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Abstract

Safety-critical applications, e.g., in automotive and aerospace industry, de-
mand highest dependability. Such systems are often distributed hard real-time
systems with severe system response time constraints. To cope with these re-
quirements and the need of high reliability, the time-triggered architecture pro-
vides a deterministic and fault-tolerant execution and communication scheme,
which renders it suitable for these applications.

The model-based system design assists the developers in handling the high
complexity of serious distributed real-times systems in general as well as the
details of the time-triggered architecture in particular.

This diploma thesis describes the model-based system design of a time-
triggered architecture and lists the process in some detail regarding the di-
chotomy of global and local specifications and their conflation in a modelling
suite. It describes the modelling of a safety-critical application: a high-lift flap
system which gets implemented in a time-triggered architecture. This thesis
lists what has been done so far and what is planned for the future in this
context.

The practical application of the modelling tools raised the question on re-
sponse time requirements. How can modelling tools handle end-to-end latency
and how do they do it nowadays? Do they do all that is possible? Is it not
possible to handle it after all?

This diploma thesis tackles this question by analysing the origin of latency
in real-time systems in general and in the TTA in particular, where it depicts
worst-case latency. It analyses the workflow of the current modelling tools with
respect to the response time requirements. It is discussed which properties
are critical to the end-to-end latency in a TTA and how the settings of the
modelling tools influence these properties.

The thesis shows that both, validation of the system response requirements
and the synthesis of the system configuration from the response time require-
ments is not possible with the current toolchain. Additionally it introduces an
approach in which the conflation of the fundamental specification dichotomy –
global vs. local – in a modelling suite could help to get a convenient response
time analysis function after all and therefore the modelling process could be
enriched and thereby save a lot of testing efforts.

Keywords Model-based System Design, Time-Triggered Architecture, Response
Time Requirements
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1 Introduction

Reducing costs while increasing both features and safety is the ambition of
modern transport industry. In order to stay competitive, manufacturers of
automotive, aerospace and industrial products increase the feature palette of
their products. With advances in the development of microcomputers, these
entered as embedded systems cars and planes. Electronic systems are flex-
ible and relatively low-priced, so they add new features to the products or
substitute inflexible and non modular mechanical systems in order to increase
flexibility and safety and maybe to reduce production costs a piece.

With the increasing growth of electronic components in vehicles, the need of
communication between these components rises. Distributed real-time systems
result and their advances push them into safety critical fields of application
where up to now mechanical systems guarantee dependability. Omitting even
mechanical backup systems which hitherto caught faults in electronic systems
leads to the so called X-by-wire systems. They promise flexibility by decreas-
ing both space and weight requirements on the one hand and reducing costs
after the development process by economies of scale on the other hand, as the
unit costs of mechanical systems exceed electronic systems by far. Modularity
of electronic systems introduces a better reusability and higher flexibility by
defining hardware and software interfaces that allow a wider variety of possible
implementations. Reusability and the better choice of implementation tech-
niques can lead to savings in future development efforts and can ultimately
result in increased dependability.

With the growing complexity of distributed systems the intercommunication
within and between subsystems is increasing. The standard event-triggered
communication buses such as CAN [ISO93] show no deterministic behaviour.
Therefore much effort is undertaken to keep the systems safe. In today’s cars,
the multitude of event-triggered communication buses, which may be redun-
dantly implemented, lead to a complex tangle of wiring, while dependability
can hardly be ensured. In contrast, the time-triggered communication ap-
proach in the time-triggered architecture (TTA) [KB03] offers deterministic,
fault-tolerant communication services with features that enable the developers
to better manage complexity and to find design flaws earlier in the develop-
ment process. Thus the seemingly higher development effort might pay off in
the end. The Time-Triggered Protocol (TTP) [KG92] is an example of the
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1 Introduction

communication subsystem in the TTA.
Another advancing key technology is the model-based system design. Mod-

elling suites such as Matlab/Simulink/Stateflow, SCADE or Mission Level De-
signer give us the chance to model a system prior to its physical implemen-
tation. This helps to find errors in the development process in early stages:
Design faults in the specification can be revealed or the whole system can be
simulated although some of the components do not yet exist physically. This
might help to find errors as soon as possible and can save effort, time and
money because in later design phases the costs of eliminating errors are likely
to be much higher.
For best performance in the industrial development process the two technolo-

gies, TTA and model-based system development, should be combined. Thus
the development process leads to a model-based system design of the TTA.
First tools exist to merge modelling and TTA.
Practical use with the tools raises the question of usability. Do the tools

of today offer all the features they could? The system models have to be fed
with a lot of information that is specific to the communication subsystem and
that the developer has to devise. Do not some of these properties arise from
the general system requirements? This work tackles this question and shows
how the tools could help the developer better, to set the mandatory system
properties correctly.
This question is motivated by an accompanying research project where

we model a TTA system. The Real-Time/Embedded System Group of the
Christian-Albrechts University of Kiel is partner in the European IST Research
projectDECOS (Dependable Embedded Components and Systems) [DEC]. The
project should deploy a process of developing embedded systems that are built
on COTS (commercial-of-the-shelf) hardware and software components and
nevertheless enable us to develop safe systems. The major objective is to re-
search the compositional system framework and to develop a set of generic
hardware and software components usable on various platforms including the
time-triggered architecture. The key to the problem is to develop fundamental
and enabling technologies which are independent of domain and technology
in order to facilitate the paradigm shift from federated to integrated design of
dependable real-time embedded systems. This shall lead to reduced develop-
ment, validation and maintenance costs in both the software and the hardware
domain.
For demonstration of the research and development results, several test

benches will be implemented employing the new technology. One of these
test benches is a high-lift flap system for aircrafts. As such a system is highly
safety-critical, its safety features were implemented by mechanical parts up to
now. The most serious drawback of this solution is the inflexibility and the

2



1.1 Outline

high weight of the system. Implementing these safety relevant functionalities
by electronic components with the DECOS methodology and tools can increase
safety, modularity and even possibly decrease the weight of the system. The
test bench will be physically implemented by the DECOS Project partners. It
demonstrates the DECOS technology in this application.

Our task is to develop a model of this high-lift flap test bench including the
logical behaviour of the system. The model will be built in the SCADE Suite
by Esterel Technologies.
The main attention is drawn to modelling the time-triggered communication

between the single components. Thus a TTA coupling to SCADE is needed
and provided by Esterel Technologies and TTTech.

1.1 Outline

As this work deals with the key technology of time-triggered communication
and its notions will be used through the whole work, the time-triggered archi-
tecture will be introduced in some detail in Section 1.2.

The second key technology of this work is model-based system design. This
topic will be introduced in 1.3 and includes a description and comparison of the
modeling suites of Mathworks with the Matlab family and Esterel Technologies
with its SCADE Suite. Both are used in the project.
The DECOS project is the context of this work and therefore the project will

be pictured in Section 1.4 and especially the details of the aerospace demon-
strator will be given in Section 1.4.1.

The work we have done so far and the results of the DECOS project is
described in Chapter 2, where Section 2.5 outlines the future work.

The question whether and how the tool chain for the TTA can be enriched
by the automation of system requirement realization is tackled in Chapter 3.

1.2 The Time-Triggered Architecture

The time-triggered architecture (TTA) [KB03] is a distributed, synchronous,
fault-tolerant architecture, which tackles the needs of safety-critical real-time
systems.

The TTA establishes a frame for data processing in the area of distributed
embedded real-time systems with highly reliable applications. It sets up the
computing infrastructure for the implementation of applications and provides
mechanisms and guide lines to partition large applications into nearly au-
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1 Introduction

tonomous subsystems along small and well-defined interfaces so that the com-
plexity of the evolving product can be controlled.

1.2.1 TTA and the communication subsystem

The TTA comprises distributed host computers that intercommunicate via
connected communication controllers. In a TTA, both, the task execution at
the host computers and the communication actions are time-triggered.

A large real-time application is decomposed into nearly autonomous
clusters and nodes and a fault-tolerant global time base of known
precision is generated at every node. In the TTA this global time is
used to precisely specify the interfaces among the nodes, to simplify
the communication and agreement protocols, to perform prompt er-
ror detection, and to guarantee the timeliness of real-time applica-
tions. [KB03]

As TTA is a general notion, there are different implementations available.
The Time-Triggered Protocol (TTP) [TTA03] is a communication protocol for
the TTA and specifies its communication subsystem. Other approaches are
forthcoming. Byteflight [BPG00], FlexRay [BMH+01] and TTCAN [FMD+00]
are worth mentioning for example. This diploma thesis, however, examines the
model-based system design of a TTA using the TTP as the communication
subsystem. Therefore the technology will be explained for TTP in particular.
A short introduction and comparison of byteflight, FlexRay and TTCAN is
given at the end of this section in Section 1.2.7 on page 11 after the technical
introduction of TTP.
The TTA with TTP as communication subsystem consequently follows the

single fault hypothesis :

Any electric/electronic component in the system can fail (e.g., a
cable a connector, a whole ECU, ...), but no two independent faults
will occur within a certain amount of time. This amount of time
is sufficient to fully recover from the fault, e.g., by repair or recon-
figuration.

Following the single fault hypothesis implies that the whole architecture is
designed in such a way that no arbitrary single fault can affect the safety of
the whole system. As faults cannot be prevented in general, it must be ensured
that they only affect a predefined fault containment region , which is separated
from the rest of the system. Special techniques and algorithms must ensure

4



1.2 The Time-Triggered Architecture

Node

Host

TTP 

Controller

Node

Host

TTP 

Controller

Node

Host

TTP 

Controller

Node

Host

TTP 
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Figure 1.1: Nodes of a TTP cluster: Connected via a redundant bus and com-
prise a host computer and an independent TTP controller

this as well as methodologies such as redundancy must buffer the loss of single
components.

In the language of TTP the distributed ECUs are called nodes. Each node
comprises a host computer that executes some application and a network con-
troller that implements the Time-Triggered Protocol (TTP) [TTA03].

1.2.2 The Time-Triggered Protocol

The Time-Triggered Protocol (TTP) describes the communication scheme of
the system. The set of nodes participating in communication via TTP is
called the TTP cluster. Usually a TTP cluster is connected by a bus. To meet
the single fault hypothesis, the bus has two independent channels. Messages
can be transferred on either channel, but safety critical messages must be
transferred on both channels simultaneously to tolerate a single fault on one
of the channels. This topology is depicted in Figure 1.1.

The host and the TTP controller within a node are independent of each
other. This guarantees that a fault is kept in one part and thus prevents fault
propagation to the other. The TTP controller manages the sending of messages
onto the TTP bus and the receiving of messages from it. The host must process
the incoming messages and produce the outgoing ones. The interface between
host and controller is called Communication Network Interface (CNI) and it is
implemented as a RAM Section where both partners have dedicated reading
and writing access (see Figure 1.2). Host and TTP controller may not be
perfectly independent after all, because the TTP controller freezes if the host
application does not regularly give life signs.

The access to the bus follows the time division multiple access (TDMA)
scheme. In an event-triggered communication system such as Ethernet, every
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RAM Incoming Messages Outgoing Messages

Host

reads writes

writes reads

TTP 

Controller

Status 

Area

Control 

Area

reads writes

readswrites

Figure 1.2: The Communication Network Interface for data exchange between
host computer and TTP controller within a TTP node

time

Node 1

Node 2

Bus

Event

Message of Node

collision

Figure 1.3: Problems in an event-triggered communication system: No deter-
ministic latency and shrinking bandwidth when traffic is rising by
the increase of collisions

node tries to send its message whenever it likes to, i.e., when some special
event makes the sending of a message necessary. This leads to the problem
depicted in Figure 1.3, which is the introduction of jitter, i.e., no predictable
message latencies. As the name says, the messages in TTP are sent at special
points in time.
Every active node may get exactly one time slot at which his TTP controller

sends his message. The queue of these slots is called a TDMA round. Nodes
do not need to have a time slot in every TDMA round: So called multiplexed
nodes can send their messages in a multiple period of the TDMA round period
and therefore get a time slot only every second TDMA round for example.
The set of TDMA rounds that constantly repeats is called the cluster cycle
(see Figure 1.4).
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1.2 The Time-Triggered Architecture

time

Message

TDMA RoundTime slotNode 5Node 4Node 3Node 2Node 1
Bus Cluster Cycle

Figure 1.4: The TDMA scheme of a TTP network

So every node regularly sends his messages at the same period of the TDMA
round length.

The schedule that controls the communication behaviour is called Message
Descriptor List (MeDL). Every TTP controller must have its own copy of the
MeDL to know the timing information of the TTP bus.

1.2.3 Underlying Services

The TDMA access scheme demands a clock synchronization algorithm. This is
implemented as a low-level service in the TTP controller and synchronizes their
clocks and propagates the synchronized time to the host computers. It uses
a fault-tolerant clock synchronization algorithm that tolerates one Byzantine
fault at a minimum of four active nodes in a cluster.

Every message includes status information about the status of the send-
ing node. That especially includes a membership vector that indicates which
nodes within a cluster are still available and which ones are considered to be
disabled due to the loss of messages or because they do not react any more. An
implicit acknowledgement algorithm uses this information to determine if the
sent message of this node was correctly submitted or if a disturbance prevented
the transmission.

The membership algorithm uses this information to check which nodes agree
upon the status of the whole system, i.e., the nodes that correctly participate

7
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Faulty TTP 

Controller

Bus

Bus 

Guardian
No effect at other time slots

MeDL

Figure 1.5: A bus guardian prevents a babbling idiot to block all traffic at the
bus

in the communication. A fault silence strategy forces each disagreeing node to
enter the freeze state and stop communicating. This ensures that only correctly
communicating nodes are active.

The membership algorithm is augmented to a clique avoidance algorithm
that avoids the constitution of several groups of nodes which agree with each
other but not with the different other groups. The algorithm ensures that
there is only one active clique in a TTP and that it comprises at least half of
the nodes.

For saving bandwidth the status information is not explicitly sent with every
message but might be implicitly encoded in a Cyclic Redundancy Check (CRC)
which any message includes. Thus the receiver might not see how its status
differs of the sender but that it differs.

The babbling idiot is a faulty node that accesses the bus at points in time
where he is not allowed to send. This behaviour cannot be prevented in an
event-triggered network. An independent bus guardian tackles this problem in
the TTP. It is an independent unit that is located between the TTP controller
and the TTP bus. The MeDL is separately stored at the guardian and it
therefore knows when the TTP controller is allowed to send data. Hence it
allows only such signals to pass that are coming in the right time slots (see
Figure 1.5). A bus guardian prevents a node from keeping other nodes from
sending. An upgraded guardian could even refresh the physical signals of a
TTP controller in order to avoid so called slightly off specification (SOS) errors.
But it cannot prevent faults in the value domain, i.e., prevent a node of sending
wrong values.

8



1.2 The Time-Triggered Architecture

1.2.4 Bus topologies

By default a TTP cluster has a bus topology as seen in Figure 1.1. This
successively connects the nodes with the bus and therefore only one physi-
cal cable is needed (respectively two cables if the two channels are spatially
separated). Hence this topology is good for the use in widely distributed appli-
cations where cables must be saved for weight, space and complexity reasons.
Unfortunately this topology introduces fault modes that cannot be prevented:
Spatial proximity faults1 can affect the whole network, if the fault containment
regions reach more than one node. The TTP bus inherently constitutes a
fault containment region. If a single event cuts the cable somewhere or tran-
sient disturbance compromises the bus, communication of more than one node
might be affected. And as the two channels merge in every node they cannot
be fully spatially separated and therefore the fault mode cannot be prevented
completely.

The alternative is the star topology shown in Figure 1.6. Two independent
central star couplers are connected to each node and broadcast the incoming
signals to all other nodes. Local bus guardians at the nodes are omitted. Each
star coupler has one bus guardian that broadcasts messages only if sent in
the right time slot. This protects the system from spatial proximity faults
and does not broadcast signals that are slightly off specification if the global
star couplers are equipped with signal reshaping functionality. Therefore this
topology is to be preferred in safety-critical application domains.

The drawback is obvious: The central star couplers require cabling from
each node to both of the couplers. This does not makes the star topology
applicable for several application domains.

