CHRISTIAN-ALBRECHTS-UNIVERSITAT zZU KIEL

Student Research Project

Worst Case Reaction Time Analysis for
a Synchronous Concurrent Processor

Marian Boldt

2007-07-02

Department of Computer Science
Real-Time and Embedded Systems Group

Advised by:
Reinhard von Hanxleden
Claus Traulsen

ii

Eidesstattliche Erklarung

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit selbststéndig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

v

Abstract

Reactive programs have to react continuously to their inputs with according out-
put. While the synchrony hypothesis takes the view that the program is infinitely
fast, real computations take time. Similar to the traditional Worst Case Execution
Time (WCET), the Worst Case Reaction Time (WCRT) of a program determines
the maximal time for one reaction.

In this thesis, I present an algorithm to determine the WCRT of a program writ-
ten in the synchronous language Esterel. This value gives an upper bound for the
execution time when the program is executed on a reactive processor. Specifically, I
consider the execution of the Esterel program on the Kiel Esterel Processor (KEP),
a reactive processor that can execute Esterel-like instructions. Here the WCRT di-
rectly determines an upper bound on the instruction cycles per logical tick. The
WCRT also gives a guideline for the execution time when the Esterel program is
compiled to software by a simulation-based approach.

I have implemented the WCRT analysis algorithm as part of an Esterel compiler
for the KEP and have measured an accuracy of analysis results of about 25% on
average.

vi

Contents

1.2. The Kiel Esterel Processor (KEP)[.
1.3. The Concurrent KEP Assembler Graph (CKAG)|

[2.4. Fork-Join Reachability| L.
[2.5. General Statement Reachability|

[3. Worst Case Reaction Time Analysis|
3.1. KEP Instruction Cycles|
13.2. Sequential WCRT Analysis|,
3.3. General WCRT Analysis|
B.4. WCRT Overestimationl
13.5. Experimental Results|.0 0.

|4. Implementation|

[4.2. class WCRT Sequential|o 0oL
|4.3. class WCRT Parallell 0 0.
‘ Usage| o o

[6. Bibliography|

[A. CFF+ Sources

~ Ot W W =

©o

15
15
16
17
20
21

27
27
28
28
29

31

33

37

vil

Contents

viii

List of Figures

1.

Overview of the Esterel syntax and how these Esterel statements are

compiled to the KEP instruction set. Cycles give the number of pro-

cessor cycles needed for the execution. |.

2.

Nodes and edges of a Concurrent KEP Assembler Graph (CKAG).| .

3.

CKAG Building (Esterel source, KEP assembler, CKAG)|

R

A sequential Esterel example (a), the generated KEP assembler (b),

the corresponding CKAG (c), and its traces (d). The body of the

KEP assembler program (without interface declaration) is annotated

with line numbers L1-L6, which are also used in the CKAG and in the

trace to identify instructions. |.o

R2.

An Esterel example with concurrency (a), the resulting KEP assembler

program (b) and CKAG (c) to show different kinds of instantaneous

parallel paths (d). These paths are not extensible and reachable: sig-

nal A has to be present and absent respectively to reach path la and

1b respectively. So these paths are traces. |.

B1.

The sequential Esterel example shown in Figure [2. I| (a), the corre-

sponding CKAG annotated with the results of its WCRT analysis (b),

the generated KEP completed with the initialization of the TickMan-

ager (c), and a sample execution trace (d). The trace shows for each

tick the input and output signals that are present and the reaction

time (RT), in instruction cycles. |

B2,

WCRT algorithm, restricted to sequential programs. Function return

values may be ignored. The nodes of a CKAG ¢ are given by Nodes

= TransientNodes U LabelNodes U DelayNodes U ForkNodes U

JoinNodes, g.root indicates the first KEP statement. cycles(stmt)

returns the number of instruction cycles to execute stmt, see third

column in Figure|l.1]|.

[3.3.

A concurrent example program.|

B4

General WCRT algorithm.|.

B5.

The standard ABRO example: there are strong abort edges between

the delay nodes with AWAIT statements to a node outside the parallel

indicated by a different thread-id. So their next WCRT values are

used for next value of the joimnode.|

X

List of Figures

13.6. Inconsistent sequential path example: signal I cannot be present and

absent within the same tick due to Esterel semantics, so this program

| has two inconsistent paths. | o000 24
[3.7. Inconsistent parallel path example| 25
13.8. Unreachable parallel path example: a more exact reachability analy- |

| sis would be necessary to determine whether statements of ditferent |

[threads are executable within the same instant. 1 25
[4.1. The visitor pattern: the conditional in (a) is replaced by calling the

| welcome method (b). The conditional bodies body; are implemented

| by a specific visit method which is called by welcome. | 29

1. Introduction

Many embedded and hard real-time systems belong to the class of reactive systems,
which continuously react to inputs from the environment by generating corresponding
outputs. Therefore exact timing information or at least an upper bound of the exe-
cution time is crucial for these systems. To perform an exact Worst Case Execution
Time (WCET) analysis is difficult, and not possible in general for Turing-complete
languages. It typically imposes fairly strong restrictions on the analyzed code, such
as a-priori known upper bounds on loop iteration counts, and even then control flow
analysis is often overly conservative [21], [5]. Furthermore, even for a linear sequence
of instructions, typical modern architectures make it difficult to predict how much
time exactly the execution of these instructions consumes, due to pipelining, out-
of-order execution, argument-dependent execution times and caching of instructions
and/or data. Finally, if external interrupts are possible or if an operating system
is used, it becomes even more difficult to predict how long it really takes for an
embedded system to react to its environment. Despite the advances already made in
the field of WCET analysis, it appears that most practitioners today still resort to
extensive testing plus adding a safety margin to validate timing characteristics. To
summarize, performing conservative yet tight WCET analysis appears by no means
trivial and is still an active research area.

One step to make WCET analysis of reactive applications more feasible is to choose
a programming language that provides direct, predictable support for reactive con-
trol flow patterns. One suitable candidate for this is the synchronous language
Esterel [2], which has been developed for programming control-oriented, embedded
systems. It directly supports concurrency and multiple forms of preemption. Based
on the synchrony hypothesis, it offers determinism even for concurrent components.
The execution of Esterel programs is divided into (logical) ticks, each of which con-
ceptually takes no time. Esterel forbids programs with a potentially unbounded
number of statements to be performed within a tick. This is reflected in the rule
that there cannot be instantaneous loops; within a loop body, each statically feasible
path must contain at least one tick-delimiting instruction. The restricted nature
of Esterel and its sound mathematical semantics allow formal analysis of Esterel
programs and make the computation of a WCET for Esterel programs achievable.

In addition to choosing a suitable programming language, the feasibility of WCET
analysis crucially depends on the execution platform. A relatively new approach for
control-oriented reactive-systems are reactive processors [25] [I'7, [I8]. These proces-
sors directly support reactive control flow, such as preemption and concurrency. In
this thesis I will use the Kiel Esterel Processor (KEP), a reactive processor based
on the synchronous language Esterel, to show that timing analysis is practical for

1. Introduction

reactive processors, hence making the reactive processing approach particularly well
suited for hard real-time systems. There are two main factors that contribute to
this, on the one hand the synchronous execution model of Esterel, and on the other
hand the direct implementation of this execution model on a reactive processor. Fur-
thermore, reactive processors are not designed to optimize (average) performance for
general purpose computations, and hence do not have a hierarchy of caches, pipelines,
branch predictors, etc. This leads to a simpler design and execution behavior and
further facilitates WCET analysis.

As we here are investigating the timing behavior for reactive systems, we are
concerned with computing the maximal time it takes to compute a single reaction,
that is the time from given input events to generated output events. Therefore
we call this analysis a Worst Case Reaction Time (WCRT) analysis. The WCRT
determines the maximal rate for the interaction with the environment. Whether
WCRT can be formulated as a classical WCET problem or not depends on the
implementation approach. If the implementation is based on sequentialization such
that there exist two dedicated points of control at the beginning and the end of each
reaction, respectively, then WCRT can be formulated as WCET problem; this is the
case, for example, if one “automaton function” is synthesized, which is called during
each reaction. If, however, the implementation builds on a concurrent model of
execution, where each thread maintains its own state of control across reactions, then
WCRT requires not only determining the maximal length of pre-defined instruction
sequences, as in WCET, but one also has to analyze the possible control point pairs
that delimit these sequences. Thus, WCRT is more elementary than WCET in the
sense that it considers single reactions, instead of whole programs, and at the same
time WCRT is more general than WCET in that it is not limited to pre-defined
control boundaries.

The contribution of this paper is a WCRT analysis of complete Esterel programs
including concurrency and preemption. The analysis computes the WCRT in terms
of KEP instruction cycles, which roughly match the number of executed Esterel
statements. As part of the WCRT analysis, we also present an approach to cal-
culate potential instantaneous paths, which may be used in compiler analysis and
optimizations that go beyond WCRT analysis.

The WCRT analysis is performed during the compilation of an Esterel program to
KEP assembler on a graph structure, called Concurrent KEP Assembler Graph (CKAG),
which represents the resulting KEP control flow. The remainder of this chapter will
give a short overview of Esterel, the KEP and KEP assembler, the CKAG and re-
lated work. In Chapter [2| we consider paths in particular instantaneous paths of an
Esterel program. Chapter [3] explains the algorithm to determine the WCRT, while
Chapter [4] gives details on the implementation. The results and open problems are
discussed in Chapter [f]

Parts of this work were presented during the Proceedings of the Workshop on
Model-driven High-level Programming of Embedded Systems (SLA-++P’07) in Braga,
Portugal, 2007 [4].

1.1. Esterel

1.1. Esterel

Classical programming languages like C/C++ are designed to handle data from stan-
dard keyboard or file input/output to compute some result. The result has to be
correct and the computation should not take too much time. How many milliseconds
are needed in detail is not relevant for the result. Not so in the real-time and em-
bedded systems world, these the correctness of results depends on timing behavior
and the programs has to react withing specific timings. Implementing these features
in languages with a standard data-oriented programming paradigm is very difficult,
because a time model must be implemented by hand. Furthermore preemption and
concurrency are hard to express. The reactive and synchronous languages, like Sig-
nal [14], Lustre [15] and Esterel [3], support these real-time demands directly in
syntax and semantics.

The execution of an Esterel program is divided into logical instants, or ticks, and
communication within or across threads occurs via signals; at each tick, a signal is
either present (emitted) or absent (not emitted).

Esterel statements are either transient, in which case they do not consume logi-
cal time, or delayed, in which case execution is finished for the current tick. Most
statements are transient including for example emit, loop, present, or the preemp-
tion operators. Delayed statements include pause, (non-immediate) await, and every.
Esterel’s parallel operator, ||, groups statements in concurrently executed threads.
The parallel terminates when all its branches have terminated.

Esterel offers two types of preemption constructs. An abortion Kkills its body when
an abortion trigger occurs. We distinguish strong abortion, which kills its body
immediately (at the beginning of a tick), and weak abortion, which lets its body
receive control for a last time (abortion at the end of the tick). A suspension freezes
the state of a body in the instant when the trigger event occurs.

Esterel also offers an exception handling mechanism via the trap/exit statements.
An exception is declared with a trap scope, and is thrown with an exit statement.
An exit T statement causes control flow to move to the end of the scope of the cor-
responding trap T declaration. This is similar to a goto statement, however, there
are complications when traps are nested or when the trap scope includes concurrent
threads. The following rules apply: if one thread raises an exception and the cor-
responding trap scope includes concurrent threads, then the concurrent threads are
weakly aborted; if concurrent threads execute multiple exit instructions in the same
tick, the outermost trap takes priority. All Esterel statements can be translated into
a small set of kernel statements.

1.2. The Kiel Esterel Processor (KEP)

Synchronous reactive and preemptive behavior is not common to standard hardware
and must be implemented in software, which is usually inefficient. To solve this
problem the KEP is designed to implement Esterel directly in hardware, whereby

1. Introduction

’ Esterel Source \ KEP Assembler Cycles \ Notes
input / [(: type)] INPUT[V] / 0 type € {integer, boolean}
output O [(: type)] OUTPUT[V] O I/O-statements are part of the
interface: no instruction cycles
are needed
emit S [(val)] EMIT S [, {#data|reg}] 1 Emit (valued) signal S.
present S then PRESENT S, elseAddr 1 Jump to elseAddr if S is absent.
S e No GOTO statement when the
else GOTO endAddr else body is empty.
S elseAddr:
end present e
endAddr:
[weak] abort [LOAD COUNT,n] [1]
. [W]ABORT]I] S, endAddr 1
when [immediate, n] S | ... To delay a preemption for
endAddr: n ticks is done by setting the
suspend [LOAD _COUNT. 1] (1] builtin variable COUNT.
e SUSPENDII] S, endAddr 1 -
when [immediate, n] S| ...
endAddr:
trap T in startAddr: Exit from a trap, star-
... ... tAddr /exitAddr specifies trap
exit T EXIT exitAddr startAddr 1 scope. Unlike GOTO, check for
. . concurrent EXITs and terminate
end trap exitAddr: enclosing | |.
pause PAUSE 1 Wait for a signal. AWAIT TICK
await [immediate, n] S | AWAIT [I, n] S 1 is equivalent to PAUSE.
signal S in ...end SIGNAL S 1 Initialize a local signal S.
sustain S [(val)] SUSTAIN S [, {#data|reg}] 1 Sustain (valued) signal S.
halt HALT 1 Halt the program.
loop addr: Jump to addr.
o loop body has to be noninstan-
end loop GOTO addr 1 taneous

PAR prioy, startAddry, idy For each thread, one PAR is

[needed to define the start ad-

p1 PAR prioy,, startAddr,, idy, n+1 | dress, thread id and initial pri-

Il PARE endAddr ority. The end of a thread is de-

. startAddr, : fined by the start address of the

: next thread, except for the last

I startAddra: thread, whose end is defined via
Pn PARE.

] . The cycle count of a fork node

startAddry: depends on the count of threads.

oo Behind endAddr the correspond-

endAddr: ing join node occurs which is ex-

JOIN 1-2 ecuted at the end of each instant
the parallel is activ, consuming
one instruction cycle.

A JOIN statement is executed a
second time when it is part of a
nested parallel.

PRIO prio 1 Current thread priority is set to
prio. This statement has no Es-
terel counterpart, it is imple-
menting the Esterel semantics.

Figure 1.1.: Overview of the Esterel syntax and how these Esterel statements are

compiled to the KEP instruction set. Cycles give the number of processor

cycles needed for the execution.

1.3. The Concurrent KEP Assembler Graph (CKAG)

the according assembler instruction set is based on the Esterel language [3].

Many Esterel statements can be found directly in the KEP syntax, while more
complex statements have to be dismantled into simpler statements. In particular,
all kernel statements and some frequently used derived statements can be directly
mapped to single KEP instructions. Hence most Esterel statements can be executed
in just one instruction cycle. For more complicated statements, well-known trans-
lations into kernel statements exist, allowing the KEP to execute arbitrary Esterel
programs. Part of the KEP instruction set is shown in Figure The KEP as-
sembler programs corresponding to ExSeq and ExPar and sample traces are shown in
Figures ¢)/(d) and B.3[c)/(d), respectively. Note that PAUSE is executed for at
least two consecutive ticks, and consumes an instruction cycle at each tick.

The KEP provides a configurable number of Watcher units, which detect whether a
signal triggering a preemption is present and whether the program counter is in the
corresponding preemption body [I8]. Therefore, no additional instruction cycles are
needed to test for preemption. Only upon entering a preemption scope two cycles are
needed to initialize the Watcher, as for example the WABORT; instruction in ExSeq.

To implement concurrency, the KEP employs a multi-threaded architecture, where
each thread has an independent program counter and threads are scheduled according
to their statuses, thread-id and dynamically changing priorities: between all active
threads, the thread with the highest priority is scheduled, if there is more than one
thread, the highest thread-id counts. The scheduler is light-weight: scheduling and
context switching do not cost extra instruction cycles, only changing the priority of
a thread costs an instruction.

To initialize n parallel threads, n PAR instructions are executed, which initialize the
program counter and the priority for each thread. Thereafter one PARE instruction
is executed, which stores the end of the parallel scope. During each instant in which
at least one parallel thread is active, also the according JOIN statement must be
executed in order to determine whether the threads have terminated.

1.3. The Concurrent KEP Assembler Graph (CKAG)

The Concurrent KEP Assembler Graph (CKAG) is an intermediate data struc-
ture used for compilation from Esterel to KEP assembler. It represents KEP con-
trol flow behavior to perform complex computations like priority assigning [16],

dead code elimination, statement collapsing and especially the Worst Case Reac-
tion Time (WCRT) analysis.

