
Automatic Layout
of

UML Sequence Diagrams

Gregor Hoops

Diplomarbeit
eingereicht im Jahr 2013

Christian-Albrechts-Universität zu Kiel
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Betreut durch: Dipl.-Inf. Christoph Daniel Schulze

Abstract

Graphical modeling and the Unified Modeling Language (UML) in particular are very popular
for specifying and documenting software projects and other systems. The Papyrus framework
provides graphical editors for each of the fourteen diagram types of the UML.

Usually, a lot of time is spent optimizing the appearance of a diagram by moving the
elements around. If this could be done automatically, the costly time of the user could better
be spent on other tasks. This thesis proposes an automatic layout algorithm for the Papyrus
sequence diagram editor. The algorithm optimizes the vertical position of messages. It is
customizable and provides several lifeline sorting strategies that are designed to optimize
different aesthetic criteria.

The produced layouts fare very well with respect to common aesthetic criteria as well as
to criteria specific to sequence diagrams. The lifeline sorting strategy yields results that are
very close to manually optimized sequence diagrams in many cases. All this is done without
loosing the capability to compute layout in real-time even for large diagrams.

iii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

v

Contents

1 Introduction 1
1.1 Graphical Modeling . 1
1.2 Automatic Layout . 3
1.3 Goals of this Thesis . 4
1.4 Outline . 5

2 Related Work 7
2.1 Graph Drawing and Automatic Layout . 7
2.2 Related Diagram Types . 7
2.3 Existing Algorithms and Editors . 10

2.3.1 websequencediagrams . 10
2.3.2 Trace Modeler . 11
2.3.3 Quick Sequence Diagram Editor . 12
2.3.4 Effexis Sequence Diagram Editor . 13
2.3.5 Altova UModel Sequence Diagram Editor 14
2.3.6 Comparison . 15

2.4 Aesthetic Criteria . 16

3 Technologies 19
3.1 Eclipse . 19
3.2 Graphical Modeling Framework . 19
3.3 KIELER . 20

3.3.1 KIML . 20
3.3.2 KLay . 21

3.4 Papyrus . 22

4 Theory and Concepts 23
4.1 Theoretical Foundations . 23

4.1.1 Graph Definitions . 23
4.1.2 Sequence Diagram Definitions . 24

4.2 The Layout Process . 27
4.3 Foundations of Sequence Diagram Layout . 28

4.3.1 Lifelines . 28
4.3.2 Messages . 28
4.3.3 Execution Specifications . 28
4.3.4 Interactions . 29

4.4 Layer Assignment . 29

vii

Contents

4.5 Lifeline Sorting . 30
4.5.1 Layer-Based . 31
4.5.2 Avoiding Long Messages . 31
4.5.3 Pivoted Long Message Avoidance . 34
4.5.4 Group According to Areas . 35
4.5.5 Interactive Lifeline Sorting . 36

4.6 Label Placement . 37
4.6.1 Theoretical Concepts . 37
4.6.2 Implementation . 38

4.7 Putting things together . 41
4.7.1 Import Graph . 41
4.7.2 Create Layered Graph . 41
4.7.3 Allocate Space . 41
4.7.4 Break Cycles . 41
4.7.5 Assign Layers . 41
4.7.6 Sort Lifelines . 43
4.7.7 Calculate Coordinates . 43
4.7.8 Apply Layout Coordinates . 43

5 Implementation 45
5.1 Data Structures . 45

5.1.1 KGraph . 45
5.1.2 SGraph . 47
5.1.3 LGraph . 48

5.2 User Defined Layout . 49
5.3 The Algorithm . 50

5.3.1 Import Sequence Diagram Structure . 52
5.3.2 Layering Messages . 53
5.3.3 Allocating Space for Various Objects . 54
5.3.4 Breaking Cycles . 55
5.3.5 Layering the Messages . 56
5.3.6 Sorting the Lifelines . 56
5.3.7 Calculating Coordinates . 57
5.3.8 Applying Layout Results Back to the Diagram 61

5.4 Integration into Papyrus . 64

6 Evaluation 67
6.1 Aesthetic Criteria for Sequence Diagram Layout 67

6.1.1 General Aesthetic Criteria . 67
6.1.2 Aesthetic Criteria Specific to Sequence Diagrams 69

6.2 Quality of Produced Layouts . 70
6.3 Performance Evaluation . 73

viii

Contents

6.4 Comparison to Different Approaches . 74

7 Conclusion 77
7.1 Summary . 77
7.2 Future Work . 78

A Sample Sequence Diagrams 79

Bibliography 95

ix

List of Figures

1.1 Example Sequence Diagram . 2
1.2 Non-layout vs. layout . 3

2.1 Example data-flow diagram: Ptolemy . 8
2.2 Example diagram: switching circuit . 9
2.3 Example diagram: websequencediagrams . 11
2.4 Example diagram: Trace Modeler . 12
2.5 Example diagram: Quick Sequence Diagram Editor 13
2.6 Example diagram: Effexis Sequence Diagram Editor 14

3.1 KIML Overview . 21

4.1 Example of lifelines and messages . 26
4.2 Example of execution specifications and interactions 27
4.3 Correlation of message relations and edges . 30
4.4 Stairway-like message placement . 31
4.5 Message-lifeline crossings decrease readability 32
4.6 Lifeline sorting according to areas . 35
4.7 Conflicting area grouping . 36
4.8 Label placement: centered . 39
4.9 Label placement: source . 40
4.10 Label placement: first center . 40
4.11 Phases of the algorithm . 42

5.1 KGraph Class Diagram . 46
5.2 Properties Class Diagram . 47
5.3 SGraph Class Diagram . 48
5.4 LGraph Class Diagram . 49
5.5 structure . 50
5.6 Cyclic dependencies of asynchronous messages 54
5.7 Conflicting messages in one layer . 58
5.8 Long label at create message . 59
5.9 Hierarchical areas . 60
5.10 Calculation of the vertical coordinates of messages 62

6.1 Layer-based vs. long message avoiding lifeline sorting 72

A.1 The Internet Shopping diagram . 79

xi

List of Figures

A.2 The Stock diagram . 80
A.3 The Bookstore diagram . 81
A.4 The Bookstore Create diagram . 82
A.5 The Book Journey diagram . 83
A.6 The Snow Clearing System diagram . 84
A.7 The Restaurant diagram . 85
A.8 The Movie Rental diagram . 86
A.9 The KiVi diagram . 87
A.10 The Unfulfilled Orders diagram . 88
A.11 The Flirt diagram . 89
A.12 The Model View Controller diagram . 90
A.13 The Loan diagram . 91
A.14 The Random diagram . 92
A.15 The Random II diagram . 93
A.16 The Random Big diagram . 94

xii

List of Tables

2.1 Different sequence diagram editors in comparison 15

5.1 The properties used in the algorithm: SequenceDiagramProperties 63
5.2 The properties used in the algorithm: PapyrusProperties 64
5.3 Different diagram elements and their hierarchy 66

6.1 Number of message-lifeline crossings with different lifeline sorting strategies 71
6.2 Performance of the layout algorithm with different lifeline sorting strategies . 74

xiii

Abbreviations

CDT C/C++ Development Tools

dfs depth-first-search

DSL Domain Specific Language

EMF Eclipse Modeling Framework

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

IDE Integrated Development Environment

JDT Java Development Tools

KIELER Kiel Integrated Environment for Layout Eclipse RichClient

KIML KIELER Infrastructure for Meta Layout

KLay KIELER Layout Algorithms

MARTE Modeling and Analysis of Real-Time and Embedded systems

MBD Model-Based Design

MDSD Model Driven Software Development

MDT Model Development Tools

OGDF Open Graph Drawing Framework

OMG Object Management Group

SysML Systems Modeling Language

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

xv

Chapter 1

Introduction

1.1 Graphical Modeling

Software projects are getting larger and larger not only in industrial contexts, but also with
open source projects. With that, they are getting more and more complex. In order to handle
that arising complexity, the degree of abstraction is increased by using higher-level program-
ming languages. These languages help improve the process of software development by
abstracting from implementation details such as operating system calls and by concentrating
on the main tasks. Starting with Assembler-like languages, more advanced languages such as
FORTRAN were developed soon, abstracting from the use of registers. This process continued
with languages such as C, which contains more data-types and the possibility to define
custom data-types. Domain Specific Languages (DSLs) focus on narrowly-defined fields of
software development, such as railway control applications for example. They may vary in
their degree of abstraction and it is chosen very high for most of them nowadays.

Along with other high-level languages, graphical modeling languages can be used to
visualize the relationships and interactions between different components of a software
system. Hierarchy and connections of classes can be visualized by class diagrams as known
from the UML. The rough structure of a program can also be visualized by graphical modeling
languages, for example by UML state machine diagrams. These diagram types, along with
others, are very suitable to show the relations of different kinds of objects in a very simple
and understandable way. This helps to bridge the gap between technical and non-technical
people by introducing a representation that is understandable for both of them.

The readability of a diagram has the potential to be much better than that of a textual
representation. Graphical elements can be comprehended much faster than text. For complex
structures, this becomes increasingly important. However, when increasing the level of
abstraction, some details may be lost on the way.

Compared with the loss of the detailed low-level programming, the advantages of graph-
ical modeling are more important in general. This especially holds when considering that
some languages support the generation of code directly from the model, which saves a big
amount of time for programmers.

One of the most widespread graphical modeling languages is the UML. It is especially
used to specify and document software projects. The UML defines the underlying models
for diagrams and the Object Management Group (OMG), which manages the issues related
to the UML, proposes the XML Metadata Interchange (XMI) format for the distribution of the
diagrams and models.

1

1. Introduction

Figure 1.1. A simple sequence diagram example from the Papyrus sequence diagram editor.

Sequence diagrams, which are the main topic of this thesis, are one of the 14 diagram
types in the UML. They are used to illustrate how processes interact with one another by
showing the sequence of interactions between these processes. Each process is visualized by
a lifeline that contains its name in a box and a dashed line going downwards. The lifelines
are connected by several types of arrows, each indicating a certain kind of message. The
vertical order of messages across a lifeline meets the chronological order of the events that are
described by the messages. Figure 1.1 shows a simple sequence diagram that was modeled
with the Papyrus1 sequence diagram editor.

With sequence diagrams, execution traces of programs can be easily viewed and analyzed.
Because of the benefits of graphical modeling, numerous graphical modeling tools were
developed for the different graphical modeling languages. Many of them are capable of
supporting the process of software development by offering a variety of editors and code
generation components. Commercial tools are available as well as free and open source
projects. As one of the open source projects, the Papyrus framework is a powerful tool,
capable of modeling and editing all kinds of UML diagrams. In this thesis, we apply the
technique of automatic layout to sequence diagram editing in Papyrus.

1http://www.eclipse.org/modeling/mdt/papyrus/

2

1.2. Automatic Layout

(a) Sequence diagram with manual layout. (b) The same sequence diagram with au-
tomatic layout applied.

Figure 1.2. A simple, handmade sequence diagram with manual and automatic layout.

1.2 Automatic Layout

As mentioned in the previous section, graphical modeling can save a lot of time by abstracting
from details. However, arranging the elements in the diagram can be a very time-consuming
task too. Since diagrams have 2-dimensions, one cannot simply insert an element between two
neighboring elements by shifting them apart as in a text editor. This is usually not possible in
a graphical editor without affecting other elements in the diagram. Instead, one has to move
several elements to make space for the new element. Additionally, the insertion of another
element may change the meaning of the diagram in a way that the whole arrangement of the
elements should be modified in order to show their relations. Therefore, a significant amount
of time is spent on tasks related to the arrangement of the graphical elements of the diagram.
Klauske and Dziobek state that on average 30% of the work are spent on this [KD10].

This is where automatic layout comes into play. If the computer did all this rearranging, the
productivity of the designer could rise significantly. Figure 1.2a shows a very basic sequence
diagram that was modeled by hand. Figure 1.2b shows the same diagram rearranged by the
automatic layout algorithm developed in this thesis. The diagram that was laid out by the
algorithm shows horizontal messages that have an equal distance whereas the handmade
diagram is less clearly structured. Additionally, the size of the drawing was optimized
automatically.

To be able to automatically compute positions for all the elements in the diagram, a
computer-readable representation of the relations of the diagram elements is necessary.
Similarly to many other problems in computer science, the problem of diagram layout can be

3

1. Introduction

approached by using graph structures for the representation of the diagram. Most diagrams
can be described roughly by dividing them into nodes and edges.

Graph layout is a problem that is very well known in computer science. For an overview
of previous work on graph layout, see the surveys by Di Battista et al. [DETT98, DETT94],
Kaufmann and Wagner [KW01] and Jünger and Mutzel [JM03].

A lot of work has been done to optimize the results of automatic graph layout. Several
approaches are known for different kinds of graph structures. Most of these approaches are
specialized for a certain kind of diagram types.

� Force-based approaches [FR91, GN98] try to optimize the layout by placing connected
nodes near each other. This is done by applying forces that push unconnected nodes apart
while pulling connected nodes towards each other. With that, the relations of the nodes
are emphasized. This approach is especially used with undirected graphs.

� Planarization-based layout algorithms [Kan96, KM98, CGMW10] focus on avoiding edge
crossings. To do that, they try to find a planar embedding of the graph, meaning a
possibility to draw the graph without having any edge crossings in the drawing. In many
cases it is not possible to find such an embedding. If so, a planar subgraph is calculated
and the remaining edges are inserted in a way that produces as few crossings as possible.
In the end, the graph is most commonly drawn in an orthogonal way, which means all
edges are composed of horizontal and vertical segments.

� Layered graph layout [STT81, ESK04] was introduced to emphasize the flow of data in
a way such that as many edges as possible point from left to right. It is applicable to
many other diagram types too. The algorithm is divided into several phases that address
different sub-problems.

When trying to implement one of these approaches, many of the arising sub-problems are
hard to solve. Finding an optimal solution with respect to a single criterion of the algorithm
is often enough NP-hard. Considering the difficulties of its single parts, the problem of
automatic graph layout in general is a very difficult one. This forces developers to make use
of heuristic approaches whenever runtime is a crucial issue. Hence, heuristics are in use in
most of the common graph layout algorithms. They do not provide the optimal solution
in general, but the solution is close to that optimum in most cases. The runtime of these
heuristics is significantly faster than that of the optimal solution especially for large diagrams.
Therefore the ratio of the runtime compared to the optimality of the results is best for heuristic
approaches in general.

1.3 Goals of this Thesis

The main goal of this thesis is to implement a layout algorithm capable of laying out all kinds
of sequence diagrams. Layout of sequence diagrams, however, is different than the layout of
other diagram types. This is because sequence diagrams cannot be easily mapped to graphs.

4

1.4. Outline

Therefore, a new approach has to be developed in order to match the peculiarities of sequence
diagrams.

The layout algorithm is to be integrated with the sequence diagram editor of the Papyrus
framework. In order to do so, the infrastructure of the Kiel Integrated Environment for
Layout Eclipse RichClient (KIELER) [FvH09] is used. With the KIELER Infrastructure for Meta
Layout (KIML), a layout button is available within the Papyrus editor, enabling the user to
trigger the automatic layout process.

As a novel feature in sequence diagram layout, the algorithm is to be able to rearrange the
horizontal order of the lifelines. Several sorting strategies are available that relate to different
aesthetic optimization goals.

1.4 Outline

The next chapter covers related work. It introduces related diagram types and existing
layout algorithms for sequence diagrams. Additionally, it describes what is important for
such layout algorithms by examining what kinds of aesthetic criteria have to be met in
order to produce a layout that is considered a good layout. Chapter 3 then introduces
the products and technologies used in this thesis. Chapter 4 introduces the underlying
theoretical concepts necessary to understand the motivation and the concepts of the algorithms.
After that, the concepts of the different phases of the algorithm are explained and justified.
The implementation details are documented in Chapter 5 where the data structures and
the algorithms are described in depth. The evaluation in Chapter 6 is divided into the
evaluation of the different aesthetic criteria, the quality of the produced layouts in general,
the performance of the algorithm, and a comparison to different sequence diagram layout
approaches. The thesis concludes in Chapter 7.

5

Chapter 2

Related Work

This chapter starts with related work on graph drawing and automatic layout. This is followed
by the introduction to related diagram types in Section 2.2, which are compared to sequence
diagrams especially with respect to diagram layout. Thereafter, an overview of existing
sequence diagram layout algorithms is presented in Section 2.3. Most of these algorithms
are delivered as part of special sequence diagram editors. Finishing this chapter, Section 2.4
introduces the aesthetic criteria that are important to be able to measure the quality of diagram
layout. These criteria are discussed with respect to their compatibility to sequence diagrams.

2.1 Graph Drawing and Automatic Layout

Graph drawing is a research area that has been the subject of research for a long time. There
are many real world problems that can be mapped to graph problems, such as all kinds
of maps and path finding problems. Social networks can be modeled as graphs too. It is
desirable to be able to visualize these graphs in a way that is simple to understand for all
kinds of users. Therefore, a lot of work has been done to build and improve different kinds
of graph layout algorithms to be able to produce visualizations automatically.

Fundamental work has been done by Sugiyama, Tagawa and Toda in 1981. They proposed
Methods for visual understanding of hierarchical system structures [STT81], which was the foun-
dation of the layered graph layout approach that divides the layout into several phases. This
approach is also known as hierarchical graph layout.

Roberto Tamassia and Giuseppe Di Battista had remarkable impact on the topic of graph
drawing too. Tamassia published several articles on special graph problems such as drawing
of planar graphs [TT86] and minimizing the number of edge bends [Tam87], before they
passed on to more general graph drawing topics. Their article on Automatic graph drawing and
readability of diagrams [TDB88] introduces a general purpose graph drawing algorithm that
draws the graph on a grid. The aspect of readability was later picked up by Hellen Purchase.
She examined the different kinds of graph drawing aesthetics such as edge crossings and edge
bends and validated their importance for the understanding of graph drawings [PCJ96, Pur97].

2.2 Related Diagram Types

In contrast to other diagram types, sequence diagrams cannot be trivially mapped to graphs.
This is because the lifelines, which at first glance could be regarded as the nodes of a graph,

7

2. Related Work

Figure 2.1. An example of a data flow diagram taken from the Ptolemy framework of the UC Berkeley.

are modeled as vertical lines whereas nodes are normally intended to be circles or boxes.
The connection points of incoming and outgoing edges are placed on one of the sides of a
node. In sequence diagrams, however, messages are distributed over the vertical line and are
usually drawn horizontally.

Another difference between sequence diagrams and other diagram types is that lifelines
are aligned side by side, sharing the same vertical coordinate in general (this is only voided
for lifelines that are created by a create message). The distribution of the lifelines in sequence
diagrams thus becomes a one dimensional problem whereas it is a two dimensional one in
most other diagram types.