1.2.5 Fault-tolerant communication

The nodes in a TTP network behave fail-silent. That means whenever a TTP
controller detects divergent behaviour, it enters the freeze state and stops
sending messages to the bus. Thus the system can lose a source of important
messages such as sensor values if a fault occurs at the corresponding node.
Therefore the fault-tolerant communication layer allows to specify more than
one node for the implementation of a subsystem. This is shown in Figure 1.7:
Two or more nodes are grouped together in fault-tolerant units (FTU ) that
all implement the same subsystem. Hence this subsystem sends its messages
redundantly: Every node of the FTU sends the message and therefore the

1A common fault where a single event affects more than one part of a system due to the
spatial proximity of the system parts. This could introduce the violation of the single
fault hypothesis.
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Figure 1.6: The star topology for TTP networks
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receiver gets multiple versions of it within one TDMA round. The developer of
the receiver shall not be charged with additional information he has to handle.
Therefore a little software layer in the receiver’s host application— the fault-
tolerant communication layer (FTCOM ) —fetches all the messages of the FTU
nodes, merges them and passes only one message to the receiving application.
As sensor values of different sensors can slightly differ, the merging of the
values uses a dedicated algorithm like an average value or a voting between
more than two values. The algorithm has to be chosen resp. implemented
by the developer. If one of the FTU nodes fails, the FTCOM layer uses the
remaining messages of the FTU to pass the value to the application.

The fault-tolerant communication layer is not part of the TTP specifica-
tion. The time-triggered approach enables the developer to use this way of
redundancy, but the FTCOM functionality must be implemented by the de-
veloper in the host application. In order to decouple application development
from low-level dependability considerations, tools could and already can (see
Section 1.3.2.1 on page 20) generate the FTCOM layer automatically. An im-
plementation of the FTCOM layer in dedicated hardware could dispense the
host from non-negligible runtime- and memory-consumptions. This will be
done in the DECOS project (see Section 1.4 on page 34).

1.2.6 From TTP to TTA

TTP only describes the communication scheme of the TTP cluster. As the
host computer of each node is completely independent of the TTP controller, it
can fetch the messages at any arbitrary time. It can process its tasks whenever
it wants and put messages to the CNI to be sent at any time as well (whereas
a mutual exclusion mechanism has to prevent access to the data while they
are inconsistent, e.g., at the moment the TTP controller writes the data onto
the CNI).

The time-triggered architecture (TTA) extends the time-triggered scheme
from the network to the host application. In a TTA the tasks are executed
with a time-triggered operating system [OSE01] and another schedule at each
node (the Task Descriptor List (TaDL)) controls the task execution. As the
MeDL is a global schedule, the scope of a TaDL is only one node. It is gener-
ated according to the global MeDL in order to run a task that uses a message,
after the message has been received, and finishes the task before a result has
to be sent. Figure 1.8 shows an example. The host computer can use the syn-
chronized time that the TTP controller provides and therefore the scheduling
of the tasks at the right times is possible.

11
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1.2.7 Alternative communication subsystems

byteflight Byteflight [BPG00], developed by BMW, uses a technique called
flexible time division multiple access. The bus access is divided into time cycles
of a static period where a synchronization pulse of a master node indicates a
new cycle (see Figure 1.9). Each node resp. message type gets a unique iden-
tifier. Each message with a certain identifier may be sent once in a cycle but
does not have to be sent. Due to individual static wait times t_wx corre-
sponding to the identifiers, lower identifiers get preferred access to the bus
each time cycle. Therefore critical messages with low identifiers will likely be
able to send while messages with high identifiers might have to wait until a cy-
cle has less traffic of higher priority messages. Furthermore, access to the bus
for a few high-priority messages (coloured red) can be guaranteed by static
analysis of the system during design time. Therefore the bus can be used
synchronously. Other messages (coloured green) use remaining bandwidth for
asynchronous access. This rather event-triggered approach comes very close
to a time-triggered communication scheme.
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1.2 The Time-Triggered Architecture

FlexRay FlexRay [BMH+01] is being developed by a consortium of BMW,
DaimlerChrysler, Motorola and Philips. Its operation is divided between time-
triggered and event-triggered activities. While the general communication
is strictly time-triggered, the TDMA-round is partitioned into a static time-
triggered part and a dynamic event-triggered part. The division is set at design
time. In the event-triggered part the nodes communicate using the byteflight
protocol.

As FlexRay is still under development, Rushby [Rus01] states that many
problems have not yet been solved or have not been as consequently tackled
as in TTP. For example FlexRay does not provide interactively consistent
message transmission. It provides no membership or failure notification service
and contains no mechanisms to control slightly off specification2 faults.
Nevertheless, the mixing of time- and event-triggered operation makes FlexRay

interesting. It is potentially important because of the industrial influence of
its developers.

TTCAN The Time-Triggered CAN (TTCAN ) [FMD+00] protocol is real-
ized in software in a higher layer on top of the event-triggered CAN [ISO93]
protocol. A time master sends reference messages that indicate a new basic
time cycle and to which the other nodes can synchronize their clocks. Within
a basic cycle the time is divided into time slots. A slot can be assigned to a
special message for purely time-triggered communication. Additionally, slots
can be used as arbitrating windows, for which the nodes compete for bus access
just as in the regular CAN communication.

For some applications it might be necessary to synchronize the cycles to
events, e.g., synchronize communication and motor rotation. For these cases
the periodic transmission of messages can be discontinued until the event has
taken place.

Unfortunately, TTCAN has no systematic fault tolerance, no a priori redun-
dant channels and its transmission speed is quite slow due to the underlying
CAN protocol. The features such as the synchronization of communication to
external events show that it was designed for the automotive industry, where
CAN communication is widely used and the same hardware can be used for
TTCAN. However, it cannot be used for safety-critical applications.

2If an electric signal of one controller is slightly not within the specified valid ranges, some
other controllers might accept the signal as correct and others might reject them as
invalid. This could lead to inconsistent system states.
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1.3 Model-based system design

The complexity of the systems obviously rises by introducing more and more
electronic systems which intercommunicate. The system developer must han-
dle topics of safety, reliability, maintainability, availability, security and reusabil-
ity.
One can try to cope with the complexity by using models in the devel-

opment process. In general a model is a dedicated abstraction of the real
world. It can help to explain certain real-world phenomena [NL02]. Graphical
representations of information play an important role in software engineering
[GJ92, PH04]. They help to display the underlying data in a user-friendly
way. Graphical modelling languages show the system on a very high level of
abstraction. They can hide irrelevant data and clarify hierarchy in order to
design the development process in such a way that it fits human understanding
best. Good modelling suites join together capabilities of abstraction of human
beings with the detailed implementation of machines. So they offer an intuitive
model language to support human understanding and lead to an automated
system code synthesis to support the target machines directly.

1.3.1 Different model types

The development of X-by-wire systems inherently need to study the communi-
cation techniques. Thus the communication subsystem should be part of the
model if you develop a distributed real-time system. By integrating the archi-
tectural particulars of the distributed system into the model, Nossal and Lang
[NL02] introduced a development process that categorizes four different model
types: functional model, architecture-allocated functional model, virtual proto-
type and architectural model. These are classified according to the respective
level of abstraction.

1.3.1.1 Functional model - discrete vs continuous

The functional model is the basic model that abstracts the system functions
that are delivered to the environment. It models the main functionality of the
system.
The functional model does not deal with architectural issues. Nor does it

show whether the application will be distributed to several Electronic Control
Units (ECUs) or run on a single ECU. Specification and allocation of tasks in
the system are not part of it either.
In the functional model the continuous parts of the system are modeled in

a data-flow language and the discrete part in state machines:
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Continuous models Continuous models show the data flow between different
operators of the model. The foundations of data flow models were laid by Kahn
[Kah74] and a variety of such models are studied in [LP95].

Graphical models of such data flow consist of operators with specified input
and output signals whose interconnections show the flow of data. If hierarchy
is introduced, each operator itself is such a network of other operators which
connect its inputs with its outputs. Basic mathematical functions are the
smallest operators.

The idea of continuous data flow can only be approximately implemented on
a computing machine, thus data flow models can have different types of firing
rules, i.e., the conditions that control the points in time where the data flow
of each operator is evaluated. These conditions can be kept very flexible and
even introduce nondeterminism in order to model the problems as accurately
as possible. As nondeterminism introduces many problems for safety issues,
synchronous data flow [LM87] evaluates the operators in a synchronous manner
to predefined clock ticks.

Graphical notation and interface of data flow models are usually close to
the control engineering culture and knowledge and enable engineers to model
control loops in their systems.

Discrete models As a basic principle transformational and reactive systems
build a dichotomy in the analysis of computing systems [HP85]. Transforma-
tional systems are described by a relation between input and output value.
They are of linear structure with only the initial and the final state of interest.
Reactive systems do not compute a function, but perform a continuous inter-
action with their environment. The behaviour of the environment, i.e., the
input to the system, depends on the reaction of the system, i.e., of previous
outputs. Therefore a relation between input sequences and output sequences is
not enough to fully describe a reactive system. This phenomenon is known as
the Brock-Ackermann paradox [BA81]. In this example two transformational
systems perform the same operation on sequences. One behaves as a one-place
and the other as a two-place buffer and they suddenly behave differently when
their outputs are fed back to their inputs. This happens because the recycled
output can appear earlier in the output sequence if a one-place buffer is used
instead of the two-place buffer. Apparently, one also has to know when an
output is produced [HdR91].
Harel introduced his Statecharts [Har87] to add the idea of being in a partic-

ular state. As mentioned before this internal state at which an input arrives is
important for a reactive system to compute the reaction. The traditional finite
state machine (FSM) does not serve this purpose because its only output is a
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signal that it has reached its final state. In contrast a reactive system might
not even have a final state and needs to be allowed to produce outputs at any
time during execution. The solution is the formalism of the Mealy machine
[HU79] which Harel extended for his needs.
Today a variety of different model languages based on this approach exist,

which look quite similar but do not only have different names but different
semantics. This goes back to the fact that desired properties of the statecharts,
i.e., modularity, causality and responsiveness, cannot come together [HG92].
Hence every modelling tool delivers its own statecharts derivate with semantics
appropriate to the field of application.

1.3.1.2 Architecture-allocated functional model

The architecture-allocated functional model adds information to the functional
model. This model goes beyond the state machines and control loops and takes
the system architecture into account. It represents the allocation of parts of
the modelled functions to architectural elements. The functions are grouped
to tasks and then the tasks are allocated to ECUs.
The sole purpose of the architecture-allocated functional model is to con-

cisely represent system distribution - that is hardware and software architec-
tures.
Communication relations are modelled with native I/O operators of the

tools, which operate without delay.

1.3.1.3 Virtual prototype

The virtual prototype is meant to accurately reflect the real-world system
and therefore it must know which communication system will be used in the
real-world system. It requires different models for TTP [KG92], CAN [ISO93],
TTCAN [FMD+00], LIN [LIN00], byteflight [BPG00] and FlexRay [BMH+01],
because different communication subsystems require different model blocks or
nodes that represent, simulate and/or implement the different communication
schemes. The virtual prototype comprises the functional behaviour of the
system, the distribution and the communication system behaviour. The model
includes

• the control loop model, as in the functional model;

• architectural information, as in the architecture-allocated functional model;
and

• the communication system model.
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After the development of the communication schedule based on the architec-
tural models (described in 1.3.1.4) the architecture-allocated functional model
can be augmented with the communication system behaviour. Therefore the
native delay-free I/O operators are replaced by the communication-system-
specific operators which are part of the communication system model. These
new operators model specify communication system parameters.

The virtual prototype model assesses the influence of architectural decisions
on a functional model. The functional model helps to find flaws in the control
strategy, while the virtual prototype lets the developer adjust the algorithms
according to specific properties of the communication subsystem. Reaction
strategies for communication faults can be implemented and their effects sim-
ulated.

1.3.1.4 Architectural model

The architectural model focuses on a detailed description of the system archi-
tecture. The hardware part models the computational nodes (ECUs) and their
interconnection networks (from a non-redundant bus to a multistar network
topology). The software part describes the tasks with their relations, which are
data passing and precedence. Developers augment the model with properties
about the hardware and software, for example characteristics of the comput-
ers (e.g., clock speed) and characteristics of task execution (e.g., worst-case
execution time).

The purpose of the architectural model is to configure the real-world system
prior to runtime. It does not need to comprise the control loops and state
machines because it does not use the functional behaviour. From the architec-
tural model one can generate the static configuration data that is needed to
run the real-world system: The model properties are exported to tools, which
compute the static configuration data automatically or with little interaction
with the developer. That is for example the communication schedule (Message
Descriptor List (MeDL) in the TTP) and the component’s operating system
schedule if a TTA is used (Task Descriptor List (TaDL).

1.3.1.5 The A-process

The A-process [NL02] describes the development process from the beginning
with the functional model to the final application code. Figure 1.10 depicts its
workflow (and indicates the origin of its name). The developer begins by spec-
ifying the control loops in continuous and discrete models and hence builds the
functional model. The architecture-allocated functional model derives from the
functional model by the augmentation of architecture specific data, i.e., the
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information about the distribution of the system. The architectural model uses
this distribution information and enriches it with detailed knowledge about the
hardware and software properties from where middleware code (time triggered
operating systems, fault-tolerant communication layer (FTCOM)) can be gen-
erated. On the other hand, the virtual prototype augments the architecture-
allocated functional model by communication subsystem specific information
and it uses the configuration data of the architectural model for simulation.
Code generated from the virtual prototype together with the middleware code
build the application code.

The A-process was introduced to help the needs of system developers: Spe-
cific purposes require specific information about the system. Therefore differ-
ent models could be used. If different models were developed independently
and represent different aspects of the same system, they can contradict each
other in certain respects. A complete virtual system model could fix this is-
sue: It would comprise all properties of the real-world system. Apparently
this model would be very complex and incomprehensible. Thus the A-process
introduces different models that are well coordinated and therefore consistent.

It must be evaluated, how the existing modelling tools support this approach.
Some modelling suites offer a seamless development process that only allows
modelling of a complete virtual system model instead of keeping the different
model types apart.

1.3.2 Comparison of Modelling Suites

Several manufacturers offer powerful modelling suites that promise to provide
the developer with tools for a seamless modelling process. In this Section the
suites are introduced that are currently in use at CAU Kiel, 2005 (see Version
information at Appendix C). Those are the Matlab family from The Math-
works with Matlab, Simulink & Stateflow and the SCADE Suite from Esterel
Technologies. We will build a model of a time triggered architecture and both
modelling suites will support this communication architecture by integrating
the TTA tools of TTTech [TTT] (that use TTP as the communication sub-
system) into their development workflow. The TTTech tools can be used on
their own and they can use graphical representations for interacting with the
developer. So they can be considered as modeling tools at a lower abstraction
level. Therefore we will start with the introduction of the TTTech tools and
then introduce the tools of Mathworks resp. Esterel Technologies.
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Functional modelArchitecture-allocated functional model Virtual prototypeMiddleware code Application codeArchitectural model
Control loopsMessage transfer relationCommunication subsystemHardware and software properties Configuration data(communication/task schedules)OS, FTCOM layer, etc. Code generation

Figure 1.10: The A development process tracks the development of X-by-wire
applications from functional model to middleware and application
code
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1.3.2.1 TTTech: Tools for specifying the TTA

The Time-Triggered Protocol, TTP, has been developed during the past 25
years by Vienna University of Technology (TU Wien) [KG92]. In 1998 TTTech
emerged as a company from the TU Wien and EU-funded research projects
such as TTA and X-By-Wire. From then on it has commercially been using
the results by developing tools for the TTA system design. It has been trad-
ing dedicated TTP hardware, offering trainings on the TTP topic and their
products and supporting development projects in the industry.
The target group are mainly the automotive industry and comparable in-

dustries, which shows a strong distribution of the development process into
two parties: The system integrator, usually the car manufacturer itself, speci-
fies the system and divides it into smaller subsystems. These are produced by
subsystem suppliers, which often differ from the system integrator. In the end
the system integrator integrates the several subsystems into the final system.
Therefore the TTTech tools build a two-level design framework taking this

relationship between subsystem supplier and system integrator into account:
TTP-Plan is an overall cluster design tool whereas TTP-Build is a node and
task design tool.

Tool Overview

1. TTP-Plan Specifies global cluster properties. Generates global communi-
cation schedule—the Message Descriptor List (MeDL).

2. TTP-Build Specifies local node properties. Generates local task schedule—
the Task Descriptor List (TaDL), configures the operating system, gen-
erates middle ware code, FTCOM Layer.

3. TTP-Load Loads application binaries and MeDL to the nodes with the
help of the monitoring node.

4. TTP-View Connects the monitoring node to the cluster and listens to
TTP traffic. Visualizes messages, records message traces.