1.3.1. Node and Edge Types

The CKAG distinguishes transient nodes, which represent instantaneous execution,
delay nodes, which represent statements that may hold for more than one tick, and
fork and join nodes, which represent concurrency (see Figure . Given a CKAG
node n, the set n.suc. denotes the set of sequential control flow successors and are
represented as solid edges in the CKAG. Successors reached via preemptions are

1. Introduction

EMEJS @ \ N

/ \ N

sucC ¢ 4 | A Kuc_c suc_c\§uc_e
suc ¢ suc s suc w suc € <
(a) transient (b) label (c) delay (d) fork (e) join

Figure 1.2.: Nodes and edges of a Concurrent KEP Assembler Graph (CKAG).

n.sucg for strong aborts, n.suc,, for weak aborts, and n.suc, for exit exceptions. The
edges are represented as dashed edges, marked with small tail labels s, w and e,
respectively. Note that according to the semantics of Esterel preemption edges occur
only from delay nodes, because a preemption either takes place at the beginning or
the end of an execution, when a pause is reached.

1.3.2. Graph Building

The CKAG is built from the Esterel source by traversing recursively over its Abstract
Syntax Tree (AST) generated by the Columbia Esterel Compiler (CEC) [8].

While the Esterel statements are compiled to KEP Assembler (KASM) statements,
the corresponding CKAG is built by creating a node for each statement, which will be
inserted into the graph. The kind of the node depends on the kind of the statement:
for instantaneously executed statements a transient node, for address labels a label
node, for non-instantaneous executed statements a delay node and for concurrency
a fork node respectively join node.

A node typically contains exactly one statement, except label nodes containing
only address labels and fork nodes containing one PAR statement for each child
thread initialization and a PARE statement.

When a delay node is created, additional preemption edges are added according
to the abortion/exception context, e. g. in Figure (c) a preemption edge from a
PAUSE delay node to a label node of a strong abort is added because the delay node
is to be within the body of this strong abort.

The delay nodes contain mostly PAUSE statements, since more complex potentially
non-instantaneous statements like AWAIT, SUSTAIN and HALT are -at least initially-
dismantled into kernel statements.

Some simple CKAG building examples respectively schemes are shown in Fig-
ure together with the corresponding KEP program and the Esterel source they
are built from. The first example (a) explains how an Esterel sequence is trans-
formed, it remains in each case as a sequence: the KEP program is a KEP statement
sequence and the CKAG is a node sequence. The next example (b) shows how an
Esterel loop is handled. The loop body is translated recursively ahead of the loop
a start address A0 and at the end the corresponding GOTO A0 statement are in-
serted. In the CKAG the behavior of restarting the loop body is reflected by the

1.4. Related Work

emit R; EMIT R loop AO:
emit S; EMIT S \
emit T EMIT T end loop GOTO A0 GOTO AO
(a) sequence (b) loop
ABORT A,A0
PAR*
PAR 1,A0,1 1\t
PAR 1,A1,2
l < PARE A2,1 (a0) (a1)
\ AO0:
abort ABORT A,A0 | [
. A AlL:
pause PAUSE ! Il
i ! A2:
when A; AO:] JOIN pe

(c) abort (d) parallel

Figure 1.3.: CKAG Building (Esterel source, KEP assembler, CKAG)

edge between GOTO node and address label. In Figure (c) the abort also handles
recursively a body by adding preemption edges from all occurring delay nodes to the
abort end. This is done for the preemption statements abort, weak abort and trap.
For all of these statements a preemption edge with the according type and symbol
is added. In this example at least one edge for each delay node is added with type
s and symbol A. Figure (d) depicts the use of KEP concurrency. If two threads
are defined to be in parallel by Esterel, then for each of them a thread-id and a start
address is assigned via PAR statements. Fach thread gets the initial priority 1 during
creation, which might be changed during priority assigning [16]. Determining the
end of the whole parallel the PARE defines an end address. Within the CKAG the
PAR and the PARE statements are encapsulated by their fork node.

1.4. Related Work

As mentioned in the introduction, there exist numerous approaches to classical
WCET analysis. For a survey see, e. g., Puschner and Burns [23]|. These approaches
usually consider (subsets) of general purpose languages, such as C, and take infor-
mations on the processor designs and caches into account.

Regarding the analysis of synchronous programs, Logothetis, Schneider and Met-

1. Introduction

zler |20, 19] have employed model checking to perform a precise WCET analysis
for the synchronous language Quartz, which is similar to Esterel. However, their
problem formulation was different from the WCRT analysis problem we are address-
ing. They were interested in computing the number of ticks required to perform a
certain computation, such as a primality test, which we would actually consider to
be a transformational system rather than a reactive system. We here instead are
interested in how long it may take to compute a single tick, which can be considered
an orthogonal issue.

One important problem that must be solved when performing WCRT analysis
for Esterel is to determine whether a code-segment is reachable instantaneously or
delayed or both. This is related to the well-studied property of surface and depth of
an Esterel program, i. e., to determine whether a statement is instantaneous reachable
or not, which is also important for schizophrenic Esterel programs [2]. This was
addressed in detail by Tardieu and de Simone [26]. They also point out that an
exact analysis of instantaneous reachability has NP complexity. We, however, are
not only interested whether a statement can be instantaneous, but also whether it
can be non-instantaneous.

Apart from being executed on a reactive processors, Esterel programs can be syn-
thesized to hardware [I] or compiled into software, e.g., C-code (see Edwards [10]
for an overview). Currently, the most efficient compilation schemes are simulation
based [9, [7, 22, 11]: the Esterel program is organized according to some kind of
graphical structure and its current state is stored in a data-structure on the applica-
tion level, e. g., a bit-vector. Based on this vector, the current actions in the graph
are triggered. While this approach produces fairly efficient code, both in size and in
execution speed, it removes much of the structure from the Esterel-program, making
the WCET analysis as hard as for “normal” C programs.

Ringler [24] considers the WCET analysis of C code generated from Esterel. How-
ever, his approach is only feasible for the generation of circuit code [2], which scales
well for large applications, but tends to be slower than the simulation based approach.

Li et al. [I7] compute a WCRT of sequential Esterel programs directly on the
source code. However, they did not address concurrency and their source-level ap-
proach could not consider compiler optimizations. We perform the analysis on an
intermediate level after the compilation, as a last step before the generation of as-
sembler code. This also allows a finer analysis and decreases the time needed for the
analysis.

The KEP contains a TickManager [17], which monitors how many instructions
are executed in the current logical tick. To minimize jitter, a maximum number
of instructions for each logical tick can be specified. If the current tick needs less
instructions, the start of the next tick is delayed. If the tick needs more instructions,
an error-output is set. Hence a tight, but conservative upper bound of the maximal
instructions for one tick is of direct value for the KEP. See Li et al. [17] for details
on the relation between the maximum number of instruction per logical tick and the
timing constraints from the environment perspective.

2. Instantaneous Paths

The goal of the WCRT analysis is to find the longest executable execution trace
per instant measured in KEP instruction cycles. We identify execution traces of a
KEP program p as instantaneous paths in the according CKAG C(p). Based on
sequential paths the more general parallel paths will be defined.

2.1. Node Successor Definitions

A CKAG C for a KEP program p has the form
€ =Clp) = (V.E.P)
with node set V', edge set E C V x V and preemption edges P.
V' is partitioned into three different types of nodes in the case of sequential pro-
grams and five types for parallel programs, respectively:

V= TransientNodes(C) U Label Nodes(C') U DelayNodes(C)
U ForkNodes(C) U JoinNodes(C).
Each preemption edge has a tuple of preemption type k € K := {s,w, e} and signal
symbol s € S, where S is defined as the set of signal symbols. The preemption type

indicates whether the preemption results from strong abort, weak abort or an exit,
and the signal symbol by which signal the preemption is triggered.

P C Vx(KxS)xW

Note that exit preemptions never occur for signals, but for trap labels, which are
handled like signals by using signal symbols for them. Given a node n € V, the set
of its control flow successors, n.suc. € V, is the image of E under n:

n.suc. := E[n] ={m | (n,m) € E}.

The preemption successors are defined the same way for all k& € {s,w, e} by:

n.sucy := P[n]g y:={m €V |3s €S: (n,m)xs € P}.

Furthermore the successors n.suc and the instantaneous successors n.sucy,ss ofn € V
are defined by:
n.suc := E[n] U P[n]

2. Instantaneous Paths

and

N.SUC. :n € Transient Nodes U Label Nodes

N.SUCinst =
s { n.sucy, Un.suce : n € DelayNodes

Note that transient nodes/label nodes have no preemption successors and its control
flow successors are always instantaneous:

n € TransientNodes U Label Nodes : n.suc = n.sucinss = E[n].

To the contrary the instantaneous successors of delay nodes are never control flow
successors, but all preemption successors (n.suc,, Un.suc. C P[n]). The preemption
edges of types w and e are instantaneously executed.

2.2. Sequential Paths

A sequential path t in C' with length |t| =: [> 0 is a sequence t = (t1,...,t;) of
nodes t; € V that t forms a chain in C, i.e.:

Vi € N<l : tip1 € t;.8uc.

The set of all sequential paths of C' are denoted with Pyq(C).

t is called instantaneous iff

Vie{l,...,l}: tiy1 € ti.Sucipst.

The set of all instantaneous sequential paths of C' is denoted with Iz, (C).
Given t = (t1,...,t;) € Isq(C), we define t as not extensible, if no t' € I;.q(C)
exists with ¢ being a real sub-path of ¢':

t not extensible := Vt' € I4((C): t £t
whereby the sub-path relation is defined via
t <t = [ttt =t At <|t]]

Given a not extensible path t, all its statements form a possible KEP execution
trace, because due to the KEP semantics all instantaneously reachable statements
can be executed. We call ¢ in this case a trace or reachable path. To determine not
extensible instantaneous paths that are no traces is hard in general. Therefore we
consider all paths as reachable.

A simple sequential Esterel example ExSeq can be found in Figure [2.1(a). From
the second instant on it will continuously emit the signal R. When the input | occurs,
it emits R one last time. In the same instant, it also emits S and terminates.

10

2.3. Parallel Paths

— TRACE 1 —
WABORT
PAUSE,,
— TRACE 2 —
[L1] WABORT I,A0 % 1 absent
PAUSE, ,
EMIT 3
GOTO| 4
PAUSE, ,
module ExSeq:
input I; % module: ExSeq — TRACE 3 —
output R,S; % | present
INPUT | i PAUSE,,
weak abort OUTPUT R,S i EMIT 3
loop @ L3 EMITR GOTOy,
pause; [L1] WABORT 1,A0 PAUSE, ,
emit R [L2] Al: PAUSE EMIT 5
d | L3 EMIT R HALT
whamjep {,_4} GOTO A1 [emits] [1L4coToal] L6
emit S [L5] AO: EMIT S — TRACE 4 —
end module [L6] HALT @ HALT ¢
(a) Esterel (b) KEP assembler (c) CKAG (d) traces

Figure 2.1.: A sequential Esterel example (a), the generated KEP assembler (b),
the corresponding CKAG (c), and its traces (d). The body of the KEP
assembler program (without interface declaration) is annotated with line
numbers L1-L6, which are also used in the CKAG and in the trace to
identify instructions.

The CKAG of this example has five not extensible instantaneous paths, four of
them are traces as shown in Figure [2.1)(d):

(WABORTL1, Al 2, PAUSEL2), (PAUSEL 2, EMITL3, GOTOr4, Alys, PAUSEL,),

(PAUSEL2, EMITy3, GOTOp4, Alpo, PAUSEL2, AOL5, EMITy 5, HALTL6), (HALTLg).

The remaining path r := (WABORTL1, Alra, PAUSEL2, AOLs5, EMITy5, HALTL6) is not
a trace, because of the Esterel semantics the weak abort edge (PAUSELQ,A0L5)(U)7 o)
cannot be executed in the same instant like the WABORTY{,1, since this is not an
immediate abort. So path r is not reachable, nevertheless the WCRT analysis will
conservatively consider such paths to get an algorithm of polynomial complexity.

2.3. Parallel Paths

To match concurrent control flow the concept of sequential paths is enhanced to the
more general idea of parallel paths. We define the set of parallel paths Pp,,(C) of a
CKAG C by using recursively the parallel operator || to define two paths as concur-
rent to each other and the sequential operator ; to connect two paths sequentially. A
parallel path is either a sequential path, the parallel of parallel paths or the sequence
of parallel paths:

P =51 (PNIP); | (P;P)

11

2. Instantaneous Paths

whereby j € JoinNodes denotes the join node the || belongs to.

Similar to the definition of instantaneous sequential paths in Section we de-
fine instantaneous parallel paths as a parallel paths whose statements are possibly
executed within the same instant:

-Pinst = Sinst | (})inst 1 })inst)j ’ (Pi/nst ; Pinst)

whereby P/ ., is defined as an instantaneous parallel path Pj,s whose concurrent
paths merge to some control flow after the parallel specific JOIN. That is the case
if for each concurrent flow all sub-thread paths terminate at their join node (see
Path 2 in Figure [2.2(d)) or a thread exits by an instantaneous preemption path
which results in the termination of the whole parallel statement (Path 1b). Note
that P/, , is introduced because in a path of kind (P || Pinst); (see Path la in
Figure [2.2(d)) the execution of the parallel may need several ticks. So paths of sort
((Pinst 11 Pinst)j i+ Pinst) are no instantaneous parallel paths in general.

The set of all instantaneous parallel paths is denoted by I,4,(C). Not extensible

parallel paths from I,,,(C) are possible parallel traces.

2.4. Fork-Join Reachability

During the WCRT analysis all instantaneous paths have to be detected, in par-
ticular paths whose control flow continues after a concurrent execution has to be
detected or excluded. This problem resembles the question whether a given fork-join
node pair (f, j) is part of a parallel path of kind P, ,, defined in Section If such
a path exists, we say (f,7) is instantaneous, which means (f,j) may be executed
instantaneously. Instantaneous Reachability is now defined more exactly together
with the additional non-instantaneous:

(f,Jj) instantaneous := It € Ipgr: t=(...PAR*; (... 1l ...)JOIN; ---)
(f,j) non-instantaneous := 3t € Ipe :t=(...PAR*; (... 1l...)joIN) V
t:(...H...)JO”\I [;...]

whereby f.stmt = PAR* and j.stmt = JOIN.
Note that in path (... PAR*; (... [|...) JOIN ;...) the parallel is started and again
ended instantaneously.

If (f,j) is instantaneous and not non-instantaneous than (f,j) is always instan-
taneously executed. On the other hand if (f,j) is not instantaneous and non-
instantaneous than (f,j) is always executed with a delay. If (f,7) is both, then
(f,7) may be executed instantaneously but need not.

Next we consider reachability in general and the algorithm to computate it.

2.5. General Statement Reachability

We define two KEP statements instantaneously reachable if an instantaneous path
exists that contains both statements (or rather their CKAG nodes) and delayed oth-

12

2.5. General Statement Reachability

erwise. The basic idea of the algorithm is to compute for each node three potential
reachability properties: instantaneous, non-instantaneous, exit-instantaneous. Prop-
erty exit-instantaneous is a special kind of instantaneous which occurs by instanta-
neous preemption, both of them are standing for instantaneously reachable. Note
that delayed corresponds to the absence of both instantaneous properties, and not to
non-instantaneous. A node might be as well (potentially) instantaneous as (poten-
tially) non-instantaneous, depending on the signal status. Computation begins by
setting the instantaneous predicate of the source node to true and the properties of
all other nodes to false. When any property is changed, the new value is propagated
to its successors. If we have set one of the properties to true, we will not set it to
false again. Hence the algorithm is monotonic and will terminate. Its complexity is
determined by the amount of property changes, which are bounded to three (three
boolean) for all nodes, so the complexity is O(3 * |Nodes|) = O(|Nodes|).

The most complicated computation is the property instantaneous of a join node
because several attributes have to be fulfilled for it to be instantaneous:

e For each thread, there has to be a (potentially) instantaneous path to the join
node.

e The predecessor of the join node must not be an EXIT, because EXIT nodes
are no real control flow predecessors. While the parallel may be left imme-
diately by an EXIT statement, the further behavior differs. Therefore we use
the third property for this, beside instantaneous and non-instantaneous: exit-
instantaneous.

Roughly speaking the instantaneous property is propagated via a for-all quantifier,
non-instantaneous and exit-instantaneous via existence-quantifier.

Most other nodes simply propagate their own properties to their successors. The
delay node propagates in addition its non-instantaneous predicate to its delayed suc-
cessors and exit nodes propagate exit-instantaneous reachability, when they them-
selves are reachable instantaneously.