There are a lot of diagram types in use for different purposes. For all of these diagram
types, different layout results are desired. Because of that, a lot of different layout algorithms
have been developed. However, some of these algorithms are applicable for different diagram
types. To obtain good results for different types of diagrams, some parameters may have to
be altered depending on the diagram type. Some diagram types and their possible layout
algorithms are introduced in the following.

Data-flow diagrams are one example of typical diagrams that are used in the process
of software development or to visualize the flow of data in a non-technical process. Since
data-flow is directed in most cases, these diagrams are often laid out by layered layout
algorithms. This is because these algorithms are designed to emphasize the direction of the
flow in a directed graph. Figure 2.1 shows a Ptolemy1 diagram that was laid out with a
layered layout algorithm called KLay Layered [KSSvH12].

Electrical networks are visualized by special diagram types. Especially in the design of
electrical devices these diagram types are used very often to show the connections of the
single components such as resistors, capacitors, and switches. A layout of these diagrams
has to be different to a layout of data-flow diagrams, though. Wires cannot be routed in a
diagonal way. In order to map this to the diagram, edges have to be routed orthogonally.

1http://ptolemy.eecs.berkeley.edu/

8

2.2. Related Diagram Types

Figure 2.2. An example of an electrical switching circuit diagram. The wires are laid out in an
orthogonal style.

This is normally done by planarization-based algorithms. These algorithms are specialized to
minimize the number of edge crossings. In addition, these algorithms tend to route edges
orthogonally. Layered layout algorithms, however, may also be equipped with orthogonal
edge routing algorithms. They are not optimal for most circuits, though, because they tend
to produce too many layers to fit onto the rather quadratic shape of a chip. Additionally,
layered layout produces more edge crossings in general. The number of edge crossings is
increased because messages may not connect nodes of the same layer, which prevents edges
from pointing upwards or downwards. A typical electrical switching circuit is shown in
Figure 2.2.

Class diagrams are widely used in computer science and software development to visualize
the relationships between different classes and their attributes and methods. Classes are
connected by inheritance or relationship connections. These diagrams are usually laid out by
hierarchical layout algorithms. These algorithms are specialized on highlighting the hierarchy
between the different classes. Layered layout can be used too, applying a top-down direction
instead of the left-right direction that is very common for data-flow diagrams.

Data structures based on trees are widespread in many areas of computer science. Trees
do not contain any circular connections. With that, layered layout should be an option for
these diagrams too since it is specialized on cycle-free graphs. Additionally, the layering of
the nodes according to the longest path to the source node may create very accurate results
as nodes with the same distance to the root of the tree are placed in the same layer. However,

9

2. Related Work

force-based layout is also often used for tree diagrams. Especially for non-binary trees the
structure is represented very clearly.

With these layout algorithms at hand, why can we not simply apply one of them to
sequence diagrams? The short answer is that these algorithms simply do not match the
requirements of sequence diagrams as described above. The constraints for sequence diagrams,
such as the side by side alignment of the lifelines, prevent the usage of well known layout
algorithms. In addition to that, the aesthetic criteria (see Section 2.4) for sequence diagrams
are not considered by these algorithms.

Therefore, a new approach specialized for sequence diagrams is developed in this thesis.
The ideas and concepts of this approach are introduced in Chapter 4.

2.3 Existing Algorithms and Editors

Since sequence diagrams are part of UML, there are several editors available for drawing such
diagrams. Some of these editors even offer some kind of automatic layout to the user. Most
of the editors that include automatic layout facilities are commercial applications, though. In
the following, a selection of these editors is introduced in order to give an overview of the
current state of sequence diagram layout.

2.3.1 websequencediagrams

The sequence diagram editor provided by websequencediagrams2 is a textual editor that
uses a very simple syntax. As the name implies, it is a web-based service that does not need
to be installed locally. The diagram is displayed as an image in the common PNG format.
Upon typing inside the textual input field, the service automatically updates the produced
image. The editor provides different styles for the generated image that influence the colors
and fonts as well as the shapes of diagram elements. Figure 2.3 shows an example of a
sequence diagram drawn using two different styles: spacing is modified, activations are filled
(Figure 2.3b) or not (Figure 2.3a), and corners are rounded or not. This affects the width and
height of the diagram, which is easily visible in Figure 2.3 too.

Lifelines are placed in the order of their declaration. However, lifelines do not have to be
declared. If they are not, the order is derived from the order of their appearance in the textual
representation. Messages may have a label that is placed above the message and is aligned
either at the beginning of the message or near its center, depending on the style used (see
Figure 2.3). They are always drawn horizontally and no message may share the same vertical
position with another message except for parallel messages that are supported too. Unlike
in UML, messages may only connect lifelines among themselves. Lost and found messages
or messages connected to the interaction itself are not supported. Create messages are not
supported either. Lifelines may be activated by incoming messages. Likewise, they can be
deactivated by outgoing messages.

2http://www.websequencediagrams.com

10

2.3. Existing Algorithms and Editors

(a) UML style drawing. (b) qsd style drawing.

Figure 2.3. A simple sequence diagram modeled with the websequencediagrams editor. Two different
styles are used..

Comments may be attached to lifelines in different ways. They can be placed at the left
or right side or on top of the lifeline. It is possible to have comments obscuring several
lifelines as well. Both is shown in Figure 2.3. The vertical position is determined by the place
where the comment is declared in the textual view. Line-breaks, however, have to be inserted
manually. If not, the comment will be as wide as its text, which is a waste of space often.

Grouping of messages is supported and common kinds of groups like alt, loop or opt

may be nested to any depth. Layout of these groups, however, is very basic. Groups always
span over all the lifelines in the diagram without regard for how many of them are connected
by the messages inside the group. Figure 2.3 also shows that label placement is problematic
in some cases as well. The labels of self-transitions overlap the lifeline on the left side.

2.3.2 Trace Modeler

Trace Modeler3 is a tool designed for sequence diagram modeling only. It is not integrated into
a framework of UML editors and it has a drag and drop interface that is very intuitive and

3http://www.tracemodeler.com

11

2. Related Work

Figure 2.4. A simple sequence diagram modeled with the Trace Modeler editor.

powerful. Messages are connected to the right lifelines at the right positions just by dragging
them near those positions. The editor provides a feature that highlights the complete trace of
the messages with a blue background, which should help the eye to follow the path easily.
Several layout options, such as horizontal and vertical spacing, are provided to customize the
layout. An example diagram is provided in Figure 2.4.

Lifeline sorting has to be done by the user when inserting the lifeline at the desired
position. Lifelines can be inserted with different lifeline headers. Rectangles are supported as
well as circles and matchstick men.

However, Trace Modeler is not very flexible. The editor’s capabilities for manipulating
objects that are already placed are very limited. Activations are automatically inserted at
the end of every message and ended by the receipt of its corresponding reply message. It
is not possible to remove them by hand, hence one is not able to manipulate them in any
way. Additionally, it is impossible to have more than one trace in the whole diagram since
messages are inserted as call and reply pair only. The first message always starts at the left
border of the diagram. There is no possibility to start at a lifeline. Considering these facts,
Trace Modeler only implements a rather limited subset of sequence diagrams as specified in
UML.

2.3.3 Quick Sequence Diagram Editor

The Quick Sequence Diagram Editor4, like the websequencediagrams editor in Section 2.3.1, is a
tool that provides text-to-diagram sequence diagrams. The syntax of the input text is a little

4http://sdedit.sourceforge.net/

12

2.3. Existing Algorithms and Editors

Figure 2.5. A simple sequence diagram modeled with the Quick Sequence Diagram Editor.

confusing at first, but supports even advanced features of sequence diagrams. Its appearance
is a little programming language style. Identifiers are used together with names and options
to define lifelines and messages.

Messages are inserted by referencing the identifiers of the objects a message connects.
Reply messages are inserted automatically for each message and the program automatically
sorts them, thus allowing just one path through the diagram. Unlike in other editors, the label
for the reply messages can be non-empty and is specified together with the first message’s
label. Activations are inserted automatically at every lifeline for the duration of the call (see
Figure 2.5).

Areas such as loops or conditionals can be added to the diagram by surrounding the
affected lines of text with tags that identify the different kinds of areas. The colors of the
different objects can be modified in the preferences as well as the margins between lifelines,
messages, and other objects.

To summarize, the editor gives the impression of having been developed especially
for software developers that visualize traces of programs by generating the editor’s input
automatically. It is very well suited for that purpose, the creation of a sequence diagram by
hand, however, is a little unhandy.

2.3.4 Effexis Sequence Diagram Editor

The Sequence Diagram Editor provided by Effexis5 is an editor designed especially for sequence
diagrams. It is capable of modeling a big subset of the UML specification for sequence
diagrams. However, its handling is not very intuitive and not fast at all. Drag and drop is not
possible. Instead, the user has to enter all the elements by using an input mask that contains
several fields and drop-down menus.

A lifeline is created by selecting the type of the lifeline from a drop-down menu, typing

5http://www.effexis.com/sde/

13

2. Related Work

Figure 2.6. A simple sequence diagram modeled with the Effexis Sequence Diagram Editor. Dotted lines
are visible that show the fixed positioning of the elements. The vertical line on the bottom indicates
where the next message will be inserted.

the desired name into a text field and clicking the Add button. The position of the lifeline, in
turn, is determined by a vertical line within the diagram that can be moved with the mouse.
The same holds for the creation of messages. Source and target lifelines, as well as the type of
the message, have to be chosen from two drop-down menus. The position of the message,
again, is chosen manually by the vertical line within the diagram that turns into a horizontal
line (see Figure 2.6) when selecting a message type.

There are different lifeline headers available (for example matchstick men or simple
rectangles). The labels of the lifelines, however, are wrapped around even if there is enough
space, which leads to odd-looking results in some cases (see Figure 2.6). It is possible to show
several levels of detail of the diagram. Different objects such as comments and labels are
displayed depending on the desired level of detail.

As a summary, the Sequence Diagram Editor by Effexis has some very nice features, but
lacks the usability of other editors.

2.3.5 Altova UModel Sequence Diagram Editor

The UModel tool by Altova6 is an UML tool for software modeling and application development.
It is able to generate code out of the diagrams that can be created with the different editors.
It is also capable of creating diagrams from reverse engineered code. In addition to that, it
automatically generates documentation for the produced code.

Drag and drop is available for all diagram editors, making the creation of diagrams very
fast and easy. Automatic layout is claimed to be available for the diagram editors; however, it
is only applicable for few of the diagram types. For sequence diagrams no automatic layout
is available. This only serves to show that sequence diagram layout seems to be difficult.

6http://www.altova.com/umodel/sequence-diagrams.html

14

2.3. Existing Algorithms and Editors

Table 2.1. Comparison of the different sequence diagram editors that were examined. The table shows
a selection of features and properties of the editors. Drag & Drop indicates whether the editor is able
to create sequence diagram elements by dragging them from a palette and dropping them into the
diagram. Path indicates if it is possible to have different paths through the diagram. Lifeline Sorting
means that the horizontal order of the lifeline is optimized by the layout algorithm. An editor is said
to be customizable if the spacings or different layout relevant parameters can be changed by the user.
At last, the editors are compared in terms of free distribution vs. commercial tools.

Editor Name Drag & Drop Path Lifeline Sorting Customizable Free

Websequencediagrams - X - (X) a X
Trace Modeler X - - X -
Quick SD Editor - - - - X
Altova UModel b X X - - - c

Effexis SD Editor - X - - - d

Papyrus SD Editor X X X X X

aDifferent layout styles are available.
bThe Altova UModel editor does not provide automatic layout for sequence diagrams.
cWindows only
dWindows only

2.3.6 Comparison

As shown, there are several editors that have very different capabilities. Table 2.1 summarizes
these differences. The check marks are not very numerous, indicating that there are only
few editors that provide many helpful features. Especially the free editors lack most of the
features that were examined in this comparison. However, the commercial solutions do not
provide much more functionality in general either. In particular, the lack of any lifeline
sorting functionality is noticeable. One could reason that lifeline sorting is a task that can be
easily done by hand, but especially for diagrams that contain many participants the ability to
rearrange the lifelines automatically according to several aesthetic criteria can be very useful
to maintain the readability of big diagrams.

None of these editors is able to display more than one message at the same vertical
position even if the messages do not overlap in any way. Even worse, most editors do not
support more than exactly one trace through the diagram. In addition to that, layout is done
implicitly by most of them, leaving the user no possibility to influence the layout. Most of
the tools re-layout the diagram after each modification. The Altova UModel tool, however,
provides layout as an option, which is disabled for sequence diagrams since there is no
support for this diagram type.

Considering this, the sequence diagram editor of the Papyrus framework with its full UML

support in combination with the layout facilities developed in this thesis is a very powerful
tool with regard to sequence diagrams. It combines all the features that are desirable for the
work with these diagrams. Nevertheless, it is a free open source tool.

The next section introduces a variety of aesthetic criteria that may be applied to graphs

15

2. Related Work

and to sequence diagrams in particular. It also states which of these criteria we can consider
useful for the evaluation of sequence diagram layout.

2.4 Aesthetic Criteria

The quality of a layout is a very subjective matter. Especially for complex diagrams it is very
user-dependent what is considered a good layout. However, in order to have a somewhat
objective measurement for the quality of a layout, it is necessary to define some aesthetic
criteria that are able to represent this quality. There has already been a lot of research on
this topic and there are common aesthetic criteria that have been established. A selection of
criteria as proposed by Poranen et al. is listed below [PMN03].

� Edge crossings: The number of edge crossings in the diagram. Fewer crossings lead to a
more readable drawing since it is easier to follow a line that is not intersected by another
line.

� Edge length: Shorter edges imply better readability because the eye of the user does not
have to follow the line for a long way. There are three different versions of this criterion:

� Maximum: The longest edge in the drawing.

� Sum: The sum of the length of all edges in the drawing.

� Uniformity: The uniformity of the length of the edges in the drawing.

� Area: The size of the smallest rectangle containing the whole drawing. Smaller drawings
are desirable in order to be able to view the diagram without scrolling or with scrolling as
little as possible.

� Bends: The number of edge bends. As mentioned above, it is important that the eye is able
to easily follow the edges through the diagram. Too many edge bends make this difficult.

� Maximum: The maximum number of bends of a single edge.

� Total: The total number of bends.

� Uniformity: The uniformity of the number of bends per edge.

� Angle: The angle between two edges connected to the same node. It is desirable to have as
big angles as possible in order to be able to distinguish the edges easily.

� Aspect ratio: The aspect ratio of the whole diagram. The optimal solution depends on
the medium that is used to show the diagram. Computer screens need a wide diagram
whereas tall diagrams are preferred for paper.

� Balance: The balance of the nodes over the drawing area. There should not be areas where
no nodes are located; neither should the nodes be clumped in other areas.

16

2.4. Aesthetic Criteria

So there are formal and common criteria for the aesthetics of graphs. However, sequence
diagrams are not exactly graphs. For that reason, most of these criteria are not desirable or
even applicable to sequence diagrams. In this thesis, the focus is on two of them, namely edge
length and edge crossings (see Section 6.1 for detailed justification of this choice). Since edges
only cross lifelines and lifelines have (nearly) equal distances between them, the two criteria
are strongly related.

For sequence diagrams it is generally desirable for the lifeline that starts the communi-
cation process to be placed at the leftmost position. This is a property that cannot be easily
adapted to normal graphs. Source nodes are placed leftmost in data-flow diagrams, but the
lifeline with the uppermost outgoing message can not be regarded as a source node in general
since it usually has incoming messages too. Nevertheless, it is an aesthetic criterion that is
well accepted for sequence diagrams as it improves readability of these very much [PMN03].

In sequence diagrams, messages can be grouped together by several constructs such as
combined fragments and interaction operands. Obviously, it is desirable to have the lifelines
that are connected by these messages placed near each other. Additionally, the “slidability”
was proposed by Poranen et al. [PMN03] as a new sequence diagram specific aesthetic
criterion. It measures if it is possible to view all the relevant information in a window of fixed
size

The next chapter introduces some technologies this thesis builds upon. This includes the
Eclipse framework and related projects, such as the Graphical Modeling Framework (GMF),
KIELER, and the Papyrus framework.

17

Chapter 3

Technologies

Since the layout algorithm that is dealt with in this thesis is part of a large research project, it
is necessary to introduce some tools prior to the description of the algorithm itself.

3.1 Eclipse

The Eclipse project is a plug-in-based application framework based on Java [Ecl08]. The
plug-in management of Eclipse is done by the OSGi [OSG08] framework Equinox that was
developed especially for the Eclipse project. With that, software components can be loaded,
updated and unloaded at runtime.

One of the most important components is the Java Development Tools (JDT) bundle.
With the JDT loaded, Eclipse acts as an Integrated Development Environment (IDE) for Java
development. Meanwhile, there are several extensions that allow users to develop software
with different kinds of programming languages. C/C++ (with the C/C++ Development Tools
(CDT)), PHP, Cobol, and even Android App programming is possible with the corresponding
plug-ins. This makes the Eclipse project a widespread software development tool.

Its run-time kernel is very minimalistic, its extensibility by plug-ins in favor is huge. The
Eclipse project was released out of an internal IBM project in 2001. In 2004, IBM decided to
found the independent Eclipse Foundation that is responsible for the further development of
the Eclipse Framework. Since Eclipse is open-source software, there are many third-party
plug-ins for different purposes.

There are several important commercial as well as open source projects related to Eclipse.
Some projects use Eclipse as a platform, others are designed to run as parts of different Eclipse
projects. In the following, some projects that are related to this thesis will be introduced.

3.2 Graphical Modeling Framework

The GMF is a framework that simplifies the process of building graphical editors for the
Eclipse framework. It is based on two further Eclipse frameworks, the Eclipse Modeling
Framework (EMF) and the Graphical Editing Framework (GEF).

EMF is an Eclipse framework for building tools and other applications based on a structured
data model. It is capable of generating Java classes for a given meta model. Furthermore, it
provides adapter classes for viewing and editing the model and a basic editor.

19

3. Technologies

GEF is an Eclipse framework designed to generate rich graphical editors. These editors
include a tool palette for drag-and-drop creation of graphical elements, adapted to the
customized figures generated together with the editor.

Along with the figures, EditParts are generated. EditParts can be understood as the
controller that is responsible for making changes to the underlying model. Requests are used
to communicate with the EditParts. For each EditPart, there is a corresponding EditPolicy that
handles the incoming Requests and transforms them into appropriate Commands. Commands
are organized by Command Stacks that provide the useful undo and redo operations. They are
responsible for applying the requested changes to the model.