5. TTP-Calibrate Uses monitoring node to calibrate application constants
during runtime of the cluster.

TTP-Matlink Models a TTA in Matlab Simulink and exports the data to
TTP-Plan and TTP-Build. Gives a user interface to control the other
TTTech tools.
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TTP-Plan TTP-Plan is used to specify the global TTP-cluster information.
This information must be provided roughly in the following steps

1. Definition of global cluster information such as the TDMA round period
and the transmission speed of the underlying physical layer.

2. Definition of the hosts, i.e., the nodes used in the cluster, with rudimen-
tary information as their serial number in the network for example.

3. Definition of the possible cluster modes.

4. Specification of the needed subsystems in the system that will be imple-
mented by the hosts.

5. Mapping of the hosts to the subsystems according to the current cluster
mode.

6. Definition of the messages that will be transferred by the communication
subsystem including typing of the messages and defining the period.

7. Mapping of messages to the subsystems that send them.

The graphical user interface includes a step-by-step guide leading the user
through the main steps of the specification process and a graphical interface,
the so called pilot, that depicts the relationship between the elements and let
the user directly access the corresponding specification forms (see Figure 1.11).

The tool comprises a consistency checker that looks for logical design faults.
After all the necessary information is provided by the system developer (op-

tional data are filled with default values), TTP-Plan automatically generates
a global static communication schedule, the Message Descriptor List (MeDL).
It shows statistical data, such as the usage of the communication bandwidth
(see Figure 1.12).

Then the developer can review the generated schedule and manually make
changes to it like exchanging message precedence (see Figure 1.13).

The schedule information is stored in a so called cluster database which is
the file format of TTTech for the cluster specification.

TTP-Build TTP-Build extends the development process of TTP-Plan by
concentrating on the local host. While TTP-Plan is likely to be used by the
system integrator who has to specify the necessary global information of the
TTP-cluster, TTP-Build is interesting for the subsystem suppliers that have
to implement one specific node of the cluster. Thus major steps of the design
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Figure 1.11: The pilot navigator of TTP-Plan that shows the relations in the
global cluster specifications

Figure 1.12: Statistical data shown by TTP-Plan
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Figure 1.13: Graphical view of the generated global communication schedule
in TTP-Plan

process are the configuration of the operating system and the generation of
the fault-tolerant communication layer.

TTP-Build provides a step-by-step guide that leads through the main nec-
essary specification steps and a pilot interface that graphically depicts the
relations between the elements of the specification (see Figure 1.14), hence the
graphical user interfaces of TTP-Plan and TTP-Build are very similar.

The specification process in TTP-Build roughly takes the following steps:

1. Loading of a cluster design. A cluster database that formerly was built
by TTP-Plan has to be imported. The general node properties and the
Message Descriptor List (MeDL) are inherited by TTP-Build.

2. The developer has to pick a specific node from a list of the available nodes
in the cluster that he wants to specify. This shows that TTP-Build was
mainly designed for a supplier that implements exactly one node in the
cluster. If you want to specify more nodes of the cluster, you have to
redo the TTP-Build steps again for every single node.

3. Specification of the node hardware. A node configuration must be loaded
that specifies the TTP controller and the host computer hardware of the
node. The selection is done from a list as the specific node configurations
come from a configuration file that TTTech provides with the tools. Thus
only supported hardware can be used with TTP-Build and for special
hardware TTTech needs to adapt the configuration files.

4. Specification of tasks and the mapping of subsystems to tasks. Each
task is run by exactly one subsystem but every subsystem may execute
as many tasks as necessary.
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Figure 1.14: The pilot navigator of TTP-Build that shows the relations in the
local node specifications

5. Configuration of the tasks: Setting of the granted time budget, i.e., the
worst-case execution time (WCET) of the task (see Section 3.1.3 for
details on the topic of WCET). This is needed to build the task schedule
for the operating system. Best-case execution times can be provided in
order to let the scheduling algorithms optimize the checks and schedules.

6. Mapping of messages to tasks. Every message must be sent by exactly
one task.

7. Definition of I/O messages. These are used whenever the node needs to
communicate in a different way than via TTP. This especially includes
access to the local I/O interfaces. For example regular local sensor read-
ings of a node can be implemented by I/O messages. Property of such
a message is its period. A task that is associated to an I/O message
will be scheduled according to this period. Hence an I/O message can
be regarded as a trigger for a task that is not scheduled according to
any TTP message. Particulars of the I/O message must be manually
implemented by the developer.

8. Mapping of tasks to application modes (which is only one by default).

After specification of the needed information, TTP-Build can generate the
schedule for the time-triggered operating system of the node. This Task De-
scriptor List (TaDL) can be reviewed by the developer (see Figure 1.15).
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Figure 1.15: The TaDL generated by TTP-Build can be reviewed. It dis-
plays the timing information for each task and some details of
the FTCOM-Layer

Then TTP-Build can automatically generate the fault-tolerant communi-
cation layer code and finally generate the full application code of the node.
This includes the code for the operating system TTP-OS, the fault-tolerant
communication layer code and templates for the several tasks of the code.

After this process the developer has to implement the task functionality in
C within the templates. Afterwards he can compile the node sources and as a
result the node binary is ready for deployment.

Other tools TTP-Plan and TTP-Build are the major instruments for the
design of the system. They specify the system, build the schedules and generate
the template application code.

There are some other tools of TTTech available that help with working
with a TTA but they are not mandatory. So they are listed here for the sake
of completeness. As TTP-Matlink and TTP-Calibrate are tools for Matlab
Simulink, they will be introduced in Section 1.3.2.2.

Some of the applications use the TTP monitoring node. The monitoring
node is a TTP node running special applications. It has an interface to the
TTP network on the one hand and an Ethernet interface on the other hand.
However, it is no gateway between TTP and Ethernet. The applications of
the monitoring node only allow monitoring of the TTP network and loading
of the node application binaries.

TTP-Load TTP-Load is a helper for the practical use of the generated appli-
cation binary. It connects the developer’s PC over Ethernet with the monitor-
ing node and commands the monitoring node to connect to the TTP-cluster.
The nodes in the cluster change their modes to the download mode and the
so-called bootloader software module at the nodes takes over the communica-
tion control. The monitoring nodes checks the application binaries that are
currently stored on the different nodes and checks if the MeDLs of the nodes
fit together. Then the new MeDLs and application binaries can be uploaded
to the nodes through the monitoring node. Besides the startup phase this is
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the only communication mode where the access is managed asynchronously by
the monitoring node.

TTP-View After uploading the new application code to the cluster, the TTP
controller of the nodes switches back to the default TTP protocol and there-
fore automatically starts the time-triggered communication and executes the
applications. The monitoring node can be used to see what is going on at
the TTP-bus. It loads a cluster database and therefore knows what messages
will be transferred. The current values of the messages can be displayed on
the screen and visualized, for instance by gauges, bars or indicator leds. The
status of messages can be displayed (for example how many messages of a
redundantly transferred message which uses FTCOM are available) and the
current membership vector.
The behaviour can be recorded over time. This record function can be

triggered by specified conditions. This can be used if only faulty behaviour is
meant to be recorded and the time till such a faulty behaviour is too long to
record it all.

TTP-OS TTP-OS is the operating system that TTTech uses within their
nodes. TTP-OS is based on the OSEKtime working group specifications for
the OSEK/VDX operating system [OSE01]. TTP-OS is a bridge between the
OSEK/VDX specification and the world of Time-Triggered Technology.
With generating the application template code for a node with TTP-Build,

a fully configured version of TTP-OS is generated for this node.

1.3.2.2 The Mathworks: Matlab, Simulink & Friends

The Mathworks offers a big toolbox for the model designer. With the mathe-
matical tool Matlab [Mat93] it provides a high-level technical computing lan-
guage and interactive environment for algorithm development, data visualiza-
tion, data analysis, and numerical computation. Matlab forms the basis of all
other tools. Main parts of the model-based system design are Simulink and
Stateflow, whereas the Realtime Workshop (RTW) and the RTW Embedded
Coder do the code generation. The plugin TTP-Matlink of TTTech is used
for the TTA-coupling of Simulink. These parts of the Matlab family will be
introduced in the following.

Simulink Simulink models data flow. It is used for simulation of dynamic
systems. The creation of a model is done graphically by picking and positioning
Simulink blocks from a block library and adding signal lines between the inputs
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and outputs of the blocks. There is a big library of predefined blocks that
implement mathematical functions. You may add your own blocks to the
library.

The semantics of a data flow model are specified by its evaluation rules of
the data flow operators. The simulation of a Simulink model uses solvers to
set the evaluation behaviour.

Solvers are numerical integration algorithms that compute the system dy-
namics over time using information contained in the model. Simulink pro-
vides solvers to support the simulation of a broad range of systems, including
continuous-time (analog), discrete-time (digital), hybrid (mixed-signal), and
multirate systems of any size.

These solvers can simulate stiff systems and systems with state events, such
as discontinuities, including instantaneous changes in system dynamics.

The developer can specify simulation options, including the type and prop-
erties of the solver, simulation start and stop times, and whether to load or
save simulation data.

Explicit typing of variables is not mandatory in Simulink, but there exists
a type-checking mechanism that might reject some models due to type errors.
The boolean data type is added by a mapping to the numbers 0 and 1 and
many quasi logical operators like switches accept any data type as input. The
value gets internally compared to a threshold in order to determine the boolean
value. Other operators usually handle multiple data types too, so there is the
same operator for integers and floats. This can end up in a mixed use of types
where even booleans can be typed as floats.

Stateflow Stateflow models state machines. Stateflow charts enable the
graphical representation of hierarchical and parallel states and the event-driven
transitions between them. Stateflow semantics are not formally given but by
an informal description in its user manual [Mat04]. As explicit typing is miss-
ing in Simulink, some explicit mechanisms are missing in Stateflow as well:
consider for example a state with multiple outgoing transitions. If some tran-
sition conditions are true in the same step, they are evaluated in a clockwise
progression, starting at the upper left corner of the source state. This means
that the position of states and transitions is critical to the semantics of the
chart; if one slightly moves a transition, it could change the semantics. There-
fore information such as source and target is not sufficient to describe the
semantics of a transition.

In Statemate Statecharts or Safe State Machines of Esterel Technologies
this is not the case: either multiple outgoing transitions are not allowed (Stat-
echarts) or explicit ordering of the transitions is mandatory (Safe State Ma-
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chines). Hence a chart will always have the same semantics, if the graphical
representation is simply rearranged while the general relations between states
and transitions are not changed.
Unfortunately Stateflow does not have this desirable property.

Code generation The Matlab family uses a set of tools to generate code
out of the models. The Real-Time Workshop (RTW) is the basis for code
generation of data flow models and the RTW Embedded Coder upgrades the
RTW for building a code that is meant for embedded systems. Therefore the
code is better readable, more compact and optimized for execution speed.
The result is ANSI/ISO C code and is generated incrementally for the model

blocks. Therefore there are distinct files for all subsystems available.

Matlink Matlink is the interface between the TTTech tools and Simulink. As
Simulink itself does not model distributed systems, Matlink brings this feature
into the Matlab family.
Matlink provides a Simulink block library which is used to specify the TTA.

There are blocks to specify the subsystems, tasks and messages of the TTA.
Modelling of a TTA with Matlink is exemplarily shown in Figure 1.16. The
example is provided along with Matlink by TTTech. It shows a brake-by-wire
system that is specified by three subsystems for the pedal sensor, the brake
force calculation and the brake force execution. Special blocks are used to
model messages that are either sent or received by a subsystem. The next
level is the specification of tasks as shown in figure 1.17 for the brake force cal-
culation subsystem. This level specifies the tasks and local messages between
the tasks. Additional forms allow to edit specific task properties, such as the
time budget. The lowest level is shown in figure 1.18 where the brake force
execution task is implemented. Standard Simulink blocks are used to model
the tasks behaviour.
The special Matlink block seen in Figure 1.16 gives access to the other

controls of Matlink. It opens a tabbed window which allows the developer to
do final specifications of the TTA. This starts with global cluster settings such
as the TDMA round length and the transmission speed of the physical layer
and goes to the specification of the single hardware units, the nodes, and the
mapping of subsystems to nodes. Finally it controls the other tools of TTTech:

• The developer can export the Simulink model into a cluster database
and load it to TTP-Plan. All mandatory information about the cluster
is derived from the Simulink model and therefore TTP-Plan can au-
tomatically build the MeDL for the cluster. An additional interactive
modus allows to manually insert optional data to the cluster database in
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Figure 1.16: A brake-by-wire system modelled in Simulink with TTP-Matlink

Figure 1.17: Specification of tasks within a subsystem (brake_calc) with TTP-
Matlink

Figure 1.18: Implementing the functionality of a task (in subsystem
brake_model) with standard Simulink blocks
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TTP-Plan before generating the MeDL or manually edit the computed
schedule.

• The schedule information can be imported into Matlink which allows
the developer to see the timing information about the messages in the
Simulink model.

• Then the enriched model can be exported to TTP-Build, that means the
information for every node is exported to a single instance of TTP-Build.
The task schedules (TaDL) for each node are made by TTP-Build.

• The timing information for the tasks can be imported into Matlink to
show the task information in the Simulink model.

• The developer can make the toolchain generate the code for some or
even all nodes. That means the generation of the operating system files,
the fault-tolerant communication layer and the templates for the several
tasks. If the developer modelled the tasks with Simulink blocks, the task
templates are filled by the Realtime Workshop Embedded Coder with
the appropriate implementation of the functionality of the task.

• The compilation of the generated code can be triggered for the nodes.

• The developer can call TTP-Load to automatically load and start the
application binaries to the nodes.

• TTP-View can be called to view the cluster communication over the
TTP-bus.

By centralizing these functions at the Matlink user interface, the modelling
becomes a seamless process.
Calipo is a protocol developed by TTTech to calibrate constants in an appli-

cation during runtime of a TTP cluster. TTP-Calibrate is a tool that includes
this feature on the Matlink interface. Calipo (short for calibration protocol)
adds a time slot in the MeDL for the monitoring node that enables it to send
data. Constants in a model can be marked for calibration and then they are
internally changed to variables whose values can be changed by the monitor-
ing node. In this way the developer can define constants at the distributed
nodes that set some special properties, brake force in a brake-by-wire applica-
tion for example, and he can adjust these values in tests without the need of
regeneration of the binaries and a new upload and restart of the TTP nodes.
With Matlink the dichotomy of system integrator domain and subsystem

supplier domain vanishes. So it is likely be used for rapid prototyping where
the developer has both roles.
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1.3.2.3 Esterel Technologies: The SCADE Suite

The SCADE Suite is the modelling environment of Esterel Technologies [Est].
The semantics of the models are given by synchronous languages : A very
common model in software process control is cycle-based reaction. The imple-
mentation cyclically repeats a sequence of three actions: reading the inputs,
computing the reaction and producing the corresponding outputs. Input events
occurring during a reaction are queued for the next reaction, which makes the
reaction atomic and deterministic. There are two different synchronous pro-
gramming styles: The data-flow style and the imperative style. These lead to
the graphical modelling techniques of the SCADE Suite. An informal intro-
duction to these synchronous languages gives [Ber00].

Data flow models Lustre [HCRP91] is the synchronous language with data-
flow style which is well-adapted to steady process-control applications and to
signal processing.

The following example is taken from [Ber00] and shall lead to the graphical
representation in SCADE: Consider a dynamical system where U is the input
signal, X the output and S an internal state variable with the equations

Xt+1 = Ut+1 · sin(Xt + St+1 − St)

St+1 = cos(St + Ut+1).

In Lustre the system becomes the following:

node Control (U : float) returns (X : float);
var S : float;
let

X = 0. -> (U*sin(pre(X)+S-pre(S)));
S = 1. -> cos(pre(S)+U);

tel

Note that the time indices are omitted and therefore the variables denote
complete flows where the pre operator gives access to the value of the former
instance and the -> operator acts as initialization for the pre operator.
A SCADE model is a graphical representation of such a Lustre program. The

example above looks like the graphical representation shown in Figure 1.19.
The models are strongly-typed and available types are bool, int and real and the
developer can combine these types in user-defined structures or enumerations.
The operators in SCADE are called nodes. They can be modelled graphically
as a net of connections between the inputs, outputs and other nodes as shown
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Figure 1.19: A simple SCADE model

in fig. 1.19 or textually with the Lustre language notation as shown above.
Finally nodes can be indicated as imported operators which means they are
implemented in the low level programming language C. SCADE provides a
small library with standard nodes for mathematical functions.

Safe State Machines (SSM) State machines can be embedded into a SCADE
model. Esterel Technologies uses its Safe State Machines which were formerly
known as SyncCharts. They were conceived in the nineties [And96a] as a
graphical notation for the synchronous Esterel language [BdS91]. Hence SSM
inherit their semantics through the mapping to Esterel. This mathematical
semantics are explained in a technical report [And96b] and an informal pre-
sentation of the model and its semantics is given in [And03, Han05].