13

2. Instantaneous Paths

module: ExPerPaths
EMIT _TICKLEN,#12

[L4W12] PAR*

%% % Module: ExParPaths
INPUT A,B =
OUTPUT R,S,U,V, XY
EMIT TICKLEN,#12
module ExParPaths: -
L01,W12] AO: L6W2] EMIT R
input A,B; Lo2] PAR 1,A1,1 Leovia T
output R,S,U,V,X)Y; LO3] PAR 1,A2,2
L04,W12] PARE A3,1
trap T in LO5,W2] A1l:
[L06,W2] EMIT R [L12,W1/3] PAUSE
emit R; Lo7,W1/2] PAUSE
pause; L08,W1] EMIT S [[L1sw1y EXIT TA0] [[L13W2] GOTOAS |
emit S LO9, W3] A2: 5
I L10,W3] EMIT U :
emit U; L11,W2] PRESENT A,A4 7wz PAUSE] QoW1 A5
present A then L12,W1/3] PAUSE B
pause L13,W2] GOTO A5 [iLawa) EMITS‘\ T [ILizwi EmiTv |
else L14,W1] A4: \
exit T L15 W1] EXIT T,A0
end present ; L16,W1] AS5: [L19.W3/8] JOIN
emit V L17,W1] EMIT V
1; L18] A3:
emit X; L19,W3/8] JOIN
halt L20,W2] EMIT X
end trap; L21,W1/1] HALT
emit Y L22,W2] T
L23,W2] EMIT Y
end module L24,W1/1] HALT
(a) Esterel (b) KEP assembler
—1a —

((PAR_1,PAR|5,PARE 3) ; ((EMIT 4,PAUSE 7) Il (EMITLIO,PRESENTLH,PAUSEL12))J°|NL19)

2
(((PAUSE_7,EMIT g) || (PAUSE(12,GOTO13,EMIT 17))j0IN ;4 i (EMITLo3,HALT 54))

_1b —
(((PAR_2,PAR 3,PARE4) ; ((EMIT 6,PAUSE 7) Il (EMITL10,PRESENT 11,EXIT115))501Ny;9) i (EMITL20,HALT 51))

(d) Parallel instantaneous path examples

Figure 2.2.: An Esterel example with concurrency (a), the resulting KEP assembler
program (b) and CKAG (c) to show different kinds of instantaneous
parallel paths (d). These paths are not extensible and reachable: signal
A has to be present and absent respectively to reach path la and 1b
respectively. So these paths are traces.

14

3. Worst Case Reaction Time Analysis

Given a KEP program we define its WCRT as the maximum number of KEP cycles
executable in one instant. Thus the WCRT analysis requires to find the longest
instantaneous path in the CKAG, measured in the number of required KEP instruc-
tion cycles. Next will be described how these cycles are computed. Hereafter we
present a restricted form of the WCRT algorithm that handles only sequential pro-
grams, which is then generalized. The general algorithm handles additionally fork
and join nodes and requires the analysis of instantaneous reachability between fork
and join nodes, which was discussed in Section 2.4 The general WCRT algorithm
is presented in Section The algorithms abstract from signal relationships and
might therefore consider unfeasible executions. Therefore the computed WCRT is in
general pessimistic. Such WCRT overestimations are discussed in Section

3.1. KEP Instruction Cycles

Next we describe how to compute the KEP instruction cycles we need to measure
the length of a path of nodes. The cycles of a node are simply defined as the cycles
of the statements they contain:

n € Nodes : cycles(n) := cycles(n.stmt).

Most nodes contain exactly one statement, which needs exactly one instruction
cycle, except for the following cases:

e The root node contains statements which define the programs interface and
variables with INPUT/OUTPUT and VAR respectively. As an optimization local
SIGNAL statements are added when they occur globally. All these statements
are used to initialize the program before the real program starts, so all cycles
of statements in the interface are defined as zero.

e The amount of KEP statement cycles of a fork node f depends on the number
of its sub-threads. For each sub-thread a PAR is executed for its initialization
(see Figure [1.1). With the PARE execution at the end of thread initialization
we obtain

cycles(f.stmt) = cycles(PAR*) = Z cycles(PAR;) + cycles(PARE).
i€ f.threads

15

3. Worst Case Reaction Time Analysis

e In the case of nested concurrency all involved join statements are executed a
second time, according to their hierarchy from innermost to outermost. This
ensures a correct termination order when exits occur. So the cyclecount of a
JOIN varies from one to two instruction cycles.

e A Jabel node contains no real KEP statement, it contains an address label
which needs zero instruction cycles.

e A function call needs one instruction cycle, but the WCRT of the function
that is called depends on the function, so it varies and has to be computed
separately. Our WCRT implementation requires that the result is be printed
within a specific KEP function file in the format "% %% WCRT: <wcrt>" as
commentary, to be parsed and used during the WCRT analysis.

The amount of KEP instruction cycles of a path t € I4,(C) is defined as the sum
of the individual statement cycles:

cycles(t) := Z cycles(t;)

and for ¢t € I,4,(C) we define:

cycles((Py |1 ... Il Py)j) = chcles(Pi) + cycles(j)
cycles(Py 5 Py) = cycles(Py) + cycles(Ps)
whereby t = (Py |l ... |l P,); ort = (P ; P») respectively.

Note that the amount of instruction cycles of a statement depends on KEP se-
mantics and may vary when the KEP implementation changes. But this will not
effect the algorithm, because this is scalable by hiding the computation of statement
cycles in the function cycles.

3.2. Sequential WCRT Analysis

First we present a WCRT analysis of sequential CKAGs (no fork and join nodes).

Consider again the ExSeq example in Figure (a). The longest possible execution
occurs when the signal | becomes present, as is the case in Tick 3 of the example trace
shown in Figure (d) Since the abortion triggered by signal | is weak, the abort
body is still executed in this instant, which takes four instructions: PAUSE 5, EMIT 3,
the GOTOL4, and PAUSE, again. Then it is detected that the body has finished
its execution for this instant, the abortion takes place, and EMIT s and HALT ¢ are
executed. Hence the longest possible path takes six instruction cycles.

The sequential WCRT is computed via an instantaneous Depth First Search (DFS)
traversal of the CKAG, see the algorithm in Figure 3.2 For each node n a value
n.inst is computed, which gives the WCRT from this node on in the same instant

16

3.3. General WCRT Analysis

when execution reaches the node. For a transient node, the WCRT is simply the
maximum over all children plus its own execution time.

For each non-instantaneous delay node d an additional value d.next stores the
maximal number of instantaneously reachable instructions, when the execution starts
at d. These two values are needed to ensure that the algorithm terminates in the
case of non-instantaneous loops: to compute d.next we might need the value d.inst.

For a delay node, we also have to take abortions into account. The handlers
or continuations of weak abortions and exceptions are instantaneously reachable,
so their WCRTs are added to the d.inst value. In contrast, the handlers of strong
abortions cannot be executed in the instant the delay node is reached. So the WCRT
of the handler of a strong abortion is added to d.next. We do not need to take a
weak abortion into account here, because it cannot contribute to a longest path. An
abortion in the first instant will always lead to a higher WCRT than an execution
that starts at the delay node.

The resulting WCRT for the whole program is computed as the maximum over
all WCRTs of nodes where the execution may start. These are the start node and
all delay nodes. To take into account that execution might start simultaneously in
different concurrent threads, we also have to consider the next value of join nodes.

Consider again the example ExSeq in Figure Each node n in the CKAG g is an-
notated with a label “W(n.inst)” or, for a delay node, a label “W(n.inst)/(n.next).”
In the following, we will refer to specific CKAG nodes with their corresponding
KEP assembler line numbers L(n). It is g.root = L1. The sequential WCRT com-
putation starts initializing the inst and next values of all nodes to L (line 2 in
getWertSeq, Figure . Then getlnstSeq(L1) is called, which computes Ll.inst :=
max { getlnstSeq(L2) } + cyclestWABORT ;). The call to getlnstSeq(L2) computes and
returns L2.inst := cycles(PAUSE|») + cycles(EMIT5) + cycles(HALT) = 3, hence L1l.inst
=3 + 2 = 5. Next, in line 4 of getWertSeq, we call getNextSeq(L2), which computes
L2.next := getlnstSeq(L3) + cycles(PAUSE|,). The call to getlnstSeq(L3) computes and
returns L3.inst := cycles(EMIT3) + cycles(GOTO4) + L2.inst =1 + 1 + 3 = 5. Hence
L2.next := 5 + 1 = 6, which corresponds to the longest path triggered by the pres-
ence of signal |, as we have seen earlier. The WCRT analysis therefore inserts an
“EMIT _TICKLEN, #6” instruction before the body of the KEP assembler program to
initialize the TickManager accordingly [17].

3.3. General WCRT Analysis

The general algorithm shown in Figure [3.4] can also handle concurrency: it emerges
from the sequential algorithm that has been described in Section by enhancing
it with the ability of computing the WCRT of fork and join nodes. Note that the
instantaneous WCRT of a join node is started only by a fork node, all transient
nodes and delay nodes do not use this value for their WCRT. This allows the use of
a DFS like algorithm and the WCRT of the join node will be accounted just once in
the instantaneous WCRT of its corresponding fork node.

17

3. Worst Case Reaction Time Analysis

— Tick 1 —
module: ExSeq ! reset;
EMIT _TICKLEN #6 % In:
% Out: R
% RT = 3
[LLWS5] WABORT I A0 WABORT, ; PAUSE,,
— Tick 2 —
% In:
% Out: R
% RT = 4
PAUSE,, EMIT 3
module ExSeq % module: ExSeq GOTO, 4 PAUSE|,
input |; — Tick 3 —
output R,S; i INPUT | % In: |
’ OUTPUT R,S % Out: R S
weak abort Qs w2l AD EMIT _TICKLEN,#6 %RT =6
loop PAUSE,, EMIT 5 GOTO,,
pause; [L1,Ws] WABORT 1,A0 PAUSE_, EMIT 5 HALT ¢
emit R [Lswz EMIT S [[Lawa) GoTO A1] [L2,W3/6] Al: PAUSE — Tick 4 —
end loop [L3,w5] EMIT R % In:
when [; [L4,W4] GOTO A1 % Out:
emit S [L6WL/1] HALT [L5,.W2] AO: EMIT S % RT = 1
end module [L6,W1/1] HALT HALT ¢
(a) Esterel (b) CKAG (c) KEP assembler (d) Sample trace

Figure 3.1.: The sequential Esterel example shown in Figure (a), the corre-
sponding CKAG annotated with the results of its WCRT analysis (b),
the generated KEP completed with the initialization of the TickManager
(c), and a sample execution trace (d). The trace shows for each tick the
input and output signals that are present and the reaction time (RT),
in instruction cycles.

The instantaneous WCRT of a fork node is simply the sum of the instantaneously
reachable statements of its sub-threads, plus the PAR statement for each sub-thread
and the additional PARE statement.

The join nodes, like delay nodes, also have a next value. When a fork-join pair
(f,J) could be non-instantaneous we have to compute a WCRT j.next for the next
instants analogously to the delay nodes. Its computation requires first the com-
putation of all sub-thread next WCRTs. Note that in case of nested concurrency
these next values can again result from a join node. But at the innermost level
of concurrency the next WCRT values all occur from delay nodes, which will be
computed before the join next values. The delay next WCRT values are computed
the same way as in the sequential case except that only successors within of the
same thread are mentioned. We call successors of a different thread inter-thread-
successors and their WCRT values are handled by the according join node. The join
next value is the maximum of all inter-thread-successor WCRT values and the sum
of the maximum next value for every thread. See the abro example in Figure [3.5
two inter-thread-successors are present because a parallel construct exists within the
abort body.

If the parallel does not terminate instantaneously, all directly reachable states are
reachable in the next instant. Therefore we have to add the execution time for all
statements that are instantaneously reachable from the join node.

18

-
O © 0 N O U W N N O O W N =

O Utk W N

3.3. General WCRT Analysis

int getWecrtSeq(g) // Compute WCRT for sequential CKAG g
forall n € Nodes do n.inst := n.next := L end
getlnstSeq (g.root)
forall d € DelayNodes do getNextSeq(d) end
wert := max ({g.root.inst} |J {d.next : d € DelayNodes})
return wcert

end

int getlnstSeq(n) // Compute statements instantaneously reachable from node n
if n.inst = L then
if n € TransientNodes U LabelNodes then
n.inst := max {getlnstSeq(c) : ¢ € n.suc.} + cycles(n.stmt)
elif n € DelayNodes then
n.inst := max {getlnstSeq(c) : ¢ € n.sucw, Un.suce} + cycles(n.stmt)
fi
fi

return n.inst
end

int getNextSeq(d) // Compute statements instantaneously reachable from delay node d at tick start
if d.next = 1 then
d.next := max {getlnstSeq(c) : ¢ € d.succ Ud.sucs} + cycles(d.stmt)
fi

return d.next
end

Figure 3.2.: WCRT algorithm, restricted to sequential programs. Function re-
turn values may be ignored. The nodes of a CKAG g are given by
Nodes = TransientNodes U Label Nodes U DelayNodes U ForkNodes
U JoinNodes, g.root indicates the first KEP statement. cycles(stmt) re-
turns the number of instruction cycles to execute stmt, see third column
in Figure|L.1

The complete algorithm computes first the next WCRT for all delay and join
nodes; it computes recursively all needed inst values. Thereafter the instantaneous
WCRT for all remaining nodes is computed. The result is simply the maximum over
all computed values.

Consider the example in Figure . First we note that the fork/join pair is always
non-instantaneous. We compute L6.next = cycles(PAUSE) + cycles(EMIT7) = 2.

From the fork node L3, the PAR and PARE statements, the instantaneous parts
of both threads and the JOIN are executed, hence L3.inst = 2 X cycles(PAR) +
cycles(PARE) + cycles(JOIN) + L4.inst 4+ Lb.inst = 7. Therefore, the WCRT of the
program is L8.next = L6.next 4+ L8.inst =249 = 11. Note that the JOIN statement
is executed twice.

A known difficulty when compiling Esterel-programs is that due to the possible
nesting of exceptions and concurrency, statements might be executed multiple times
in one instant. This problem, also known as reincarnation, is handled correctly

19

3. Worst Case Reaction Time Analysis

module ExPar:
output R,S,T;

loop
L
emit R;
I
emit S;
pause;
emit T;
1

end loop

end module

[L4W1] EMITR

(a) Esterel

module: ExPar
EMIT _TICKLEN,#11

[L3,W7] PAR*

[L5W2] EMIT S

[L7W1] EMITT

[L8,W9/11] JOIN O

(b) CKAG

% module: ExPar

OUTPUT R,S, T
EMIT _TICKLEN,#11

[L1,W7] AO: PAR 1,A1,1
[L2] PAR 1,A2,2
[L3.w7] PARE A3,1
[La,w1] Al: EMIT R
[L5,W2] A2: EMIT S

[L6,W1/2] PAUSE
[L7.w1] EMIT T
[L8,W9/11] A3: JOIN 0
[Lo,ws] GOTO A0

— Tick 1 —

I reset;

% In:

% Out: R

% RT =7
PAR; PAR|, PARE;
EMIT_, EMIT 5 PAUSE 4
JOIN g

— Tick 2 —

% In:

% Out: AR O

% RT = 11
PAUSE g EMIT 7 JOIN g
GOTO\ o
PAR|; PAR, PARE 3
EMIT,_, EMIT 5 PAUSE,¢
JOIN g

(c) KEP assembler

(d) Sample trace

Figure 3.3.: A concurrent example program.

by our algorithm. Since we compute nested joins from inside to outside, the same
statement may effect both the instantaneous and non-instantaneous WCRT, which
are added up in the next join. This exactly matches the possible control-flow in case
of reincarnation. Even when a statement is executed multiple times in an instant,
we compute a correct upper bound for the WCRT.

Regarding the complexity of the algorithm, let n := |Nodes|, d := |DelayNodes|,
f = |ForkNodes| and j := |JoinNodes|. For each node its WCRT’s inst and next
are computed at most once, and for all fork nodes a fork-join reachability analysis is
additionally performed, which has itself O(n). So we get altogether a complexity of
O(n+d+ j) + O(f #n) — O(2n) +O(n?) — O(n?).

3.4. WCRT Overestimation

In the algorithms described before, signal informations are not taken into account.
This can lead to an overestimation of the WCRT, because unreachable paths are
considered in the analysis which can never be executed. Paths that contain dead
code are trivially unreachable and this problem could be solved by a dead code
analysis [27]. In Figure we see an unreachable path increasing needlessly the
WCRT because it assumes signal I present and absent instantaneously, which is
inconsistent. Nevertheless there is no dead code in the CKAG but only two possible
paths regarding the path signal predicates.