With the help of these two projects, GMF is able to create graphical editors along with all
the necessary code and tooling. The ability of creating simple, fully-functional editors in very
few steps is the main reason for its popularity. There is a huge amount of GMF-based editors
in use all over the world.

3.3 KIELER

The KIELER is a research project founded by the Real-Time and Embedded Systems Group at
the Christian-Abrechts-Universität zu Kiel [FvH09]. Its focus is on the pragmatics of graphical
model-based design of complex systems. One of its main components is an infrastructure
that provides automatic layout algorithms to graphical editors. There are several algorithms
for different kinds of graph structures and different optimization goals. The most important
sub projects with respect to automatic layout will be introduced in the following. However,
automatic layout of static diagrams is just one part of KIELER’s capabilities. Another research
focus is in the area of pragmatics which includes the view management that is responsible
for dynamic visualizations in diagrams. Recent research here points at focus on context, which
dynamically collapses parts of the diagram (e.g. edge labels or sub-states) that are not
important for the current context. Additionally, KIELER provides possibilities to simulate
several kinds of systems that are modeled with KIELER’s editors. Main focus of the research
in the simulation domain is concentrated on the simulation of synchronous languages like
ESTEREL together with related graphical languages such as SyncCharts.

3.3.1 KIML

KIML is the core component of the KIELER layout facilities. It connects the various graphical
editors and viewers that are supported by KIELER with the layout algorithms. As shown in
Figure 3.1, KIML extracts the graph from the diagram editor, transforms the graph into its
internal graph structure, which is then passed to the chosen layout algorithm. When the
layout algorithm is finished, its results are applied to the diagram editor.

To be able to handle very different kinds of graphs coming from different types of editors,
KIML provides an intermediate graph format. This so called KGraph is adapted to the layout
algorithms that are part of KIELER it is able to handle a very wide range of graphs though.

20

3.3. KIELER

Diagram Editor Layout Algorithm

1: Extract graph

KIELER Infrastructure
for Meta Layout

KGraph
2: Transform graph

3: Attach layout results4: Apply layout

Figure 3.1. Layout process: KIML is the interface between the diagram editor and the layout algorithm.

Chapter 5 introduces the data structure more precisely. Different layout algorithms are
available through different sources. KIML is able to use several open source graph layout
libraries such as the Open Graph Drawing Framework (OGDF) or GraphViz. However, through
the KIELER Layout Algorithms (KLay) project, several custom graph layout algorithms are
provided too.

Besides acting as a connector between graphical editors and layout algorithms, KIML’s
main benefit is its capability to configure the layout process in-depth. This is especially
important for supporting different types of graphs since they do have different requirements
towards layout. In particular, they have different aesthetic criteria that should be met by
the layout. To be able to meet these demands, KIML provides a set of layout options that
are displayed in the Layout View amongst others. These options offer the choice between
different layout algorithms. Additionally, several parameters such as spacing and orientation
can be modified through the Layout View. The different layout algorithms, in turn, may offer
their own options that are provided through the Layout View too.

3.3.2 KLay

The KLay project is a collection of different layout algorithms implemented in Java. These
layout algorithms are integrated with KIML to be used with all kinds of graphs that are
supported by KIML. Currently, three fundamental layout algorithms are offered by KLay:

� KLay Layered: the most advanced layout algorithm in the KIELER project. It is based on the
layer-based hierarchical approach by Sugiyama et al. [STT81]. However, the three phases
described by Sugiyama et al. are extended to five layout phases. Intermediate processors
between each of the phases ensure as much flexibility as possible. Each layout phase
declares which intermediate processors it requires. With that, different implementations
for each of the phases can be combined freely to match the characteristics of different kinds
of diagrams. KLay Layered, however, is mainly intended for diagrams with an inherent
data flow direction as their data flow is emphasized by this approach.

� KLay Force: a layout algorithm based on physical models. It interprets edges as springs
pulling nodes towards one another. In addition to that another force is introduced between
each pair of nodes, pushing them further apart. With that, nodes are placed homogeneously
over the diagram and edge length’s are made homogeneously as well.

21

3. Technologies

� KLay Planar: a layout algorithm that is based on the planarization of the graph. Edges are
routed in an orthogonal way. Nodes and edges are placed on a given grid in the diagram.
This approach especially aims at minimizing the number of edge-crossings in the drawing.

3.4 Papyrus

The Papyrus framework 1 is a framework designed for multiple purposes related to UML

diagrams. It is capable of editing and creating all kinds of UML diagrams. As a part of
the Model Development Tools (MDT) project, it is an official Eclipse project. The Papyrus
framework was initialized and founded by the French Commission for Atomic Energy and
Alternative Energies (CEA) that runs a technical research institute CEA LIST.

Papyrus provides an integrated environment for editing any kind of EMF-based diagrams.
Especially, UML and related modeling languages are addressed. These modeling languages
particularly include the Systems Modeling Language (SysML) and the Modeling and Analysis
of Real-Time and Embedded systems (MARTE) project. Special editors for UML 2, SysML

and other modeling languages are delivered with the Papyrus framework. In addition to
that, the project provides components to integrate these editors into different Model Driven
Software Development (MDSD) and Model-Based Design (MBD) tools. UML profiles, which are
extensions of the UML meta model, are supported too, enabling the user to define own editors
for DSLs based on the UML 2 standard.

This thesis introduces a new layout algorithm for UML sequence diagrams into the Papyrus
project. The next chapter introduces the theoretical concepts of this algorithm.

1http://www.eclipse.org/modeling/mdt/papyrus/

22

Chapter 4

Theory and Concepts

This chapter introduces the central concepts used in this thesis as well as the theoretical
foundations necessary to understand them. First Section 4.1 starts by giving some definitions
of the underlying theory and elements that are used in sequence diagrams. Section 4.2
introduces the layout process before Section 4.3 talks about those elements of sequence
diagrams that are easy to lay out. Section 4.4 about the assignment of layers to the messages
then starts the block of more challenging layout issues. Section 4.5 continues by describing
lifeline sorting strategies. Finally, Section 4.6 closes this chapter by describing the problem of
label placement which tends to be neglected in various graph layout algorithms.

4.1 Theoretical Foundations

This section presents the definitions and explanations necessary to understand the following
sections and chapters. There are two main topics for that: the definitions related to graphs
and those that are related to sequence diagrams.

4.1.1 Graph Definitions

The most basic definition that is important when handling graph problems is the definition
of a graph itself.

4.1 Definition. A graph G is a pair (V, E) of sets of vertices and edges. Vertices v may also be
called nodes in the following.

4.2 Definition. An edge e of a graph G is a set {u, v}, where u and v are vertices of the graph.

4.3 Definition. An edge may be weighted in some graphs. The weight of an edge e is denoted
w(e). If an edge has no attached weight, the weight is assumed to be 1.

4.4 Definition. The degree d(v) of a node v is the number of edges that are connected to v:

d(v) := ∑
{u,v}PE

1

4.5 Definition. The weighted degree d1(v) of a node v is the sum of the edges weights of edges
that are connected to v: d1(v) := ∑

{u,v}PE
w({u, v})

23

4. Theory and Concepts

So far, these definitions describe undirected graphs. However, for many purposes this is
not sufficient. Edges often have a predefined direction that should be modeled too.

4.6 Definition. A graph G is said to be directed if edges have a direction, that is, if the pair
(u, v) is ordered. In this case, u is called the source node and v is called the target node.

For certain layout algorithms, including the one described here, a graph has to be par-
titioned into several layers. Splitting a directed, acyclic graph into distinct layers is a well
known and commonly used approach since Sugiyama, Tagawa and Toda [STT81] published
their work on layered graph drawing. The partition of the nodes then holds the following
properties.

4.7 Definition. A layering is a partition of the set of nodes of a given graph into several
numbered layers such that the following properties are satisfied.

1. Every node belongs to exactly one layer.

2. Every layer contains at least one node.

3. There are no edges connecting nodes that share the same layer.

4. Every edge has a source node that is in a layer with number lower than the one of the
target node’s layer.

4.8 Definition. A path p of length n in a graph G is a finite sequence of edges

p := {v0, v1}, {v1, v2}, ..., {vn�2, vn�1}, {vn�1, vn}

that connects node v0 (the start node) with node vn (the end node).

4.9 Definition. A connected component C of a graph G is a set of nodes that are connected
among each other. In addition to this, these nodes are not connected to any node that is
not part of C. More formally, a connected component C � L is a set of nodes for which the
following holds:

@c1, c2 P C : Dp P G, c1 = start(p)^ c2 = end(p)

and
@c1 P C, c2 R C : @p P G, c1 = start(p)^ c2 = end(p)

The definitions presented were general definitions of graphs which are important to
understand the graph-based data structures used to represent different diagram types. In the
following, definitions specific to sequence diagrams will be presented.

4.1.2 Sequence Diagram Definitions

This thesis is about the layout of sequence diagrams. Hence, the basic terminology for such
diagrams is presented here.

24

4.1. Theoretical Foundations

4.10 Definition. A sequence diagram1 is a tuple S := (L, M, A, C) of a set of lifelines L, a set of
messages M, a set of areas A and a set of comments C. It is a special kind of diagram that
visualizes the communication of different processes. It is often also called interaction diagram
and is part of the UML.

4.11 Definition. A lifeline l P L is an interaction partner or process in a sequence diagram. It
is drawn as a vertical line that is decorated with a lifeline header at the top, which is a rectangle
with the lifeline’s name in it.

4.12 Definition. A message is a tuple m := (s, t) that contains a source object source(m) := s
and a target object target(m) := t. It is a connection between two objects that in most cases
are lifelines. Other than this, messages may also originate from or point at the surrounding
interaction. A message is drawn as a horizontal arrow connecting the lines of its lifelines.
There are several types of messages:

1. Asynchronous messages are drawn as solid arrows with a stick arrowhead (see Message in
Figure 4.1).

2. Synchronous messages are drawn as solid arrows with a filled arrowhead.

3. Reply messages are drawn as dashed arrows with a stick arrowhead.

4. Create messages are drawn as dashed arrows with a stick arrowhead that points to a
lifeline’s head (see Message6 in Figure 4.1).

5. Delete messages are drawn as a solid arrow with a filled arrowhead pointing to the end of
a lifeline (see Message7 in Figure 4.1).

6. Lost messages are asynchronous messages that do not point at any lifeline but at a filled
circle that is placed next to the source lifeline at the right side. Their target lifeline is
undefined (see Message5 in Figure 4.1).

7. Found messages are asynchronous messages that do not originate from a lifeline but from
a filled circle that is located next to the target lifeline at the left side. Their source lifeline is
undefined (see Message1 in Figure 4.1).

With the definition of messages in mind, the incoming and outgoing messages of a lifeline
may be defined now.

4.13 Definition. For a lifeline l, the set of outgoing messages id defined by outgoing(l) := {m P

M | source(m) = l}.

4.14 Definition. For a lifeline l, the set of incoming messages id defined by incoming(l) :=
{m P M | target(m) = l}.

1http://www.ibm.com/developerworks/rational/library/3101.html

25

4. Theory and Concepts

Lifeline Header

Lifeline

Lost Message

Found Message

Create Message

Delete Message

Asynchronous

Message

Figure 4.1. An example of lifelines and different message types.

4.15 Definition. A message’s send or receive event is the point at the lifeline, where the message
leaves or arrives at the lifeline. It is not graphically highlighted normally, but comments may
be attached to it.

In addition to these very basic elements of sequence diagrams, there are some advanced
elements that should be mentioned here too. The first of these are execution specifications.

4.16 Definition. An execution specification, also called method call boxes or activations, are opaque
rectangles that are placed on top of the dashed line of a lifeline. They represent processes
that are started in response to the arrival of a message. Execution specifications may extend
other execution specifications by building “sub-executions”. Again, this may only happen
when a message is received at the starting point of this execution specification. Examples of
these elements are given in Figure 4.2

While execution specifications are used to describe the inner structure of the object that is
represented by its lifeline, there are different kinds of outer structuring elements. Messages
can be grouped in sequence diagrams by surrounding them with different kinds of blocks.

4.17 Definition. An area a := {m P M | m is completely covered by a} is a set of messages
that are contained in the area.

There are different kinds of areas which are defined in the following.

4.18 Definition. An interaction use area is a transparent rectangle that covers a set of messages
in order to show their close relation. This may indicate that these interacting lifelines and

26

4.2. The Layout Process

Interaction

Execution

Specification

Figure 4.2. An example diagram with execution specifications and an interaction. Execution specifica-
tions are attached to every lifeline to highlight the active part of the lifeline. An interaction visualizes
a relationship of Message and Message2 by grouping them together.

messages could be a sequence diagram on its own. Furthermore, the interaction may have a
label that yields instructions on how to interpret it. For example, labels may contain “repeat
this x times” or other instructions. An example of an interaction use is given in Figure 4.2.

Another element for grouping messages is the combined fragment.

4.19 Definition. A combined fragment is a transparent rectangle that covers a set of messages.
It is divided into a header section and several sub-areas that cover a set of messages each.
Each of the subsections may have a label that indicates how to interpret it. One use-case of
combined fragments is to describe if-then-else blocks.

With the foundation of these definitions, the theoretical ideas behind the sequence diagram
layout algorithm can be introduced. The next section will explain the basic concepts of the
layout process before going into the detailed explanation of the different steps that are
performed during the layout process.

4.2 The Layout Process

Given a sequence diagram in some editor’s representation, the first step will always be to
convert this sequence diagram representation into a structure that is specialized for the use

27

4. Theory and Concepts

in the layout algorithm. With a sequence diagram as defined in Section 4.1, the sequence
diagram layout algorithm then is able to compute a layout for the diagram by calculating
positions and sizes for all the elements of the sequence diagram. To be able to do so, several
preparation steps are required to be computed. Applying the calculated coordinates to the
sequence diagram is only the final step in a chain of algorithms.

The next section will explain the concepts that are used to place those elements that do not
need any complicated algorithms for their layout before going on to more advanced concepts
in later sections.

4.3 Foundations of Sequence Diagram Layout

Sequence diagrams have a very strict and well defined graphical syntax that restricts the
flexibility of a layout algorithm. While this simplifies the layout of these diagrams a lot, it
also limits the possibilities for improving the graphical appearance of a given diagram. This
section deals with the simple tasks that are related to these restrictions.

4.3.1 Lifelines

Lifelines have to be drawn side-by-side at the top of the diagram. They normally share the
same height, vertical position, and usually the same width as well. Hence, the only degree of
freedom is their horizontal position, which is handled in Section 4.5. The height and vertical
position of a lifeline may only be altered if it has incoming create messages or delete messages.
If so, the lifeline’s vertical position has to be moved to the position of the create-message. The
height then has to be modified such that the lower border of the lifeline matches the other
lifeline’s lower border. The height may also be modified if a delete message points to the
lifeline. Its lower border should be located near the position of the delete message. The width
of a lifeline may depend on its label in some cases. However, this should not be modified by
the layout algorithm.

4.3.2 Messages

Messages are usually drawn as straight, horizontal lines without any bend points in sequence
diagrams. They directly connect their associated lifelines in the shortest way. Therefore, their
send and receive events are located at the same height normally. This height is constrained
by the messages among each other. Their order at each lifeline has to be preserved through
the layout process. In the approach proposed in this thesis, the messages are organized in
layers, which is described in Section 4.4.

4.3.3 Execution Specifications

Execution specifications are placed on the vertical line of their lifeline. They have a predefined
width and are horizontally centered on their lifeline. Their height and position corresponds to

28

4.4. Layer Assignment

the vertical position of the connected messages: an execution specification starts at the point
where its first message is connected and ends at the last message’s vertical position. Execution
specifications may contain other execution specifications that are connected to messages that
cover a subset of the executions specification’s vertical space. These “sub-executions” are
located on top of the original execution specification, they are drawn slightly rightwards so
that they overlap with their “parent” only on half width but do not completely cover the
original execution specification.

4.3.4 Interactions

Interactions and other elements like combined fragments are rectangular areas that cover a
certain set of messages. Since these areas group the messages they cover into sub-diagrams,
they should be drawn as a rectangle that covers all of their messages plus a certain margin.
Messages that are not completely covered by the area are not considered to be part of it.

4.4 Layer Assignment

This section introduces the concept of layer assignment to messages. This is necessary to
determine the vertical position of messages. Most sequence diagrams consists of messages
that build a continuous path through the diagram. They are not restricted to this scenario,
however. In either case the relative order of the messages that are connected to the same
lifeline is important. Messages that do not share the same lifeline may be sorted freely. In
particular, they may share the same y coordinate if that does not cause them to overlap.

In order to model this the main idea is to assign a layer number to each message. Contrary
to the common use of layering in graph layout, layers in this context are not collections of
nodes that have the same horizontal position. Instead, layers are collections of messages
that share the same vertical position. Layer numbers increase from the topmost messages
downwards. At every lifeline, every pair of messages has a relative order. Hence, for each of
these pairs the lower message should have a higher layer number than the upper one.

To be able to use common layering algorithms, a new, temporary graph has to be build
based on the structure of the sequence diagram. As shown in Figure 4.3, each message maps
to a new node in the temporary graph. Directed edges are introduced for every neighbored
pair of messages that share the same lifeline, connecting the corresponding nodes. The
neighborhood relation here indicates vertical distance between the messages at the shared
lifeline. The direction of the edges is from the message with higher position to the one with
lower position (regarding the lifeline that they share).

The directed graph that is generated this way can then be processed by any common
layering algorithm. Since the sequence diagram layout algorithm is integrated into the KIELER

project, it seems reasonable to use KIELERs KLay project for this. The KLay project includes
the KLay layered project, which in turn includes several implementations of graph layering
algorithms. The longest path layerer and the network simplex layerer were used in this approach.

29

4. Theory and Concepts

Figure 4.3. Correlation of message relations and edges in the layered graph. Edges are inserted for
every pair of neighbored messages at a lifeline.

The network simplex layerer turned out to be the algorithm of choice because it yields more
compact results than the longest path layerer.

The calculated layering of the messages is important for some of the lifeline sorting
algorithms that are introduced in the next section. They compute the horizontal order of the
lifelines, which strongly influences the look of the diagram.

4.5 Lifeline Sorting

Lifelines may be sorted freely over the horizontal range of the diagram. This is the most
interesting part of the layout for sequence diagrams since it provides the largest opportunity
for improving the readability of a sequence diagram. There are different approaches to the
arrangement of lifelines, each targeting different optimization goals. It is very difficult to
combine these goals since some of them contradict each other [PMN03]. If, for example, the
lifeline that starts the communication process is highly connected to different lifelines, it
would be desirable to place it between the connected lifelines in order to minimize the length
of the messages. This contradicts the optimization goal of placing the starting lifeline on the
left side of the diagram.