Code generation SCADE provides Ada, standard C and qualified C code
generators.
The SCADE Editor exports a textual description of the SCADEmodel which

is fed into a SCADE-to-Lustre filter that transforms the model into Lustre
code.
There are three different Lustre-to-Code transformators, that accept Lus-

tre code as an input and produce code in the corresponding target language,
i.e., Ada, ANSI C or C qualified with respect to DO-178B level A [RTC92].
That is the most constraining level of one of the most constraining development
processes, which is mandatory for safety critical systems in the aerospace in-
dustry. Esterel Technology abbreviates its qualified code generator with KCG.
Optimizations of speed, memory and code size can be enabled.
The generation of qualified code restricts the use of certain SCADE model

components (for example the followed by (FBY) operator may not be used
as it was introduced to SCADE after the verification of the KCG). The use
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of a DO-178B template in the SCADE editor ensures that only models that
are supported by the SCADE DO-178B qualified chain are used in the design
phase.

TTP-Coupling The TTP-coupling to SCADE is called TTPlink. It offers
the specification feature for the TTA to SCADE quite in the same way as
Matlink does for Simulink: It provides a SCADE node library with nodes for
TTP messages. There are nodes for modelling the sending of messages, the
receiving of messages and the passing of local messages between tasks within
one subsystem. Annotations to the message nodes add the message properties,
such as the message names and the sending period. TTA subsystems and tasks
are modelled by normal SCADE nodes which get enriched by annotations that
include the subsystem resp. task properties. Forms allow the user-friendly
input of these properties into the annotations. One standard SCADE node
represents the TTA cluster. It only comprises TTA subsystem nodes and the
message nodes that specify the communication between the subsystems. Each
subsystem node only includes TTA task nodes that may be connected with
local message nodes. The TTA task nodes may contain other SCADE nodes
that model the functional behaviour of the task.

An additional tab in the file view is for specifying the hardware units, the
TTP nodes, and the mapping of these nodes to subsystems.

Just as Matlink, the TTP-coupling for SCADE adds user interfaces to au-
tomatically generating the MeDL with TTP-Plan, the TaDLs for every node
with TTP-Build, the wrapper code for the tasks and the code for the appli-
cations. The application binaries compilation and the upload of these to the
TTP nodes can be called by the user interface as well. Finally the calibration
of values through the monitoring node can be enabled by this user interface.

For examples see Section 2.3.2 where we describe the modelling of a real
system and especially the modelling of the TTA in SCADE.

Additional features The SCADE Suite offers several additional features that
should be mentioned.

Simulator A simulator can simulate the model by generating an executable
simulation file for the model that will be executed by the simulator.
Input signals can be set manually or by script files for larger traces.

Design Verifier Specified properties of SCADE nodes can be proved with the
Design Verifier tool of the SCADE suite. A special verifier node library
enables the developer to specify properties of his SCADE nodes within
the standard SCADE notation. Model checking techniques test if the
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model is in conformity with the properties and, if not, counter-examples
are automatically generated. Using this feature is quite intuitive and
requires no additional theoretical background.

Simulink and Stateflow gateways A Simulink gateway translates discrete
controllers prototyped with Simulink into SCADE descriptions. A State-
flow gateway syntactically translates Stateflow charts into Safe State Ma-
chines (SSM). As the semantics of Stateflow and SSM differ, the trans-
lation results must be reviewed manually.

1.3.2.4 Conclusion

The synchronous languages that underlay SCADE and SSMs give precise
mathematical semantics to the graphical models and therefore mathemati-
cal analysis of such models is possible and the behaviour is fully deterministic
which is essential for safety-critical applications.
The deterministic, fault-tolerant philosophy that consistently inherits the

time-triggered architecture perfectly fits the deterministic philosophy of syn-
chronous languages. With its special features for validation, verification and
qualified code generation and the underlaying use of the synchronous lan-
guages Lustre and Esterel the SCADE Suite goes consummately together with
the time-triggered architecture.
Therefore we will use the SCADE Suite for our modelling activities intro-

duced in the next Sections.

1.4 The DECOS Project

DECOS stands for Dependable Embedded Components and Systems and is a
EU funded Integrated Project (IP) of the 6th Framework Programme (FP)
[DEC]. It is domain independent. Possible applications are for example in the
automotive, aerospace, railway, control and medical domain.
It tackles five key obstacles in the development of real-time systems (cp. [Kop03]):

Electronic hardware cost Today’s distributed systems are federated to stay
safe. In a federated architecture functional and spatial separation goes
together. For example in a modern airplane every function gets its own
hardware unit in order to keep any faults to this unit only. With the
growth of functionality, hardware costs increase and space, weight and
complexity requirements as well.

Diagnosis and maintenance If a fault occurs, it is hard to find the correct
reasons. Diagnosis of today’s electronic systems becomes a guessing game
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for the maintenance staff and in the end complete Electronic Control
Units (ECU) are exchanged because the fault could not be localized
exactly. As the fault origin is often not found, the fault is not fed back
into the design cycle in order to improve the system.

Dependability With the advance of electronic systems into safety critical ap-
plications, their dependability must be ensured. This includes safety,
reliability, maintainability, availability and security.

Development costs Implementing more features while decreasing the devel-
opment costs are often critical to stay competitive in industry. Thus
reusability and fast development processes by the introduction of tool
usage must reduce the development costs of single systems.

Intellectual property design A development process must consider the in-
terests of subsystem suppliers who do not want to openly provide their
subsystem code to the system integrator freely open. Usually they pro-
vide only binaries that execute the required functions but cannot be
reviewed. The DECOS project will secure the intellectual property of
the supplier.

Rushby summarizes the topic of federated and integrated systems as follows:

Systems used in safety-critical applications have traditionally been
federated, meaning that each “function” (e.g., autopilot or autothrot-
tle in an aircraft, and brakes or suspension in a car) has its own
fault-tolerant embedded control system with only minor intercon-
nections to the systems of other functions. This provides a strong
barrier to fault propagation: because the systems supporting differ-
ent functions do not share resources, the failure of one function
has little effect on the continued operation of others. The federated
approach is expensive, however (because each function has its own
replicated system), so recent applications are moving toward more
integrated solutions in which some resources are shared across dif-
ferent functions. The new danger here is that faults may propagate
from one function to another; partitioning is the problem of restor-
ing to integrated systems the strong defences against fault propaga-
tion that are naturally present in federated systems. [Rus01]

This is the way to go: Change from a federated distributed architecture as
described above to an integrated one. Why use one hardware unit for each
function if the computing power of the units allows us to execute more than
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one function on the unit. The new approach is meant to provide an integrated
distributed execution platform.
It shall comprise pre-validated hardware and software components, suitable

for generic use, because the reinvention and validation for every new function
needs a lot of effort and money.
A seamless tool chain shall enhance the development process of dependable

embedded systems. Tools can help to shorten the development process by
putting the process onto a higher level of abstraction while they automati-
cally take care of the lower level implementations. Model checkers and testing
tools can help to find errors more quickly and modelling tools model system
specifications to find errors in early design phases.
Reusable software modules used as operating systems and middle ware code

help to decrease redundant development.
The tight integration of software by strict memory and processor usage sepa-

ration leads to hardware units that concurrently run applications from different
vendors and with different criticality levels [Kop04].
Such hardware and software units have already been developed and were

deployed in the new Airbus A380 airplane as so called integrated modular
avionics (IMA).
The time-triggered communication approach has not been widely used in

industry yet as it is a relatively new technology and only little cheap hard-
ware for the mass market is available. The development effort is quite high
if the application exceeds the features of the current existing tools of TTTech
(see Section 1.3.2.1 at page 20). So industry still uses cheap event-triggered
solutions such as CAN, where the development effort seems to be little, or
very expensive proprietary but safe time-triggered solutions like ARINC 659,
also known as the SafeBus [Rus01], for those aerospace applications where
guaranteed safety is absolutely needed.
DECOS aims to develop a generic execution platform and a toolchain in

order to provide a distributed architecture that enables the developer to build
highly dependable systems with relatively little development effort in order to
push the time-triggered approach with its safety enabling features into indus-
try.

1.4.1 The Aerospace Subproject

To validate the achieved results and demonstrate their practicability in a highly
safety-critical application environment a test bench will be developed (a high-
lift flap demonstrator).
The demonstrator will implement an electronically synchronized high-lift

flap system. This system is motivated by the current state-of-the-art for such
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Figure 1.20: The state-of-the-art high-lift flap system. A mechanical tip-to-
tip shaft transmission across the fuselage guarantees synchroniza-
tion.Source: TUHH

systems (cp. [Neu02]): As depicted in Figure 1.20, a flap system consists of
two flap panels at each wing. All flaps are connected by a tip-to-tip shaft
transmission across the fuselage. A central power control unit in the wheel well
actuates the flaps. For redundancy reasons the power control unit comprises
two electric motors that move the shaft by a speed summing differential. In
case of a critical fault a hydraulic brake—the so-called wing tip brake—can
lock down the flap shafts and therefore the system is disabled.

The lift of an airplane increases as the square of the flying speed. Therefore
a plane must take off and land at a very high speed. To avoid this, the
flap system can increase the concavity of the wing if activated and therefore
increase the ascending force temporarily. This is used at low speed for landing
and take off purposes only. Hence a flap system is safety-critical. If the system
fails during the flight, it will not be available for landing, which is obviously
a serious problem. It is an even worse scenario if the left and right flap panel
are not perfectly synchronized and hence the ascending force on the two wings
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differ. This compromises the controllability of the plane and might ultimately
lead to a crash.
To avoid the asynchronous state of the flap panels, they need to be synchro-

nized. In the state-of-the-art flap system this is done mechanically: A tight
mechanical shaft physically connects the left wing flap panel with the right
wing flap panel. This shaft lies across the whole aircraft fuselage. The central
power control unit actuates the shaft with the help of two electrical motors.
If one motor fails, the other side will move the whole shaft with half speed.
This way both sides are always perfectly synchronized unless a shaft breaks or
blocks, whereupon the shaft brakes freeze the system. However, this scenario
is highly unlikely.
The drawback of this solution is obvious: The shaft across the fuselage

is very inflexible and the development of the tip-to-tip shaft transmission is
very laborious and includes the internal construction of the fuselage into the
development of the flap system, which makes the system neither modular nor
reusable.
Weight is critical in the aerospace domain; any weight saved allows to carry

either more fuel or more passengers, which means increased revenues for the
airlines.
An electronically synchronized flap system could give more flexibility by

introducing modularity and might even increase safety by exchanging central
control with local controls enabling more sophisticated fault reaction strategies.
Additionally it could save weight and space, but this is dependent on wiring.
An electronic system has not yet been tackled, as safety has highest priority.
The demonstrator is a test platform for the aerospace domain to realize

the implementation, test and integration of tools, methods and components
(hardware and software) being developed in the DECOS project and to validate
the achieved results and demonstrate their practicability in this highly safety-
critical application environment.
Figure 1.21 shows the architecture of the system. Only one flap panel per

wing side is shown. The left and right side of each flap panel are still con-
nected via a mechanical shaft. Each shaft side is powered by a powerful elec-
tronic motor. The motor is controlled via the motor control electronics (MCE )
whereas actuator control electronics (ACE ) control the synchronization pro-
cess and form an outer control loop. The ACEs are implemented in two parts:
a control part and a monitor part for safety reasons. Position pickoff units
(PPU ) measure the current angle of the flap shaft and a hydraulic cross shaft
brake (CSB) is able to fix the shaft in case of faults. The ACEs and PPUs
communicate via a time-triggered bus in order to exchange information for the
synchronization control loop. Both the control and the monitoring part of the
ACE have their own interface to the TTA bus for redundancy reasons. The
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ACEMCE ACEMCEMotor MotorCSBPPU PPUOutboard Flap Right
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Figure 1.21: The architecture of a possible real electronically synchronized flap
system

ACEs control the CSB and only if both ACEs on each side indicate correct
functionality, the CSB is released.

A central system control unit (SCU ) monitors the behaviour of the system
and commands the desired flap angles. The SCU is implemented as an ap-
plication on an IMA module which has the interface to the TTA bus on the
one hand and the interface to the event triggered communication bus AFDX
(Avionic Full Duplex Switched Ethernet) [ARI] on the other hand. Through
the AFDX channel other aircraft systems are able to communicate with the
SCU application and could even communicate directly with the TTA nodes by
the AFDX-TTP-gateway functionality.

1.4.1.1 The test bench

A physical test rig of a flap panel exists at the Technical University Hamburg-
Harburg (TUHH). The available part is depicted in Figures 1.22 and 1.23.

The rest of the system will be developed around this test rig. Hence the
real system architecture will look as shown in Figure 1.24. The test rig will
implement the right flap side. The mechanical parts will be augmented by the
electronic units as described above. The left flap side will be implemented as a
real-time simulation: The ACEs will be available as electronic units but con-
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Figure 1.22: The available test rig is the mechanical part of one flap panel.
Source: TUHH

Figure 1.23: The physical test rig of TUHH. Photo: TUHH
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Figure 1.24: The architecture of the flap system developed around the flap test
rig

nect to a computer unit that simulates the behaviour of the left flap. The SCU
will be implemented on a IMA module as described but the input commands
come from an aircraft simulation and visualization application at a personal
computer that connects it via AFDX interface to the IMA module.

1.5 The RISE Project

RISE is another European IST project [RIS]. RISE stands for Reliable Inno-
vative Software for Embedded Systems. It researches concepts and methods for
the development of embedded reactive software, in particular for cars.

The project sets up a toolset addressing the phases: Design, formal verifi-
cation and automatic code generation. The toolset will rely on the TTA for
distribution of the code, on the SCADE Suite for design, formal verification
of safety properties and automatic code generation and on Simulink/Stateflow
for the design of control laws and algorithms.

The results of the project include

• A Simulink-to-SCADE Gateway,

• A Stateflow-to-SSM Gateway and
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• A coupling to the TTA.

We are not directly connected with the RISE project. However, some project
partners, such as Esterel Technologies and TTTech, participate in both the
DECOS and the RISE project. Therefore the results of the RISE project are
provided to us. Therefore, we are able to use the SCADE Suite with all the
features described in Section 1.3.2.3. The TTA coupling and the gateways are
of great impact as they exactly fit our needs.

1.6 Related Work

Main ideas of the Time-Triggered Protocol (TTP) evolved out of the MARS
(Maintainable Real-Time Systems) project [KLMP82] at the Technical Uni-
versity of Vienna which started in the early 80s. Since Hermann Kopetz in-
troduced the Time-Triggered Protocol (TTP) in 1992 [KG92] a lot has hap-
pened around it. Many of the properties have been analysed: Merceron et
al. [MMP98] used synchronous programming to specify TTP while Nossal
and Lang [NL94] used the formalism of Petri Nets. The clock synchronisa-
tion algorithm has been studied by Pfeifer et al. [PSvH99] while Merceron et
al. [MMP99] showed that TTP is free of collision in normal mode. Merceron
[Mer01] also tackled the membership algorithm and proved that TTP avoids
multiple cliques. TTP was compared with other communication architectures
by Rushby [Rus01]. Hexel [Hex03] developed a fault injection architecture and
extensively analysed TTP. A number of small design problems were found and
subsequently corrected in the protocol.
With the cluster compiler [KN95] a powerful application appeared that sim-

plified the development of time-triggered architectures [KB03]. It ultimately
found application in the commercial tools of TTTech [TTT].
Since “model-based” system development is a broad notion, there are a lot

of developments around that topic. See for example the activities of Lee’s
[Lee03] and Sangiovanni-Vincentelli’s [BWH+03] groups at UC Berkeley [Uni]
or Jähnichen’s group at TU Berlin [Ste].
So far it seems as if TTA and model-based system design only merge together

in the tools, but the result does not elaborately get analysed. [NL02] describes
details of a model-based development process for X-by-wire applications. Al-
though it includes the communication scheme, the focus is the development
process in principle. The modelling suites that start to support the TTA look
more like a front-end to the cluster compiler in TTP-Plan (see Section 1.3.2.1).
They hardly add new features but specify the TTA in a more convenient way
than TTP-Plan itself.
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As mentioned before, this work is carried out in the context of the DECOS
project. DECOS builds on the foundations laid in previous European research
projects (NextTTA, FIT, TTA, SETTA, RISE, X-By-Wire, PDCS, DEVA,
DSOS), which took the TTA to the technical state of today. Browse the
DECOS web site [DEC] to find detailed information about the related projects.
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2 Modelling the High-Lift Flap
Test Bench

2.1 Purpose of the model

There are many reasons that justify to use modelling and to make a system
model to a central part in the development process of the system:

System specification Specifications are often written in natural language and
are therefore of informal character. Models typically have a precise se-
mantics (depending on the modelling language used), hence transferring
the textual descriptions into a model formalizes a specification. As mod-
els usually show good capabilities of abstracting hierarchy, one would
probably understand the essence of a system more quickly by studying
a model than by reading a textual specification.