20

3.5. Experimental Results

Figure [3.7 shows an unreachable parallel path that leads to a too high WCRT of
the fork node:

e the sub-paths cannot be executed at the same time, and

e the parallel is declared as possibly instantaneous, even though it is not. There-
fore, all statements which are instantaneously reachable from the join node are

also added.

Another unreachable parallel path is shown in Figure This path is unreach-
able not because of signal informations but because of instantaneous behavior: the
maximal paths of the two threads are never executed in the same instant. Instead
of summing up for each thread the maximum next WCRT it would be more exact
to sum up over all threads next WCRT’s that are executable instantaneously and
then taking the maximum of these sums. To perform this analysis we would have
to enhance the reachability algorithm with the ability to determine how many ticks
later a statement could be executed after each other. The possible tick counts can
reach arbitrary values for each node, so we would get a higher complexity and a
determination problem. Our analysis is conservative in simply assuming that all
concurrent paths may occur in the same instant, and that all can be executed in the
same instant as the join.

3.5. Experimental Results

The WCRT analysis is implemented in the KEP compiler. It automatically inserts a
correct EMIT _TICKLEN instruction at the beginning of the program. To validate our
approach, we used Esterel-Studio to generate test cases for Esterel programs, which
cover all states and transitions. The programs were executed on the KEP with the
test cases as input. We measured the maximal reaction time during these executions
and compared it to the computed value. The Esterel programs in Table are
taken from the Estbench [6]. We never underestimated the WCRT, and our results
are on average 24% too high. For each program, the lines of code, the computed
WCRT and the measured WCRT with the resulting difference is given. We also give
the average execution time on a standard PC (AMD Athlon XP, 2.2GHz, 512 KB
Cache, 1GB Main Memory) and the number of scenarios and accumulated logical
tick count for the test traces. As the table indicates, the analysis takes only a couple
of milliseconds.

21

3. Worst Case Reaction Time Analysis

module name |LoC WCRT

Estimated Measured Overest. [ms|| ACRT utilization | Test cases Ticks

abed 152 47 44 7% 1.0 27 61% 161 673
abcdef 232 71 68 4% 1.5 41 60% 1457 50938
eight buttons | 332 96 92 4% 2.0 57 62% 13121 45876
channel protocol| 57 41 38 8% 04| 18 47% 114 556
reactor _control | 24 17 14 21% 0.2 10 1% 6 20
runner 26 12 10 20% 0.3 2 20% 131 2548
ww__button 94 31 18 2% 1.0]| 12 67% 8 37
teint 410 192 138 39% 28| 86 62% 148 1325

Table 3.1.: Comparing the WCRT estimated by our analysis with the actual WCRT.
ACRT is the Average Case Reaction Time. Test cases and Ticks are
the number of different scenarios and logical ticks that were executed,
respectively.

22

=W N =

N o >

© 00 N U R W N

R e i e
S © XN WA WN = O

=W N =

© 0 g O w»

10

12
13
14
15
16
17
18

3.5. Experimental Results

int getWert(g) // Compute WCRT for a CKAG g
forall n € Nodes do n.inst := n.next := 1 end
forall d € DelayNodes do getNext(d) end
forall j € JoinNodes do getNext(j) end // Visit according to hierarchy (inside out)
wert 1= max ({getlnst(g.root)} | {n.next : n € DelayNodes U JoinNodes})
return wcert

end

int getlnst (n) // Compute statements instantaneously reachable from node n
if n.inst = L then
if n € TransientNodes U Label Nodes then
t.inst := max {getlnst(c) : ¢ € suc. \ JoinNodes} + cycles(n.stmt)
elif n € DelayNodes then
n.inst := max {getlnst(c) : ¢ € sucy U suce \ JoinNodes} + cycles(n.stmt)
elif n € ForkNodes then
NANSt 1= 30, cue, t-inst + cycles(n.par _stmts) + cycles(PARE)
prop := reachability(n, n.join) // Compute instantaneous reachability of join from fork
if prop.instantaneous or prop.exit instantaneous then
n.inst += getlnst(n.join)
elif prop.not instantanous then
n.inst += cycles(JOIN) // JOIN is always executed
fi
elif n € JoinNodes then
n.inst := max{getlnst(c) : ¢ € succ U suce} + cycles(n.stmt);
fi
fi

return n.inst
end

int getNext(n) // Compute statements instantaneously reachable from delay node d at tick start
if n.next = L then
if n € DelayNodes then
n.next := max {getlnst(c) : ¢ € succ U sucs \ JoinNodes A c.id = n.id} + cycles(n.stmt)
// handle inter thread successors by their according join nodes:
for m € {c € succ U sucs \ JoinNodes : c.id # n.id} do
J = according join node with j.id = m.id
j.next = max (j.next , getlnst(m)—+cycles(m.stmt)+cycles(j.stmt))
end
elif n € JoinNodes then
prop := reachability(n. fork,n) // Compute reachability predicates
if prop.not_instantanous then
n.next == max ((XCien. fork.suc, Maz{m.next : t.id = m.id}) + n.inst , n.next)
fi

fi
fi
return n.next
end

Figure 3.4.: General WCRT algorithm.

23

3. Worst Case Reaction Time Analysis

[LO,W7] module: abro
EMIT _TICKLEN,#11

[L1W7] AO: ABORT RAL

[L4W6] PAR*

module abro: %% % Esterel Module: abro !
npu A=Ha" D,
output O; OUTPUT O / N
EMIT _TICKLEN,#11 | [1Lew1 NOTHING | [[L6W1) NOTHING | \‘
loop |
abort LO1,W7] AO: ABORT R,AlL | ‘
[Lo2] PAR 1,A2,1 I [LO,W3/11] JOIN O ‘
await A Lo3] PAR 1,A3,2 | ' ‘
I L04,W6] PARE A4,1 | I
await B L05,W1/2] A2: AWAIT A R R
I; L06,W1] NOTHING | |
emit O; LO7,W1/2] A3: AWAIT B | |
halt L08,W1] NOTHING | |
when R L09,W3/11] A4: JOIN 0 | [
end loop L10,W2] EMIT O R |
L11,W1/9] HALT < /
end module L12,W8] Al: GOTO A0 T-
-
(a) Esterel (b) KEP assembler (c) CKAG

Figure 3.5.: The standard ABRO example: there are strong abort edges between
the delay nodes with AWAIT statements to a node outside the parallel
indicated by a different thread-id. So their next WCRT values are used
for next value of the join node.

module: inconsistant_seq_path
EMIT _TICKLEN #6

_al —
% RT: 5
input |; (PRESENT,A0,PRESENT,A1,EMIT,EMIT,A2,HALT)

output R,S,T;
- — a2 —

present | then % RT: 4 (unreachable)
emit R (PRESENT,A0,PRESENT,GOTO,A2,HALT)

end present ;

module unreachEx1:

— a3 —
% RT: 6 (unreachable)
(PRESENT,EMIT,A0,PRESENT,A1,EMIT,EMIT,A2,HALT)

present | else
emit S;
emit T

end present — a4 —

% RT: 5

end module i (PRESENT,EMIT,A0,PRESENT,GOTO,A2,HALT)

(a) (b) (c)

Figure 3.6.: Inconsistent sequential path example: signal I cannot be present and
absent within the same tick due to Esterel semantics, so this program
has two inconsistent paths.

24

module unreachEx2

input |;
output R,S,T;

[
present | then
pause
end present
I
present | else
pause
end present

1

end module

(a)

module unreachEx3:

input |;
output S,T,U,V;

[
pause;
emit S;
emit T;
pause;
nothing

pause;
pause;
emit U;
emit V

1

end module

(a)

module: inconsistant_par_path
EMIT _TICKLEN.#11

[W1/2] PAUSE

(b)

3.5. Experimental Results

%— b1l —

% RT: 8

(PARx ; ((A0,PRESENT,A3,NOTHING) || (A1,PRESENT,A4,PAUSE)); oIn)
% RT: 4

((() || (PAUSE,A5,NOTHING)) 0oin ; HALT)

%— b2 — (unreachable)

% RT: 11

(PARx ;

((A0,PRESENT,A3,NOTHING) || (A1,PRESENT,GOTO,A5NOTHING)); 01N
; HALT)

%— b3 — (unreachable)

% RT: 8

(PARx ;

((A0,PRESENT,PAUSE) || (A1,PRESENT,A4,PAUSE)) 01n)

% RT: 6

(((PAUSE,A3,NOTHING) || (PAUSE,A5,NOTHING)) o1y ; HALT)

%— b4 —

% RT: 9

(PARx ;

((AO0,PRESENT,PAUSE) || (A1,PRESENT,GOTO,A5 NOTHING));0i1n)
% RT: 4

(((PAUSE,A3,NOTHING) || ())soIn ; HALT)

(c)

Figure 3.7.: Inconsistent parallel path example

‘module: unreachable_par_path
EMIT _TICKLEN 49

[W6] PAR®

[W1] NOTHING

(b)

—cl —

% RT: 6

(PAR=* ; ((A0,PAUSE) || (A1,PAUSE)); 0oIN)

% RT: 7

((PAUSE,EMIT,EMIT,PAUSE) || (PAUSE,PAUSE)); oIn

% RT: 7

(((PAUSE,NOTHING) || (PAUSE,EMIT,EMIT)) 0in ; HALT)

— c2 — (unreachable)
% RT: 9
(((PAUSE,EMIT EMIT,PAUSE) || (PAUSE,EMIT,EMIT)) 01y ; HALT)

()

Figure 3.8.: Unreachable parallel path example: a more exact reachability analysis
would be necessary to determine whether statements of different threads
are executable within the same instant.

25

3. Worst Case Reaction Time Analysis

26

4. Implementation

The WCRT analysis is implemented within the Esterel KEP compiler which is based
on the CEC [§]. The implementation consists of two C+-+ files: WCRT.hpp and
WCRT.cpp. The header file WCRT.hpp contains the definition of classes and their
data fields and method prototype declarations. In file WCRT.cpp the bodies of the
method prototypes defined in WCRT.hpp are implemented. Next the defined classes
are described in detail and how they are used to perform the WCRT analysis.

Three classes are used to implement the WCRT analysis: WCRT, WCRT_Sequential
and WCRT_Parallel. WCRT_Parallel is a subclass of WCRT_Sequential, which is in
turn a subclass of WCRT.

4.1. class WCRT

Class WCRT is a subclass of class KEP::Visitor implemented in header file KEP.hpp
which provides for all existing KEP data structures a default visit method building
up the framework for all visitor [12] implementations.

The computation of KEP statement cycles is realized by overriding the default
KEP::Visitor visit methods for all KEP statements. Each of these visit methods
sets the class variable cycles to the statement specific value. If a statement is not
supported the visit method of its parent class is called, which throws an assertion.

Class WCRT also implements the basic data structures and methods needed by the
algorithm, especially the data fields needed to store the inst and next WCRT values
for each node:

typedef std::map<KEP::KepNode*,unsigned int> wcrt_map;
typedef struct ReactionTimes {

wcrt_map inst;

wcrt_map next;
I

ReactionTimes wcrt;.

To ensure the termination of the algorithm it is essential to avoid the cyclic visiting
of nodes. Therefore the nodes which the algorithm is currently visiting is saved in a
data structure called NodeVisit:

typedef struct NodeVisit {
std: :set<KEP: :KepNode*> inst;
std: :set<KEP: :KepNode*> next;

27

4. Implementation

};

NodeVisit visiting;

whereby two visits are allowed if in one case the inst in the other the next value is
needed. Structure NodeVisit takes this into account by having for both cases an
own node set. If a node is visited to compute a wert value v € {inst, next} which is
already visited for the same value v, the boolean variable error is set to true which
stops a further WCRT computation. When an error occurs the WCRT is set to the
bottom value zero to indicate that it was not possible to compute the WCRT for the
given program/CKAG.

4.2. class WCRT _ Sequential

Class WCRT_Sequential implements the sequential WCRT algorithm via a visi-
tor pattern [12] through visit methods for transient nodes, label nodes and delay
nodes. The algorithm described in Figure contains if-elif-else conditional con-
structs to distinguish different kinds of nodes, which are each represented by a visit
method for each kind, which contains of the specific conditional body. A node wel-
comes the visitor and then the according visit method is executed. This mechanism
is explained in more detailed in Figure [4.1]

If a fork or join node occurs, a warning is thrown, because such kind of nodes
are only supported by the general WCRT algorithm implemented by class WCRT_-
Parallel.

To determine within the visit methods the kind of WCRT value that has to be
computed, inst or next, this class provides a data field mode of type enum:

typedef enum { INST,NEXT,UNDEFINED } wcrt_mode;
wcrt_mode mode;

whereby the occurrence of UNDEFINED would indicate a bug in the implementation
and kind NEXT is ignored by visit methods of nodes that have no next WCRT value
to be computed like transient nodes. Therefore the computation of all next values is
easily implemented by visiting all nodes in mode NEXT.

4.3. class WCRT _ Parallel

Class WCRT_Parallel inherits the sequential algorithm described in Figure from
class WCRT_Sequential, but is designed to implement the general algorithm of Fig-
ure To accomplish this, some of the derived methods are overridden and/or
enhanced. For example to handle preemption edges between different threads start-
ing from delay nodes, the visit method for delay nodes has to be overridden, because
this kind of edge does not exist in a sequential CKAG and is therefore not mentioned
in the sequential version. For the same reason the data field join_outer_next is
added to store for each join node the maximum WCRT value, which originates from
these inter-thread edges.

28

4.4. Usage

1| Visitor v;
. ; 2
; if n lfogz;ranszentNodes then 3| // calling the visit method of v forn
1 .
3| elif n € LabelNodes then i n-welcome(v);
4 bodys
5| elif n € DelayNodes then 6 | // welcome methods . o
G bodys 7 procedurjel Nod‘eTypei swelcome(Visitor v) do
7| elif n € ForkNodes then 8 v.visit (this);
9| end
8 bodys 10
12 elif Zos JoinNodes then w |/ visit methods
0 Y5 12 | procedure Visitor::visit(NodeType;) do
13 body;
14 | end

(b)

Figure 4.1.: The visitor pattern: the conditional in (a) is replaced by calling the
welcome method (b). The conditional bodies body; are implemented by
a specific visit method which is called by welcome.

Class WCRT_Parallel additionally implements visit methods for the fork and join
node by overriding the dummy methods of WCRT_Sequential. Thus this class handles
concurrency and all kind of nodes are supported. To compute the next value of a
join node all maximum next values within its sub-threads are needed, so we save
them in data field max_inner_next of type id_map:

typedef std::map<KEP::KepThreadId*,unsigned int> id_map;
id_map max_inner_next;

to sum them up. Note that only next values from sub-threads of depth one are added:
sub-sub-thread values are handled by their according join nodes, whose thread iden-
tifiers are just one level higher. Hereby the deeper values are considered by taking
the join next values also into account.

Data structure max_inner_next is initialized with zero values to ensure a defined
value and avoid testing for it. If there are no next values within a thread, the adding
of zero has no impact to the resulting maximum inner next sum.

4.4. Usage

The WCRT implementation within other C++ modules in particular is used within
the strl2kep compiler to compute the WCRT of a given Esterel program. During
the analysis all WCRT values are saved and are displayed by using specific options.
This is useful for debugging and documentation purposes.

29

4. Implementation

4.4.1. strl2kep compiler

The WCRT analysis is realized in file cec-astkep.cpp during the compilation from
an Esterel AST to KEP. An instant of class WCRT_Sequential or WCRT_Parallel
is created according to which kind of algorithm has to be called, the sequential or
the general one. Then the method compute with the current CKAG as argument is
called:

// WORST CASE REACTION TIME (WCRT) ANALYSIS
d->print("start worst case reaction time analysis:");
time_measurement.start();

// wcrt analysis
WCRT: :WCRT_Parallel wcrt(d);
wert . compute (ckag) ;

// save wcrt time informations
time_measurement.end() ;
time_measurement.addDuration("WCRT","WCRT TIME:");

whereby for documentation purposes the analysis time is measured by saving the
time at start and computing the difference at the end. In Table the results for
several Esterel examples are shown.

4.4.2. Compiler Options

The strl2kep compiler has implemented two pretty printers: cec-xmlkasm to print
the resulting KEP assembler program and cec-kepdot to print the corresponding
CKAG graph in the dot [I3] format. Both printers have several printing options to
control the appearance of the result and to add informations for documentation or
debugging reasons.