30

4.5. Lifeline Sorting

Figure 4.4. Lifeline sorting that places the messages in a stairway-like fashion.

4.5.1 Layer-Based

As a first approach, we developed a layer-based lifeline sorting algorithm that aims at making
it easy to follow the flow of messages in the diagram. As the name implies, it depends on the
layering of the messages that is done in a previous step by the layering algorithm, producing
a layout that places messages in a stairway-like fashion (see Figure 4.4). The lifelines that are
connected by a message of the uppermost layer are placed leftmost in the diagram (lines 4 to
6 in Listing 4.1). This implies that the message’s source lifeline has to be the leftmost one.
Its target lifeline is placed next in order to minimize the message’s length. Afterwards the
uppermost outgoing message of that lifeline is looked for (lines 12 to 13). Its target lifeline is
set next and so forth. If a target lifeline was already set in a previous step, it obviously cannot
be set again. Therefore, only those messages are looked for, whose target lifeline was not
assigned a position yet. This step is iterated as long as there are outgoing messages with that
property. If the sequence diagram is divided into several connected components, the whole
process is repeated for each of them.

4.5.2 Avoiding Long Messages

The next approach to lifeline sorting that was implemented for the sequence diagram layout
algorithm in this thesis is related to avoiding long messages in the diagram. Avoiding
long messages is highly related to crossing minimization for sequence diagrams, since long
messages cross lifelines. Every lifeline that is crossed by a message increases the length by

31

4. Theory and Concepts

Listing 4.1 The algorithm for layer-based lifeline sorting. Lifelines are placed one after another
from left to right.

1: function SortLifelines(L)
2: p Ð 0
3: while L not empty do
4: M Ð {m | x P L^m P outgoing(x)^ target(m) P L}
5: m0 Ð min

mPM
layer(m)

6: x = source(m0)
7: repeat
8: place x on position p
9: p++

10: L Ð Lz{x}
11: x Ð target(m0)
12: M Ð {m | m P outgoing(x)^ target(m) P L}
13: m0 Ð {m | min

mPM
layer(m)}

14: until m0 is null
15: end while
16: end function

(a) Lifeline sorting that yields too many message-
lifeline crossings.

(b) Optimal lifeline sorting that yields no message-
lifeline crossings.

Figure 4.5. Comparison of differently ordered lifelines: the readability of the diagram is decreased a
lot if too many message-lifeline crossings occur.

the lifeline’s width and spacing. Therefore the minimization of these crossings is crucial for
the readability of the diagram. Figure 4.5 illustrates this by comparing differently ordered
lifelines; Figure 4.5a contains too many message-lifeline crossings, whereas Figure 4.5b does
not have any crossings.

32

4.5. Lifeline Sorting

This minimization can be divided into the avoidance of very long messages and the
minimization of the summed length. The problem of minimizing the maximum length of
messages can be transformed to the problem known as bandwidth [PMN03], shown to be NP-
complete by Papadimitriou [Pap76]. The bandwidth problem is defined as the minimization
of the length of the longest edge. Strongly related to this is the problem known as the profile
problem, which minimizes the length of the longest leftwards leading edge. However, these
are not as interesting as the minimization of the summed length of all messages: a single long
message may be tolerated if messages are short in general, whereas several long messages
could degrade the readability of the diagram much more.

Minimization of the summed length of messages was shown to be equivalent to the linear
arrangement problem for general graphs by McAllister [McA99]. Let f : V Ñ {1, 2, ..., |V|} be
an arrangement function associating a unique integer value with every node. The weighted
sum of the edge length’s for a given graph G and an arrangement function f is defined as

L(G, f) := ∑
e PE

l(e)w(e)

with l(e) := | f (u)� f (v)| defining the length of an edge e = {u, v} and w(e) defining its
weight. The linear arrangement problem for a graph G then is the minimization of L by
choosing a proper arrangement function f .

In order to be able to solve the lifeline sorting problem by solving the linear arrangement
problem, a temporary graph is created based on the structure of the sequence diagram:

� For each lifeline, a new node is created.

� For nodes whose lifelines are connected by messages, an edge is inserted.

� The weight of the edges is the number of messages that connect the corresponding lifelines.

With that, the arrangement of the nodes in the temporary graph is exactly the linear ar-
rangement problem, which was shown to be NP-complete by Garey, Johnson and Stock-
meyer [GJS76].

However, there are several heuristics that attempt to solve the problem in polynomial
time. Several heuristic algorithms for the related bandwidth and profile problems are divided
into two basic steps: first, select a starting node that is placed in first position by some kind
of selection function. After that, place the remaining nodes one after another according to
another selection function that evaluates the connections of the remaining nodes in order to
find a solution.

McAllister [McA99] proposed such a two-phased heuristic approach to solve the linear
arrangement problem. It reuses common heuristics for the bandwidth and profile problems.
These heuristics do not consider edge weights, since these weights do not affect the bandwidth
and profile problems. This is because these problems optimize the length of a single (the
longest) edge. For the linear arrangement problem, however, edge weights do affect the
optimal solution, since the weighted sum of edges is minimized. Therefore, the author
combines the unweighted approaches to generate a heuristic for the weighted problem.

33

4. Theory and Concepts

In the first phase, the heuristic by McAllister chooses the node with the lowest degree
to be the one that is placed first. This corresponds to the strategy that is used by other
two-phased algorithms. However, in contrary to these algorithms, the weighted degree, which
considers edge weights, is used here. The second phase then makes the real difference. For
each node, several values are computed in order to calculate the best node to be placed
next. Let P � V denote the set of nodes that have already been placed in earlier steps.
Similar to that, U � V denotes the set of nodes that have not been placed yet. Let then
F(G) := {v P V|{u, v} P E^ u P U ^ v P P} be the front of a partially arranged graph. The
first of the values that is needed to compute, is the tl(v) value that measures, how highly
connected to the nodes that where already placed a node v is.

tl(v) := ∑
uPP,{u,v}PE

w({u, v})

Likewise, the tr(v) value measures the connectivity of v to unplaced nodes.

tr(v) := ∑
uPU,{u,v}PE

w({u, v}) = d1(v)� tl(v)

The selection factor s f (v) is then calculated by

s f (v) := tr(v)� tl(v) = d1(v)� 2tl(v)

In each step, the node v P F with the lowest selection factor s f (v) is selected to be placed next.
After that, the tl and s f values of each node connected to v have to be updated. If F = H, the
whole connected component has been placed. For the remaining nodes, the whole process is
started again.

However, there are some modifications to the algorithm forced by the characteristics of
sequence diagrams. Messages may be connected to the surrounding interaction, which is
not modeled as a node in the temporary graph since its position is all around the lifelines.
Additionally, there may be lost or found messages or self-loop messages. These are connected
to one lifeline only. Messages that are connected to the surrounding interaction should be
drawn from left to right. Therefore, such messages, which have a lifeline as their source and
the interaction as their target, introduce a penalty to their corresponding source node’s tl
value in the temporary graph. This forces the node to be placed later than it would have
been without the penalty, which minimizes the length of the message that introduced the
penalty. Similarly, messages that have the interaction as source and a lifeline as target get
an advantage to their corresponding target node’s tl value, which forces them to be placed
earlier.

4.5.3 Pivoted Long Message Avoidance

Considering the structure of the two-step heuristic for the linear arrangement problem, I
adapted the first step to sequence diagrams. As already mentioned, it is generally desirable
for the lifeline that starts the communication process to be placed at the leftmost position.
Whereas approaches to the general linear arrangement problem in their first step choose the

34

4.5. Lifeline Sorting

(a) Normal lifeline sorting. (b) Lifeline sorting according to areas.

Figure 4.6. Lifeline0 and Lifeline1 are swapped since the grouped messages have higher priority in the
message length minimization process if the group according to areas option is enabled.

starting node according to its connections to other nodes or even randomly, an approach
specific to sequence diagrams could choose the node that represents the starting lifeline.
This approach of well-proven algorithms for the general problem in combination with a
customization related to sequence diagrams combines the different aesthetic criteria. The
edge length is minimized and the familiar positioning of the starting lifeline at the left side is
kept.

4.5.4 Group According to Areas

Another optimization of the approach by McAllister is related to another optimization goal.
Areas, such as combined fragments or interactions may group several messages together. In
order to keep the size of these areas as small as possible, which improves readability, those
lifelines that are connected to messages contained in an area should be drawn close to each
other where possible.

Edge weights in the temporary graph can be modified in order to group the lifelines that
are connected by messages in areas. For every message that is contained in such an area,
the edge weight in the temporary graph is increased. With that, such messages will be kept
shorter than others. This, in turn, tends to group the lifelines that are connected to these
messages. Total edge length, however, may be increased by this approach. Figure 4.6 shows

35

4. Theory and Concepts

Figure 4.7. Two areas that are conflicting with respect to message grouping. It is not possible to
minimize the length of the messages in both areas.

an example of this scenario; in Figure 4.6a the lifeline sorter does not consider the presence of
the area, Figure 4.6b shows the result when the group according to areas option is activated.

The grouping of messages in different areas may be contradicting each other in matters
of edge length minimization. Figure 4.7 shows an example of such a conflicting situation.
Lifeline0 is placed in the middle of an area that contains messages of three lifelines because of
their internal connections. The other area’s message, however, is connected to that central
lifeline and a lifeline outside of the first area. The two areas then are contradicting with
respect to lifeline sorting. Nevertheless, the lifeline sorting algorithm aims for the optimal
solution with respect to these areas. Since message’s weights are increased for the messages
contained in these areas, the algorithm will prefer to shorten them but it will not get stuck
into their contradicting priorities.

4.5.5 Interactive Lifeline Sorting

In addition to the lifeline sorting algorithms described so far, a very basic lifeline sorting
method was implemented. Since users may want to handle lifeline sorting themselves, the
interactive lifeline sorter was integrated into the sequence diagram layout algorithm. This
lifeline sorter simply keeps the order that was passed from the editor. The layout algorithm,
nevertheless, puts the right spacing between the lifelines and cares for the right vertical
position.

The next section will give an overview over the problems of message label placement,
especially with respect to very long labels that may cause overlappings in some cases. Several
approaches for this problem are discussed and justified. In addition to that, the alignment of
the labels is discussed since there are several approaches that have different advantages.

36

4.6. Label Placement

4.6 Label Placement

4.6.1 Theoretical Concepts

Label placement is a well-known problem in automatic graph layout. It is a problem that
is generally difficult to solve since it is often regarded as the last step of the layout process,
when everything else is already aligned and little space is left for the labels. Label placement
thus often has to be done with little space or by modifying the already calculated coordinates
from earlier steps.

Instead of reducing label placement to a mere postprocessing step, it may also be directly
integrated into the layout algorithm. Carstens [Car12] already showed that this is possible
by integrating label placement into the KLay Layered algorithm of the KIELER framework.
Klau and Mutzel [KM99] and Binucci et al. [BDLN02] integrated label placement into the
compaction phase of orthogonal layout algorithms.

In sequence diagrams, message labels do not introduce any difficult problems. Generally,
providing enough space between the messages is straightforward and the visual association
between labeled objects and their labels is simple since messages do not cross each other. This
may be voided, however, if the spacing is chosen too big, since message labels may be confused
if they are placed closer towards another message than to their message. Sequence diagrams
do not contain vertical messages either, which are difficult in terms of label placement because
labels are oriented horizontally in general. Only wrapped labels may need more vertical
space. The most difficult problems are thus avoided in sequence diagrams.

Message labels that are very long may cause some trouble, though. If a label exceeds
the distance between the two lifelines connected by its message, the label does not fit into
the space between the lifelines without overlapping at least one of them. Since messages do
not share the same vertical position if connected to the same lifeline, the labels of different
messages do not overlap except for really long labels that span more than two times the
length of the message. Slightly exceeding the length of the message would not have too big
of an impact on the readability of the whole diagram. The crossing of the lifeline and the
message’s label, however, reduces the readability of the label itself.

There are three major approaches to that problem that will be explained and discussed in
the following:

1. Enlarging the lifeline spacing in order to have enough space for the labels.

2. Changing the order of lifelines to place lifelines further apart that are connected by
messages with very long labels.

3. Wrapping message labels at convenient positions to be short enough to fit between the
connected lifelines.

When talking about the modification of lifeline spacing, it is not clear which spacing
should be modified when messages connect non-neighbored lifelines; only one of the affected
spacings or the spacing of all the affected lifelines could be modified in order to balance the

37

4. Theory and Concepts

spacing as well as possible. Modifying all the spacings, however, may lead to conflicting
situations when spacings are affected by different long message labels: the right spacing
in terms of homogeneous distribution of lifelines would then be difficult to determine. In
addition, such a distribution would have to be a new step in the layout process. Modifying
only one spacing simply needs to check for excess length message labels when placing their
source lifelines, which is much easier and faster. For neighbored source and target lifelines,
which is the usual case, however, there is no difference between these approaches.

When modifying the lifeline sorting, excess length messages would span several lifelines,
if possible. While the label would cross the lifelines that are located between the source and
the target lifeline, it would not exceed the message length anymore and therefore, crossing
other message’s labels would be avoided. The long message avoiding lifeline sorter described
in Section 4.4 can implement this approach with some modifications: for each message the
priority is decreased if the message label exceeds the space available between the source
and target lifeline. However, it is not always possible to find an order of the lifelines that
respects these constraints. This is particularly true if several messages have excess length.
Additionally, such an intervention into the lifeline sorting process would possibly contradict
other aesthetic criteria.

Wrapping labels at convenient positions is another approach to improve label placement.
The problem is difficult to solve since contradicting goals are involved. The main goal is
to save horizontal space by wrapping long labels at appropriate locations. This, however,
increases the vertical size of the label.

4.6.2 Implementation

Labels are placed automatically by the Papyrus framework if they were not previously placed
manually by the user. The standard way of placing labels in Papyrus is at the horizontal center
of the corresponding message. The vertical position relative to the message is determined by
the direction of the message: labels are placed on the left side of the message with regard to
the message’s direction. More precisely, labels are drawn above the message if the message
points from left to right and below otherwise. Centered labels may overlap a lifeline if their
message spans an even number of lifelines (see Figure 4.8).

However, labels that were once moved by hand by the user are not placed properly
anymore by Papyrus. Instead, their placement relative to the message is preserved, which
yields strange results particularly if the order of the lifelines is changed by the algorithm.
Therefore, the label placement of the Papyrus framework was overridden by this layout
algorithm. Considering the thoughts of Section 4.6.1, the first of the two options was
implemented: Lifeline spacing is modified in a way that the whole label of each message fits
into the space between the source lifeline and the neighbored lifeline in the corresponding
direction. This may result in the drawing becoming a little too wide in case of very long
message labels that span more than the typical lifeline spacing; however, the readability of
the labels is improved a lot by this approach.

In order to serve different preferences, three different horizontal label placement strategies

38

4.6. Label Placement

Figure 4.8. Label placement as implemented in the Papyrus framework originally. Labels are placed
at the horizontal center of the message regardless of the length of the message. Labels may overlap
lifelines if their message spans an even number of lifelines (see Message3).

were implemented and are available through the layout options:

1. Center (Figure 4.8): this is the way that Papyrus places the labels when they were not
touched manually. The labels are horizontally centered in relation to the message. This
may lead to overlapping labels and lifelines if a message spans more than one lifeline.

2. Source (Figure 4.9): labels are placed near to their source lifeline. This is a more intuitive
way since it highlights the origin of the message, thus leading the eye through the diagram
according to the control flow that is described by the diagram.

3. First center (Figure 4.10): labels are placed central in the gap between the source lifeline
and its direct neighbor. With that, the drawback of overlapping labels and lifelines can be
avoided while keeping the advantages of optically pleasing, centered message labels.

Vertical label placement is fixed. As originally implemented in the Papyrus framework, labels
are drawn above the message if the message points from left to right and below otherwise.

As already mentioned in Section 4.6.1, wrapping labels could save horizontal space at the
expense of vertical space. However, since it is not possible to apply changes of message label
text to the Papyrus sequence diagram editor, no such feature was implemented in the layout
algorithm.

39

4. Theory and Concepts

Figure 4.9. Label placement as tail labels. Labels are placed near the source lifeline. The source lifeline
of a message is highlighted thereby while the target lifeline is highlighted by the arrow head.

Figure 4.10. Label placement at the center of the first gap between the lifelines. The source lifeline is
highlighted for long messages. However, the placement yields a more harmonic result than the tail
labels since labels are centered regardless of their direction.

40

4.7. Putting things together

4.7 Putting things together

This section finally describes how the presented concepts are combined to build the sequence
diagram layout algorithm developed in this thesis. An overview of the different phases and
data structures is given in Figure 4.11. In the following, the phases that are passed by the
layout algorithm are described consecutively.

4.7.1 Import Graph

At first, the graph has to be imported and the special, sequence diagram specific temporal
graph has to be created. All the nodes and edges of the KGraph are transfered into lifelines,
messages, areas, activations and comments.

4.7.2 Create Layered Graph

After that, another temporal graph is build for the layering of the messages. Namely, an
LGraph, which is in use in the KIELER framework for the layered graph layout, is build
according to the relative order of the messages at each lifeline.

4.7.3 Allocate Space

In the LGraph structure, dummy nodes are inserted a several positions. This clears the space
for several objects that are not covered by the lifelines and messages relations. The headers of
lifelines, which are created by a create message and therefore do not have their header at the
top of the diagram, should not be crossed by messages for example. Comments, too, need
some space that is not crossed by any message.

4.7.4 Break Cycles

With these preconditions, the layered graph is then scanned for cycles, which may occur in
rare cases when asynchronous messages are involved (an example is given in Figure 5.6).
Every cycle that is detected is broken by reversing as few messages as possible, producing a
cycle-free graph.

4.7.5 Assign Layers

With a cycle-free graph, the layerer is able to find a layering of the nodes such that all relative
orders of the diagram are preserved. Nevertheless, several messages may share the same
vertical layer after the layering process.

41

4. Theory and Concepts

Figure 4.11. The different phases of the layout algorithm. Only the part that is independent of the
concrete editor is shown. Three different graph structures are involved: the KGraph, the SGraph and the
LGraph.

42

4.7. Putting things together

4.7.6 Sort Lifelines

The assignment of the message layers is the precondition for the lifeline sorting in general.
Some of the lifeline sorting strategies, such as the layer-based lifeline sorter, rely on the results
of the layering. The lifeline sorting is done with the user-chosen strategy.

4.7.7 Calculate Coordinates

With all the preliminary work done, the main part of the layout, namely the calculation of the
actual coordinates for the different objects, can be started. These coordinates are calculated in
several steps again, which are described in the following.

� Calculate message y-coordinates: from the layering of the messages, the actual vertical
coordinates are calculated. In some cases, the layering has to be adapted if the lifeline
sorting produced overlapping messages in the same layer.