Computing the communication schedule Before the different components
of the TTA can finally be implemented, the communication schedule -
Message Descriptor List (MeDL) - must be defined, because the compo-
nent schedules are built according to the MeDL. Modelling tools, such
as Matlab/Simulink and SCADE, offer interfaces to the TTA cluster
compiling tools of TTTech. So the MeDL can be synthesized directly
from the model. Modeling the TTA in an appropriate tool is much more
intuitional and better to read as working with TTP-Plan directly.

Specifying logical behaviour As an electronically synchronized high-lift flap
system is a new concept, there are no synchronization algorithms and
fault reaction strategies available from the shelf. So the development of
the logical functionality of the different components must be done from
scratch. Building a model and simulating its behaviour might help to
find possible failure modes and assist at the development of this logical
behaviour.

Test, verification Many modelling languages bestow models with such pre-
cise semantics that the model can be simulated. Hence the developers
are enabled to test the system before any physical implementation is
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available. Therefore elimination of design faults might be done in early
stages of the development process, which saves development costs. Ad-
ditional verification techniques boost this effect: with SCADE and the
Design Verifier the developer can prove predefined properties of the op-
erators and Model Coverage Analysis verifies that every element of the
model (which represents a software requirement) has been dynamically
activated when the system requirements are exercised. A primary ob-
jective is to detect unintended functions in the software requirements.
Model coverage analysis is not yet supported by the SCADE current
version (see Appendix C), but might be used in later stages if it becomes
available.

Code generation Powerful modelling suites like SCADE and Matlab are equipped
with code generators that transform the models into C and in the case of
SCADE even in C or Ada source code. This code can be compiled with
specific target platform compilers and loaded to the system components
directly or with little hand coded additions. Having a model in such de-
tail that it allows the synthesis of the program code of the components
would be a great benefit of the modelling effort.

2.2 Scope of the model

The main scope of the modelling is the time-triggered communication. So all
components that have access to the TTA bus are modelled at first. These are

• The four Actuator Control Units (ACE ) which control the motor control
electronics and therefore directly influence the motor motion which moves
the flap panel.

• The four Position Pickoff Units (PPU ) that detect the current position
of the flap panel and provide the values on the TTA bus.

• The System Control Unit (SCU ) that gets positioning commands from
the cockpit resp. the aircraft simulation via the AFDX bus.

For simulation traces that provide significant results, the model has to be
enriched by more detailed information. As the main purpose of the system is to
synchronize the left and right flap panel, it is apparently reasonable to model
the flap panels, too. Although the mechanical functionality is not the main
scope of this model, it would be very helpful to have such information about
the panels. This includes the functionality of the Motor Control Electronics
(MCE ) and the mechanical, electric and hydraulic parts of the flaps, i.e., the
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ACEMCE ACEMCEMotor MotorCSBPPU PPUOutboard Flap Right
ACEMCE ACEMCEMotor MotorCSBPPU PPUOutboard Flap Left

SCUFlight ScenariosSimulation Input TracesTTA-Bus TTA-Bus
Figure 2.1: Scope of the model

main shaft, beds, the cross shaft brake (CSB), the electric motors and the
mechanical connection of the PPUs.

Our intended purposes of the model do not require to model the AFDX-
TTP-Gateway and the details of the IMA module that houses the SCU soft-
ware. Hence they are not in scope of this model. The SCU software will only
be modelled by its logical behaviour. The cockpit commands coming via the
AFDX bus to the SCU will be implemented by textual flight scenario traces
that can be fed into the simulation directly to the SCU. A trace format for
these files must be worked out with the project partners in order to use the
same flight scenario traces for the simulation of the model as for the simulation
of the real test bench.

Figure 2.1 shows the scope of the model.

2.3 A simplified model in SCADE

When we started to work with the SCADE Suite, the TTP coupling has not yet
been available. Following the A-process depicted in Section 1.3.1.5, this was
no problem. This process starts with the functional model that implements
the control loops and neglects the distribution of the system.

Next step in the A-process is the architecture-allocated functional model that
is meant to concisely represent the system distribution. It groups functions
together to tasks and allocates tasks to ECUs.
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2 Modelling the High-Lift Flap Test Bench

The TTP communication scheme finds application in the virtual prototype
and the architectural model.
We assessed the SCADE Suite and the system requirements in order to

discover whether the A-process is applicable in this dimension or not.
The knowledge about the system rested on the requirements specification

[Koc04]. This does not provide much information about the control loops and
any logical behaviour of the components. It only comprises little information
about the functionality of the system and includes some information about
the distribution of the system. Additionally it only provides rudimentary in-
formation about the TTP communication. Some messages were specified, but
the project partners explicitly said that the final message information will be
devised in the specification phase of the project. Hence new messages could
be introduced or known messages could be omitted in the future.
The result was that we combined the four models and get only two:

Functional model The first model is the architecture-allocated functional model.
The logical behaviour of the model will be developed by the project
partners in the specification phase. Therefore it was not possible to im-
plement much of it. As the distribution information was available, we
decided to start modelling this information and feed the model with func-
tional information by and by. We call this model the functional model
for convenience.

Virtual prototype The second model is the virtual prototype. When the TTP
coupling for SCADE arrived, we started to add the TTP items to the
first model. There is no special tool that could be used to provide the
architectural information that is designated for the architectural model.
There is no need for a special tool since we see the cluster database of
TTP-Plan as our architectural model, because it comprises all the archi-
tectural information that is needed to produce the Message Descriptor
List (MeDL) for the system. Most of the architectural information will be
fed into the TTPlink interface of SCADE and then the cluster database
gets automatically exported to TTP-Plan as described in Section 1.3.2.3.
Therefore the architectural model fuses into the virtual prototype.

2.3.1 The functional model

We wanted to be able to simulate our functional model with the SCADE sim-
ulator. As no detailed information about the logical behaviour of the compo-
nents was available, we developed a simplified model using basic linear func-
tions. Variables that have to do with advanced functionality were fixed to
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Figure 2.2: The rudimentary abstraction of the flap panel

default values and only the rudimentary functionality of the system was im-
plemented.

The flap panel The physical flap panel is the system in the environment
that our electronic system must control. In order to get simulated, we needed
a model of the flap panel itself. In the simplest form it is just a counter
that represents the current position of the flap. The first model of the flap
is shown in Figure 2.2. The counter is changed by the motor_speed input
that denotes the revolutions per minute (RPM) of the motor. The resulting
value is an integer that shows the current absolute position of the flap. The
MAX_FLAP_POSITION denotes the value at its possible maximum. That comes
from the required resolution of one shaft rotation and the requirement to dis-
tinguish up to 400 rotations. So next to the absolute value, the flap outputs a
percentage for better readability of the current position.

If the cross shaft brake is active, no motor can move the flap. Therefore the
increment of the counter is set to zero.

This model is likely be replaced in the future by a more accurate model
of all mechanical parts. This model is developed by the Technical Univer-
sity Hamburg-Harburg (TUHH) in Simulink and will be incorporated into our
system model.

Inner control loop The position pickoff unit (PPU) and the actuator con-
trol electronic (ACE) form a control loop. Figure 2.3 shows the model and
especially the data flow. This will be explained from left to right:

• With multiplexers and demultiplexers the signals are grouped in order
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2 Modelling the High-Lift Flap Test Bench

Figure 2.3: The parts of the inner control loop of the system
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to form a clear interface.

• The ACE has two independent parts: A control part and a monitor part.
According to the requirements both have their own TTP controller.

• The control part reads the phi_cmd that inputs the target value of the
flap from the system control unit (SCU). It gets the actual value of the
flap from the PPU and additional commands from the SCU that activate
the ACE and command to set the CSB. The monitor part reads the
brake command of the SCU and maybe some other signals that are not
yet specified, since the functionality of the monitor channel is not fully
explained by the requirements document.

• The ACE outputs a status code and a Boolean value to the TTP network.
The boolean value indicates whether the ACE is enabled.

• The ACE commands the motor control electronics (MCE). The control
channel can enable the control loop and command the MCE to brake
by blocking the motor. A linear speed command to the MCE sets the
direction and speed of the motors. The monitor channel can suspend the
MCE in case it detects some failure.

• Both control and monitor part of the ACE must agree to release the
CSB.

• The MCE model includes the motor itself, so it outputs the motor speed
as its RPM.

• The cross shaft brake is simply represented by a boolean value that is
either set or not. This value is fed into the flap model.

• The flap was described above and therefore takes the CSB status and
the motor speed and outputs the absolute and the relative position of
the flap.

• The PPU reads the absolute flap position and feeds it back to the TTP
network.

• Some of the outputs of this model are fed back into the control loop as
inputs of the ACE. Therefore we must introduce a delay with the pre or
fby (followed-by) operator in order to avoid instantaneous feed back.
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2 Modelling the High-Lift Flap Test Bench

Figure 2.4: The inner control loops get connected with the SCU
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Outer control loop A bus cannot be modelled with the standard data flow
techniques in SCADE. From the requirements document it is not clear which
components read which messages of the TTP bus. To obtain a complete control
loop including the SCU, we therefore connected the four inner loops with the
SCU directly. We used the standard delay-free connection of SCADE. Hence
we abstracted from communication delay unless the former introduced delay
operators to prevent recursion.

The model is shown in Figure 2.4. Although we used structures for grouping
the communication signals, the data flow gets quite complex. Introducing TTP
message nodes in the virtual prototype will alleviate this.

We can simulate this primitive preliminary model. For convenience the input
to the model is the desired flap position as a relative value. The simulation
results are obviously not rich in content because the model does not do much,
especially it does not implement any synchronization. However, as the flap
panel itself has not yet been properly modelled, the flap positions do not differ
anyway.

The functionality is only very rudimentary and therefore the specifics of the
several nodes are not shown here.

2.3.2 The virtual prototype

The virtual prototype comprises three levels with different kinds of informa-
tion:

1. The first level contains the global cluster information. That is the spec-
ification of the different subsystems and the TTP messages, incoming
and outgoing. A TTP message may be produced by exactly one but
consumed by multiple subsystems. This is shown in Figure 2.5.

Additionally the hardware nodes of the cluster are specified in a special
view (see Figure 2.6). To avoid the name clash between SCADE node
and TTP node, in TTPlink the TTP nodes are simply called hosts. The
system uses redundancy by using two drive units per flap panel. It con-
sists of the known parts as described before: ACE, MCE, motor, CSB,
PPU and mechanical parts. If one side fails, the other side will move
the whole flap panel with half the torque. The requirements document
explicitly separates the two units of one flap panel. This means each
unit can be explicitly addressed by a sender and each unit can intercom-
municate with its partner via TTP. Therefore the messages that both
units send and receive can differ. So the fault-tolerant communication
layer of TTP cannot be used and both units must be modelled as inde-
pendent subsystems. This is reflected in the mapping of TTP nodes to
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2 Modelling the High-Lift Flap Test Bench

subsystems: Each subsystem gets implemented by exactly one node.

This level of information is enough to generate the Message Descrip-
tor List (MeDL). The model will be exported into a TTP-Plan clus-
ter database and TTP-Plan will generate the MeDL. Unfortunately this
feature could not yet be tested because the toolchain lacks one linking
part between TTPlink of Esterel Technologies and TTP-Plan: TTP-
SCADElink is an additionally needed tool of TTTech and fills this gap.
It could not yet be provided because TTTech implements some improve-
ments at the moment, but it is announced to be provided in the near
future (see Section 2.5 about details on the future work).

2. The second level contains task information. Each subsystem only in-
cludes tasks and local messages between tasks. Task properties such as
task name and time budget are specified here.

SCADE can export this information to TTP-Build which merges it with
the cluster database in order to form the fault-tolerant communication
level (which is not used here) and the task schedules of the nodes (TaDL).

Just as the automatic MeDL generation, this feature could not yet be
tested.

3. The third level comprises the functional behaviour of the tasks. The
implementation is not as simple as in the purely functional model. The
tasks have to be completely separated. No other data transfer between
tasks is provided by SCADE instead of the TTP messages. So modelling
of the environment beyond task borders is hardly possible. Our solution
will be to model the environment with the mechanical properties of the
flap panel in Matlab Simulink and import this model to SCADE. See
Section 2.4 and 2.5 for further information.

2.4 Using Matlab Simulink models as black
boxes in SCADE

The mechanical part of the high-lift flap system interacts with the environment
directly and therefore its behaviour follows very complex rules. Though it
seems easy to model its logical functionality, there is a great effort to be done
to simulate its behaviour within the “real world”. An ideal flap would only have
three states: opening, closing and stopped. The flap would have some absolute
position, which increases in the opening state, decreases in the closing state
and stays the same in the stopped state. Maybe there would be some speed level
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Figure 2.5: The subsystem level of the entire flap system. Subsystems and
messages get specified.

55



2 Modelling the High-Lift Flap Test Bench

Figure 2.6: Mapping of TTP nodes to subsystems. The flap system does
not use the fault-tolerant communication layer: No subsystem is
mapped to multiple nodes.

which models the moving speed of the flap. Obviously this level of abstraction
does not do justice to the interaction of this complex application. It simply
ignores effects such as friction, slackness or slipping. The lack of perfection
in the system manifest itself twofold: On the one hand the absolute position
cannot be measured accurately and on the other hand the position can be
influenced by more elements than the flap motors (which are not ideal, either).
To test if the possible faults are covered by the safety features of the model,

one needs a simulation of the mechanical part of the flap that takes all these
considerations into account. To get a virtual flap that is as close to reality
as possible, one needs a very complex model regarding the non ideal environ-
ment. The Technical University Hamburg-Harburg (TUHH ) has built such a
model with great detail in several former projects in Matlab Simulink. It uses
many highly non-linear calculations and simulates the behaviour of the physi-
cal existent test bench quite accurately. Figure 2.7 gives some indication of the
complexity of this model of the flap panel. It shows a screenshot of only the
first level and there are at least two deeper levels in the different components.
As the model, which covers the MCE and the mechanical parts of the flap,

was developed in other projects, its source code will not be freely available for
the DECOS project. Ultimately this is not a problem, as not the model itself
is needed, but only its behaviour. To check the system behaviour, the model
only needs to know how the flap would behave, but not why. So some kind
of black box would be sufficient to be used in our model. Therefore we have
built a binary file from the Matlab Simulink model that can be imported as
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Figure 2.7: Screenshot of the first level of the preliminary mechanical, hy-
draulic model of the flap panel developed by TUHH indicating
its complexity (that you cannot recognize anything is meant to be
,). Source: TUHH

an external node into SCADE. The node has the same inputs as the Simulink
model does and produces the same outputs, but the functionality is disguised
to the user within the binary.

2.4.1 Building a Dynamic Link Library of a Matlab
Simulink Model

Building a binary that executes the simulation of the Matlab Simulink model
is straighforward. The result of this seamless process is an executable that
runs the complete simulation:

1. The user models the system in Simulink, and Stateflow if applicable.

2. The Realtime Workshop builds C code from the model blocks with all
needed header files.

3. A compiler builds a binary of these C-files for the desired platform: in
our case for a Windows PC.

4. The result can be executed and it simulates the model with the simulation
settings set within Matlab Simulink.

But that is not what we want. We do not need to run the whole simulation,
which includes the setting of input variables for the whole simulation and
which runs all simulation steps successively. What we need is an interface
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which allows us to set the input variables for each single simulation step and
then allows us to execute such a single step and to return the output results.
The seamless build process of Matlab Simulink with the Realtime Workshop
and the Realtime Workshop Embedded Coder does not support the building
of such a binary that offers the interface we need. One has to do some manual
adaptations to the code that the Realtime Workshop produces.
Thus we need to manipulate this process manually. What we need is the C

code that offers the desired interface and a compiler which allows us to build
a binary library out of the code in such a way that its functionality can be
called from within other C-programs.
The Realtime Workshop Embedded Coder produces a code that is well read-

able, so we use it to produce the C code. It provides procedures for initial-
ization and termination of the simulation, access to the inputs and outputs
and a procedure to advance the simulation one step. For compilation we use
Microsoft’s Visual Studio 6, because it is the compiler which is most widely
used by the relevant project partners. It supports the building of a Dynamic
Link Library (DLL) for Windows. Dynamically linked means: the library file
does not need to be (statically) linked to the external C-program when the
C-program is built. It keeps a reference to the produced DLL file and will
call the procedures from the DLL file rather than from its own binary, as it
would happen if a static library were linked into an executable. This allows
the modeller of the Simulink model to change the model and build a new DLL
without the need of a recompilation of the other C-program which uses this
library, unless the called interface is changed. Whenever a small change of the
model is done, the user of the library simply copies the new DLL file but does
not need to recompile his or her own programs.
If one wants to build a DLL file, one has to fix which functionality will

be available to the outside world. Specifically export declarations to each
procedure description must be added to the header file of the source code.
Access to variables is not obvious, as a DLL can be used by more than only
one caller. So one has to declare whether the memory of these variables will
be shared between the callers or whether each caller gets its own instances of
them. To ease things, we add get procedures for the inputs and outputs that
can be easily made available to the DLL interface.
So the build process of the DLL file looks like the following:

1. The user models the system in Simulink, and Stateflow if applicable.

2. The Realtime Workshop with the Realtime Workshop Embedded Coder
builds C code from the model blocks with all needed header files for the
desired subsystem.
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3. The user manually adds the get procedures for the inputs and outputs
to the main C file of the model.

