOL adhere
more to the KIELER “Look and Feel”, further work could investigate if the KIELER
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Execution Manager (KIEM) 1 could be used as a controller for the evolutionary model.
Although KIEM is primarily intended to step through the simulation of graphical
domain specific models, it could possibly allow one to step generation-wise through
the populations that are produced by the EA. If populations of previous generations
were stored, one could also move backwards. An obstacle might be that in KIEM
there is no equivalent to the rating buttons. Thus, the controls for the evaluation of
individuals would still have to be provided by the Evolution view.

1 http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIEM
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