� Arrange connected comments: those comments that are connected to a lifeline or another
element have to be placed in the space between the messages and lifelines. They are placed
relative to the nearest message.

� Calculate lifeline positions: lifelines are placed one after another according to the user-defined
spacing and dependent on the with of comments and labels that are located between them.
In addition to that, the horizontal positions of the connected messages are set here.

� Calculate position for unconnected comments: comments that are not connected to any object
in the diagram are placed on the right side of the diagram.

� Calculate positions for areas: the positioning of the areas is calculated according to the
position of the messages and lifelines that are contained in the area.

4.7.8 Apply Layout Coordinates

In a last step, the calculated coordinates are applied to the diagram. This is done by applying
the coordinates of every object to the layout of the corresponding element in the KGraph. Label
placement is done in this step too since it does not need any prior calculations or adjustments
to the other elements.

After the explanation of the structure and the order of the different steps in the layout
process in this chapter, Chapter 5 looks a little deeper. The implementation of the single
algorithms is explained in detail and the data structures are introduced more precisely.

43

Chapter 5

Implementation

This chapter deals with the technical aspects of the algorithms described in the previous
chapter. First, a look at the data structures is taken in Section 5.1 before Section 5.2 introduces
the available layout options. Section 5.3 then shows how the actual layout algorithm is
implemented. After that, Section 5.4 describes the integration of the algorithm into the
Papyrus framework.

5.1 Data Structures

To be able to do automatic graph layout, a representation of graphs is necessary. Even
though sequence diagram layout is a special case of graph layout, it needs a specialized graph
representation. Several data structures are used in the algorithm to represent the different
graphs and graph-like structures.

5.1.1 KGraph

The KGraph is the main graph representation of KIELER. Every diagram that is laid out is
passed to the layout algorithm in this format. To be able to handle all kinds of graphs and
graph-like structures, the KGraph is a very general purpose graph format. Special requirements
of the different graph structures can be satisfied with the properties that can be attached to
every element of the KGraph. A class diagram of the KGraph format is provided in Figure 5.1.
There are four main types defined in the KGraph:

� KNodes are used for every element that has a shape except for labels, which are covered
below.

� KPorts can be attached to KNodes. They are used to represent dedicated connection points
for the connected edges.

� KEdges are used for everything that connects different elements of a graph. They connect
different KPorts or KNodes and may have bend points.

� KLabels may be attached to every one of the above elements. Several types of labels are
supported (head labels, tail labels, center labels). Several labels may be attached to a single
element.

45

5. Implementation

Figure 5.1. A class diagram of the KGraph structure. The KGraph can be divided into the actual graph
shown here and the graph data that stores properties of the graph elements, shown in Figure 5.2

Each of these elements implements the interface KGraphElement which enables the elements to
store different kinds of properties. Each of the properties has a specific data. A class diagram
of the classes involved is shown in Figure 5.2.

KNodes may be nested in the KGraph format, enabling hierarchical graph structures (different
graph-like structures that are mapped to the KGraph using nested KNodes for various reasons).
The parent KNode can be accessed from each node as well as the list of its children.

A list of incoming KEdges is maintained for each KNode as well as a list of outgoing KEdges.
Another way of accessing the connections of a KNode is through the list of attached ports. Each
of the ports stores the owning node and has a list of the connected edges. The KEdges, in turn,
store their source and target nodes as well as their source and target ports, if applicable.

46

5.1. Data Structures

Figure 5.2. A class diagram of the properties structure. Several properties can be attached to every
instance of a class that implements the IPropertyHolder interface.

5.1.2 SGraph

The KGraph structure is a very general purpose graph structure. However, it is not very
suitable for sequence diagrams since they cannot be easily mapped to graphs as explained in
Section 2.2. Lifelines can be mapped to nodes and messages can be mapped to edges, but
areas such as interactions cannot be mapped easily since they may partly overlap lifelines.
Activations may be mapped to sub nodes but this is not very elegant either.

To be able to work with sequence diagrams, a new format has to be introduced. The
SGraph structure (see Figure 5.3) is build to meet the requirements of sequence diagrams.
It is the sequence diagram representation that is used throughout the layout process. The
SGraph consists of three kinds of elements: SLifelines represent lifelines, SMessages represent
messages, and SComments are used for comments and constraints. Each of these subclasses the
SGraphElement, which enables the elements to store the same kind of properties as the ones
available for KGraphElements.

The SGraph stores a list of the contained SLifelines as well as a list of the SComments that
are part of the diagram. Each of the SLifelines maintains a list of connected SMessages and a
list of the SComments that are connected to that lifeline. The list of messages can be filtered for
incoming or outgoing messages. SMessages store their source and target lifelines as well as a
list of comments that are attached to that message.

All the other elements of a sequence diagram are handled through the use of properties
attached to the various elements. There are data structures for activations / execution
specifications (SequenceExecution) and interactions / combined fragments (SequenceArea) too,

47

5. Implementation

Figure 5.3. A class diagram of the SGraph structure. The SGraph mainly consists of lifelines, messages
and comments.

but they are not part of the SGraph structure. This part of the design was chosen because of the
plug-in structure of the related projects which is explained in Section 5.4. SequenceExecution
s and SequenceAreas are already created when the KGraph is extracted from the diagram
information.

5.1.3 LGraph

The LGraph is a data structure from the KLay Layered algorithm of the KIELER framework that
is dedicated to layered graphs. Although a sequence diagram is not a layered graph, the
concept of layers is applied to the messages in this thesis in order to find the best vertical
positions for the messages. The LGraph is composed of the following elements (see Figure 5.4):

� Layers are collections of nodes that should be drawn in the same horizontal or vertical
position.

� LNodes represent nodes in the LGraph.

� LPorts represent ports of a LNode in the LGraph.

� LLabels represent labels that can be attached to nodes, ports, and edges.

� LEdges represent the edges in the LGraph.

All of these elements inherit the possibility to store properties from the abstract class
LGraphElement. Since Layers are collections of nodes, they just store the layer position and
a list of LNodes contained in it. If an LNode is not contained in any layer it is stored in the
LGraph’s list of layerlessNodes. If it is assigned to a layer, it stores the owning layer in its field
owner. In difference to the KGraph, the LNode does not store any data regarding the connected
edges. LEdges, LPorts, and LNodes store a possibly empty list of attached LLabels.

48

5.2. User Defined Layout

Figure 5.4. A class diagram of the LGraph structure.

5.2 User Defined Layout

With KIML, the KIELER framework provides an infrastructure that provides several services for
diagram layout. One of its features is the layout view. It provides different layout options
specific to the diagram or element that is currently displayed or selected. These options can
be numeric values, booleans, or an enumeration (string values are valid too, but not in use so
far). The options that are chosen by the user for a specific element of the diagram are passed
to the corresponding KNode when the layout process is triggered. The layout algorithm then
calculates a layout according to these options. The following layout options are available for
sequence diagrams:

� Border spacing is a numeric option that is used to resize the margin around the diagram.

� Lifeline spacing is a numeric option that determines the horizontal spacing between two
neighboring lifelines.

� Message spacing is a numeric option that determines the minimal vertical spacing between
two neighboring messages.

� Lifeline sorting strategy is an enumeration of possible strategies for the sorting of the lifelines
(see Section 4.5).

� Group according to areas is a boolean option that is only applicable when the short message
lifeline sorter is chosen as the lifeline sorting strategy (see Section 4.5.4). It determines if
messages contained in areas should be given a higher priority for the minimization of
the message length.

� Label alignment is an enumeration of different label alignment strategies (see Section 4.6).

49

5. Implementation

KIML

Layout

Manager

(a)

(b) (c)

Layout

Provider

Graph

Importer

Cycle

Breaker
Layerer

Lifeline

Sorter

(d)

(e)

(f)

(g)
(h) (i) (j)

(k)

(l)

Figure 5.5. Overview of the main components that are involved in the layout process.

Layout options are usually provided for every shaped element in the diagram. This is
very useful for graph like diagrams in order to have different styles of layout for different
hierarchical nodes. For sequence diagrams, however, this is not very applicable since they
do not contain hierarchical structures. Additionally, different layout options for different
elements in the diagram may be confusing for the user. In this algorithm, the layout options
are disabled for the surrounding PackageEditPart that is not part of the actual sequence
diagram.

5.3 The Algorithm

The sequence diagram layout algorithm is divided into several phases. These phases were
already introduced in Section 4.7. Figure 5.5 shows an overview of the invocation of the
different parts. KIML requests the layout manager to convert the diagram to be laid out into
KIELER’s general purpose graph format KGraph (a). The layout manager then processes all the
elements and returns a KGraph representation (b). In the next step, KIML passes this KGraph to
the layout provider that calculates a layout (c).

The layout provider splits its work into several steps that are done by different classes.
First, the graph importer is activated to transform the KGraph into the SGraph (d) which is
returned to the layout provider (e). Another temporary graph format, the LGraph, is created
for the layering of the messages (f) and is returned to the layout provider as well (g). After
allocating space for various objects internally, the layout provider invokes the cycle breaker to
break the cycles in the LGraph (h). The NetworkSimplexLayerer of the KLay Layered algorithm

50

5.3. The Algorithm

then calculates a layering for the nodes in the LGraph (i). Finally, the layout provider chooses
a lifeline sorting strategy and invokes the corresponding lifeline sorter (j) that returns the
horizontal order of the lifelines (k). Before returning to KIML (l), the layout provider internally
calculates the final coordinates for all the elements of the diagram and stores them in the
KGraph.

This section describes the actual implementation of the layout algorithm and therefore does
not cover the interaction between KIML and the layout manager (see Section 5.4 for a descrip-
tion of that). Instead, this section focuses on the interaction between KIML, the Layout Provider,
and its utility classes. An overview over the steps of the SequenceDiagramLayoutProvider,
which is the main class of the layout algorithm, is given in the following:

� Import SGraph (Section 5.3.1)

� Create lifelines

� Create messages and comments

� Handle empty areas

� Create LGraph (Section 5.3.2)

� Add dummy nodes to allocate space (Section 5.3.3)

� Add dummy nodes for combined fragments

� Add dummy nodes for comments

� Add dummy nodes for empty areas

� Break cycles in LGraph (Section 5.3.4)

� Depth first search

� Split nodes

� Calculate layering of LGraph (Section 5.3.5)

� Sort lifelines (Section 5.3.6)

� Interactive lifeline sorting

� Layer-based lifeline sorting

� Equal distribution lifeline sorting

� Calculate coordinates (Section 5.3.7)

� Calculate message coordinates

� Calculate other coordinates

� Apply layout (Section 5.3.8)

Each of these steps is described in detail in the remainder of this section.

51

5. Implementation

5.3.1 Import Sequence Diagram Structure

The sequence diagram is passed to the algorithm in KIELER’s KGraph format. This format is a
general purpose graph format that is not specialized on sequence diagrams at all. Therefore,
the data has to be extracted from that KGraph into a special sequence diagram format to
be able to work with it in a proper way. The SGraph proposed in Section 5.1.2 matches the
requirements of the layout algorithm since it is built for that purpose.

The SGraphImporter builds a new SGraph from a given sequence diagram in the KGraph

format. It maintains two hash maps for mapping KNodes to SLifelines as well as for mapping
KEdges to SMessages. In addition to that, it stores a list of the areas (such as interactions and
combined fragments) that belong to the sequence diagram.

First, the importer walks through the top-level elements and creates a SLifeline object
for each of them which is a lifeline. For each of the created lifelines, the original name and
the layout information is copied. The originating KNode is stored too and the node-lifeline
mapping is stored in the corresponding hash map. Additionally, the SLifeline stores a list of
related executions and whether it has an attached destruction event.

In a next step, the top-level elements are traversed again. This time, SMessages are created
for every outgoing KEdge and for every KEdge that comes from something else than a lifeline
(found messages, messages from the surrounding interaction). If an edge came from something
else than a lifeline, it would not be reached through the other lifelines and, therefore, no
SMessage would be created for that KEdge. If the current KNode is no lifeline, it is assumed to
be a comment, constraint or a time observation. In this case, an SComment object is created and
initialized.

After iterating over the lifelines and messages, the algorithm checks for empty areas.
Empty areas are difficult to handle since they do not contain any information about their
neighbored lifelines and messages. Therefore, the neighboring elements have to be detected
in advance by comparing their positions with the position of the empty area. More precisely,
the handleEmptyArea method searches for the message just below the area and stores this
message in the nextMessage field of the area. With that, the space required for the empty area
can be allocated as described in Section 5.3.3. In the following, the creation of SMessages and
SComments is explained in detail.

The createMessages and createIncomingMessages methods only differ very little since they
basically do the same thing - they create SMessage objects from KEdges. Similar to that, the
createIncomingMessages method scans incoming instead of outgoing messages and skips all
the messages that have a lifeline as source. This has to be done to create SMessage objects for
those messages that do not have a source lifeline (messages from the surrounding interaction
or found messages).

For each message, the SLifelines corresponding to the connected KNodes are looked up in
the nodeMap. If the source or the target is not a lifeline, a dummy lifeline is created before the
SMessage object is created. The original layout information and the originating KEdge is stored
before the length of the widest label is determined and stored, too.

Since the SequenceExecution objects are already built in the previous step, they contain

52

5.3. The Algorithm

references to the KEdge objects instead of the SMessage objects. This is corrected by replacing
each of them with the corresponding SMessage.

In order not to work with the String-valued message types that are provided by the
Papyrus framework, the MESSAGE_TYPE property is used within the algorithm. It is an enu-
meration of seven different message types: ASYNCHRONOUS, SYNCHRONOUS, REPLY, CREATE, DELETE,
LOST, and FOUND. These properties are set on the messages according to the String values
provided by Papyrus.

Next, the message’s position is compared to the positions of all areas. If the message
fits completely into the bounding box of an area, it is added to the area’s list of contained
messages. With that, all the messages that are contained in an area can be directly accessed
through the area.

We now turn to the creation of the SComment objects. Comments, constraints, and time
observations are handled equally in general. Therefore, we will refer to all of them as
comments in the following. Their placement is determined by their connections. This,
however, is not as easy as it seems. Comments may be attached to lifelines or execution
specifications as well as to messages. It is generally desirable to place comments near to the
object that they are attached to.

The createComment method first creates the SComment object and copies all the stored
properties of the KNode to it. The originating KNode is stored along with its type (comment,
constraint, or time observation) and the element (lifeline, message, or execution specification)
that the comment is attached to. A reference to the connecting KEdge is stored as well, in
order to be able to modify its position later. In addition to the ATTACHED_ELEMENT property, a
list of elements called ATTACHED_TO is kept. The list stores those elements in the diagram that
are closest to the comment. This information is necessary in order to find the best position in
the diagram to place the comment at. The layout information of the KNode is copied to the
comment after that.

The last step would be a special handling for time observations since they are not
connected to messages or lifelines, but to the send or receive event of a message. They have
to be placed near to that event. This, however, is omitted here because of a limitation in
the Papyrus framework: there is no way to get the connections of the time observations
programmatically. Thus, no placement can be computed.

5.3.2 Layering Messages

In order to divide the messages into several vertical layers, an LGraph is created. This layered
graph is the graph format that is used with KIELER’s KLay Layered layout algorithm. The
concept of this was already shown in Figure 4.3: for every message in the diagram, an LNode

is created and LEdges connect the LNodes at each neighbored pair of messages at every lifeline,
in order to preserve the relative order of the messages at the lifeline.

At first, an LNode is created for every message in the diagram by iterating over the outgoing
messages of every lifeline. The incoming messages have to be scanned as well, to create
LNodes for all found messages. For the mapping of LNodes to their corresponding SMessages,

53

5. Implementation

Figure 5.6. Cyclic dependencies of two asynchronous messages that introduce cycles in the LGraph.

the origin property of the LNode stores a reference to the SMessage, and the message has a
property LAYERED_NODE that references the node. Finally, the LNode has to be added to the list
of layerless nodes which are the nodes that have not been assigned a layer yet.

Thereafter, the LNodes that have just been created are connected by LEdges. To do so, every
pair of vertically neighbored messages at every lifeline is found and an LEdge is created that
points from the upper message’s LNode the the lower message’s LNode. Since the LGraph is
a graph format that uses ports, source and target LPorts have to be created for each of the
LEdges.

The LEdge stores a property BELONGS_TO_LIFELINE that stores a reference to the SLifeline

object that the LEdge belongs to. This property becomes necessary when there are cycles in
the LGraph. These cycles occur when a set of messages have cyclic dependencies as illustrated
in Figure 5.6. This can only be handled by drawing at least one message at an angle. In this
case, the corresponding LNode has to be split into two LNodes that will be placed in different
layers.

5.3.3 Allocating Space for Various Objects

Apart from lifelines and messages, some other objects in sequence diagrams need additional
space. Comments and constraints may be placed between the lifelines and messages. The
headers of combined fragments should not overlap messages either. In addition to that, empty
areas may occur in the diagram. These areas do not have any contained message, which
prevents them from being considered in the earlier steps.

As the overlapping of any objects is undesirable, space for these objects has to be allocated.
This is done in an early step by inserting dummy nodes into the layered graph. These
dummy nodes reserve a certain amount of space between two vertically neighbored messages,
enabling the mentioned objects to fit into that space.

Depending on the parameter beforeNode, the dummy node is inserted before or after the
given LNode. In case of placing the dummy before the given LNode, all the incoming LEdges
are stored and their target is reset to the dummy node’s LPort for incoming edges. The

54

5.3. The Algorithm

additional LEdge is then set to connect the dummy node with the given LNode. If the dummy
is placed after the given node, the procedure is executed with outgoing edges and source
ports, respectively. Finally, the dummy node is added to the LGraph.

The first object that is considered for the allocation of additional space is the combined
fragment. Its header does not contain any messages and therefore the additional space has
to be allocated here. Combined fragments contain different regions that are represented by
subAreas. Therefore, the list of areas is scanned for those that have subAreas to find all the
combined fragments. The uppermost contained message of each of them is determined by
simply comparing their vertical positions. A dummy node is then inserted above the node
that represents this message.

A comment may be attached to different kinds of elements in the diagram. During the
import of the SGraph every comment object is assigned an SMessage that is the nearest to
the comment’s position. In order to place the comment above this message, dummy nodes
are inserted before the corresponding LNode in the layered graph. First, the list of attached
elements is scanned for an SMessage. Next, the number of dummies is determined from the
height of the comment, taking into account the message spacing. The dummies are then
created one after another. At last, the comment stores the nearest SMessage in a separate field
and the message adds the comment object to its list of connected comments.