To add the computed WCRT values to the statements respectively nodes, the print
option -p <kind> can be used with print kinds "WCRT" or "ALL":

cec-xmlkasm -p "WCRT": The WCRT values of the nodes are added to their
statements within a comment block of square brackets. Statements with no
according CKAG node are left blank instead of a value. Typically the PAR
statements have no value, because the WCRT value of the according fork node
is added to the PARE statement as its representative.

cec-kepdot -p "WCRT": For each node its WCRT values are added to their
dot labels. Additionally the result is printed to the root node by adding the
EMIT statement which sets variable TICKLEN.

The WCRT values are printed in the following format: W<inst>[/<next>] whereby
for join nodes the occurrence of the next depends on their reachability status as men-
tioned in Section The WCRT printing is used in most of the examples that make
use of a KEP program or CKAG graph.

30

5. Conclusions and Further Work

I have presented the WCRT analysis of reactive programs written in the Esterel lan-
guage. The analysis is performed on a graph representation, the Concurrent KEP As-
sembler Graph (CKAG). In a first step we compute whether concurrent threads ter-
minate instantaneously, thereafter we are able to compute for each statement how
many instructions are maximally executable from it in one logical tick. The maximal
value of over all nodes gives us the WCRT of the program. The analysis considers con-
currency and the multiple forms of preemption that Esterel offers. The asymptotic
complexity of the WCRT analysis algorithm is quadratic in the size of the program;
however, experimental results indicate that the overhead of WCRT analysis as part
of compilation is negligible. We have implemented this analysis as part of a compiler
from Esterel to KEP assembler, and use it to automatically compute an initialization
value for the KEP’s TickManager. This allows to achieve a high, constant response
frequency to the environment, and can also be used to detect hardware errors by
detecting timing overruns.

The analysis is safe, i. e., conservative in that it never underestimates the WCRT,
and it does not require any user annotations to the program. In our benchmarks it
overestimates the WCRT on average by about 25%. This is already competitive with
the state of the art in general WCET analysis, and we expect this to be acceptable
in most cases. However, there is still significant room for improvement. So far, we
are not taking any signal status into account, therefore our analysis includes some
unreachable paths. Considering all signals would lead to an exponential grow of the
complexity, but some local knowledge should be enough to rule out most unreachable
paths of this kind. Also a finer grained analysis of which parts of parallel threads
can be executed in the same instant could lead to better results. However, it is not
obvious how to do this efficiently.

Our analysis is influenced by the KEP in two ways: the exact number of instruc-
tions for each statement and the way parallelism is handled. At least for non-parallel
programs our approach should be of value for other compilation methods for Esterel
as well, e.g., simulation-based code generation. A virtual machine with similar
support for concurrency could also benefit from our approach. We would also like
to generalize our approach to handle different ways to implement concurrency. A
WCRT analysis directly on the Esterel level gives information on the longest possible
execution path. Together with a known translation to C, this WCRT information
could be combined with a traditional WCET analysis, which takes caches and other
hardware details into account.

31

5. Conclusions and Further Work

32

6.

1]

2]
3]

4]

[5]

(6]

7]

8]

19]

[10]

[11]

Bibliography

Gérard Berry. Esterel on Hardware. Philosophical Transactions of the Royal
Society of London, 339:87-104, 1992.

Gérard Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999.

Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Program-
ming Language and its Mathematical Semantics. In Seminar on Concurrency,
Carnegie-Mellon University, volume 197 of LNCS, pages 389-448. Springer-
Verlag, 1984.

Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst case re-
action time analysis of concurrent reactive programs. In Proceedings of the
Workshop on Model-driven High-level Programming of Embedded Systems
(SLA++P07), Braga, Portugal, 2007.

Alan Burns and Stewart Edgar. Predicting computation time for advanced
processor architectures. In Proceedings of the 12th Euromicro Conference on
Real-Time Systems (EUROMICRO-RTS 2000), 2000.

Estbench Esterel Benchmark Suite. http://wwwl.cs.columbia.edu/
“sedwards/software/estbench-1.0.tar.gz.
Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel Weil.

SAXO-RT: Interpreting Esterel semantic on a sequential execution structure. In
Florence Maraninchi, Alain Girault, and Eric Rutten, editors, Electronic Notes
in Theoretical Computer Science, volume 65. Elsevier, July 2002.

Stephen A. Edwards. CEC: The Columbia Esterel Compiler. http://wuwl.cs.
columbia.edu/"sedwards/cec/.

Stephen A. Edwards. An Esterel compiler for large control-dominated systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 21(2), February 2002.

Stephen A. Edwards. Tutorial: Compiling concurrent languages for sequential
processors. ACM Transactions on Design Automation of Electronic Systems,
8(2):141-187, April 2003.

Stephen A. Edwards, Vimal Kapadia, and Michael Halas. Compiling Esterel
into static discrete-event code. In International Workshop on Synchronous Lan-
guages, Applications, and Programming (SLAP’04), Barcelona, Spain, March
2004.

33

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/

6. Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

34

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs
with dot. Technical report, AT&T Bell Laboratories, Murray Hill, NJ, USA,
February 2002.

Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire.
Programming real time applications with SIGNAL. Proceedings of the IEEE,
79(9), September 1991.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305-1320, September 1991.

Xin Li, Marian Boldt, and Reinhard von Hanxleden. Mapping Esterel onto a
multithreaded embedded processor. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), San Jose, CA, USA, October 21-25 2006.

Xin Li, Jan Lukoschus, Marian Boldt, Michael Harder, and Reinhard von
Hanxleden. An Esterel Processor with Full Preemption Support and its Worst
Case Reaction Time Analysis. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pages 225236, New York, NY, USA, September 2005. ACM Press.

Xin Li and Reinhard von Hanxleden. A concurrent reactive Esterel processor
based on multi-threading. In Proceedings of the 21st ACM Symposium on
Applied Computing (SAC’06), Special Track Embedded Systems: Applications,
Solutions, and Techniques, Dijon, France, April 23-27 2006.

G. Logothetis, K. Schneider, and C. Metzler. Exact low-level runtime analysis
of synchronous programs for formal verification of real-time systems. In Forum
on Design Languages (FDL), Frankfurt, Germany, 2003. Kluwer.

G. Logothetis and Klaus Schneider. Exact high level WCET analysis of syn-
chronous programs by symbolic state space exploration. In Design, Automation
and Test in Europe (DATE), pages 196-203, Munich, Germany, March 2003.
IEEE Computer Society.

Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static timing
analysis of embedded software. In DAC ’97: Proceedings of the 34th annual
conference on Design automation, pages 147-152. ACM Press, 1997.

Dumitru Potop-Butucaru and Robert de Simone. Optimization for faster execu-
tion of Esterel programs, pages 285—-315. Kluwer Academic Publishers, Norwell,
MA, USA, 2004.

23]

[24]

[25]

[26]

[27]

6. Bibliography

P. Puschner and A. Burns. A review of worst-case execution-time analysis (ed-
itorial). Real-Time Systems, 18(2/3):115-128, 2000.

Thomas Ringler. Static worst-case execution time analysis of synchronous pro-
grams. In ADA-FEurope- 5. International Conference on Reliable Software Tech-
nologies, 2000.

P. S. Roop, Z. Salcic, and M. W. S. Dayaratne. Towards Direct Execution of
Esterel Programs on Reactive Processors. In 4th ACM International Conference
on Embedded Software (EMSOFT 04), Pisa, Italy, September 2004.

Olivier Tardieu and Robert de Simone. Instantaneous termination in pure Es-
terel. In Static Analysis Symposium, San Diego, California, June 2003.

Olivier Tardieu and Stephen A. Edwards. Approximate Reachability for Dead
Code Elimination in Esterel®. In In Proceedings of the Third International
Symposium on Automated Technology for Verification and Analysis (ATVA),
Taipei, Taiwan, October 2005.

35

6. Bibliography

36

7. Appendix

A. C++ Sources

37

{1 =
aTqepuadep

R

e
o
I

1 =

S
n

e e e

)

7. Appendix

¢ (xopoNdayf: : ga)) seToA> woT1oNIISUT
¢ (BUeaIlSIT: :pas)xom~esred

soToko<-STY3}

}

(guanyeydey: : dA3) FTSTA

uot3ouny //¢ (RTTRQUOTIOUNIdOY : : JHN) ITSTA

soToho<-sTyY } (BUTOL: 1 dAY) ITSTA
soToho<-sTU3 } daM)3TsSTA
saToho<-sTU3 } daM)2TSTA
saToho<-sTY3 } (BIRd: 1)) ITSTA
saT1oho<-sTY3 } (BUTRASNG: : JAYN) ITSTA
saToho<-sTY3 } (BITRMY: (1 dHY)ITSTA
sa12£o<-STY3 } (BITCH: :dd))3TSTA
soToho<-sTy3 } (Bosned: :d4)) ITSTA
soTofo<-sTyl } (gpuadsng: : JI)) 1TSTA
soToko<-sTy3 } (B3I0QY : : dHN) 2 TSTA
soToho<-sTy3 } (BTeIed: i diy)aTSTA

soT0Ao<-sTU3 }

(pdpeaeqieastdey: : JAY) 1TSTA

sa12£o<-sTy3s } (3dpreastSey: :dE))aTSTA
soToho<-sTU3 } 1dAN) ITSTA
saToko<-sTU3 } 1dAN) 1TSTA
seToo<-sTU3 } (BTRUSTS: : dAN) ITSTA
sa7oho<-sTy3 } (BIULSDIJ: 1 JAN) ITSTA
saT0ho<-sTY3 } (BITWI: 1 dAN) ITSTA
saToho<-sTY3 } (BATXI: 1 dE@) ITSTA
seToo<-sTU3 } (30301 : dAY)2TSTA
sa12£o<-STY3 } (®22198: 1 dH))ITSTA
seToko<-sTy3 } (B2ITD: :dAN)2TSTA
soToko<-sTy3 } (BSUTYION: : dHN) A TSTA
soToko<-sTy3 } (BIRp::dHN)2ATSTA
soToko<-sTy3 } (BSSOIPPY: : dAY)2TSTA
so1ofo<-sTYl } (®ooeFILOQUT : : JAN) ITSTA

{3 (BOPONUTO[: : dHY) ITSTA

{3 (BOPONYIOL: 1 dHM) 3TSTA

{3 (weponkereq: :dd)3TSTA
{} (WOPONT®QeT: :dd))3TSTA
{} (#3PONIUSTSURIL: :dHN)ITSTA

‘(pToa

qut peuSTsun
qur peuStsun
:pejoejoxd

PIOA TenlIta
PIOA TenaIta
NOIIONNA //

PTOA TEN3ITA
PTOA TENIITA
pPTOA TEN1ITA
PTOA TEN3ITA
TITIVYVd //

PTOA TenaIta
PTOA TenaITa
PTOA TenaITa
PTOA Ten3ita

AvIEQ //

PIOA TenaIta
PIOA TenlItTa
YAHOLYM //

PTOA TEN3ITA
pPTOA TEN3ITA
PTOA TEN3ITA
PTOA TEN3ITA
PTOA TEN3ITA
PTOA TEN3ITA
PTOA TEN3ITA
PTOA TEN3ITA
pTOA TEN3ITA
PTOA TENn3ITA
PTIOA Ten3Ita
PTOA TEN3ITA
PTOA TEN3ITA

PIOA TenlItTA
PIOA TenlIta
PIOA TenlITA

SINAWIALVLS //

PTOA TEN3ITA
PTIOA TenaIta
PTIOA TenaItTa
PTIOA TenaIta
PIOA TenaITA
SIAON //
:peaoagoxd

)309TTO0D pToA

00T

06

08

0L

09

¢ (#DVND: :dAY)@3ndwod Tooq Ten3ITa
:otrqnd

{3 Ol¥oM. TER3ITA
{3
(0)seTohd> ¢ (esTRy)I01I0 ‘()BUTITSTA ‘()3I0M
‘(P)Sngep ¢ (TIAN)Sexo :
(()8ngeq: : 49y Meu= px 3nqe(: :ddy)LUOM
:otTqnd

¢seToLo jur peuStsun

{10118 TOOQ
¢BUTITSTA 3TSTASPON
{
f9xou <xopoNdey: : JAYN>39S: :pas
£9suT <xopoNdey: : JHAY>29S: 1pas
} 2TSTASPON 3onI3s yopedAs

£9JI0M SeWTLUOTIOERSY
{
¢qxeu dew 3I0M
¢qsut dew 3IoM
} sewrfuoTioesay 2onI3s FopedAa
¢dewq10m <3jur peultsun‘xepondey: :dgy>deu: :pas yepedLa

¢8nqepx 8nqe(: : dAN

£8exox HYMD: 1 dAN
:paaoesjoxd
} I03TSTA::dHy oTTqnd : J¥OM SSBTO
I¥DOM: :1HOM ss®e1d //

LYDM Fkok

} 1¥0oM eoedseureu

wddy- zeTpueqdey, epnrout#
wddy - pyyd. epnTouT#
wddu- g, epnrouT#

wddy- 1Sy, epnioutT#
wddu-y1, epniout#

<onanby epnyouty
<1I9SSBD> SPNTOUTH
<wesI}sy> SpnTOUTH#
<WeSILSOT> OPNTOUTH
ddH™LYOM™dAN~ euTyep #
JddH™IMOM™dEY~ FOPUITH

ddy’] ¥yOM

IV

0g

ov

0¢

(014

(028

38

A. C++ Sources

FTpus#
ddy- 1gomM ut I1¥oM ededssuweu Jo pus //{
06T

nn*wvo=:ﬂ0h"“mmxvuanlnmwknplumu50|uwm qutr peuStsun
¢ (xopoyNdey: : gAY AUT PauUSTSUN‘ xdPONUTOL : :) 1XoUu~I9qno~a3epdn proa
MAA*mvozmmx""mmxvuopuw>“"upm.*mvozmmx""mmxvuwusluxoclvmmu:plhmnﬂﬂ qutr peuStsun
¢ (xopoNdey: : day) 2IoM~9xeu"eqndwod uUT pauSTSUN TeniITA
¢ (xopoNdey: : day) 2Iom~9suT"eandwod uT pauSTSUN TeniITa
:pajoazoxd
SNOILONN AMVITIXOY //
08T

¢ (gpIpeeIyrdey: :dAM)3TSTA PTOA Tenaita

¢(up SPONUTO[: :dHY)3TSTA PTOA TEN3IITA

¢ (U SPONNIOL: : dHY)3TSTA PTOA TENIITA

¢ (gopoNAeTe(: : dAY) 3TSTA PTOA TENIIATA

¢ (3OPONTOQRT: : dAY) 3TSTA PTOA TENAITA

¢ (BOPONIUSTSURIL: : JHY) ITSTA PTOA TENIITA

:pejoejoxd
0LT
¢ (*DYYD: 1 dAy)eandwod Tooq TeniITa

{} (OTeTTeIed LYOM. TenaITA
{} (p)Tetauenbeg~I¥oM : (()Snqeq::ddy MeU= Px Snqe(q::ddy) TOTTRIRd LHOM
:otTqnd

faxeu~Iouutxew dew pt
uoTyeinduwod
axsu utol Surinp pepesu ‘dew pT UT pesIyl B JO ONTEA IXSU WNWIXRUW 9Y3 dARS //

¢soTohd " axou"1eqno xew utol <dew pT‘ixopoNuTOr: :dFy>dew: :pas 09T
faxeu~Ieqno utol <3uTr peudTsun‘xeponutor: :dHy>deu: :pas
opou utol ydes I0J Spesalyl JUSISIITP USSMISQ SNTEA 1XSU UNWIXeW SY3 dAes //

‘¢dew pt <jur peultsun‘siprpesayrdey: :day>dew: :pas yopedLa
:pejoezoxd
} Terjuenbeg~1yoM otTand : TeTTeIEed I¥OM SSETD
ToTTeIed LYOM: :I¥OM SSerd //

LYDMN TATTVHEUVI *okk

‘
o
¢ (<xopoNdey : : dA}>T01D9A: 1 PAS) JION”XRW JUT poudTsun
¢ (xopoNdey : : dAy) 3xoMT9xou"9qndwod quT psulTSUN TEeniITA
¢ (xopoNdey: : dFY) 11om~asuT"eandwod JuT peudTSuUN Ten3ATA
:pe3osjoxd
SNOIIONNA AMVITIXQY //