4. The user adds the declarations of these get procedures to the main header
file.

5. The user adds the export declarations to all required procedures in the
main header file.

6. Visual Studio builds the DLL.

The result is the following:

• A DLL file which includes the binary information about the main func-
tionality.

• A LIB file which must be explicitly linked to the C-Program that uses the
library. This static library file contains the link to the dynamic library
file.

• The inclusion of the main H header file is needed for the caller of the
library to let his C compiler know about the interface of the library.

Doing the steps 3, 4 and 5 manually is a significant effort and error prone,
especially for an unexperienced developer who does not know the particulars
of C code, compilers and the building of DLL files. So we developed a command
line Java application that applies the needed changes in the source and header
files automatically. With this little helper and a more detailed instruction map
(which we made available) an unexperienced user is able to build the Dynamic
Link Library from the Simulink model.

As the Realtime Workshop puts some functionality into the main header file,
the file might offer too much information about the model to the user and the
black box character might be violated because the user of the library needs the
header file declarations. So the Java application automatically builds a new
header file that only includes the needed declarations but no details about the
model.

Another advantage of making the changes automatically by the macro is the
following: The modeller can change the Simulink model and then build the
library with only a few mouse clicks, once the Visual Studio Project is set up
correctly. So changes in the model can be easily fed into the library.

Due to an acknowledged bug in the Realtime Workshop and the Realtime
Workshop Embedded coder (which was discovered by this work) the input and
output variables of the C code have sometimes not the same names as the
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corresponding input ports and output ports in the Simulink model. So it is
nearly impossible to use the library for a user who does not know about the
particulars of the model. The correct use of the inputs and outputs becomes a
guessing game. Therefore we manually added macros to the main header file
that grant access to the inputs and outputs by using identifiers.

2.4.2 Using MS Windows DLLs as Imported Operators in
SCADE

The DLL of the Simulink model offers an interface to call the following func-
tionality:

• Initialization of the simulation.

• Setting input values, getting output values. For each value a single macro
is available, hence the values can be modified individually instead of all
together in a single procedure.

• Execution of one simulation step for the whole Simulink model.

• Termination of the simulation.

Our SCADE model is meant to include the PPUs and the ACEs as single
nodes, because keeping the mechanically connected components together in
one node does not represent the architecture properly and TTA subsystems
must comprise independent units.
An imported node in SCADE can be used to import functionality to a

SCADE model that is only available as C code. Hence imported nodes com-
prise C code which implement their functionality. Therefore it is possible to
write a C file for each PPU and for each ACE. In such a C file the functionality
of the imported operator must be implemented and the code of each file will
be called each time the operator is used in SCADE:

1. SCADE passes the inputs of the operator to the code (which is imple-
mented as a procedure).

2. These input values are passed to the dynamic link library.

3. The outputs are read from the library.

4. The outputs are passed back to SCADE.
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The main problem is that the dynamic link library only possesses one global
step function. So calling this function in each of the four imported operators
in SCADE would proceed the simulation of the Simulink model four steps and
not only one.

An alternative would be to use four independent instances of the dynamic
link library, one instance for each imported SCADE node. This would mean
that the other operators in the library instances are fed with dummy input
values only. However, this approach would not work either, because it ignores
the fact that the single ACEs and PPUs are linked by the mechanical parts and
therefore are not independent. Hence the global step function of the library
is inherently needed, since it does not only advance each component one step
but the whole mechanical system as well.

We use a double buffer strategy to tackle this problem: In each code of the
imported operator, the inputs of the current step are passed to the dynamic link
library and the outputs are read by it and passed back to SCADE. A global
counter counts how many imported operator procedures have been already
called. If all imported nodes have processed their inputs and outputs, the
global step function of the dynamic link library is called and the Simulink
model simulation advances one step.

This means: the simulation is fed by the current input values, but the
outputs read from it are the outputs of the last step. Thus the SCADE model
works with output values that are one step behind. We assess this introduction
of an additional delay in the data flow as justifiable, because it hardly carries
weight: The TTA triggers the participating components once in each TDMA
round, which is one millisecond. The mechanical model must be simulated
with a step size of 10−4 s and its step function is therefore called ten times
faster and thus the additional lag affects the SCADE model only every tenth
step of the simulation of the Simulink model and introduces a delay of the
mechanical reactions of only 0.1 ms. As this delay only covers the mechanical
reactions (that is to say the PPU output values), it can be neglected.

This way it is possible to import several nodes from only one Simulink model
DLL and to run them properly. We tested the correct behaviour in a little test
SCADE model with one ACE and one PPU (see Figure 2.8).
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Figure 2.8: Integration of ACE and PPU into a SCADE model as imported
operators, both from the same Windows DLL

2.5 Future work

2.5.1 Full integration of the Simulink model into the
SCADE model

The imported operators have not yet been integrated into the SCADE model
that models the TTA according to the requirements [Koc04]. This is because
the input and output types of the two models have not yet fed together. The
Simulink model modelled by the TUHH is only a preliminary model without
correctly typed inputs and outputs. All values are typed as real values and
therefore are implemented as double numbers in the C code. Even the boolean
flags as brk_set and drv_enabled are implemented as real values. But the
SCADE TTA messages require correct typing and it would be desirable to
stick to the correct typing. Conversions of the types would be needed at each
input and output signal of the imported operators, either in C in the imported
node code Sections or in SCADE before the inputs resp. behind the outputs.
As the TUHH planned to change the homogeneous real typed variables to

the correct types in the future, the final integration of the Simulink model will
be done then in order to avoid the tentative conversion functions.
The Simulink model of the TUHH only models the left flap panel. Hence

we will need to integrate two instances of the dynamic link library to the
model. This will be tackled when the integration of the Simulink model into
the SCADE model is possible as described above.
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2.5.2 Generation of the Message Descriptor List (MeDL)

One of the key results of our model will be the generation of the TTP com-
munication schedule (Message Descriptor List - MeDL). SCADE is used to
specify the TTA and an interface to the TTTech Tools [TTT] allows to use
the cluster compiler of TTPplan to generate the MeDL automatically. To run
this process seamlessly you need:

• SCADE version 5.0 (by Esterel Technologies)

• SCADE TTPlink (by Esterel Technologies)

• TTP Tools TTP-Plan, TTP-Build (by TTTech)

• TTP-SCADElink (by TTTech)

As we already have the first three products, we can build the model, but
with the lack of the TTP-SCADElink tool of TTTech, the automatic transfer of
the model data into the TTTech tools is not yet possible. TTTech announced
that we will get TTP-SCADElink at the end of February 2005, since they still
modify the product.

Then the MeDL can be generated, but the requirements [Koc04] do not
reveal all needed TTP messages on the bus. So the final schedule will be
generated when more information about the messages is available (which will
be given in the present specification phase).

The MeDL is a global data structure with great impact for every local com-
ponent. Preliminary schedules are of little use, since new messages usually
change the timing of the complete schedule.

2.5.3 Implementation of logical behavior

The synchronization strategy and fault reactions have been developed mainly
by TUHH. A failure mode and effects analysis (FMEA) has been employed
by TUHH to reveal possible failure modes. If there is any more specific in-
formation about the logical behaviour available, we will try to implement this
behaviour in the SCADE model.

2.5.4 Detach the ACE from the Simulink black box

At this point of work the scope of the Simulink model by TUHH covers the
following:

• The mechanical parts of the flap panel.

63



2 Modelling the High-Lift Flap Test Bench

• The cross shaft brake (CSB).

• The Position Pickoff Units (PPU).

• The Motor Control Electronics (MCE) and the electrical motors.

• The Actuator Control Electronics (ACE).

The first four items are highly dependent on the mechanical properties of
the installation and are therefore needed to model the mechanical subsystem
correctly. The MCE includes no logical fault prevention behaviour but detailed
motor property dependent control, and it does not communicate via the TTA
bus.
However, the ACE will likely include a significant amount of logical be-

haviour as it builds an inner control loop for the positioning of the flap panel
with the PPU [Koc04, Gei04]. As the ACEs are main participants in the
time-triggered communication via the TTA bus, we need to model the com-
munication parts of the ACE within our SCADE model. But as the ACEs
include a high amount of control modelling developed by the TUHH, they will
be modelled by the TUHH as well.
An enrichment to our SCADE model would be the detachment of the ACE

of the black box library. The ACE is being developed within the DECOS
project and therefore its model could be made available to all project partners.
We suggested that TUHH would provide us with a white-box version of the
ACE, which is the Matlab Simulink model itself. Esterel Technologies delivers
gateways for Simulink and Stateflow models into SCADE, which might allow
an integration of the ACE with all its functionality. Simulink blocks will be
automatically translated into SCADE nodes and Stateflow state machines will
be translated syntactically into Esterel’s Safe State Machines (SSM). With this
approach there will be a SCADE model of the full functionality of the ACE
available, including the communication part and the control part.
This enables us to

• generate code for the ACE,

• extend any verification processes to the full ACE,

• have clean interfaces as they exist in the real test bench (the interface
will be the one to the MCE rather than across the ACE).

TUHH signalized to cooperate in this point and therefore this topic can
hopefully be tackled in the near future.
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MCE MCEMotor MotorCSBOutboard Flap RightMCE MCEMotor MotorCSBOutboard Flap Left

SCUFlight ScenariosSimulation Input TracesTTA-Bus TTA-Bus ACEPPUPPUACEPPUPPUACE ACE„Black Box“C Library of Real Time Simulation working in background „Black Box“C Library of Real Time Simulation working in background
Figure 2.9: Possible architecture of the model: ACE, PPU available as white

boxes and the mechanical subsystem works in background as black
box in the C library

As the translation processes of the Simulink to SCADE Gateway and the
Stateflow to SCADE Gateway are not perfect (State machines are simply trans-
lated syntactically), manual revision is necessary. It must be deliberated about
the manual adapting efforts needed to assess whether the approach is feasible
or not. This can be done after the Simulink and Stateflow models are provided
to us and reveal their model properties that make manual adoptions necessary.

It can be discussed whether this approach is feasible for the PPUs as well.
Figure 2.9 shows how the architecture of the SCADE model could look like.
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3 System Response
Requirements in a TTA

3.1 End-to-end latency

End-to-end latency is critical in hard real-time systems. The developer has
to ensure that the system response requirements are fulfilled. Using TTP
might give the impression that this problem is inherently solved. However,
message latencies in TTP did not disappear, they simply got fixed. Different
control loop strategies and especially bad scheduling can introduce latencies
that a naïve user would not expect. Therefore this topic needs to be analysed.
Since the timing properties of TTP are quite complex, it should be assessed
how modelling tools can assist the developer in fulfilling the system response
requirements.

3.1.1 Latency in general

Looking at a hard real-time system [Kop97], e.g., the high-lift system we are
modelling, the main focus is put on the response requirements of the system.
Hard real-time requirements imply that there are tasks to do that must be
executed within a defined time for completion. In our case we have a reactive
system and build a close control loop to keep the system under control. An
event in either the environment or other system components needs a reaction
of the system within a well defined time (see Figure 3.1), otherwise reactions
could occur so late that the system gets out of control.

Think of an airbag inflation system in a car for example: A crash can happen
at any point in time. The system has some response requirement that says:
The airbag has to be fully inflated x ms after the first contact with the obstacle.
Otherwise the head of the car occupants will likely have thudded before the
airbag could keep them to the seats. This time duration of x ms depends on
many factors. There are especially the driving speed and the construction of
the car that determine the period of time that passes until the inflation of the
airbag will be too late. If you assume a maximum speed of the car, you will get
a minimum latency requirement of the system only by the physical attributes
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3 System Response Requirements in a TTAEnvironment Hard real-time Systemchanges in state reaction
Figure 3.1: A hard real-time system interacts with the environment and needs

to produce reactions to events within a special amount of time

ECU ECU

1 2

3
4

5

Figure 3.2: The elements of latency in a simple control application: 1. sensors,
2. computing of sensor ECU, 3. duration of communication, 4.
computing of actuator ECU, 5. physical delay from airbag ignition

of the environment.
To fulfil the timing requirements, you have to tackle each part of the hard

real-time system that participates in producing the overall delay. So we de-
compose the system in order to identify these elements. Assume a control
application with only one sensor unit and one actuator. The sensor unit sends
its sensor values to the actuator unit which acts, if the values indicate a need
for reaction. For the airbag example this is shown in Figure 3.2 in a schematic
view:

1. If some state changes in the environment which requires a reaction, the
first part of delay is introduced by the sensors of the system. For example
temperature sensors indicate a changed temperature very slowly. In the
airbag example this would be the delay that is introduced by the sensors
that have to detect a collision.
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3.1 End-to-end latency

2. The electronic control unit (ECU ) that is connected to the sensors is the
next step in the flow of information. Any computations that must be
done, before a notification can be sent to other components, introduce
another delay. In the airbag example this would be the controller that
is connected to the sensors in the front of the car.

3. The information must be distributed to the components that receive the
information. The message delay is the time between the point in time
where the sender provides the information and the point in time where
the receiver can use it. This includes the physical delay of transmission
when one sends the message and any additional communication protocol
overhead that introduces an additional delay. The sensor controller of
the car has to send a message to the airbag controller in the car cabin.

4. The receiver of the message has to analyse the information. Any compu-
tations that have to be done until the final decision about some reaction
creates another delay. The airbag controller in the cabin might need
some time to process the message and to decide whether it releases the
airbag or not.

5. If a reaction is commanded by the receiving controller, there may pass
some time from this command till the point in time when the reaction
has completed in the environment. This delay in the airbag example is
created by the airbag itself: When the airbag controller commands the
airbag to inflate, it ignites a chemical reaction that produces a certain
amount of gas (e.g., nitrogen) in a very short time which inflates the
airbag. The time from command to full inflation is this delay.

If the airbag exceeds the allowed latency, this could obviously do serious
harm: If it does not ignite at all, the catching function of the airbag does
not go into operation and therefore the passengers are likely to get hurt. If,
however, the airbag ignites after the crash has already pushed the passengers
to the front, the sudden backstroke could do additional harm, e.g., break the
passenger’s neck. This shows that latency must not be too long under any
circumstances: Having no airbag might be better than having an airbag that
ignites too late.

The delays of 1 and 5 are given by the physical properties of sensors and
actuators. These are given by physical properties and cannot be changed (at
least not by computer scientists). Thus most relevant parts of the delay are 2,
3 and 4, i.e., the duration of any computations within ECUs and the message
transfer.
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Figure 3.3: Latency under usual conditions in a TTA

3.1.2 Latency in the Time-Triggered Architecture

We want to disregard the physical parts of the latency (sensors and actuators)
and only look at the delay of the computing tasks at the ECUs and the message
transfer.
To keep the overview over the terms and abbreviations, review Appendix

A at page 89, whereas the concepts will be introduced piece by piece in the
following sections.
In an event-triggered communication there is no guaranteed maximum mes-

sage latency: By collisions and other messages on the bus the message transfer
can be delayed for an arbitrary amount of time if not special features, such as
bit arbitration in CAN [ISO93], give priority to safety-critical messages.
See Figure 3.3 for the factors that influence latency in a usual TTP ap-

plication. It shows a simple control loop with one sensor and one actuator
node like the airbag example. Our ACE-PPU-control-loop in the aerospace
demonstrator will be such a subsystem, too.
As shown in Section 1.2 the system works like this:
Node 1 is the sensor node that regularly executes a task, t1, that reads the

sensor values. We assume that the value is read at the beginning of the task
execution and therefore only events will be detected that occur until the start
of the task.
If an event occurs, i.e., a change of state in the environment, the task will

be notified by the sensors. Then the task processes this piece of information
and stores a message onto the communication network interface (CNI ) of its
TTP network controller.
At the next TDMA slot of the node the message will be transferred. After

final transmission, the TTP controller of node 2, the actuator node, has stored

70



3.1 End-to-end latency

the message in its CNI.
A task at the host computer of node 2 regularly reads the messages and

processes its content. If the message indicates the need of a reaction, the task
will trigger some reaction, e.g., the ignition of the airbag resp. a changed motor
speed at the flap panel motors.