Similar to comments, empty areas need some space. Since empty areas do not contain any
message that would allow the area to be placed around it, this space must be allocated. The
list of areas is filtered for those areas that do not contain any messages. Each of them stores
a nextMessage, which holds a reference to the message that is closest below the area. Two
dummy nodes are then created before (above) the corresponding LNode in the layered graph.

5.3.4 Breaking Cycles

If there are cycles in the layered graph, which occurs when asynchronous messages have
cyclic dependencies in the diagram (see Figure 5.6), these cycles have to be broken in order
to find a layering of the nodes. Cycles are usually broken by inverting at least one edge in
the graph. If there is more than one cycle, a minimal set of edges to be inverted is computed
which makes the graph acyclic again.

In the special case of this algorithm, the procedure was adapted a little. Instead of
inverting edges, a minimal set of nodes is split into two pieces each, one for each of the
lifelines that the corresponding message connects. With that, the message may run diagonally
and span more than one layer, hence breaking the cyclic dependencies.

A depth-first-search (dfs) is performed in order to find the nodes that have to be split.
Within the dfs, nodes can be in one of three states:

� 0 if the node was not visited yet,

� 1 if the node was visited before, but not in the current path, and

� 2 if the node was visited in the current path.

55

5. Implementation

The node.id field is used to store the current state of the node. First, all states are set to zero.
The dfs is then performed for every node that was not visited yet. This is necessary to handle
graphs with different connected components. Within the dfs, some nodes may be added to
the list of nodes that have to be split which is done in the last step.

The dfs recursively searches for nodes that have already been visited in the current path.
If a cycle is found, the algorithm searches for the one node in the cycle with the uppermost
position in the diagram. This node is then added to the set of nodes that have to be split in
the last step. If the dfs does not find a node that was already visited, it just marks the current
node visited and recursively searches its successor nodes before resetting the node.id value.

The addUppermostNode method searches for the node in the current path with the upper-
most position in the diagram. The one with the uppermost position is added to the set of
nodes that have to be split in the final step.

Finally, every node to be split is split into two nodes, one for each of the connected lifelines.
The new LNode is created and added to the list of nodes of the layered graph. The source and
the target lifeline of the corresponding SMessage are looked up before the list of connected
edges is traversed. Each of those that belong to the target lifeline of the corresponding
SMessage is reassigned the new node as source or target. Afterwards, the BELONGS_TO_LIFELINE

property is set for both of the nodes, which marks them as split nodes for subsequent steps
of the algorithm.

5.3.5 Layering the Messages

With the cycles broken, the layering can be calculated. There are several common implemen-
tations for node layering available. This algorithm uses one of the KLay Layered algorithms
to find a layering of the messages. More precisely, the Network Simplex Layerer is chosen.
With that, each non-split message is assigned a vertical layer. Each part of the split nodes is
assigned a different layer since the nodes are handled independently.

5.3.6 Sorting the Lifelines

Rearranging the horizontal order of the lifelines is the only step in sequence diagram layout
where the layout algorithm has a real degree of freedom to do optimizations. Therefore, this
thesis provides different algorithms for this step that are described in the following.

Interactive lifeline sorting. The interactive lifeline sorting strategy simply keeps the order of
the lifelines as they were before the layout process. The lifelines are sorted by their horizontal
position.

Layer-based lifeline sorting. As a brand new approach to lifeline sorting, layer-based lifeline
sorting sorts the lifelines according to the layer of their outgoing messages. The theoretical
concepts of this approach are described in Section 4.5.1. The basic algorithm, too, is already
introduced in Listing 4.1.

56

5.3. The Algorithm

Long message avoiding lifeline sorting. The long message avoiding lifeline sorting strategy
that is described in Section 4.5.2 follows an approach of McAllister for the Linear Arrangement
Problem that is equivalent to the lifeline sorting problem with respect to message-lifeline
crossings [McA99]. The approach is divided into two phases. First, the leftmost lifeline is
calculated before each of the following lifelines is calculated iteratively. As an improvement
over the original approach, this algorithm has an optional feature that respects the presence
of areas in the diagram. Those messages that are contained in an area are given a higher
priority to be drawn as short as possible.

The algorithm uses yet another temporary graph format that is very lightweight and
specialized for the purpose of the algorithm. The graph simply consists of a list of EDLSNodes.
These nodes are named according to the original name of the approach, equal distribution
lifeline sorting. For each lifeline, one such EDLSNode is created. Each of these nodes stores
a hash map of the connected nodes and the weight of the connecting edge. In addition to
that, it stores the tl value as described in Section 4.5.2. It holds the weighted sum of edges
connected to nodes that were already placed and is used to compute the next node to be
placed. The method incrementNeighborsTL() updates the tl value of every neighbored node;
it is called whenever a node was chosen to be the next one to be placed.

The EDLSNodes are created and initialized first. A HashBiMap is initialized to be able to
map these nodes to their corresponding lifelines. For each of the messages that connect two
lifelines, the weight of the corresponding edge is increased by one. If the optional feature of
area-based lifeline sorting is chosen, the weight of each message that is contained in an area is
doubled. Messages that connect a lifeline with the surrounding interaction are considered
with an increasing or decreasing tl value depending on the direction of the message.

The actual algorithm starts by calculating the first node to be placed. Two strategies
were implemented for that purpose: The degree-based strategy as proposed originally by
McAllister and a layer-based strategy that places the lifeline with the uppermost outgoing
message first. Both strategies are part of the algorithm; however, only the latter is used since
it is more specific to sequence diagrams.

Next, the iterative search for the next nodes to be placed is started. This step chooses the
node with the smallest selection factor which is calculated as proposed in Section 4.5.2. If the
selection factor is equal for two nodes, the one with the smaller tl value is chosen. As the last
step, the order of the nodes is traversed and the corresponding lifelines are returned in that
order.

5.3.7 Calculating Coordinates

Message coordinates are calculated according to the messages’ layers. For each layer of LNodes,
the corresponding messages should be drawn at the same vertical coordinates since their
vertical order is not prescribed. However, it is not always possible to draw these messages at
the same vertical position. As shown in Figure 5.7, a horizontal overlapping of two messages
in the same layer yields a conflict. Therefore, every pair of messages in the same layer has to
be checked for horizontal overlapping before fixing their vertical coordinates.

57

5. Implementation

Figure 5.7. Conflicting messages: Both of the messages are placed in the same layer at first, since no
relative order can be determined. In spite of this, the messages cannot be placed at the same vertical
position with the given order of the lifelines.

Overlapping can only occur if at least one of the messages spans several lifelines - more
precisely, if the position of the source lifeline and the target lifeline of a message differs by
more than one in the list of lifelines. If both messages connect neighbored lifelines, they
could only share the same horizontal space if they connected the same lifelines. This, in turn,
already prevents the messages from being in the same layer. Therefore, only messages that
span several lifelines are checked for overlapping horizontal sections.

If such an overlapping is detected, which is rare for sequence diagrams, one of the
messages has to be moved into another layer. Since moving the message to the next layer may
introduce new conflicts, a new layer is inserted after the current layer. Messages store if their
vertical position is already fixed. If the conflicting message’s position was already set, the
current message has to be moved to the next layer. If not, and the other message does not
span several lifelines, it is necessary to move the current message too since the other message
is not checked for overlappings. The other message then has to be placed in the current layer.
If the other message spans several lifelines itself, nothing is done in the current iteration since
the other message will detect the overlapping in its own iteration (and the current message
will already be fixed to the current layer). With that, as many messages as possible are placed
in the upper one of the two layers.

After calculating the vertical position of the messages, the other elements can be positioned.
At first, comment objects are arranged according to their connection to a lifeline or message.
For each of the comment objects in the diagram, the algorithm checks if it is connected to a
lifeline or to a message. As described in Section 5.3.1, every comment object that is connected
to a lifeline stores the next message too. The comment is placed above that message. To find
the best horizontal positioning, the comment’s attached lifeline (if existing) is compared to
the source and the target of the message. The comment will be placed right of this lifeline

58

5.3. The Algorithm

Figure 5.8. A long label at a create message may overlap the lifeline’s header if the lifeline was not
shifted to the right.

if possible. If the lifeline already is the rightmost lifeline in the range of the message, the
comment will be drawn left of that lifeline. The actual coordinates are not set in this step
since the lifelines’ coordinates are not fixed yet, which is done in the next step.

To calculate the lifelines’ coordinates, the relative positions of the comments have to be
known, since wide comments may increase the spacing between the neighboring lifelines.
Message labels may also increase the spacing when they are wider than the normal lifeline
spacing. At the beginning, the predefined lifeline spacing is assumed to be sufficient, before
checking for reasons to increase that spacing. The length of the message labels is checked first.
If a label does not fit into the space between the lifelines, the spacing is increased such that
the long label fits, along with a small margin. Create messages need to have a special handling
since they do not point at the lifeline but at its header, which decreases the available space for
the message label (see Figure 5.8).

Next, all the comments attached to the current lifeline are traversed. If one of them is
wider than the spacing calculated so far, the spacing is increased to the width of that comment.
Comments are not supposed to enter the space below the lifeline header for aesthetic reasons.

After checking the comments’ width, their exact position is determined. The horizontal
position is determined by the calculated lifeline spacing. Comments are centered between
the neighbored lifelines. The vertical placement may be a little more complicated. In general,
comments should be drawn above the message with the normal message spacing between
them. However, several comments may be attached to the same message. In that case, the
comments have to be drawn above each other. Since observations are closely related to a
certain message, they should be drawn nearer to the message if in doubt. The other comment
is drawn above that with the normal message spacing.

Finally, the current lifeline’s horizontal position is set to the position that is implied by the
spacing calculated in the last iteration. The vertical position is set to the uppermost position
in the diagram for all the lifelines. Different positions for lifelines that should be moved
because of an incoming create message are reset while applying the layout to the KGraph (see
Section 5.3.8).

After traversing all the lifelines of the diagram, its current width is calculated. Since

59

5. Implementation

(a) Ambiguous drawing of two hierarchical areas. (b) The ambiguity is resolved by a small margin
that is attached to the outer area.

Figure 5.9. Hierarchical areas: an offset is attached for the outer area(s).

unconnected comments can not be attached to any object, they have to be placed at a different
location. The place right of the last lifeline was chosen in this algorithm. The unconnected
comments are placed one below the other in this spot. To do this, the list of comments is
scanned for those comments that are not connected to any object. They are placed one below
the other. The same vertical spacing as for messages is applied to these comments.

In order to calculate the position of the different areas, the hierarchy of these areas has
to be determined first. If areas have any kind of hierarchy, they cannot be drawn with their
normal spacing in some cases (see Figure 5.9a). Instead, the outer one of the hierarchical areas
has to get a small margin (see Figure 5.9b) that resolves the ambiguity that may otherwise
occur. For each of the areas placed, the depth of the hierarchy is checked first. A small margin
is added for every additional level of hierarchy contained in the current area.

In a next step, the final coordinates of the area are calculated according to the contained
messages. The normal margin around the contained messages is set to half of the lifeline
spacing in horizontal matters and half of the message spacing in vertical matters. A potential
extra margin as described above is added to that margin.

As a last step, the peculiarities of combined fragments are handled by increasing the
size and placing the interaction operands. Combined fragments have a header that does not
contain any messages. The space required for that header was already allocated in an earlier
step as described in Section 5.3.3. The vertical position and size, thus, have to be adapted
accordingly. Since combined fragments are divided into several interaction operands, each of

60

5.3. The Algorithm

them has to be placed separately. They are placed one below the other within the surrounding
combined fragment.

5.3.8 Applying Layout Results Back to the Diagram

The last step of the layout process is to apply the calculated coordinates back to the diagram
elements. This is done by KIML once the layout provider has finished its work. KIML applies
the coordinates that it finds in the KGraph; therefore, all the coordinates in the SGraph have to
be transferred to the KGraph by the sequence diagram layout algorithm.

The elements in the SGraph are traversed again by iterating over the list of lifelines. For
each of them, the connected messages’ coordinates are copied first. The lifeline’s position
and height is modified in this step whenever a create or delete message points at the lifeline.
In addition to that, the vertical position and size of execution specifications attached to the
lifeline is set while iterating over the connected messages.

Message coordinates are given relative to the element that the message is connected to.
However, they are stored in a strange way by the Papyrus framework: in order to get the
desired results, the vertical coordinates must be scaled by a non-static number greater than
one. It took a long time to figure out that the number depends on the size of the connected
element and its parent element.

The position has to be scaled as if the element had the height of its parent. Namely, to
place the source or target of a message at the lower end of a lifeline, the height has to be
set to the height of the diagram instead of the height of the lifeline. Similarly, if a message
should be attached to the vertical center of an execution specification, half of the height of the
corresponding lifeline has to be used as the vertical position of the message.

In order to work around that behavior, a specific factor is calculated for each lifeline. Let
y be the vertical coordinate relative to the connected element. Figure 5.10 shows the scales
of different execution specifications and the lifelines. The source point of message (ii), for
example, is calculated as follows: First, the pixel-based coordinate y relative to the execution
specification is normalized to the range [0, 1] by dividing by the height of the execution
specification d.

ynorm =
y
d

Then that value is scaled to match the height of its parent element (Lifeline0) a.

yparent =
y
d
� a

This value can then be applied to the KEdge that represents the message. In order to simplify
the calculations, the equation is modified slightly.

yparent = y �
a
d

This procedure is executed analogical for every message. The factor f = a
[b,c,d] can be precal-

culated for each parent element. All these calculations are simplified for comprehensibility:
offsets and margins are ignored.

61

5. Implementation

a

b

c

d

i

ii

iii

iv

Figure 5.10. Illustration of the different scales involved into the calculation of the vertical coordinates of
messages. (a), (b), (c), and (d) show the heights of the lifelines and the different execution specifications.

Once the message coordinates of a lifeline are set, the horizontal coordinates of the
attached execution specifications have to be determined. Since execution specifications may
be attached to a lifeline in a hierarchical way too, this has to be checked for before finally
setting the horizontal coordinates. If this happens, the contained execution specification is
drawn with a displacement of half times their width to the right. If no message is attached to
an execution specification, a minimum height is used.

For each message that is connected to an execution specification, the vertical position of
the connection point is reset in order to work around the behavior described above. A factor
that is specific to the current execution specification is applied to the original coordinates.

As the last steps, the current lifeline’s position and height are copied to the corresponding
KNode and a destruction event is placed at the lower end of the lifeline, if such an event exists
for that lifeline.

The only thing left now is to copy the coordinates of the comment objects which are not
fixed to any lifeline or message. In addition to simply copying the stored coordinates to the
KGraph, the connections of the comments are routed in this step. Connections to lifelines
or their execution specifications that are located left or right of the comment are drawn
horizontally, connections to messages are drawn vertically.

Table 5.1 and Table 5.2 give an overview over the different properties used within the
algorithm. SequenceDiagramProperties are used in the actual layout algorithm for different
purposes. Their name and description are specified, as well as the phases that make use of it.

PapyrusProperties are used while importing the KGraph from the editor (see Section 5.4).
Their name and description is provided in Table 5.2.

62

5.3. The Algorithm

Table 5.1. Overview over the SequenceDiagramProperties: their name, description, and the phases that
rely on these properties are given.

Property Description Affected Phases

MESSAGE_TYPE The type of a message SGraph import, lifeline sort-
ing, coordinate calculation,
layout application

BELONGS_TO_LIFELINE The lifeline to which an element
of the SGraph belongs

LGraph import, cycle break-
ing, coordinate calculation,

LAYERED_NODE The node in the layered graph
that corresponds to a message

LGraph import, space alloca-
tion

DESTRUCTION_EVENT The node in the KGraph that
corresponds to the destruction
event of a lifeline

SGraph import, layout appli-
cation

COMMENT_CONNECTION The KEdge that connects the
comment to another element of
the diagram

SGraph import, layout appli-
cation

LIFELINE_HEADER The height of the lifeline’s
header

coordinate calculation, lay-
out application

LIFELINE_Y_POS The vertical position of lifelines coordinate calculation, lay-
out application

AREA_HEADER The height of the header of com-
bined fragments

coordinate calculation

TIME_OBSERVATION_WIDTH The width of time observations SGraph import
CONTAINMENT_OFFSET The offset between two nested

areas
coordinate calculation

LIFELINE_SPACING The horizontal space between
two neighbored lifelines which
may be set by the user

coordinate calculation, lay-
out application

MESSAGE_SPACING The vertical space between two
neighbored messages which may
be set by the user

space allocation, coordinate
calculation, layout applica-
tion

LABEL_ALIGNMENT The alignment of message labels
which may be set by the user

layout application

LIFELINE_SORTING The lifeline sorting strategy that
should be used in the algorithm
which may be set by the user

lifeline sorting

GROUP_AREAS If messages in areas should be
grouped together which may
be set by the user if the
SHORT_MESSAGES lifeline sorter is
chosen

lifeline sorting

63

5. Implementation

Table 5.2. Overview over the PapyrusProperties: their name and description is given.

Property Description

MESSAGE_TYPE The numeric identifier of a message
NODE_TYPE The numeric identifier of a node
EXECUTIONS The list of execution specifications of a lifeline
EXECUTION The SequenceExecution object that is attached to a KNode that rep-

resents an execution specification
AREAS The list of areas in the diagram
ATTACHED_TO The list of objects, a comment is attached to
ATTACHED_ELEMENT Indicates to what kind of element a comment is attached
DESTRUCTION The destruction event of a lifeline

5.4 Integration into Papyrus

In order to use the layout facilities of KIELER, the data from the editor has to be transformed
to match the KGraph structures of KIELER. There is an existing implementation for GMF-based
diagrams that had to be adapted to Papyrus and especially for sequence diagrams since they
are different to other graph-like diagrams. The MultiPartDiagramLayoutManager was designed
to import the KGraph for all kinds of Papyrus diagrams. A sequence diagram specific import
has to be executed whenever the importer detects that the current diagram is a sequence
diagram. The MultiPartDiagramLayoutManager had to be extended to match the peculiarities
of these diagrams since some sequence diagram specific elements cannot be identified by the
original version.

The main task of the adapted importer, however, is to annotate the KGraph elements. All
kinds of shaped elements are transformed into KNodes and every connection is transformed
into a KEdge. These elements have to be distinguished throughout the layout algorithm since
their semantics are differing largely. Some relations may be determined from the hierarchy of
the elements, but most of the context would be lost if the type of the different elements was
unknown. Therefore, the numeric type of each element is stored for the KNodes and KEdges.
The properties feature of the KGraph that was already introduced in Figure 5.2 is used to store
the NODE_TYPE and MESSAGE_TYPE.