¢ (BOPONUTOL ! : Jd))ITSTA PTOA TENIITA ovT
¢ (BOPONNIOJ: : dAN)ITSTA PTOA TENIITA
¢ (3opPONAeTO(: 1 dEY) 3TSTA PTOA TeN3ITA
¢ (B9PONTOQRT: :dd)) 3TSTA PTOA TeN3ITA
¢ (BOPONIUSTSURIL: : dA)}) ITSTA PTOA TENIITA
:peaoesjoxd

$ (*DYND: 1 daAy)@3ndwod Tooq TeniIta

{} (TerauenbesTI¥DM. TEMIITA 0e1
{
(QENIJEQNN)oPoW ‘ (P)LYOM *
(()8ngaq: : 44y meu= px Ingeq: :ddY) TeTrusnbeg™IUOM
:ot1qnd

f{opow opou 3.I0M
fopow~3xoM { QANIJIANA‘IXAN‘ISNI } umue yopedAg

:peaoejoxd
} I¥oM otrqnd : TerauenbegTI¥DOM SSeTD 0z1
Tetauenbag™I¥OM: : IUDM SSBTO //

1¥40M TVILNIANDIS Fokok

¢
o
¢ (*OPONIO]: : dAY) £oOUSIINDOUOO ™ I9UUT “SRY T00q
seqeatad
suoT3ouny Aretrirxne // 01T

¢ (PTOA) I8pRAY 3I0MTPPR PTIOA

f(3ut vmﬁmﬁmﬁﬁvﬂwaxuﬂulpmm proa

£ (PTOA)2I0M™ 108 quUT poudTsun

¢ (<xopoNdey ! : dd)>T0308A 1 i PIS) ITSTA PTOA

39

7. Appendix

£(()ozTs yoIess~I1s + sod)IIsSqQUS SUTT = SUTT
} (sodu::Sutias::pas =i sod 3y esxed) T
¢ (YoIe®STI3S) FJOTISITI PUTF OUIT = sod
I¥OM, = UydoIeas~I3s SUTIIS::pls 2SUOD
MOM, Sutils putyeq 1IoM IOF yoIess //

{

‘osTey = osxed
} este {

£(()92zTs qusumod~13s + sod)I1sqns SUTT = SUTT
} (sodu::8utais::pas =i sod g esxed) 3t
¢ (3USUWOD~13S) FJOTISATI PUTF SUTT = sod qur psuSTsun
£,%w = Aueumod~I3s SUTIIS::pPlsS 3SUOD
qUeUmOd UTYITM YdIess //

fonxy = asxed Tooq
osTey o1 osxed oTqerIes 38s am ‘eTqrssod jou 3aom Ioy Sursxed FT ‘anegep //

£ (eutT‘3)ourried: ipas
foutT SuTals::pas
} (330871 3% ()Poo3°'F By ()FOo°Fi) oTTUM

£0 = 3IoM7F 3ur poulTsun
¢ ((Ouedo~sT" F)310SS®R
} (33 weaI3syT::pas)axom~osxed:: YoM JUT peuSTtsun

{
(u" (TTROUOTIOUNI) ITSTAL 1 JHOM PUe,) 3utad<-Snqep
¢ () aueputun<-3nqap
£3I0MTUOT3OUNT + SOTOAO TTed = SoToho<-STU2

{

fonI) = IOXIS9<-STYL
¢ (uoT30UNF‘ Y04 I¥OM NOIIONAA ON.)Ioxie<-3nqep
} (3rdmTUOTIOUNF) FT

{
£ (wONIM TOGWAS NOILONAA NMONYNA,.)IOoXIie<-3nqep
} osTe {
{
¢ (uoT3ouUnF,NOILONAA NILTING NMONMNA,)IoIxe<-Snqep
} este {
fehh =+ 2IoMTUOTIOUNF
£(OR‘uiiildk QIMOIHO LON I¥OM QOW.)IoIre<-3nqep
} (4@OW, == sweu uoT3ouny) JT osTe {

ey =+ 3IOMTUOTIOUNT
} (4AIQu == dweu uoTlduny) JT

00T

‘o3‘,404 L¥DM FHLI ISYVd OL ANNOA LON w\u + PWRU OTTF +

06

08

0L

09

} (NILTING: :ToquASuoTIouUNd: :ddy == PUTY) JT osTe {
(o113 Areqrr dey pesw) NOILONAA NILTING //

{

¢ (enxy

\ TTId WSYY.)Ioize<-Snqep
} este {

¢ (,pesOTo ST oT1¥,)3utad<-3nqep
f()esoTo o[TF UOT3OUNF

{

¢(eweu~eTTF + , STTF UT Punoy IHOM ou,)Sururesc-3nqep

} (0 == 3xdmTuoTlOUNY) JT
¢ (eTTI uoTaouny)3rom~asred<-sTY3 = 3IOMTUOTIOUNT

¢(wuedo ST o177,)3urad<-3nqep
} ((uedoTST'aTTF UOTIOUNF) IT

mAﬁvhumlu.msmnlwﬁﬂwvnw&o.wﬁﬁwlnoﬂwunzw
$9TTI UOTQOUNT WeSISIT::pas

¢ (eweu~oTTI¢, 97T uoTqouny uedo o3 £13,)3urxd<-Snqep
¢ ()oweNoTTJ108 0 = sweu oTTF SUTIIS::pas

} (NOILONAA: : Toquiguotaoung: :ddy == pury) JIT

(oTTF Teuleaxe pesu) NOILONNA HOVAAINI //

£ ()PUTY3e8<-UOTIOUNF = PUTYH 3UT
¢0 = 3I0MTUOT3OUNF 3uUT pauSTsun
¢ (swreuTUOT3OUNF‘, :UOTIOUNT,) 3utad<-3nqep

¢ ()owreN388<-UOTIOUNF = SwWeu uoT3ouUNy SUTIYS: :p3s

¢ (uot3jouny)jIiesse

¢ () TOquASUOT3OUNg388 D = UOTIOUNT# TOQWASUOTIOUNT: :dHAN

T = soTo£>~[Ted jur peuldrsun
¢ () 1uspur<-8ngsp

£ (o3¢, (TTeouoTsoungdey) 1 TsTA: 1 JHOM 2TR3S,) 3urid<-Snqep

} (o7 Trepuot3oungdey: : M) ITSTA: :IHOM PTOA

{

{(esTeF) uINlLIx

¢o = Seyo<-sTyYL

¢(0)3xesse
} (o% DYMD: :daEN)eandwod: i [YOM T0oq
/

LYDdDM Fokok

/

} 1¥oM eoedseureu

«ddy- 140M, epnTouTH#

ddo) YOM TV

0g

ov

0¢

0gc

(028

40

A. C++ Sources

{

£ (STUI*)BUWOOTOML - (T*)

¢ (T*)3x0SSR
} (++TE(OPUR U= T¢()urdeq uU=T I03eI83T::<xopoNdey: : Jd)>I0209A: :P3S) I0F
} (u <xopoNday: : dTY>T0300.

¢ (19UUT) uUINIOI

{
fosTeJ = Iauutr
} (()°ztTs'speaayiqns + PT~}IOF == Xew) JT

‘PT peaxys juerxed oyl Ueyl Ielesrl speeIylIqnsH
£110ee ST PT peelylqns UMWTIXew oYl PUe POIESID USS] SARY PTNOM S, PT Pesaiyl
TeUOT1Tppe OuU weyy AYdIeIoTy pesiyl oYl UT SOARST oXe S, PT pesIyaqns TTe II

*s,pT SursesrduTr YaTM wylrIoSTR SJIQ ® BTA pouSTiSse oiem
YOTUYM (PTT¥I0F) PT pesrys jusred oyi weys pr 1oySTY ' Sey pT pesaiyiqus yoeg

PR IR I

/

£ (()°ZIS speeayiqns + PI~HIOF =< Xew)3Iasse

{

¢ (dwg (3utT pouSTSUN) ‘ XeW)XePwW::p3s = Xew

£(0 < dwy)azesse
£ ()P1398<-(T*) = dumy jur
¢ (Tx)3aesse
} (++1¢()pue-speaayaqus=;T¢()urdeq-speaIyiqns=1) I0J
fT I09eI9T: :<xPIpeaxyldayf: : JIY>I02094A: :pas
¢ ()spIPReIyLqnS3Ie8<-F = speaIyiqns <xpIpesayrdey: :ddy>I0309A: :p3s

¢PT™¥I0F(2UT paudTsun) = Xew JUT poulTSun
£ ()PI208<-pPT(3ur peudrsun) = PI XI0F Jul peudrsun 3suUOD
£(0 =< ()PI3e8<-PT)3I8SSER

fonI3 = JouuT ToOq
¢(pt)3aesse

£ ()PIPRRIY1e8<-F = PTx pIpeaxyrdey: :ddy
{(F)3xesse

{

P3S)3TSTA: 1 JHOM PTOA

{

} (3% SPONYIOJ: :dFY)LouUsIInouod~IsUUT SeY: :JYOM T00q

{(sex1) uinjex

{
{
¢soT0Lo<-STY] =+ SoI
¢ (STUI*)OWOO AN~ (3SITF<-3)
‘0 = soTofo<-sTyY3}
¢ (3SITI<-3)3I0SSR
} (++3f()Pue’speaayi=i3‘ ()urSeq spesaiyi=3) IoF
€2 I03eI937T: :<xopoNdey: i dIA)‘ xIed: : dgy>dew: :pas

{

012

002

061

08T

0LT

09T

¢ ()speaayrang31eS<-F = speeIyl <xopoNdey::dEy‘*Ied: :day>dew: :pas
} ((W)<xOPONHIOL: :dAY>ISed OTWeukp = Jx OPONNIOL::ddN) T oSTe {
opoNyIod //

{

sopou utol xeuut anoyztm spou utol urew :Sutylou op //
} esTe {

f4+4S01
¢(f,sepou utol zsuutr yatm spou urol urew o3 oT2£> suo ppe,)3surid<-Snqep
} (((73)£ousxinouoo~IsuUUT SeY<-STYL) FT 9SO {

f4++501
¢(f¢,opou utol xsuut 03 oT2£> suo ppe,)3aurad<-3nqsp
} (0=i ()PI388<-PT) IT

¢ ([Tr)qxesse

¢ ()epoNI0g388<-L = [TIx opoNxNIod: :ddAd
} ((®)<xoPONUTO[: :dAY>35ed oTweukp = (% opoNuTor::dd)) IT
apoNutor //

f(p1)3xesse
¢ ()PIPeaIqL3e8<-u = prx pIpesxyrdsy: :ddy

$s9T0£o<-STY2 = saI JuT pauSTsun
¢ (STU3I*) WO TONL - WIS
¢ (3u3s)3Iosse
¢ ()ausweqe1g1e8<-u = quasx juswageagdey: : ddAY
‘0 = seTofo<-sTUL
¢ (u)3xesse
} (ux spondey: :ddy)sSeTOA0 UOTIONIISUT: : JYOM FUT paulTsun

{

f(3I0M7F) uanizex

{
{
{
HOYYH DNISHVd IMDM.)I0oIre<-3nqep
} esTe {
£(3IoM7F¢,:2I0M woToUNF ‘Tngssedons Sursied,)qurad<-Snqep
} (suop) IT

f(310M™FH ¢, nY, ¢ ()IISTOOUTIT) FURDSS = SUOP 3UT
} (eszed) g1
entea xs8ejur 3104 esxed //

{
£ (wu\1¥DMu\ DNIYLS ANIHEE QANDISSY LUOM ON.)Sururem<-3nqep
‘osTey = osxed

} (()f£adwe-out 33 esxed) IT

£qdwe sT Surays ueym esxed jou op //

{

‘osTey = osxed
} esTe {

0S1T

ovt

0€T

021

01T

41

7. Appendix

uAﬂ*vPkusluxwﬁlwusasouAlmﬂnw
mAﬂ*vPkuslamﬂﬂlmwsmsouAlmﬂnw
c
¢ (Tx)1I9SSE
} (++T¢()pPue-u={T¢()UTSeq U=T I07BIDIT: :<*OPONdaY: : JHY>I01D0A: :pP1S) I0OF
¢ () sopoN208<-8exd<-sTyl = u <xopoNdey: : dAN>I0100A: i paS

¢ (9)eandwos: : JTYOM

¢ () 3uepur<-3nqep

¢ (,:9qndwos: : Tetquenbeg~ YoM 2Ieas,) 3utad<-8Snqep
} (9% DVMD::daAy)eandmoo: : TeTauenbagTI¥OM T00q

1¥40M TVYILNINDIS Hokok

¢ (zopeay”3.1om) 3.10deyppe<-Sexo

¢ (I9peey 3I0M)3I0SS®R
¢ (W LHOM. wHAQVEH I¥OM,) 3IodeyTopesy: 1 gy MoU = Iopesy 11oMx 1todeyIiepeeH: :ddi

¢ (Sexo<-sTYY) I9SSE
} (PTOA)I®pEOY 3I0ATPPR: :IYOM PTOA

{
¢ (axodex~q10m) 310deyppe<-110dex~ 10200 Fexd
ydex3 Sexo oY3 03UT SUOTIEWIOFUT 3IDM 3ISSUT //

¢ (3xodea"3xeu310m) 1x0deyppe<-3I10derT1Iomn
¢ (3xodea”3sut~310m) 3x0deyppe<-310deaT1Iom
110deI 3I5M Y3 0JUT SUOTIRUWIOFUT Pa3dOST[0d 2ISSUT //

{
¢ (3I0MT3¥8U° () JUsWEIBISI98<- (3SITI<-T)) 3x0deyppe<-110dex™3xau"3.10M
¢ (3I0MT1X8U‘ 1SITI<-T) 170deyppe<-110dex~qxau~3.10M

¢ (Puod9S<-T°¢,1¥3u,)110doy10809UT : i d) MOU = 2IoM”1xoux 1I0deyIre8equI: :dAY

¢ (3sITI<-T)3I0SS®e
} (++T¢()PUS1XOU" 1IOM: I [YOM=i T¢ ()UTSoq AXoU I0M: : JYOM=T) IOF

¢ (axodeI”91x0U~1I0M) 1I0SSE
¢ (WIXIN"1¥OM,) axodeydey: : gay mou = 3xodex axsu~3xomx 3Ixodeydej: :ddy
SUOTJRWIOFUT 3IDM 3XU 309TT0D //

{
¢ (3I0M79SUT ¢ () Juewele1§388<- (3SITI<-T)) 1x0odeyppe<-110doI~4SUT 3I0M
¢ (3IDMTSUT “1SITI<-T) 210doyppe<-110de1~4suUT 3108

¢ (Puod9s<-T°,3sut,)rrodeyrelequr: i 4y MOU = 3IOM”3suTx 3I0deyre8equI: :dA)
£ (3SITI<-T)3I0SS5%R
} (++T¢()PUS 4SUT AIOM: 1 IYOM={ T ()UTB0q" 4SUT " 3I0M: 1 [YOM=T) I0F

¢T 107eI01T::<quT pouldrsun‘xopondey: :d@y>deu: :pas

mAuuommhlpmcﬁlphusvuhmmmm

0ce

ote

00¢

062

08¢

¢ (WISNI™IHOM,)3xodeydey: :gay meu = 3xodex”3sutr~3xomx 3xodeydey: :dmy
SUOTJRWIOJUT 3IOM 3SUT 309TT0D //

£ (wI¥OM.)2T0doYI10900): 1 gy MeU = 3xodeI”2Iomx 3I0deYI01D0A: i AN
q10dex 11om ejeeId //

¢ (axode1~10700A"Fe¥D) 1I9SSE
¢ ()axodeyro1oe)108<-Fexd: : [YOM = 2Iodex~ 10100~ Fexox 1I10deyI0100): JIAN
¢ (8exo: : [YDM) 1I0SSR

} (PT0A)300TTOD: : [¥DM PTOA

{
¢ (2TWL) JUSWSIRIGPPRC-90BJISIUT
f(aTWwe‘ ,:quUsWeR]S 9OBIISIUT ppe,)rutad<-3nqep
S]UsWeRS 9OBRIISAUT 03 JUSWSIEIS 3TWS ppe //

¢ (3TWe) 3I985%

£ (2IOMUSTHOTI) JTWH: dHY MOU = TWOx JTWH: : dHAY

¢ (U9T¥OT])1I8SS®R

¢ (9dLq " Teu8Ts ‘ ToquAs~8Ts) TeuSTSPONTRA: :dd) MOU = USTNOTax TeuStgdey::dday
¢ (edL1"Teu8Ts)qI10SS®R

¢ (WTYNDIS.)@dAIput y<-ooeFIeut = adAy TeuStsx odAidey: :day

queWeR]S 1TWO ©3BDID //

¢ (ToquAs~81s)qI0SS®R

¢ (ToquAs) <xToquASTRUSTS: : Jgy>3sed oTueulp = Toquis~8Tsx ToquASTeuSTS: :day
¢ (Toquis)rxesse