Therefore end-to-end latency in this application comprises the following
parts:

1. An event can happen at any arbitrary point in time, but the task of the
sensor node is regularly run with a fixed period. Therefore some time
passes between the change of state and the beginning of procession by
task t1.

2. The execution time of the task t1 is another part of the delay. We assume
that the message is passed to the CNI at end of the execution of the task
and therefore nearly the whole task execution time is part of the end-
to-end latency. An upper limit of this time is the worst-case execution
time (WCET ) of the task which manifests as the granted time budget
in the TTA. Analysing the WCET of a task is a topic of its own, we
will assess it in Section 3.1.3. As we are interested in an upper limit of
the end-to-end latency, we assume a fixed execution time, which is the
WCET of the task.

3. Next part is the pre-send duration (PSD) of the message, i.e., the time
between the end of the task when the message has been written to the
CNI and the actual transmission which is triggered by the slot in the
Message Descriptor List (MeDL) of the TTP communication controller.

4. The slot time of node 1 is the next part. It is the time in which the
message is transferred via the TTP bus and provided to the CNI of the
receiver. The time until the message can be read by the receiver depends
on properties of the TTP controller, which are the periods of time that
the controller needs for local processing of the message (e.g., time for
access to the CNI, processing the CRC, etc.). These periods depend on
the controller type and are relatively short (at our AS8202NF controllers
the post receive processing takes 11 µs). We denote the whole slot time
including all pre and post processing phases and the inter-frame gaps as
the transceiving duration.

5. The time between providing the message to the CNI and reading it by a
task is the post-receive duration (PRD).
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Figure 3.4: Worst-case latency in a simple control loop

6. The execution time of the task t2 is another part of the latency, since the
received message must be processed in order to state a decision about a
reaction.

3.1.2.1 Worst-case latency

The end-to-end latency might be relative good, if the WCETs of the tasks are
short and the tasks are well scheduled. This might introduce a latency of less
than one message period extended only by the fact that the event itself can
occur at any arbitrary time between two task executions.
But a worst-case latency in this simple control loop of only one sender and

one receiver can be relatively long, if the WCETs of the tasks are long and the
tasks are disadvantageously scheduled. This worst-case is depicted in Figure
3.4:
Call the message period Tm. This can be the round time of the TDMA round,

if the message is sent in every round, or some multiple of it, e.g., twice the
round time, if the message is sent only every second TDMA round. In order to
be able to send all messages and to receive all messages, there is t1WCET < Tm

and t2WCET < Tm. Assume the execution time to be nearly Tm but to be able
to let the operating system tasks write and read the messages to and from the
CNI between the task executions. Schedule the tasks very badly, which means:
The sending task finishes its execution directly after the TTP controller has
begun the transmission. That means this message will be transferred in the
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3.1 End-to-end latency

next sending slot. The receiving task reads the CNI directly before the new
message has been provided to the CNI, so it reads the message of the past slot.
This introduces an end-to-end latency as shown in Figure 3.4:

1. Assume an event occurs directly after the sensor task has read the sensor
values. Hence the change of state of the system will be noticed by the
next task execution.

2. The task processes the value and needs its long WCET for it.

3. As the task is scheduled badly, the TTP controller accepts the message
only for the next sending slot. Therefore the pre-send phase is nearly
Tm.

4. The message gets transmitted via the TTP bus. This introduces the slot
time as a part of the delay. In a worst case this could be as long as the
message period, but this would mean that the message is the only one on
the bus and its content is relatively big resp. the message period is very
short. This is very unlikely so we assume that we use a simple message,
e.g., a single integer or float value.

5. Just like the pre-send phase, the post-receive phase becomes very long
because the receiver task is that badly scheduled that it cannot use the
actual message but the message of the past slot.

6. The WCET of the receiving task will pass until finally the reaction is
triggered.

1 introduces a delay of Tm. This cannot be avoided as the point in time
when the event occurs cannot be influenced, so the time between the reading
of the sensors will always be part of the worst-case latency. As tWCET ≈ Tm,
2 and 6 introduce a delay of Tm each. The bad scheduling of both tasks adds
a maximum delay of another Tm each. This results in a worst-case latency
WCL:

WCL = 5 Tm + ∆m

where ∆m is the message transfer duration. If we assume that ∆m is relatively
short and the WCETs of the tasks have to be smaller that Tm because the
operating system of the nodes needs some time for administration, it is roughly

WCL = 5 Tm .

This example is obviously very artificial and is unlikely to occur this way in
a real system. But it shows that an end-to-end latency of much more than one
message period is possible by bad scheduling and long WCET.
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This was an example of just a simple control loop with one sender and
one receiver. Consider a control application, where the flow of information
includes more nodes in the cluster. As shown the scheduling of the tasks is
critical for the WCL. The flow of information has to be taken into account and
the WCETs of the tasks need to be provided as exactly as possible in order to
help the schedulers to optimize the schedules.

3.1.3 Worst-case execution time

Worst-case execution time is an active research topic, because it is very diffi-
cult to conquer [MML97, EES01]. Current computers are designed for good
average performance and therefore introduce sophisticated dynamic techniques
to improve it, such as pipelining, caching, out-of-order execution, etc.. These
dynamic components impose serious difficulties on static analysis of the exe-
cution time of programs. Therefore the statement “this airbag controller will
compute at most 17.5 ms” is very hard to prove.
This work does not cover worst-case execution time analysis itself. This work

tackles the question how modelling tools help the developer in calculating the
end-to-end latency, and this includes the WCET as we have seen before.
The TTTech tools (see Section 1.3.2.1) do not offer any WCET methods

of analysis by themselves. The WCET values have to be provided by the
developers as so-called time budgets. These are used by the schedulers to
generate the task schedule for the nodes. SCADE of Esterel Technologies (see
section 1.3.2.3) adds no such feature to the design process. You simply provide
the time budget of each task by inserting the values into the property forms of
the SCADE user interface. This implies that the developer has identified the
values by himself, by analysis and/or measurements.
Only Matlink of TTTech for Simulink (see Section 1.3.2.2) provides an ad-

ditional feature, described in the following section.

3.1.3.1 Execution time measurements of Matlink

Matlink allows the developer to measure the execution time of the tasks auto-
matically. The workflow is depicted in Figure 3.5:

1. The developer selects that he or she wants to measure the execution time
for his tasks.

2. A TTP message that sends the measured execution time to the TTP bus
is generated automatically. There is no receiver, because the message is
only to be read by the developer.
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3.1 End-to-end latency

Figure 3.5: The WCET-measurement feature of Matlink
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3. The automatic code generation adds the specific C statements for time
measurement to the code of the task.

4. At execution time, the values can be read with the help of a monitoring
node and TTP-View can display them to the developer.

The developer could take the highest value he measured, add some safety
margin to it and use this value as the time budget of the task.
Even if the developer knows that the longest path in the task has been ex-

ecuted, this method does not reveal the actual WCET of the task. Dynamic
components of the hardware are not taken into account, e.g., the cache hier-
archy. So this method might show an average execution time which will be
sufficient for common applications, but it does not discover the real WCET.

3.2 Event Recognition Latency vs. Information
Flow Latency

Consider a brake-by-wire system as it is modelled in Figure 1.16 on page 29:
a pedal subsystem is connected to a sensor which measures the current pedal
position and sends this value to the TTP bus; a calculation subsystem fetches
the pedal position and the wheel speed from the TTP bus and calculates an
appropriate brake force; a brake actuator subsystem is connected to wheels by
the mechanical brake and a wheel speed sensor. It uses the brake force value
and ultimately brakes the wheels, while the current wheel speed is fed back to
the TTP bus.
This example shows that control loops usually comprise more than only two

nodes with one message between them. We will look at the following message
flow: t1 t2 t3Event ReactionSensor m1 m2 Actuator
The control loop comprises three nodes and each node executes a different

task. Task t1 reads a sensor value and sends a message m1 to task t2. From
t2 the message m2 is sent which is consumed by task t3. This is connected to
an actuator that performs the appropriate reaction.
The end-to-end latency arises from all delays during the flow from event to

reaction.
In order to analyse the end-to-end latency or to synthesize the system set-

tings from a given maximum latency, we need to divide the end-to-end latency
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Figure 3.6: Event Recognition Latency (ERL) vs. Information Flow Latency
(IFL)

into two parts, which are depicted in Figure 3.6 for this example and an ex-
emplary schedule.

The event recognition latency (ERL) describes the time between an event
and the recognition by the task of the appropriate sensor. In the time-triggered
architecture the sensor tasks are regularly executed with a well defined period.
Therefore the earliest point in time when an event resp. a change in state of the
environment can be recognized is the next time the task is executed. Due to the
regular execution of the task, the ERL is no exact value, because it can vary:
if the event occurs a very short time before the task execution, the ERL will
be very short, too. If the event occurs directly after the task has been started
and has read the sensor, the event only will be noticed by the next execution
of the task. Hence the ERL will be nearly the period of the task execution.
This effect introduces an undesirable but inevitable jitter. Therefore we only
consider the worst-case ERL for response time analysis. This is the sensor task
period.

The information flow latency (IFL) is the remaining time between recog-
nition of the event and the reaction, i.e., the time the information needs to
flow through the system until the reaction is initiated. As communication in
the time-triggered architecture is deterministic, this duration is fixed for any
message flow in the system (this only applies for the TTA, not for a system
which uses TTP for communication, but hosts that use other scheduling meth-
ods). This latency consists of the parts introduced in Section 3.1.2 for every
transmitted message: The execution time of all three tasks, the message send
and receive duration of both messages and the pre-send duration (PSD) and
the post-receive duration (PRD) of the messages.
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3.3 TTA System Development

3.3.1 Workflow and features of the current modelling
process

The TTA System Development process has already been described in Section
1.3.2.1 about the TTTech tools and the interface to the modelling suites in
Section 1.3.2.2 resp. 1.3.2.3. In this section we want to look at some more
details according to the question on response time.
As mentioned before, the development process is divided into two fields of re-

sponsibility: the system integrater and the subsystem supplier. This dichotomy
can be found in the tools of TTTech as well: TTP-Plan is used to specify the
global cluster information, while TTP-Build configures the nodes individually.
Both tools generate schedules: TTP-Plan builds the global communication

schedule, the MeDL, and TTP-Build generates the local task schedules for a
node, the TaDL.
Each tool needs information about the system provided by the developer.

This information can be imported from a model created by one of the modelling
suites. This would only be mandatory information that is absolutely needed to
generate a schedule. This is due to the assumption that the modelling suites
are used for rapid prototyping only and not for final fine-tuning of the system.
The system databases of TTP-Plan (cluster database) and TTP-Build (node

database) can be enriched by a variety of optional settings via the user inter-
faces of the tools themselves. For example, these cover a max_membership_value
to adjust the fail silent behaviour and a fixed_round_number to fix the TDMA
rounds in a cluster cycle to the bcet, which is the best-case execution time
of a task for optimizations of the task schedules. The following describes the
mandatory and optional relations and attributes that affect the response time
most.

Basic Information Basic information comprises the cluster layout, i.e., the
number of nodes, the messages each node sends and the relation between mes-
sages and receivers, the time budget of each task and the global transmission
speed of the physical layer.

TDMA round period The tr_period attribute globally sets the period of
the TDMA round. As a full cluster cycle usually comprises more than one
TDMA round and a node does not need to have a time slot in each TDMA
round, the message period of one message can be a multiple of the TDMA
round period. Therefore the TDMA round period is not that significant for
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end-to-end latency.

Message Period The d_period attribute sets the maximum period for a
TTP message. This is just a maximum value, because the actual message pe-
riod has to be a power-of-two multiple to the TDMA round period. Hence any
improper values will automatically be reduced to a message period a_period
that is a power-of-two multiple of the TDMA round period.

PSD and PRD For each message the pre-send duration and the post-receive
duration can be set to maximum with the attributes max_psd and max_prd.
Thus the scheduler of TTP-Build is restricted to only build such schedules in
which sending and receiving tasks are scheduled that way that the PSD and
PRD are met by all corresponding tasks.

Message depends on Message One can define dependencies between mes-
sages with the association Message_depends_on_Message, i.e., if message m1
is needed to generate message m2. This can be used to provide knowledge
about the flow of information. To be declared dependent, m1 and m2 must
apparently have the same period. Message_depends_on_Message tells the
scheduler the order of the application tasks. With the generation_lag at-
tribute one can define the allowed delay between the reading of a message and
the sending of the corresponding output message. The value is no direct time
span but it describes how many output messages may lie between the input
and the output.
The value means:

0: as little delay as possible; m1 produces the earliest possible m2;

1: one message generation allowed between m1 and m2;

2: two message generations allowed between m1 and m2;

3: etc.

A value of 0 means that after reading m1 the answer must be written to the
next occurrence of m2. In our example in Figure 3.6 this is the case for task
t2. The value may not be bigger than the amount of corresponding messages
in a cluster cycle.
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3.3.2 Further options

The response time is not explicitly taken into account by the TTTech tools;
neither for synthesizing the schedules nor for analysing the resultant schedules.
We want to discuss if it is possible to add new features that the tools would

be able to handle end-to-end latency as desired.

3.3.2.1 Validation of System Requirements

Validation of the system requirements sounds simple: Take all resultant sched-
ules and follow the flow of information. The actual latency can be computed
by the formula

IFL =
∑

i

tiWCET +
∑
j

(∆mj + PSDmj + PRDmj) (3.1)

where i counts the tasks between the messages, j the messages in the in-
formation flow itself and ∆mj the duration of sending the message, i.e., the
corresponding slot time.
Unfortunately the dichotomy of TTP-Plan and TTP-Build thwarts this sim-

ple approach: The system integrator that uses TTP-Plan to generate the global
configuration data such as the MeDL is interested in the response time of the
system. To calculate this, the global information is necessary as well as all local
information of the nodes within the message flow that needs to be analysed.
The system integrator is likely to receive from its subsystem suppliers an elec-
tronic control unit with binary software on it. It is unlikely that the suppliers
will openly provide their software, because they want to protect their intellec-
tual property. Although the MeDL has been provided to all project partners,
the TaDLs have not been provided. The system integrator has no information
about the task execution at the nodes, not even information about the time
budget resp. the WCET of the tasks. Therefore testing is the only method,
that enables the system integrator to validate the response requirements.

3.3.2.2 Synthesis of communication/component schedule

Response time requirements are usually given prior to system development. If
the system is developed with today’s tools, violations to severe latency restric-
tions are likely to happen. So the developers have to fine-tune the settings in
order to find the right configuration for schedules that meet the response time
requirements.
A better approach would be to specify the response time requirements di-

rectly in the model and to make the tools use this information to find the
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appropriate settings to automatically generating schedules that meet the re-
quirements.

To evaluate whether this is feasible, we now consider several relevant set-
tings:

Basic Information Basic information, such as the general cluster layout,
and fixed values, such as the transmission speed of the physical layer and
the WCET of the tasks, must be provided by the developer. Most of this
fundamental information cannot be generated automatically and in case of the
WCET this would be very difficult as mentioned in Section 3.1.3 on page 74.

Message Period The message period influences the schedules so it affects
the information flow latency (IFL) as well, but mainly it is responsible for
the event recognition latency (ERL). As mentioned, the worst-case ERL is the
period of the task that is connected to the corresponding sensor to detect the
event resp. the change of state. This period is inherited from the message
period of the message the sensing task will send, because the task should
exactly produce as many messages as there are sent via the TTP bus by the
TTP controller. Hence the worst-case ERL is the message period. This period
is bounded by the d_period attribute. The decision for the sampling rate of
the sensor, which causes the ERL, is fundamentally dependent of the system
and hence cannot be made an automatic process.