Another task that is performed by the MultiPartDiagramLayoutManager is the initialization
of areas and execution specifications. These elements are handled different since their
relations can not be determined from the structure of the KGraph. The KNode of an area does
not have any information about the messages that are contained in the area. Similarly, the
messages that are connected to an execution specification are determined by their position.
Therefore, the sequence diagram specific representations of these elements are already built
while creating the KGraph. Since there is no dependency to the sequence diagram layout
plug-in in the Papyrus layout plug-in, the SequenceArea and SequenceExecution classes are not
integrated into the SGraph structure. Instead, they are located in the Papyrus layout plug-in.

64

5.4. Integration into Papyrus

The actual import that creates the KGraph is started from the top-level element in the
diagram. The GMF EditParts are traversed recursively starting at the PackageEditPart that
represents the diagram editor. At first, only the KNodes are created. The connections between
the corresponding elements are stored in a reference2EdgeMap that is traversed when all the
shaped elements are already created. This procedure ensures that the source and the target
KNodes are already existing when the connections are created.

In the following, the mapping of the diagram elements to the KGraph elements is described
more detailed:

� The Surrounding interaction is transformed to the top level KNode. It is the first element that
is traversed while importing the KGraph from the diagram. Every shaped element in the
diagram is a descendant of this KNode.

� Lifelines are transformed to KNodes that are children of the surrounding interaction. They
are created in a first step when iterating through the children of the top level element.

� Each Interaction Use as well as Combined Fragments are transformed to KNodes that are
children of the surrounding interaction. These areas are created together with the lifelines
since they share the same layer of hierarchy in the KGraph.

� Interaction Operands are transformed to KNodes that are children of the KNode of the combined
fragment that they belong to.

� Action Execution Specifications and Behavior Execution Specifications are transformed to KNodes
that are children of their lifeline’s KNode.

� Comments and Constraints are transformed to KNodes that have the same hierarchical layer
as the lifelines.

� Destruction Events are transformed to KNodes that are children of their lifeline’s KNodes.

� Duration Observations as well as Time Observations are transformed to KNodes that are
children of their lifeline’s KNode.

� Duration Constraints and Time Constraints are transformed to KNodes that are children of the
surrounding interaction.

� All types of Messages are transformed to KEdges. These KEdges are not part of the hierarchy
of the shaped elements. Instead, they may connect elements from different hierarchical
layers.

An overview of these elements and their hierarchy is shown in Table 5.3.
Coordinates for these elements are calculated by the layout algorithm. These coordinates

have to be applied to the diagram when the calculations are finished. The shaped elements
that are transformed to KNodes store their coordinates relative to their parent elements. The
coordinates of messages are stored relative to the elements that the message is connected to.

65

5. Implementation

Table 5.3. The different elements of the diagram and their hierarchy: For each Diagram Element that
may occur in the diagram, the corresponding EditPart is specified as well as the Type that is used to
identify the element. The diagram element is transformed into the KGraph element that is specified in
the column KGraph. Column Parent shows the parent element in the KGraph if existing.

Diagram Element EditPart Type KGraph Parent

Surrounding Interaction InteractionEditPart 2001 KNode -
Lifeline LifelineEditPart 3001 KNode 2001
Interaction Use InteractionUseEditPart 3002 KNode 2001
Combined Fragment CombinedFragmentEditPart 3004 KNode 2001
Interaction Operand InteractionOperandEditPart 3005 KNode 3004
Action Execution Specification ActionExecutionSpecification

EditPart
3006 KNode 3001

Behavior Execution Specifica-
tion

BehaviorExecutionSpecification
EditPart

3003 KNode 3001

Comment CommentEditPart 3009 KNode 2001
Constraint ConstraintEditPart 3008 KNode 2001
Destruction Event DestructionOccurrenceSpecifi-

cationEditPart
3022 KNode 3001

Time Constraint TimeConstraintEditPart 3019 KNode 3001
Time Observation TimeObservationEditPart 3020 KNode 2001
Duration Constraint DurationConstraintEditPart 3021 KNode 3001
Duration Observation DurationObservationEditPart 3024 KNode 2001
Synchronous Message MessageEditPart 4003 KEdge -
Asynchronous Message Message2EditPart 4004 KEdge -
Reply Message Message3EditPart 4005 KEdge -
Create Message Message4EditPart 4006 KEdge -
Delete Message Message5EditPart 4007 KEdge -
Lost Message Message6EditPart 4008 KEdge -
Found Message Message7EditPart 4009 KEdge -

More detailed, the coordinates of the message’s source point are relative to its source element,
the coordinates of the target point are relative to the target element.

The next chapter evaluates the aesthetic criteria specific to sequence diagrams and applies
these criteria to the produced results of the algorithm before evaluating the execution time of
the algorithm and comparing it to different approaches.

66

Chapter 6

Evaluation

In this chapter, we evaluate the performance and quality of the developed layout algorithm.
In Section 6.1, the aesthetic criteria used to measure the quality of layouts are introduced and
motivated. Section 6.2 uses these criteria to evaluate the produced layouts. After these, the
performance of the algorithm is evaluated in Section 6.3. Finally the algorithm is compared
to other approaches in Section 6.4.

6.1 Aesthetic Criteria for Sequence Diagram Layout

This section gives an overview of common aesthetic criteria for graph layout and chooses
those that are of interest for sequence diagrams. It also introduces known aesthetic criteria
specific to sequence diagrams.

6.1.1 General Aesthetic Criteria

Fundamental work was done by Helen C. Purchase who published several papers on various
topics in graph drawing aesthetics. These include papers on the effect of graph layout on
human performance when dealing with automatically laid out graphs [Pur98] and on the
question of how much different aesthetic criteria affect the readability of graphs [PCJ96]. She
also developed metrics for the readability of these layouts [Pur02].

Her work covered the evaluation of several common aesthetic criteria for graphs as
described in Section 2.4: the number of edge crossings, the length of the edges, the area
consumed by the drawing, the number of edge bends, the angle between neighboring edges of
a node, the aspect ratio of the drawing, and the balance of the nodes in the drawing.

However, sequence diagrams do not correspond to our definition of a graph. One may
reason that they share the concept of nodes connected by edges, but they differ in central
aspects. Lifelines, that may be interpreted as the sequence diagram’s nodes, do not behave
like nodes in general graphs. They can be interpreted as the nodes that are connected by the
messages, but these messages are not connected to the node-like part of the lifeline at the top.
Instead, messages are connected to the dotted lines below the lifeline’s head. Additionally,
messages are connected to these lines in a predefined order.

Lifelines, in turn, cannot be freely placed on the diagram. They have to be placed at the top
of the drawing, side-by-side (except for lifelines that have a create message). The horizontal
order of the lifelines, however, may be changed for the purpose of a good layout. This reduces
the 2-dimensional problem of node placement in general graphs to a 1-dimensional problem

67

6. Evaluation

that is more like “node sorting”. There are further differences, namely the integration of areas
like interactions that may cover parts of lifelines and messages.

Due to these differences, it is not obvious whether the common aesthetic criteria can be
applied to sequence diagrams. In the following, we will examine each criterion and discuss if
it should be applied to sequence diagrams.

The minimization of edge crossings is a criterion that cannot be adopted to sequence
diagrams without some modifications. Messages usually don’t cross each other in sequence
diagrams. However, messages do cross lifelines when connecting two lifelines that are not
positioned next to each other. It is generally preferable to have as few crossings as possible in
any kind of graph, so this criterion is of interest for sequence diagrams too.

Another optimization goal that is desirable for any kind of graph is the minimization
of the edge length. Both edge crossings and edge length are of course important for a good
layout of sequence diagrams since the ability of following the messages is crucial for the
understandability of the diagram.

The area that is consumed by a sequence diagram is a criterion that the layout algorithm
has very little influence over. Since lifelines are placed side-by-side, the horizontal size of the
layout only depends on the width of the lifelines and the spacing between them. Vertical size
is mainly influenced by message spacing and message distribution.

Edge bends are obstacles to following the flow of an edge easily. However, messages are not
supposed to have bends at all; they should normally be drawn horizontally instead. In seldom
cases, messages may be drawn sloping downwards; but even in this case they are drawn as
straight lines. Hence, the edge bends criterion is not applicable to sequence diagrams.

The same holds for the angle criterion, which measures the angle between two edges
connected to the same node. Messages are drawn horizontally, so the angle will always be
zero. Furthermore, it is not even clear what “nodes” in sequence diagrams are with respect to
this criterion.

For the aspect ratio criterion, as for the area criterion, it is important to mention that the
width of the diagram is influenced only by spacing of the lifelines and their individual width.
This reduces the problem to the height of the diagram, which, as described above, is not very
variable, thus rendering this criterion useless.

Since lifelines are placed side-by-side in sequence diagrams, the balance criterion may only
be interesting for diagrams that contain very long message labels. These labels could cause
neighboring lifelines to be separated from each other if they are connected by a message with
such a label. In all other cases, lifelines are distributed equally over the horizontal spread of
the diagram.

In a nutshell, there are the following criteria left that can reasonably be applied to sequence
diagrams:

� Edge crossings

� Edge length

� (Area)

68

6.1. Aesthetic Criteria for Sequence Diagram Layout

� (Aspect ratio)

� (Balance)

Edge crossings and edge length however are strongly related for sequence diagrams. For
equally distanced and sized lifelines, they are even linear dependent. Every edge that connects
two neighboring lifelines has an edge length of lifeline width plus the horizontal lifeline
spacing. Every crossing with a lifeline adds the same amount of edge length to the equation.
A layout without any edge crossings therefore also is a layout with minimum edge length.
This correlation ceases to hold only for big differences in width or horizontal distance between
the lifelines. This conforms to former work of Purchase [Pur97], who published a study that
tested which aesthetic criterion was the most important for the understandability of graphs in
general. It states that minimizing the number of edge crossings is by far the most important
optimization goal with respect to aesthetics.

6.1.2 Aesthetic Criteria Specific to Sequence Diagrams

In addition to the criterion of edge crossings that turned out to be the most important one
for general graphs, one can develop other criteria that may be more specific to sequence
diagrams. In order to find such criteria, Wong and Sun [WS05] started from scratch and had
a look at basic cognitive science. The theory of perception had a particularly remarkable
impact on their development of aesthetic criteria for the layout of UML diagrams. While most
of their theoretical work served to prove the criteria above, the law of proximity was the key
to develop another requirement for a good layout: it states that objects close to each other are
regarded as a group. For sequence diagrams, as for graphs in general, this implies that nodes
which are strongly connected should be drawn in close proximity.

With that, the slidability property defined by Poranen et al. [PMN03] is shown to be an
interesting property as well. If the drawing of the graph does not fit on the screen, it is
necessary to scroll the diagram. If this happens, slidability becomes an interesting property:
it measures if it is possible to view all the relevant information in a window of fixed size.
More precisely, slidability is the property that measures if it is possible to slide the fixed size
window over the whole diagram without losing the context of the information that is visible
inside the window at any given time.

Common practice implies another goal too. For sequence diagrams it is desirable to have
the source lifeline on the left side of the drawing [PMN03]. The source lifeline here is the one
lifeline where interaction starts. More precisely, it is the lifeline that is the source lifeline of
the uppermost message in the diagram. In some cases, this message may not be unique; this
is rather seldom in common diagrams and may be handled in different ways.

Finally, there is another interesting aspect of sequence diagram layout. Messages may be
grouped together by several types of areas in sequence diagrams (e.g. interactions, combined
fragments). The lifelines that are affected by these messages should be drawn in direct
neighborhood in order to highlight the strong correlation of these lifelines by keeping the area
as compact as possible. This property can be combined with the edge length minimization

69

6. Evaluation

property by modifying edge weights. With that, at least the three stated goals may be satisfied
as well as heuristically possible.

6.2 Quality of Produced Layouts

A collection of real world sequence diagrams from various areas and a few randomly
generated sequence diagrams are used to evaluate the quality of the layout. The real world
diagrams are collected from different sources and remodeled in the Papyrus sequence diagram
editor. The random diagrams are just a collection of lifelines and messages that were arbitrarily
connected. The diagrams contain three to eleven lifelines and up to 38 messages which covers
the range that is used for typical sequence diagrams [PMN03].

The quality of the produced layouts is evaluated in terms of the aesthetic criterion of
message-lifeline crossings in this section. Each of the diagrams has a prescribed order of the
lifelines that was determined by the respective creator of the diagram. With that, the human
preferences can be compared to the computer-measurable aesthetic criteria.

Automatic layout as developed in this thesis is applied to each of the diagrams. Both
lifeline sorting strategies, layer-based lifeline sorting and long message avoiding lifeline sorting,
are used. The number of message-lifeline crossings is compared for the three different lifeline
sorting methods. In addition to that, the minimal number of crossings is determined and
compared to the results of the lifeline sortations. Table 6.1 shows the results of this evaluation.

The main fact in Table 6.1 is that the original lifeline order produces fewer message-lifeline
crossings in the sum than both of the lifeline sorting strategies of the algorithm. At first
sight, this could imply that there is no need for automatic lifeline sorting. However, most
of the original diagrams were optimized manually. Claiming automatic layout to produce
better results than thoroughly manually optimized diagrams would be a very optimistic goal
especially for heuristic algorithms. The real advantage of automatic layout is the time saved.
Optimizing layout by hand may take hours depending on the complexity of the diagram.
Automatic layout on the contrary is done within a click of the mouse button (see Section 6.3
for details).

In spite of the worse sum of the message-lifeline crossings, the layer-based lifeline sorter
produces exactly the same result as the original drawing in many cases. This holds especially
for the real world diagrams that were modeled by hand. For random diagrams that do not
represent a real use-case, the layer-based lifeline sorter produces results that are worse in
general.

The higher number of crossings of the long message avoiding lifeline sorter in comparison
to the layer-based lifeline sorter is remarkable. It is especially remarkable since the long
message avoiding lifeline sorter was implemented following an approach of McAllister which
is dedicated to minimizing the number of these crossings [McA99]. The greater sum of the
crossings, however, arises from few outliers that produce very poor results (see Figure 6.1 for
an example). For most of the diagrams, the number of crossings is equal or smaller than for
the layer-based lifeline sorter.

70

6.2. Quality of Produced Layouts

Table 6.1. The number of message-lifeline crossings in the diagram with different lifeline sorting
strategies. The original number of crossings is given as well as the minimal possible number. These
are compared to the crossing number of the layer-based and the long message avoiding (LMA) lifeline
sorter. An asterisk in the column of these lifeline sorters denotes an equal lifeline order as in the
original diagram.

Diagram (Lifelines / Messages) Original Minimal Layer-Based LMA Reference

Internet Shopping (5 / 12) 8 5 8* 5 Figure A.1
Stock (4 / 16) 4 4 4* 4 Figure A.2
Bookstore (4 / 15) 4 4 4* 8 Figure A.3
Bookstore Create (4 / 16) 2 2 4 2* Figure A.4
Book Journey (5 / 16) 4 4 4* 4* Figure A.5
Snow Clearing System (4 / 18) 4 4 4* 4* Figure A.6
Restaurant (3 / 8) 0 0 0* 0* Figure A.7
Movie Rental (5 / 19) 4 4 4* 7 Figure A.8
KiVi (7 / 20) 13 8 13* 11 Figure A.9
Unfulfilled Orders (5 / 8) 3 2 2 2 Figure A.10
Flirt (4 / 9) 3 2 3 3* Figure A.11
Model-View-Controller (4 / 16) 6 6 8 8 Figure A.12
Loan (7 / 17) 4 2 5 4 Figure A.13
Random I (4 / 8) 2 2 6 4 Figure A.14
Random II (6 / 14) 10 9 22 15 Figure A.15
Big Random (11 / 38) 18 18 19 32 Figure A.16

Sum 89 76 110 113

When analyzing the poor results of the long message avoiding lifeline sorter (Figure A.3,
Figure A.8, and Figure A.16), those diagrams with a source lifeline that has a small degree
of connection seem to be very error-prone when the target lifeline of the first message has a
high degree. This arises from the calculation of the selection factor s f . It is calculated from
the lifeline’s degree and weighted sum of the connected messages, the tl value:

s f = degree(li f eline)� 2 � tl(li f eline).

The lifeline with the smallest selection factor s f is chosen to be placed next. A high degree of
a lifeline therefore decreases the chance to be placed next especially when the connectivity to
the source lifeline (represented by the tl value) is small. Experimenting with the weight of
the degree and the tl value may change that behavior.

Poor results are computed for the big diagram (Figure A.16) that contains many messages
as well. The reason for that is not as obvious as above. The selection of a different starting
lifeline, however, is noticeable here. Since the diagram is created randomly, two messages can
be the starting message here. The long message avoiding lifeline sorter chooses the one with
the higher degree in that case. Choosing the lifeline with the lower degree could be a better
choice if the messages are connected to different lifelines.

71

6. Evaluation

(a) The bookstore diagram with layer-based
lifeline sorting, which yields the same result as
the original lifeline sorting (4 message-lifeline
crossings).

(b) The bookstore diagram with long message
avoiding lifeline sorting (8 message-lifeline cross-
ings).

Figure 6.1. An example of a diagram where the layer-based lifeline sorter yields exactly the same
results as the manual layout of the author. The long message avoiding lifeline sorter fails to optimize
this diagram.

72

6.3. Performance Evaluation

6.3 Performance Evaluation

Evaluating the performance of an algorithm usually compares the algorithm to other imple-
mentations. Examining the asymptotic performance is another common evaluation of an
algorithm’s performance. Both, however, are not very convenient in the special case of this
layout algorithm. Sequence diagram layout is not covered very well in academic research
and therefore, no data is available for comparison. The asymptotic running time may be
computed by extensive evaluation; it is not very important for normal sequence diagrams,
though. Typical sequence diagrams consist of less than 10 lifelines and 20 messages. Even
very big diagrams do not exceed 20 lifelines.

In spite of this, we measured the execution time of the layout algorithm and its sub-tasks.
The evaluation of the execution time was done with the same diagrams that were already
used for the analysis of the layout quality in the last section. As for the quality analysis, every
diagram was laid out with every lifeline sorting strategy.

For each of these layout runs, the exact execution time was measured for the whole run as
well as for the single layout phases (such as graph importing, cycle breaking, and lifeline sorting).
Table 6.2 shows the complete results of the performance evaluation. Even for the big diagram
(Figure A.16), the execution was very fast. The maximum of the time consumed for the whole
algorithm was 20.138 milliseconds. The execution time stayed below 25 milliseconds for all
diagrams. The average execution time for the whole algorithm was 11.253 milliseconds with
several instances being laid out in less than 8 milliseconds. The fastest recorded layout was
measured to be 4.551 milliseconds for the Random II diagram (Figure A.15) with the layer-based
lifeline sorter.

These execution times are short enough to be perceived as instant by users of the layout
algorithm.