¢ (WNITHDIL™ w) TOquASPUTI<-0oeFI03uT = Toqusx Toquigdey: :ddy

«NITIOIL ¢ ToquAs TeuSts ura{Ing putry //

¢ (3x0M)3I098S%R

¢ (edf3~x1880qut ‘M) TexedTTdey: :dAY MOU = 3I0Mx TeI9aTIdaY: :ddAy
¢ (ed£3~19893uT) 11085

¢ (WHADIINI,)odAIputy<-ooRFI03uT = odAy~xeBejurx odArdey::dmy
¢3I0M, onTeA YITM [eI9lT[Io893UT o3e8Id //

¢ (90BJI9QUT) 1I9SSE
¢ ()eoeFIe3urle8<-SeNo<-STY} = 90RFIOIUT+ ©ORFIOIUI: :dH)
¢ (Sexd<-sTYl) 1I9SS®E
} (1 3ur pouSTSUN)USTHOTA™38S::[YOM PTOA
q1eqs weiBoxd qe pejndexs oq 01 JULWEIRIS IDM#NATHOIL™ LIWI °31e9Id //

{

f(#) uinzex

¢ (puodes<-T ‘M) Xeuw
} (++T¢()PUS " IXOU' 1IOM-STYL={ T¢ ()UTSq " 1X0U’ 1IOM<-STYI=T) I0F

{

¢ (PUOOSS<-T M)XRW: :P3S = M
} (++T¢()PUS ISUT " 3IOM<-STYI={ T ()UTSDQ " ISUT* 1IOM<-STYI=T) IOF
¢T Toqexeqr::dew 3Iom

0 = M jur peuStsun
} (PTOA)2IoM™908::IYOM JUT paudrsun

04T

092

0S¢

0ove

0€T

02g

42

A. C++ Sources

} este {

M = [PF]IXOU LIOM: : JHOM
$(m¢,:qI10m 1x0U,)qurad<-8ngep

¢ (PR)SOTOAD UOTIONIISUT: : [YOM =+ M

£ ((()ueIPTTYDIIOqy 108 P) 1IOM™XeUK-STYL ‘M) XRU: :p2S = M
£ ((()uaIPTTYD3Ie3 ' P)IION™XRUC-STYS ‘M) XOW: :PIS = A

0 = M qur peuSTsun

¢ (uIYAN :opom,)3urid<-Snqep
} (IXAN==0POW<-STY1) IT oSTe

~

M = [PR]3ISUT" IO, L9oM
$(m¢,:3I10m 3sur,)qurad<-Snqep

¢ (PR)SOTOAO UOTIONIISUT: : [HOM =+ M
£ ((()UPIPTTYDITXH103 ' P) JIOM XRUC-STYL ‘M) XCW: :P1S = M
£ ((()ULIPTTYDIIOQqeM10S * P) 1IOM XeUK-STYL ‘M) XRU: :p2AS = M

0 = M jur peuSTisun

£ (uISNI :epow,)3utid<-8nqep
} (ISNI==epouc-sTy3) JIT

{ (3w3s)jaesse
¢ ()auswededga1es p = jqwasx jusmweseagdey: :ddAy

¢ () ausput<-3nqep
£(PB*.: (BoPONARTEQ)1TSTA: : TRTAUSNbOS ™ JHOM 2IR3S,) 3uTad<-Snqep
} (PB epoNAeTa(Q: :ddAN)ITST

eTiuenbagTIYOM PTOA

400N AVTIEA LISIA //

¢ (u’ (BOPONT®QRT)3TSTA: : TRTIUSMbOg ™ 1HOM Pue,) 3utad<-3nqep
¢ () 3ueputun<-3nqep

{

¢ (WIQOW I¥OM QANIJAANN.)I0ITo<-3nqep
} este {

Sutyaou op //
} (LXIN==9pouc-sTy3) JT osTd {

‘M = [T3]3SUT 2IOM: :THOM
f(m¢,:3a10m 3sur,)aurad<-Snqep

¢ (18)SOT2A> UOTIONIISUT: : [YDM =+ M
£ ((()ULIPTTYDI0S * 1) 1IOM~XeUC-STY] ‘M) XRW: :PAS = A

£0 = M aur pauStsun

¢ (wLSNI :epou,)3urad<-3nqep
} (LSNI==9pouc-sTy3) JT

¢ (Ippe)3Iesse
¢ (()3uewe3elg108° T) <+SSOIPPY : : dAN>3Sed OTWeukp = Ippex SSOIPPY: :dd)

(T => ()9zTs' ()UeapTTyD1es ' T)1I0sse

{

(015374

0cv

(01874

00¥%

06¢€

¢ () auepur<-Snqap

£(TBu: (BOPONTOQRT)2TSTA: i TRTIUONbOS 1IN 3Te3S,) 3uTid<-8nqep
} (I3 °PONTeqeT: :dH))3TsTA: : TeTauenbag™IuOM PTOA
JAON T49VT LISIA //

{
* (9PONIUSTSURIL) FTSTA: : TRTIUSNbOg [HOM Pus,) urid<-Snqsp

¢ () aueputun<-8nqep

{
¢ (4wAQ0W L1¥DM QINIAFANA,.)I0IIe<-Fngep
} este {

SButygou op //
} (1XdN==9pou<-sTy3) JT 3sT® {

S = [23]2SUT 3IOM: :THOM
f(m¢,:q10m qsur,)autxd<-Snqep

mApivmeu>u|=oﬂpu:uum=ﬂ"nhﬁos =+ M
£((()ueIPTTYDIe3 1)1 ION XRUC-STYL ‘M) XRW: :P3S = A

€0 = M jur peuSTisun

¢ (uISNI :opow,)3urad<-Snqep
} (LSNI==opouc-stya) It

¢ (3u3s)3Iesse
¢ ()ausweqe3g1e8 a1 = quasx Juswezelsday: : ddY

¢ ()aueput<-3nqap

£(3%°,: (BOPONIUSTSURIL)JTSTA: : TeTauenbag™14oM 3xe3s,) aurad<-3Snqap
} (3% SPONIUSTSUeIL::dd))2TSTA::TeTausnbsag™IUOM PTOA
FJON INJISNVYL LISIA //

{
¢ (I10I1I10<-STYLj) UINIDI
,-9andwoo: : TeTquenbeg~IUOM pue,) 3urad<-8ngep
¢ () aueputun<-Sngep

() IopEay 1IOMTPPR: : TUDM
Iopeay 3I0M 93edId //

£()200TT02: : LHOM
elep 3I0M daes //

{
£(0)UeTHOTI™0S: : LUOM
} esTe {
£ (M)USTHOTIT99S: : LYDM
} (q0x118<-STUI{) IT

£(n¢,:330n,)dutad<-Snqep
£()21om7208: 1 J¥OM = M JUT peuSTsun

{

0L€

09¢

0ge

ove

0ge

43

7. Appendix

¢ (Tx)3aesse
} (++Tf()Pueu=iT{()urdeq u=T) I03
fT I03eI93T::<xopoNdeY: : JI)>I0209A: 1 PAS
£ ()sopoN3e8<-2 = u <xopoNdey: : dAN>I0309A: :P3S
{(0)3xess®e
UoT3esTTRTI3TUT //

¢ (9)23ndwod : : JTYOM

¢ ()aueput<-8nqep

sandwoo: : TeTTRIRd I¥OM 2Ie3S,) 3utad<-Snqsp
} (9% DYMD: :day)eandwoo: : TaTTRIRd LYOM T00q

LYDM TITTVHEVL Hkok

{(xew) uiniex

{

¢ ((Tx)2I0M~2suT 9qndwod<-STYY Xew) Xew: :p3s = Xew

} (++T¢()Pue-u={T¢()UTS0q U=T I0QBIDIT: :<*OPONdaY: : JHY>I0100A: :p1S) IOF

¢0 = Xew quT peudrsun
} (u <xopoNday: : JIY>I0100A: :plS)AIOM~Xew: : TeTquanbag ™ IYOM 2UT pouSTsun

{
{
£(0) uinzex
¥ este {
¢ ([U]2X9U" 3IOM: :JYOM) UINISI
} ((U)3Unod-3XauU’3IOM: IIYOM) IT

{
{
¢duy = epouw<-sTy3}

¢ (STY3Ix)dWOOTON<-U

¢IXAN = opouc-sTy3
fopouc-sTy3 = dwl epow 3I0M

¢ (U)3I9SUT* 1X0U SUTITSTA: : JUOM
uotqeanduwod //} osTe

-~

i979ISS0d LON NOILVINAWOD I¥DM.)I0IIo<-3nqep
f(uf,:310m 3xaou Sutanp o19£o,)3utrad<-Snqep
€0 = [U]axeu’aIom::I¥OM
fonI] = I0IIS<-STYL

oTokd //} ((u)3unoo-3xeu BUTITSTA::IYIM) IT osTe {

£0 = [u]axeu-3IdoM::IUOM
I0x18 //} (I0II9<-STY) FT
} ((u)3unod-3xau-JIdM:ILYOMi) IT

¢ (u)3xesse
} (ux spondey: :ddy)1Iom~axeu~9qndwos: : TerquenbeagTIYOM 1UT peuSTsun

0gg

ove

0€g

0ce

(0} 8°)

00¢

{
£ ([u]2SUT " 2IOM: I [YOM) UINQSI
¢ ((U)1Unod - 1SUT * 2.I0M: : [YOM) 1I9SSE
{

{
¢dug = epouwc-sIy}

¢ (STY3*)OWODTONL-U

CISNI = opouc-sTy3
‘opouc-sTyl = dwg spow 3IoM

¢ (u)3I0SUT *4SUT " SUTITSTAL 1 TYOM
uotyesnduwod //} °sT®

~

iT719ISS0d LON NOILVINAWOD IHOM.)Iolie<-3nqap
¢(u‘,:310m 3sut Sutranp a124£o,)3urad<-3nqap
0 = [U]3SUT 3I0M::LUDOM
fONI1 = JIOITS-STYL

194> //} ((u)3unod-qsut-SUTITSTA::IYOM) IT osTo {

€0 = [UW]3SUT 3IOM::IHOM
Io0xIe //} (IOIIS<-STUL) IT
} ((u)3unoo’3SUT’3IOM:II¥OMi) FT
} (ux spoynday: :ddy)3Iom~asur-e3ndwod: : TetjuenbagTIYOM 3UT pauSTsun
SNOILONAA AYVITIXNY //

* (39PONUTO[)3TSTA: : TeTauenbeg™[¥OM pus,) 3utad<-8nqep
¢ () aueputun<-3nqep

WY¥D0ud TVILNINDAS 40 1¥Vd LON H¥V SHAON NIOL.)IoIre<-3nqep

¢ () 1usput<-3ngsp

¢ (f®‘,: (wopoNuUTO[)3TSTA: : TRTIUeNbOg ™ IHOM 3Ie3S,) 3urtad<-Snqep
} ({3 epoyutor::ddy)3ITSTA::TeTauenbag™IHOM PTOA
400N NIOC LISIA //

{
Tetquenbeg~I¥OM pue,) 3jurxd<-8ngep
¢ () aueputun<-3ngep

¢ (u’ (BOPONYIOL)ITST

f(Ime

i iSWYYD0¥d TVILNINDES 40 L¥Vd LON H¥V SHAON N¥0d.)Ioire<-3nqep

¢ ()aueput<-3nqep

£(38° 4t (BOPONMIOL) ITSTA : TRTIUSNDOG IHOM 3ae3s,) 2utid<-Snqep
} (3B °PONYIOA::dHEN)ITSTA: : TRTIUSNDOS IHOM PTOA
HA0N 304 LISIA //

{
¢ (u" (BoPONKRTOQ)2TSTA: : TeTauenbag ™ 1yOM pus,) 3urtad<-3nqsp
¢ () aueputun<-Sngsp

{
£ (wHQOW L1¥OM QANIAHANA,)I0IIe<-8nqep

067

087y

0Ly

097

(015374

ovv

44

A. C++ Sources

¢ (uIXAN :epow,)3utad<-Snqep
} (1¥HAN==0pOUK-sSTY3) JT osTe {

‘M = [PR]3ISUT 3IOM: :IHOM
$(m¢,:q10m asur,)qurad<-Sngep

¢ (PB)SOTOAO UOTIONIISUT: : JUOM =+ M

£ ((()UeIPTTYDITXF208 " p) 3I0M™XeW: : TeTaUenbag " HDM ‘M) Xell: :p2S = M

£ ((()udIPTTYDIIOqeM1eS p) 1IoM~XE TeTauenbsg™IYOM ‘M) XeW: :p3S = M
0 = M jur peuSTsun

¢ (WISNI :opowm,)3urid<-Snqep
} (ISNI==oPouc-stya) It

{(PT)3Iesse
£ ()pIpPeaIyL3el p = PT+ pIpeexyrdey: :day

¢ () auspur<-3nqap
£ (PR, (BOPONARTOQ)ITSTA: : [@TTRIRd LHDM 3Ie3s,) 3urad<-Snqep

} (PB opoNAeTeq: :ddM)2TSTA::ToTTRIRd LHIM PTOA
IAON AVTdd LISIA //

TeTTeIRd I¥OM PU9,) 3autid<-Snqep //
¢ ()aueputunc<-3nqep //

£ (u (B9PONTQRT)3TSTA

¢(T)3TSTA: : TeTaUONbOS ™ THOM

£ ()aueputc-3nqep //
£ (T84 (BOPONTOQRT) ITSTA: i [9TTeIRd LYOM 3Te3s,) 3utad<-Snqep //
} (1% °POoNTeqeT

{

T)) ATSTAL : [9TTRTed THOM PTOA

400N T49YT LISIA //

¢ (u" (BOPONIUSTSURIL) ITSTA: : TOTTRIRd IYOM Pud,) 3utid<-3nqep
¢ () 3ueputun<-3nqep

{
¢ (4HQ0W LHOM QANIAAANA,)Ioxxe<-Sngsp
} osTe {

Sutysou op //
} (IXEN==0pou<-STY1) JT osTd {

€(2)3TSTA: : TeTausnbeg ™ LuON
¢ (WISNI :opom,)3urid<-Snqep
} (ISNI==oPouc-stya) It

{(PT)3Iesse
f()pIpeaayr1el8 a1 = pT+ pIpesxyrday: :ddy

{ (3w3s)jaesse
¢ ()ausmweqeqg1e8- 1 = quisx juemwegeigdey: :dEy

¢ () 3ueput<-Snqep
TeTTeIRed I¥OM 3Ie3s,) 3urad<-Snqep

(BOPONIUSTSURLL) ITSTA

{

099

0g9

0v9

0€9

029

019

} (38 SPONIUSTSURLL: :ddY)ITSTA:: [OTTRXRd LHOM PTOA
FA0N INIISNYVEL LISIA //

¢ (sseooms) uInjex
oqndwos: : [eTTeIed " [YOM Pue,) 3utid<-Snqep
¢ () aueputun<-3ngep

¢ (9)93ndwos: : TeTauenbag~YOM = SS92OMS Tooq

{
{
Aﬁ*v PHOBIPN@SIQP.—J&EOQ HH HQHPEQ.BTQMI.H@OB
¢ (Tx)3Iom~asur~e3ndwod: : TeTausnbag T IUOM
iiisepou utol sindwod jou seop 3I1om~3sur eandwod<-sTY3 :opou //
} ((T*)<*epoNuTo[: : dAy>3seO OTWeulp) JIT
} (++Tf()pue-u=iT¢()urdeq u=1) I03
sopou utol TTe oy 11oM oy3 @qndwod //

{
{
¢ (T*)2I0M~2suT~9qndwodo<-STYL
} ((T%)<*9PONYNIOJL: : ddM>3sed dTUeukp) It
} (++Tf(Pue-u=jTf()urdeq-u=1) I07
sepou }Ioy TTe I0F 3IoM 8y3 @3ndwod //

¢ (STU3+)BWOOTOM<-PT

I9PIO 309II0D UT 3I0M 3xou sspou utol sjndwod //
{(pT)3aesse

£ ()PIPROIYLUTRRPUTI<-PT = PT

{(PT)3Iesse

£ ()pIpPeaIyL3e8<- (()uT8eq ux) = PT+ pIpeeIyrdey: :day
£(0 < ()@zTS'U)3IOSSR

PT S pealyl urew putry //

{
{
mAﬂ*vphusuuxmnumu=mEOUA|mﬂ:p
} (0=i OPI298<-PT BB (T*)<xOPONARTOQ: : dA>1SEO OTURULp) JIT