TDMA round period and cluster cycle As a calculation the TDMA round
period can be derived from all specified message periods:

tr_period = GCD(
{
d_periodmj|mj is message j

}
)

i.e., the greatest common devisor of all message periods. Therefore the
cluster cycle period becomes

cluster_period = LCM(
{
d_periodmj|mj is message j

}
)

i.e., the least common multiple of all message periods.
This could lead to a bad proportion of the round and the cluster period.

Consider an example of three different message flows with the message periods
of 1.5 ms, 2 ms and 3 ms respectively. The TDMA round period would
become 0.5 ms while the cluster period would be 6 ms. One cluster cycle
would comprise 12 TDMA rounds, which is rather long, especially as only 9
messages could be transmitted and some rounds might transmit no sensible
message at all.
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Such cluster cycles would hardly be accepted by the developer as they get
too complex, and empty rounds are not allowed anyway. Therefore the current
workflow of the tools specifies the values the other way round: First specify the
TDMA round period, then specify the message periods. The message periods
will then be decreased automatically to fit a multiple of the TDMA round
period. This way is sensible, as the developer has to decide the TDMA round
period and therefore the resulting proportion to the cluster cycle by his or
her own criteria. The system developer should decide, which message periods
can be reduced in order to get a better proportion. In the example we could
decrease the period of 1.5 ms to 1 ms and 3 ms to 2 ms resulting in a TDMA
round period of 1 ms and a cluster cycle period of 2 ms, where one cluster
cycle only comprises 2 TDMA rounds.
All the messages in one flow of information will have the same message pe-

riod. Therefore the manual tuning of TDMA round period and of message
period will not cost much effort, if there are little but complex flows of infor-
mation. Hence automatic calculation will unlikely lead to the desired result
and only save little effort and the impact to the IFL can hardly be considered.

PSD and PRD Setting the max_PSD and max_PRD attributes obviously leads
to the desired effect of bounding the IFL. Consider the Formula 3.1 on page
80 that calculates the IFL. The WCET of the tasks and the durations of the
message sending are fixed. Hence the only variable factors that influence the
IFL are the durations, while the messages stay untouched in the CNI of the
nodes. These values get fixed by a certain task schedule connected to a global
communication schedule. Setting the optional attributes max_PSD and max_PRD
will restrict the task schedulers to only produce schedules that under-run the
specified values. This would ultimately lead to a specified IFL, and by setting
the message period to the ERL the developer could force an end-to-end latency.
One question remains: how to distribute the PSD and PRD to the messages?

We will call the sum of all PSD and PRD in an information flow the idle
message duration (IMD):

IMD =
∑
j

(PSDmj + PRDmj)

Obviously the maximum IMD is given by the maximum IFL and the fixed
values:

IMDmax = IFLmax −

∑
i

tiWCET +
∑
j

∆mj
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The developer could simply distribute the maximum allowed duration to all
messages evenly. But only the sum of all PSD and PRD values affects the end-
to-end latency, i.e., the IMD. Hence explicit distribution of the IMD restricts
the schedulers very much: all tasks have to be scheduled exactly that way that
they meet their single PSD and PRD. This is a very severe restriction and will
likely lead to unschedulable values, especially if the IMD is quite short. Evenly
distributed IMD would force correct response times of the whole system, if the
task schedulers could find a possible schedule. However, the minimum possible
PSD and PRD value of a message is bounded by a specific MeDL: if a message
m1 is consumed by a task t and a message m2 is produced, the PSD and PRD
values are bounded by the fixed values of the MeDL and the task:

PRDm1 + PSDm2 ≥ (m2send −m1rec)− tWCET

where m1rec is the point in time when m1 is received by the TTP controller
of the node t and m2send is the point in time when the TTP controller starts
to send m2. This means, the idle times of messages cannot be shorter than the
period of time between one message is received and the next is sent decreased
by the execution time of the task that processes the input message and pro-
duces the output message. Thus a given MeDL and evenly distributed IMD
can lead to fundamentally unschedulable PRD and PSD values.

This is too severe for our purpose. As mentioned, the actual IMD must be
below the maximum allowed IMD. However, it does not matter how the IMD is
distributed to the different messages. It would be fully sufficient if one message
gets a very short PSD and PRD while another message in the information flow
gets bigger ones. This would give the schedulers the needed flexibility and if
this leads to schedulable results, the developer would be content in respect to
the response time requirements.

Unfortunately the dichotomy of TTP-Plan and TTP-Build thwarts this ap-
proach again: TTP-Plan builds the global communication schedule, the MeDL,
without regarding timing requirements of the tasks. Single instances of TTP-
Build use this MeDL to produce the task schedules, the TaDLs. Neither TTP-
Plan nor the single instances of TTP-Build intercommunicate while building
the schedules. The schedules are built fully independently only using the
global restrictions given by TTP-Plan and the local restrictions given in each
TTP-Build instance. Therefore a dynamic IMD distribution to the messages
according to the needs of the tasks is fundamentally not possible. For rapid
prototyping the scheduling algorithms must have been centralized with very
great effort to allow dynamic IMD distribution. This centralization would ei-
ther destroy the desired dichotomy of the two tools or introduce a very high
intercommunication between the tools and the need of parallel scheduling.
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Anyway this method will not be feasible if the dichotomy of system integra-
tor and subsystem supplier must be kept in mind. The spatial and temporal
separation of the scheduling processes make the dynamic IMD distribution
impossible at all events.

Message depends on Message The relation Message_depends_on_Message
is the only way to specify a flow of information in the current tools. Any arbi-
trary flow can be modelled using this relation. Consider the following message
flow: t1 t2 t5Event ReactionSensor m1 m2 Actuatort3 m3m1 t4 m4
This would lead to the following relations:

• m2 depends on m1

• m3 depends on m1

• m4 depends on m2

• m4 depends on m3

Each of the relations has the additional attribute generation_lag which
describes the next message generation at which the message must have been
produced. This was mentioned before in Section 3.3.1 on page 78.
Assume that the generation_lag of the first relation is 0. The schedulers

will schedule the task t2 that way that it finishes and writes its output until
the next occurrence of m2 in relation to the input m1. If the generation_lag
is 1, t2 may produce its output till the second occurrence of m2 in relation
to m1 and so on. With increasing generation_lag the scheduler gains more
flexibility. A generation_lag of 0 is a very severe restriction and will probably
lead to unschedulable results.
The relation Message_depends_on_Message is a good way to model infor-

mation flow in a TTA. But, again, it does not help in considerations about the
end-to-end latency. And the reasons are the same as above: The information
flow is considered only piecewise for each message. The generation_lag is set
for each piece, not for the whole flow. Furthermore the generation_lag is no
absolute value and depends on the message periods and the different phases
of the messages in the TDMA round. The information restricts the scheduler
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very much, too much, as the allowed lag is not freely distributed over all the
messages in the message flow.

This is due to the same reasons stated above about the PSD and PRD: The
dichotomy of global information and local information in the tools does not
allow dynamic distribution of the idle time.

3.3.2.3 Possible Integration into the existing workflow

Synthesizing the system configuration from the response time requirements
would inherently need a centralized scheduling, as both the global and the
local properties influence the response time. This would destroy the wanted
dichotomy of the scheduling process and therefore will unlikely find acceptance.
Rapid prototyping with a modelling suite, such as SCADE or Simulink, uses
both parts of the schedulers together. But they use the schedulers as they
are, sequentially. Regarding the end-to-end latency in a centralized scheduler
would be quite easy. The maximum IMD could be provided by the developer,
resp. derived from the maximum IFL and the fix values. The scheduler would
simply add the restriction that the sums of all PSD and PRD in a message flow
may not exceed this IMD. In a generate and test methodology, which is used
by logic constraint solvers, this restriction would automatically be regarded
and the resulted schedules would meet the required response times.

Combining the schedulers only for rapid prototyping could mean a bad cost-
effectiveness ratio for TTTech. As the schedulers are proprietary, they have to
evaluate if adding intercommunication during the scheduling process could be
introduced with justifiable effort.

Analysis of the system regarding the response time requirements could be
added more easily, but is still not trivial. The global communication schedule
as well as the local task schedules must be merged in order to look at a spe-
cific information flow. As subsystem suppliers want their intellectual property
secured, they might not freely provide their software. Export scripts for TTP-
Build could be used to export only the relevant information about the task
scheduling. The system integrator would collect all this information from the
suppliers and merge it for analysis.

Rapid prototyping with a modelling suite would ease this process, because
suppliers and integrator are one instance. This feature could be added to
Matlink for Simulink and TTPlink for SCADE respectively. The tool could
automatically import all schedules and check the response times.

Additionally a better way of specifying a flow of information should be pro-
vided by the modelling suites. A new graphical notation as used in this section
or even textual descriptions could be employed.

Maybe the graphical representation of the modelling suite could be enriched
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3 System Response Requirements in a TTA

Figure 3.7: Suggested visualization and/or specification of information flow
with Matlink

by adding information flow identifiers as shown in figure 3.7. A selected identi-
fier would allow to specify an information flow by adding numbers to messages
that indicate the flow relations.
At least the Message_depends_on_Message relation should be made acces-

sible and augmented by some variable that indicates the maximum latency
within the whole message flow.
Any of these methods would give the developer the opportunity to quickly

and intuitively specify the flow of information. An analysis function could then
combine all generated schedules and analyse the resulted latencies.
Best solution would be a toolchain that comprises centralized scheduling

for MeDL and TaDLs. That would enable the tools to automatically consider
dynamic distribution of idle message durations or the generation_lag by an
automatic generate and test methodology.
However, this method is connected to a very high modification of the current

tools. The analysis function could be realized with much less effort and provide
a helpful function. The developer could manually review the response times
of his system after the schedules have been built. This would lead to a little
larger generate and test development loop.
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4 Conclusion

We have described the model-based system design of a time-triggered archi-
tecture and listed the process in some detail regarding the dichotomy of global
specifications done by TTP-Plan, local specifications done by TTP-Build and
their conflation in a modelling suite such as Matlab Simulink resp. SCADE of
Esterel Technologies.

We are modelling a time-triggered architecture in the DECOS research
project: a high-lift flap system to demonstrate the results of the DECOS
development. We listed what we have done so far and what is planned for the
future in this context.

The practical application of the modelling tools raised the question on re-
sponse time requirements. How can modelling tools handle end-to-end latency
and how do they do it nowadays? Do they do all that is possible? Is it not
possible to handle it after all?

We tackled this question by analysing the origin of latency in real-time
systems in general and in the TTA in particular, where we depicted the worst-
case latency. We introduced the division of the end-to-end latency into event
recognition latency and information flow latency.

We analysed the workflow of the current modelling tools with respect to the
response time requirements.

There we mentioned the question about worst-case execution times and de-
picted how Matlink of TTTech tries to handle this. It offers a nice and easy to
use feature to test the average execution times, but does no adequate formal
analysis, that would be sufficient for safety-critical applications.

We discussed which properties are critical to the end-to-end latency in a
TTA and how the settings of the modelling tools influence these properties.

We showed that both, validation of the system response requirements and
synthesis of the system configuration from the response time requirements, are
not possible with the current toolchain. The main reason is the dichotomy of
the global cluster information and the local node information that manifests
in the partition of TTP-Plan and TTP-Build.

We depicted that synthesis is inherently not possible without immense ef-
fort by centralizing the scheduling. Combining the schedulers only for rapid
prototyping could mean a bad cost-effectiveness ratio for TTTech, because
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4 Conclusion

the dichotomy of system integrator and subsystem suppliers is sensible in the
automotive domain.
Additionally we introduced how the conflation of the two TTTech tools in a

modelling suite could help to get a convenient response time analysis function
after all and therefore the modelling process could be enriched and save a lot
of testing efforts.
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A Latency Overview

Responsibilities

System Integrator

• Global system configuration:

– amount of subsystems;
– messages, mapping of messages to receiving and sending subsys-

tems;
– mapping of subsystems to nodes;

• global communication schedule, the MeDL:

– physical transmission speed;
– TDMA round length;
– phases and periods of all messages;

• global timing constraints for single messages, i.e., maximum values for
PSD and PRD.

Subsystem Supplier Possibly different suppliers for different nodes!

• Local node configuration

– choice of OS;
– fragmentation of one subsystem to one or more tasks;
– implementation of tasks, specification of WCETs;

• local task schedule, the TaDL;

→ actual PSD and PRD values get fixed.
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A Latency Overview

t3 t3 t3t1 m1 m1 m1TTP-BusNode 1Node 2 t1 t1t2 t2 t2Event Reaction
t

ERL IFL
m2 m2 m2Node 3 t3 m1m2t1 t2 tPSDm2 PRDm2

End-to-end Latency

∆m2t2WCET m1recm1sendperiodm2
Terms

End-to-End Latency The latency between the occurrence of an event resp. a change of state
of the environment and the reaction of the system.

ERL – Event Recognition Latency The latency introduced by the execution period of the
sensor task, i.e., the period of time that passes until the event is recognized by a task.

IFL – Inter Flow Latency The (static) latency introduced by the flow of information in the
system. It comprises the task execution times of the corresponding tasks, the message
transfer duration of the corresponding messages and all PSD and PRD values of the
messages.

PSD – Pre-Send Duration The duration that the message lies untouched in the CNI of a
node after it has been written by a task and before it gets transmitted by the TTP
controller.

PRD – Post-Receive Duration The duration that the message lies untouched in the CNI
of a node after it has been received by a TTP controller and before it gets consumed
by a task of the node.

IMD – Idle Message Duration Describes the period of time in a flow of information when
the information lies untouched in the CNI of some node, i.e., the period of time when
the information does not get processed but is idle. It is the sum of the PSD and PRD
values of all messages in the flow of information.

tWCET The time budget of a task, i.e., its worst-case execution time.

∆m – Message Transfer Duration The duration that is needed to transfer the message
via the TTP bus. It comprises the reading of the value from the CNI, internal checks
by the TTP controller, physical transfer, writing to the CNI of the receiver until it
becomes available by the host application of the receiver. Usually more than one
message is sent in one time slot by one node. Hence this value is the whole slot time,
because all messages are processed all at once.
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msend The point in time when the TTP controller starts sending the message. Any task
that produces this message must have finished the transfer to the CNI up to this
point in time.

mrec The point in time when the TTP controller has finished the receiving of a message
and has stored the message in the CNI. This is the earliest point in time when an
application task can start consuming the message.

periodm – Message Period The period of time at which the message regularly gets trans-
mitted. The d_period is given by the developer and denotes the maximum allowed
period and the a_period denotes the actual period that the system derived of the
TDMA round size. It is a_period ≤ d_period.
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B Acronyms
A/C Aircraft
ACE Actuator Control Electronics
AFDX Avionic Full Duplex Switched Ethernet
CAU Christian-Albrechts-Universität
CNI Communication Network Interface
CSB Cross Shaft Brake
COTS Commercial-Of-The-Shelf
DECOS Dependable Embedded Components and Systems
DLL Dynamic Link Library
ECU Electric Control Unit
ERL Event Recognition Latency
FMEA Failure Mode and Effects Analysis
FTCOM Fault Tolerant Communication
FSM Finite State Machine
IFL Information Flow Latency
IMD Idle Message Duration
KCG Esterel Technologies’ Qualified Code Generator
LIB Static C Library
MCE Motor Control Electronics
MeDL Message Descriptor List
PPU Position Pickoff Unit
PRD Post-Receive Duration
PSD Pre-Send Duration
RPM Revolutions per Minute
RTW Real-Time Workshop
SCU System Control Unit
SSM Safe State Machine
TaDL Task Descriptor List
TDMA Time Division Multiple Access
TTA Time-Triggered Architecture
TTP Time-Triggered Protocol
TTP/C Time-Triggered Protocol version C
TUHH Technische Universität Hamburg-Harburg
WCET Worst-Case Execution Time
WCL Worst-Case Latency
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C Version Information
We used the following versions of tools at this work:

Distributor Product Version
Mathworks MATLAB 7.0.1 (R14SP1)
Mathworks Simulink 6.1 (R14SP1)
Mathworks Real-Time Workshop 6.1 (R14SP1)
Mathworks RTW Embedded Coder 4.1 (R14SP1)
Mathworks Stateflow 6.1 (R14SP1)
TTTech TTP-Matlink 2.2 (R7.1)
TTTech TTP-Calibrate 2.2 (R7.1)
TTTech TTP-Plan 5.2 (R7.1)
TTTech TTP-Build 5.2 (R7.1)
TTTech TTP-Load 6.2 (R7.1)
TTTech TTP-View 6.2 (R7.1)
Esterel Technologies SCADE Suite 5.0 beta2 (build i24)

Basis of the model are the test bench requirements version 1.0r [Koc04].
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