Since each of the different lifeline sorting algorithms was used for each of the diagrams,
the execution times of them can be compared to each other in a reliable way. A clear ranking
could be established between these algorithms.

The interactive lifeline sorter obviously is the fastest algorithm since it simply compares
the horizontal positions of the lifelines and returns the order of the lifelines as it was. It takes
less than 0.02 milliseconds to compute this sortation even for the biggest diagrams in the test.

The long message avoiding lifeline sorter, on the contrary, is the one that needs most
execution time. It builds its own lightweight graph representation before computing the
actual order of the lifelines. This causes the long message avoiding lifeline sorter to take up to
0.4 milliseconds for its calculations in worst case.

The layer-based lifeline sorter, finally, is located between the previous ones with respect to
execution time. It does not have to build its own graph representation, but uses both of the
existing graph representations (SGraph and LGraph) instead. The maximum calculation time
was 0.15 milliseconds for the layer-based lifeline sorter.

These execution times are interesting with respect to their relative duration. Their absolute
values, however, are not crucial when interacting with human users at all.

73

6. Evaluation

Table 6.2. The execution time of the layout algorithm measured in milliseconds. All sample diagrams
were laid out with each of the three lifeline sorting strategies.

Diagram (Lifelines / Messages) Interactive Layer-Based LMA Reference

Internet Shopping (5 / 12) 19.864 19.892 13.104 Figure A.1
Stock (4 / 16) 14.210 15.650 8.838 Figure A.2
Bookstore (4 / 15) 11.264 11.052 11.378 Figure A.3
Bookstore Create (4 / 16) 14.534 15.498 12.525 Figure A.4
Book Journey (5 / 16) 13.467 14.712 12.139 Figure A.5
Snow Clearing System (4 / 18) 12.636 12.914 12.125 Figure A.6
Restaurant (3 / 8) 7.320 6.421 6.653 Figure A.7
Movie Rental (5 / 19) 13.728 15.851 15.471 Figure A.8
KiVi (7 / 20) 12.167 12.397 13.246 Figure A.9
Unfulfilled Orders (5 / 8) 6.999 5.963 6.302 Figure A.10
Flirt (4 / 9) 7.747 7.227 8.198 Figure A.11
Model-View-Controller (4 / 16) 11.688 11.054 7.110 Figure A.12
Loan (7 / 17) 11.195 11.376 11.313 Figure A.13
Random I (4 / 8) 5.009 5.062 4.938 Figure A.14
Random II (6 / 14) 7.415 4.551 7.645 Figure A.15
Big Random (11 / 38) 20.138 11.780 18.346 Figure A.16

Average 11.838 11.337 10.583
Minimum 5.009 4.551 4.938
Maximum 20.138 19.892 18.346

6.4 Comparison to Different Approaches

Several tools and editors provide automatic layout for sequence diagrams. The capabilities of
these layout algorithms, however, differ a lot.

Some sequence diagram layout algorithms are integrated into a graphical editor whilst
others produce graphical sequence diagrams as a result of a certain kind of input, such as
textual sequence diagram representations. The Papyrus framework provides a full graphical
editor that is equipped with drag and drop features and live validation.

Since there is only little degree of freedom for most of the layout tasks, most of the
algorithms concentrate on these tasks. With that, askew messages and lifelines are aligned
and straightened, which saves a lot of manual work. However, the layout is not optimized in
any way. Graph-like diagrams are usually optimized whenever automatic layout is applied.
Since sequence diagrams do not match a common graph structure, optimizing its layout is
not investigated as well as for normal graphs.

With this layout algorithm we tried to go new ways. The vertical positioning of the
messages was reinvented inspired by the layering of nodes in a layered graph. With that,
several messages could share the same vertical position if they are not ordered explicitly.
This saves vertical space and highlights possible parallelism that is hidden by an arbitrary

74

6.4. Comparison to Different Approaches

ordering of these messages.
In addition to that, the horizontal order of the lifelines may be modified automatically if

desired by the user. Several lifeline sorting strategies were implemented that are tailored to
optimize different aesthetic criteria. Each of them is dedicated to a better readability of the
diagram. User defined lifeline sorting is still available through the interactive lifeline sorter.

After evaluating the results and capabilities of the developed sequence diagram layout
algorithm in this chapter, now is the time for a look at the whole thesis again. The next
chapter concludes the thesis by summarizing the contributions and taking a look at future
work.

75

Chapter 7

Conclusion

The previous chapters gave insight into the theoretical ideas as well as the implementational
details of the proposed sequence diagram layout algorithm. This chapter at last takes a step
back and gives an overview of the contributions of this thesis in Section 7.1 before Section 7.2
describes what kind of work on this topic may be done in future.

7.1 Summary

In this thesis, a layout algorithm for sequence diagrams was developed. The algorithm
was integrated into the Papyrus project. Some concepts and data-structures were adopted
from the KIELER project. In particular, the layered graph concept was adapted to handle
the vertical positioning of messages in sequence diagrams. Their layering is done by the
NetworkSimplexLayerer of KIELER’s KLay Layered algorithm.

As a major improvement over existing sequence diagram layout algorithms, several
strategies for lifeline sorting were implemented. The horizontal order of the lifelines may
be changed by the algorithm which aims at improving different aesthetic criteria. Message-
lifeline crossings are minimized by the long message avoiding lifeline sorting strategy. Within
this strategy, the importance of messages contained in an interaction or combined fragment
can be emphasized by grouping according to areas. The flow of the messages should be easy
to follow when the layer-based lifeline sorter is chosen. Finally, the interactive lifeline sorter
passes the power of lifeline sorting to the user.

Label placement is another feature that was adapted to sequence diagrams in this thesis.
Some label placement strategies known from common graph layout could be adopted, others
had to be adapted. Centered label placement as originally integrated in the Papyrus editor,
as well as placement near the source lifeline are common label placement strategies. The
placement centered between the two first lifelines regarding the direction of the message,
however, is a new approach that was developed during this thesis.

The layout algorithm was connected to the Papyrus sequence diagram editor that provides
GMF-based sequence diagram editing. These diagrams can be created and modified using the
drag and drop feature of Papyrus. Diagrams are instantly validated, preventing semantically
incorrect sequence diagrams. The Papyrus sequence diagram editor had to be connected to
KIELER and its layout infrastructure KIML.

Sequence diagram specific layout options were integrated into KIML, enabling customizable
layout for these diagrams. Different options were implemented to modify spacings and the

77

7. Conclusion

chosen strategies for lifeline sorting and label placement.
The execution time of the layout algorithm is short enough to be perceived as instant

layout by human users which is very important for the acceptance of such an algorithm. No
run of the layout algorithm with normal-sized diagrams took more than 0.05 seconds during
the performance analysis.

7.2 Future Work

The broken label placement feature is obviously the first place to start when talking about
future optimizations of the existing implementation. Further investigation of the coordinate
transformations within the Papyrus framework could explain, how the calculated coordinates
have to be transformed in order to compensate for the obscure behavior in that special case.

Since the Papyrus framework is under continuous development, several changes had to
be made during the implementation of the layout algorithm. Some of these changes affected
the results of the layout algorithm which forced us to modify some parts of the algorithm.
Therefore, the results of the layout algorithm should be checked from time to time in order to
adapt the algorithm to further changes.

Due to obscure coordinate transformations when applying coordinates to the diagram,
the label placement feature is broken for Papyrus’ most recent version when execution
specifications are involved. It is not evident what kind of coordinate system the coordinates
of such labels should be given in. Currently, the labels of such messages are spread all over
the diagram since the coordinate system could not be determined.

So far, the proposed layout algorithm is only applicable to sequence diagrams that are
modeled with the Papyrus sequence diagram editor. However, since the actual algorithm is
a general purpose sequence diagram layout algorithm, it could be integrated into different
sequence diagram editors. A more general interface could be established without too much
effort to be able to apply the algorithm to a wide range of sequence diagram editors.

Since graph layout is all about optimization of different aesthetic criteria, this is a major
goal for every automatic layout algorithm. Aesthetic criteria have been established for
different graph-based structures in the past. For sequence diagrams, however, many common
criteria are not applicable. Several aesthetic criteria were examined in this thesis but there is
still a lot of work to do. Starting from demanding the first lifeline to be the one that starts the
communication, new criteria may be developed that may further improve layout of sequence
diagrams.

The lifeline sorting strategies that were developed and implemented in this thesis are
based on different optimization goals. According to new aesthetic criteria, further lifeline
sorting strategies may be developed. These strategies may even combine several different
goals, improving the readability of the laid out sequence diagrams further.

78

Appendix A

Sample Sequence Diagrams

(a) Original and layer-based lifeline sorting.

(b) Long message avoiding lifeline sorting.

Figure A.1. The Internet Shopping diagram.

79

A. Sample Sequence Diagrams

(a) Original and layer-based lifeline sorting. (b) Long message avoiding lifeline sorting.

Figure A.2. The Stock diagram.

80

(a) Original and layer-based lifeline sorting. (b) Long message avoiding lifeline sorting.

Figure A.3. The Bookstore diagram.

81

A. Sample Sequence Diagrams

(a) Original and long message avoiding lifeline sort-
ing.

(b) Layer-based lifeline sorting.

Figure A.4. The Bookstore Create diagram.

82

Figure A.5. The Book Journey diagram. All lifeline sorters yield the same result for this diagram.

83

A. Sample Sequence Diagrams

Figure A.6. The Snow Clearing System diagram. All lifeline sorters yield the same result for this
diagram.

84

Figure A.7. The Restaurant diagram. All lifeline sorters yield the same result for this diagram.

85

A. Sample Sequence Diagrams

(a) Original and layer-based lifeline sorting. (b) Long message avoiding lifeline sorting.

Figure A.8. The Movie Rental diagram.

86

(a) Original and layer-based lifeline sorting.

(b) Long message avoiding lifeline sorting.

Figure A.9. The KiVi diagram.

87

A. Sample Sequence Diagrams

(a) Original lifeline sorting.

(b) Layer-based and long message avoiding lifeline sorting.

Figure A.10. The Unfulfilled Orders diagram.

88

(a) Original and long message avoiding lifeline sort-
ing.

(b) Layer-based lifeline sorting.

Figure A.11. The Flirt diagram.

89

A. Sample Sequence Diagrams

(a) Original lifeline sorting. (b) Layer-based and long message avoiding lifeline
sorting.

Figure A.12. The Model View Controller diagram.

90

(a) Original lifeline sorting. (b) Layer-based lifeline sorting.

(c) Long message avoiding lifeline sorting.

Figure A.13. The Loan diagram.

91

A. Sample Sequence Diagrams

(a) Original lifeline sorting. (b) Layer-based lifeline sorting.

(c) Long message avoiding lifeline sorting.

Figure A.14. The Random diagram.

92

(a) Original lifeline sorting. (b) Long message avoiding lifeline sorting.

(c) Layer-based lifeline sorting.

Figure A.15. The Random II diagram.

93

A. Sample Sequence Diagrams

(a) Original lifeline sorting.

(b) Layer-based lifeline sorting.

(c) Long message avoiding lifeline sorting.

Figure A.16. The Random Big diagram.

94

Bibliography

[BDLN02] Carla Binucci, Walter Didimo, Giuseppe Liotta, and Maddalena Nonato. Com-
puting labeled orthogonal drawings. In Michael T. Goodrich and Stephen G.
Kobourov, editors, Graph Drawing, volume 2528 of Lecture Notes in Computer
Science, pages 66–73. Springer Berlin Heidelberg, 2002.

[Car12] John Julian Carstens. Node and label placement in a layered layout algorithm.
Master’s thesis, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, September 2012. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/jjc-mt.pdf.

[CGMW10] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Hoi-Ming Wong. Up-
ward planarization layout. In Proceedings of the 17th International Symposium on
Graph Drawing (GD’09), volume 5849 of LNCS, pages 94–106. Springer, 2010.

[DETT94] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Algorithms for drawing graphs: An annotated bibliography. Computational
Geometry: Theory and Applications, 4:235–282, June 1994.

[DETT98] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

[Ecl08] Eclipse Software Foundation. Eclipse homepage, 2008. http://www.eclipse.org/.

[ESK04] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. An efficient
implementation of Sugiyama’s algorithm for layered graph drawing. In János
Pach, editor, 12th International Symposium on Graph Drawing (GD’04), volume 3383
of LNCS, pages 155–166. Springer-Verlag, 2004.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Software—Practice & Experience, 21(11):1129–1164, 1991.

[FvH09] Hauke Fuhrmann and Reinhard von Hanxleden. The Kiel Integrated Environ-
ment for Layout for the Eclipse RichClientPlatform (KIELER) Homepage, 2009.
http://www.informatik.uni-kiel.de/rtsys/kieler/.

[GJS76] Michael R. Garey, David S. Johnson, and L. Stockmeyer. Some simplified np-
complete graph problems. Theoretical Computer Science, 1(3):237 – 267, 1976.

[GN98] Emden R. Gansner and Stephen C. North. Improved force-directed layouts.
In SueH. Whitesides, editor, Graph Drawing, volume 1547 of Lecture Notes in
Computer Science, pages 364–373. Springer Berlin Heidelberg, 1998.

95

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jjc-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jjc-mt.pdf
http://www.eclipse.org/
http://www.informatik.uni-kiel.de/rtsys/kieler/

Bibliography

[JM03] Michael Jünger and Petra Mutzel. Graph Drawing Software. Springer, October
2003.

[Kan96] Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996.

[KD10] Lars Kristian Klauske and Christian Dziobek. Improving modeling usability:
Automated layout generation for Simulink. In Proceedings of the MathWorks
Automotive Conference (MAC’10), 2010.

[KM98] Gunnar W. Klau and Petra Mutzel. Quasi-orthogonal drawing of planar
graphs. Technical Report MPI-I-98-1-013, Max-Planck-Institut für Informatik,
Saarbrücken, 1998.

[KM99] Gunnar W. Klau and Petra Mutzel. Optimal compaction of orthogonal grid
drawings. In Proceedings of the 7th International IPCO Conference on Integer Pro-
gramming and Combinatorial Optimization, volume 1610 of LNCS, pages 304–319.
Springer-Verlag, 1999.

[KSSvH12] Lars Kristian Klauske, Christoph Daniel Schulze, Miro Spönemann, and Reinhard
von Hanxleden. Improved layout for data flow diagrams with port constraints.
In Proceedings of the 7th International Conference on the Theory and Application of
Diagrams (DIAGRAMS’12), volume 7352 of LNAI, pages 65–79. Springer, 2012.

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs: Methods and
Models. Number 2025 in LNCS. Springer-Verlag, Berlin, Germany, 2001.

[McA99] Andrew J. McAllister. A new heuristic algorithm for the linear arrangement
problem. Technical report, University of New Brunswick, 1999.

[OSG08] OSGi Alliance. Homepage, 2008. http://www.osgi.org/, retrieved 2008-12-10.

[Pap76] Ch.H. Papadimitriou. The np-completeness of the bandwidth minimization
problem. Computing, 16:263–270, 1976.

[PCJ96] Helen C. Purchase, Robert F. Cohen, and Murray James. Validating graph
drawing aesthetics. In F. Brandenburg, editor, Proceedings of Graph Drawing
Symposium, volume 1027 of LNCS, pages 435–446. Springer Verlag, 1996.

[PMN03] Timo Poranen, Erkki Mäkinen, and Jyrki Nummenmaa. How to draw a sequence
diagram. In Proceedings of the Eighth Symposium on Programming Languages and
Software Tools (SPLST’03), 2003.

[Pur97] Helen C. Purchase. Which aesthetic has the greatest effect on human understand-
ing? In Proceedings of the 5th International Symposium on Graph Drawing (GD’97),
volume 1353 of LNCS, pages 248–261. Springer, 1997.

96

http://www.osgi.org/

Bibliography

[Pur98] Helen C. Purchase. The effects of graph layout. In Computer Human Interaction
Conference, 1998. Proceedings. 1998 Australasian, pages 80 –86, nov-4 dec 1998.

[Pur02] Helen C. Purchase. Metrics for graph drawing aesthetics. Journal of Visual
Languages and Computing, 13(5):501–516, 2002.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. IEEE Transactions on Systems,
Man and Cybernetics, 11(2):109–125, February 1981.

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal of Computing, 16(3):421–444, 1987.

[TDB88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic graph
drawing and readability of diagrams. IEEE Transactions on Systems, Man and
Cybernetics, 18(1):61–79, 1988.

[TT86] Roberto Tamassia and Ioannis G. Tollis. A unified approach to visibility repre-
sentations of planar graphs. Discrete and Computational Geometry, 1(1):321–341,
1986.

[WS05] Kenny Wong and Dabo Sun. On evaluating the layout of uml diagrams for
program comprehension. In Proceedings of the 13th International Workshop on
Program Comprehension (IWPC’05), pages 317 – 326, may 2005.

97

	Introduction
	Graphical Modeling
	Automatic Layout
	Goals of this Thesis
	Outline

	Related Work
	Graph Drawing and Automatic Layout
	Related Diagram Types
	Existing Algorithms and Editors
	websequencediagrams
	Trace Modeler
	Quick Sequence Diagram Editor
	Effexis Sequence Diagram Editor
	Altova UModel Sequence Diagram Editor
	Comparison

	Aesthetic Criteria

	Technologies
	Eclipse
	Graphical Modeling Framework
	KIELER
	KIML
	KLay

	Papyrus

	Theory and Concepts
	Theoretical Foundations
	Graph Definitions
	Sequence Diagram Definitions

	The Layout Process
	Foundations of Sequence Diagram Layout
	Lifelines
	Messages
	Execution Specifications
	Interactions

	Layer Assignment
	Lifeline Sorting
	Layer-Based
	Avoiding Long Messages
	Pivoted Long Message Avoidance
	Group According to Areas
	Interactive Lifeline Sorting

	Label Placement
	Theoretical Concepts
	Implementation

	Putting things together
	Import Graph
	Create Layered Graph
	Allocate Space
	Break Cycles
	Assign Layers
	Sort Lifelines
	Calculate Coordinates
	Apply Layout Coordinates

	Implementation
	Data Structures
	KGraph
	SGraph
	LGraph

	User Defined Layout
	The Algorithm
	Import Sequence Diagram Structure
	Layering Messages
	Allocating Space for Various Objects
	Breaking Cycles
	Layering the Messages
	Sorting the Lifelines
	Calculating Coordinates
	Applying Layout Results Back to the Diagram

	Integration into Papyrus

	Evaluation
	Aesthetic Criteria for Sequence Diagram Layout
	General Aesthetic Criteria
	Aesthetic Criteria Specific to Sequence Diagrams

	Quality of Produced Layouts
	Performance Evaluation
	Comparison to Different Approaches

	Conclusion
	Summary
	Future Work

	Sample Sequence Diagrams
	Bibliography