¢(pT)3xesse
£ ()PIPEeIYL1e8<- (T#) = PT+ PIpeaxyLdey: :day
{(Tx)3ax0ss®

} (++T£()pUS U= Tt ()urdeq u=1) IoF

speaIyiqns utr sepou Kersp JO S,3IoM 3xou e oandwod //

{
{
‘0 = [[]axsu~zegno utol<-sTya
} ((T*)<*epoNuTor: :d@yi>3sed oTuweulp = [x epoNutor::ddy) FT
dew gxeu~xsqno~utol aTur //

{0 = [PT]3X0U IOUUT XRU<-STY3}

¢ (PT)3xesse

£ ()PIPeaIYL3e8<- (T4) = PT+ pIpeaxyrdey: :day
dew qxeu~xew 3TUT //

{

009

069

08¢

0Ls

09¢g

45

7. Appendix

f(PT)3aesse

£ ()PIPeaIYL3e8<-(T*) = PTx pIpeaxyrdey: :day

¢ (Tx)3xesse
} (++T£()PuUe d={T¢()UT8aq-o=T I07eI09T: :<xOPONdaY: : JHY>I0QD9A: :P1S) IOT
£ ()ueIpTTYDIO8<-F = DO <xdpoNdey: : JAN>T01D9A: :paS

0 = M 3ur peuStTsun
¢ (uIxan :epow,)3urid<-8nqep
} (H109::daY¥==Puty XI0F || SNOANVINVISNI LON::dEM==PUTY ¥IOF) JFT
} (IxdN==epou::Teriuenbag™I¥4DM) FT oSTo® {
IXaN //

‘m = [[3]asutr-axom::IHOM
¢(m¢,:3I10m 3sur,)aurid<-Snqep

¢ ([)SoT2£0 UOTIONIISUT: : [HOM =+ M

{

¢ ((USIPTTYD 1TXS)QIOM™XeW: : TRTIUSNbag " TUIM ‘ M) XeW: :paS = M
} (0 < ()9ZTS USIPTTIYD 3TXS) FT

i

¢ ((QueapTTynae8 - [)arom~xew: : TeTquanbog ™ IYOM ‘M) XeW: :p1S = M

0 = M jur peudTsun
£ (wISNI :opoum,)autad<-8nqep

} (ISNI==epou::Terjuenbag™I¥DM) IT
(uot3oniisuod Iepun) ISNI //

£ () ueapTTUD3ITXH393 [= UeIPTTUYD 3TXS <#oPoNdey: : dAN>T0300A: 1pas

£()eInqrI3ayIueIsuIdes<-§ = PuUTY NI0F uUT
£(¥)3aesse
£()epoN¥104208 [= Ix ®PONNIOL: :ddAM

¢ (utol)qaesse
£ (()2usmwereqgye8- [)<xutor: : day>ased dTweulp = utolx uUTO[: :ddy

¢ () auepur<-3nqap

¢(fR‘,: (BOPONUTO[)ITSTA: 1 TOTTRIRG JHOM 3Ie3s,) 3utad<-Snqep
} ({3 epoNutor::ddy)3ITSTA::ToTTRIRd IHOM PTOA
JAON NIOL LISIA //

{
(BOPONNIOL) ITSTA: : TOTTRIRd LHOM Pus,) 3urad<-3nqep
¢ () auepuTun<-3nqep

{

£ (wIQOW 1¥DM QANIJIANA.)I0II9<-3nqap
} este {

Sutygou op //
} (LXIN==9POuK-sTy3) JT 8STd {

‘M = [JR]ISUT" 3ION: :LHOM
$(m¢,:qI10m 9sur,)qurad<-Snqep

{
¢ ([)seT2£07UOTIONIISUT: : [YOM =+ A
€ (wHI09 I0 SNOANVINVISNI ION. ‘. :PUTH,)3urid<-Snqep
} (H10€::dd¥==PUTy || SNOIANVINVISNI ION::dd¥==PUTH) JT

0LL {
¢ ([)zaom~asur~eqndwos: : TeTquenbeg~YOM =+ 4
¢ (WHI0E IO SNOANVINVISNI . :Puty,)3utad<-S8nqep

} (H10€::dd¥==PUTy || SNOINVINVLSNI::dI¥==PUTy) JIT

£ ()°InqrIlayIuwessurdel 3 = pury uT

£ (33)S9T2A> UOTIONIISUT: : [YOM =+ M
uAvnoowmA|PvunoslumnﬂlwusmEOUAumﬁ:u =+ M ¢
¢ (Puod9s<-1)3I9sSE
092 } (+#+3¢()pus-spesiyi= umﬁv:ﬂmwn.mn&mhnuupu I0F
£9 I03eI09T: :<xopoNdey: : JaAY‘ xIed: : JAy>deu: :pas
¢ ()speeIyrangled I = speaiys <xopondey: :dm*Ied: : day>dew: :pas

0 = m 3ur peuStsun
¢ (uISNI :epow,)3utad<-Snqep
} (1SNI==epou: :Terauenbeg~™IyDM) IT

f(pt)3xesse
£ ()pIpPesayL3e8 F = PT+ pIpesxyrdey: :day
0G4
¢ (uto()axesse
£ (()auswereagied<-[)<xutor: : dA>1seo oTWRUAp = utol* UTOL: :ddAN

¢ ([)zaesse
£()epoNutorae8 3 = [x spoyutor: :ddy

¢ (exed)jz95S5®R
¢ (()1uswele1g1a8 - I) <x0Ted: : JAY>1Sed oTweukp = axeds axed::ddy

ovL ¢ () aueput<-3nqep
£ (¥R, (BOPONNTO) ITSTA: :TOTTRIR IHOM 3Ie3s,) 3utid<-Snqep

} (3B OPONYIO::dHM)ITSTA: :ToTTeIed L¥DM PTOA
HA0N ¥¥0d4 LISIA //

. (3oPONAeRTo(Q)3TSTA: : TOTTRIRd LHOM Pue,) 3urid<-Sngep
¢ () aueputun<-Sngep

{
0§ ¢ (2IA0W L1HOM QANIAFANA.)I0xT8<-Sngep
} este {

M = [PR]2XOU’ 1IOM: : LHOM
f(m¢,:310m 3x91u,)3utad<-Snqep

mAvavmmHQ%o|QOﬁuoduumﬁw"NHMUS =+ M
£ ((()USIPTTYDIIOqY20S P PR) 1IN~ 1XoU PeSIY] ISUUTL-STY ‘M) XeW: :P3S = M
£ ((()ueIpTTyYD1e8 ' p) 1I0M~XeW: : TeTquenbag ™ [YOM ‘M) Xew: :pIS = #
0 = M 3ur peuStsun
0cL

{

0T

00

069

089

0L9

46

A. C++ Sources

{

¢ (I9UUTTXeW) UINIeX

{
{

Mnnﬁs.ﬁvpanlmwuzolwpmvmdAwmﬁap

f(upT =i [7pT) oTTUA {
¢(["pr)3resse
¢ prpesayrieS<-L = [Tpt
¢ ([)aaesse
¢ ()eponutorputy<-L7pt =
£(0 =i ()PI298<-[TpT)3resse
} op

STION = [epoyuTor::ddy
‘pT = [Tpt* prpeexyrdey: :day
3I0M peelyy Iejno //} osTe {

{(M“IOUUT XRW)XRW: :P3S = JIOUUT XU
3I0m peaiqy Ieuut //} (PT == UPT) FT

£ (T)2Iom~asuT 9andwod<-sTYl = M UT pauSTsun

f(u"pT)3IeSse
£ (OPIPERIY308<-(Tx) = U PT* pIpeaxyrdey: :ddy
¢ (Tx)3aesse
} (++T¢()PUs SOpPoU=; T ()UTSoq SOPOU=T T0IBISIT: :<*dpONdaY: : dHY>T01D9A: :PAS) I0T

= IsuuT Xew JuUT poudTsun

{(PT)3Iesse
£ ()pIpeaqL3e8<-u = pTx pIpeaiyrdey: :day
¢ (u)3xesse

(sepou <xopoNdeyf: : JHY>I0200A: :pas
‘ux opondey dI)) 3I0MT3X0U pRSIYY I9UUT: : [OTTeIed LYOM IUT poultsun

{

(1) uinjex

¢ ([PT]3XOU”IOUUT XeU-STYJ ‘M) XeW: :P3S = [PT]IXOU ISUUT Xeu<-STY3

¢ (u)3IoM~3xeu~e3ndwos: : TeTauenbagTIYOM = 4 3uT paudTsun
f(pT)3a08se
¢ ()pIpeaqL3e8<-u = pTx pIpesayrdey: :day
¢ (u)3x888C
} (ux spondey: :ddy)1Iom~axeu~9qndwod: : [oTTRIRd IYOM IUT paulTsun

{
f(#) uinzex
{
mAnvphusuumnﬂnmu=mEou“"HMﬂPCw=¢mm|Hmoz =M
} ((W)<xoPONUTOr: : dHY>ISed OTWeukp;) IT

0 = M jur peuStsun
} (ux opoNdey: :dHy)1xom~asur eqndwos: : ToTTeIRd IYOM 2UT pousTsun

SNOILONNA A¥VITIXQV //

{
¢ (u" (BpIPERIyLdey)aTSTA: i [oTTRIRd [HYOM Pud,) 3utid<-Snqep
¢ () aueputun<-8ngep

088
{

¢ (spou”[)310m™3xsu"e3ndwod<-STYL
¢ (spou~[)3resse
¢ ()opoNuTorae8<-(Fx) = opou [x SpoNUTO[: :ddY
¢ (3%)3I9885%R
{

{

¢ (sTU3x)emooTan<- ([x)
0L8 } ((4adme- ()seponrogre8<-(F*)i) IT

¢ ([x)3109sse
} (++Lf(pue-spr=i(f()urBeq-spr=[) 103
<[xogeT01T::<K*pIPROIYLdeY: : dHY>I0100A: :PIS
¢ ()SpIpeeIyLqng1e8<- (Fx) = SPT <xpIpeexyrdey: : ddy>I0300A: :pas
¢ (F*)1x08se
} (++F¢()PUe SHIOF=I¢ ()UTS0q SHIOF=] IOJBISIT: :<xOPONYIO]: : JHY>I0IDOA: :p1S) I0F
¢ ()SOpPONN104188°PT = SHIOF <*OPONFIOJ: :JHAN>I0IOSA: :PaS

¢ ()aueput<-3nqep

098 £(PTR°.: (3PIPeOIyLdey)aTSTA: i ToTTeIed L¥OM 31e3s,) 3urid<-3nqep
} (pt® pIpeaxyldey: :dd))3TSTA: : T9TTRIRd IHOM PTOA
AyorersTy pesiys o3 Surprodde senfea 3xsu utol sandwod //

{
. (BOPONUTO[)3TSTA: : TOTTRIRd L¥OM Pud,) 3utid<-Snqep
¢ () ausputun<-Sngsp

{
£ (wHQ0W L1¥OM QANIAAANA,)I0IIo<-3nqep
0¢8 } este {

{

¢ ([g)osers-qxou’SUTITSTA: : JTUOM

£(,3X9U 3I0M OU :snosuejuelsut st utol,)a3urid<-8nqep
} osTe {

‘m = [[3]axeu’axom::I¥DM
f(n¢,:3I0M 3xou,)qurad<-3nqsp

ors ¢ (([3)3xsu~pesaIyy 109n0~303<-STYI ‘M) XeW: :P3S = A

$(m¢,:9I0m 9X8U I8uUT,)qurad<-3nqep
mAhaquoslumaﬂlmusasou""ﬁmﬂwawﬂmelhmos =+ M

$(M¢,:S,2I0M 1XoU IoUUT Xew Jo ums,)3utid<-Snqep
{

¢ [PT]3XOU” IOUUT XRU<-STY3} =+ M

¢ ((PT)3UNOD " 3XOU” IUUT XRUK-STY3) }IOSSE

0€s

028

018

008

064

08L

47

7. Appendix

ddo - 1gom ut [yoM ededseureu Jo pue //{

¢ (seTohoTaxeu"183n0 + [[Jaxeu~zsjno urol<-sTyl)uiniex
£ ((£)aunoo - 3xeu~199n0 UTO[<-STYQ) 3I9SSR

I¥DM =+ SoTo£d 3xeu"I83n0
{
{

¢ ([)seroLo uoT3onI3SUT

{

¢ ([~xeuut)jassse

¢ ()®PONUTO[PUTF<-PT~(~Iouut = [~IouUT
mnﬁﬁlhlumnﬂﬁvp»wmmm

¢ ()pIpesayr3e8<-[~rouut = pr~[~zeuut

{
¢ ([“xeuutr)qrxesur-ges utol
¢ ([~xouuT) S0T2£5 UOTIONILSUT: : JYOM =+ SOTOLd~1Xou~I93N0
} ((f~xeuur)junos-jes utol) JFT
} (f =i (“xeuur) oTTymM

£TION = pT~("xeuutx prpesxyrdey::day

¢(f =i (Txeuur)jresse

¢ ([~zouur)qaesse

¢ ()9PONUTOLPUT <~ (3SITI<-T) = [~IoUUTx SPONUTO[: :dH)
} (QNE == (3SITI<-T QNI NIDI)PUTF::P3Is) IT
popesu JT saTo£o urtol TeuoriTppR PpPE //

{puooes<-T =+ SoT2L0~3xX8U~I83N0

¢ (3SITI<-T)3I0SS®R

{

} (++TfQQPUe =T ()urSeq w=T 103eI8qT::dew pT) IOF
¢ [[]sero£oaxeu"109n0 xew utol<-sTy1 = w dew pt
} ((F)aunoo-seroLo " 1xeu"10qno~xew urtol<-sTy3) JIT

$90sTuTO[<*OPONUTO[: :dH}>20S: :pas

¢ ()pPue-sprpesIyaqns = (NI I03RISIT::<xpIpearyrdsyf: :ddY>I02108A: :P3S 3SUOD

¢ ()utBeq- spT-peRIyIqNS

= NIDAg 103eI83T::<xpIpeaxyrdsyf: :ddy>I0208A: :pP3sS 3SUOD

0g6 ¢ ()SPIPesIyLAng1e8<-F = SPT pesiyaqns <xpIpesayrdey: :ddy>I03094: :pIS

f(¥)3xesse
£ ()opoNy104308<-[= Jx OPONHIO: :ddY

¢0 = seTofo " 3xeu"I193N0 JuUT pauSTsun
¢ ([)aresse

} Ah* wvozqﬁch""mmxvuqulvmwwnulwwu=O|uwm""ﬁwﬁamhmmlhmoz qut pauStsun

uAAnvmwaumulnoﬂuuzhumnﬂ"“Hmos.uvxmsunﬁum = hvﬁumhumwﬁu>0|uxmnlhwu=0|xmslﬁﬂohAumﬂnu

ov6

{
¢ [pT] [[]seT1o£> 9xou~T0qn0 XRW UTOL<-STYL = D
}
((pT)aunod- [[]se1oLo 1xeu"109n0 xew utol<-sTY2
33 ([)aunos-seoho qxeu~z0qno xew utol<-sTy1) JIT
{0 = 5 jur peuStsun
pT zernotared yo sa72A> juswelels 3xeu Isjno sjepdn //

¢ ([[]axsu~zeano utol<-sTys‘m)xew: :pas = [[Jaxeu~zsgno urol<-sTys

0€6

} (ux opondey::ddy ‘M quT peoudTsun ‘[x SPONUTO[r::ddy)1¥Xou I91no-ojepdn::ToTTeIed IHYOM PTOA

spou utol e Jo enfea 3Iom 3xsu sjepdn //

¢ (pT)aIesse
¢ ()pIpPeesyl1e8<-u = pTx pIpeayrdey: :ddy

¢ ((F)aunoo - 3xeu~xe3no utol<-sTY3) 319550
¢ (u)3zesse
¢ ([)qresse

{

026

016

006

068

48

	Introduction
	Esterel
	The Kiel Esterel Processor (KEP)
	The Concurrent KEP Assembler Graph (CKAG)
	Related Work

	Instantaneous Paths
	Node Successor Definitions
	Sequential Paths
	Parallel Paths
	Fork-Join Reachability
	General Statement Reachability

	Worst Case Reaction Time Analysis
	KEP Instruction Cycles
	Sequential WCRT Analysis
	General WCRT Analysis
	WCRT Overestimation
	Experimental Results

	Implementation
	class WCRT
	class WCRT_Sequential
	class WCRT_Parallel
	Usage

	Conclusions and Further Work
	Bibliography
	Appendix
	C++ Sources

