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Abstract

Data flow diagrams have been successfully applied in the area of model-based design
of complex embedded systems. However, their creation and maintenance can be very
time-consuming, because their layout must be managed by the user. Automatic di-
agram layout can significantly speed up development processes; numerous methods
already exist for this task, with very differing outputs. Usually the underlying struc-
ture is represented by graphs, but in the case of data flow diagrams port constraints
must be added for correct layout.
This thesis aims at extending two approaches of graph drawing, hierarchical layout

and orthogonal layout, for the requirements of data flow diagrams. For this purpose
the concepts and algorithms for both methods are presented, and it is shown how port
constraints can be integrated into these algorithms. Experimental results show that
the adapted hierarchical layout algorithm is able to yield well-readable drawings,
whereas the approach used for orthogonal layout still has subproblems that need
further research.
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1 Introduction

Graphical modeling languages have evolved to very appealing and convenient instru-
ments for the development and documentation of systems, both in hardware and in
software. The advantages relative to textual formats are apparent: structure and
relationships of system components are caught more easily if they are represented
using two dimensions instead of only one. There are various examples for graphical
modeling frameworks that have become an important part of modern development
processes. Unified Modeling Language (UML) is a collection of standards for specifi-
cation and visualization of object-oriented software. Statecharts, originally presented
by Harel [35], are extensions of state machines used to describe system behavior, and
are now available with numerous dialects and semantics. The concept of data flow
is based on compound systems that consume and produce data, which is passed
through interface ports.
The majority of models used in model-based design can be mapped to graphs with

additional data, such as transition triggers and actions for the edges of Statecharts
(see Figure 1.1), or field and operation data for the vertices of class diagrams (see
Appendix A). Graphs in turn have a natural graphical representation by drawing
vertices as points or shapes in the plane and edges as lines connecting them. If
the position of each object in the plane is fixed, drawing a specific diagram is just a
matter of creating appropriate graphical representations of these objects. Usually the
objects are placed manually using a What-You-See-Is-What-You-Get (WYSIWYG)
editor. The hard part is to find good placements automatically; this is commonly
referred to as the graph drawing problem. To avoid creating a layout manually each
time a graphical model is built, and adjusting the layout each time the model is
changed, methods for automatic diagram layout are needed.
In contrast to layout of one-dimensional textual models, the problem of automatic

layout of graphical models is very complex. For some types of models, such as class
diagrams, this topic has been intensively addressed [17, 30], while for others, such as
data flow diagrams, it seems to be largely an open problem.
This thesis aims at building a bridge between the areas of graphical modeling using

data flow concepts and graph drawing by discussing possible methods of automatic
diagram layout. Two very different approaches are covered: the hierarchical layout
method reveals to be very extensible and suitable for the constraints introduced for
data flow diagrams, whereas the extension of the orthogonal layout method is more
complex, and a lot more work is required to develop and implement it. We will call
the former our main approach, and the latter our alternative approach.
Most concepts of the two layout approaches are taken from previous work in the

area of graph drawing. My main contributions are the formal definition of drawing

1



1 Introduction

Figure 1.1: Modeling system behavior with Statecharts, here an avionics application
[24]

with port constraints in Section 4.3, and specific algorithms to handle these con-
straints in the hierarchical layout method in Section 5.2. These algorithms include
methods for crossing reduction under different scenarios, handling of hyperedges that
connect multiple ports, and a new approach for displaying hierarchy of models. The
drawings given in Section 7.3.1 demonstrate the usefulness of the new methods by
comparing outputs of automatic layout with hand-made diagrams. Furthermore, it
is shown how to apply previous work on constraints for planarization to the scenarios
of port constraints in data flow diagrams.
We will proceed as follows. Chapter 2 introduces data flow diagrams, general draw-

ing aesthetics, and special constraints imposed on drawings of data flow. Chapter 3
includes an overview of methods for graph drawing and a related topic, circuit and
schematic design; moreover it covers existing approaches and solutions for drawing
with port constraints. Chapter 4 provides exact definitions of graphs, drawings, and
constraints. The main and alternative approaches are discussed in Chapters 5 and
6, respectively. An overview of the implementation and some results are covered in
Chapter 7, and Chapter 8 will conclude and depict further work to be done.

2



2 Data Flow Diagrams

This chapter will illustrate the term data flow by introducing its basic concepts and
prevalent applications. Furthermore, we will examine aesthetics criteria as well as
key points that distinguish layout of data flow diagrams from the general problem
of graph layout.

2.1 System Modeling with Data Flow Languages

The term data flow diagram as used in this work refers to graphical representations
of data flow models. Such models are usually constructed using a data flow language,
that is a programming language based on the exchange of data entities between
operators [47], which can also be seen as computations, functions, actors, or nodes.
Operators consist of an external interface, which defines the inputs and outputs of
data, and an internal specification of behavior. The operators together with the
fixed paths of data flow form a directed graph (see Section 4.1); for this reason each
data flow model naturally yields a graphical representation [10], see Figure 2.1 for
an example. There are different semantics which can be applied to the data flow
paradigm [40, 47].
Applications of data flow diagrams can be found in modern software and hard-

ware development tools; some of these, such as Simulink (The MathWorks, Inc.),
LabVIEW (National Instruments Corporation), and ASCET (ETAS Inc.), are mainly
used for model-based design and simulation of embedded systems and digital or ana-
log hardware, while others, such as SCADE (Esterel Technologies, Inc.), are optimized
for automatic code generation from high-level system models. The Ptolemy project
[46] features data flow diagrams for actor-oriented design, where actors exchange

Figure 2.1: Example for the graphical representation of a data flow model: Operator1
has three outputs, Operator2 has one input and one output, and Operator3
has three inputs

3



2 Data Flow Diagrams

data and process it under different models of computation. All these examples fea-
ture a graphical editor for data flow diagrams, so that users can create diagrams in
WYSIWYG manner. Example diagrams are presented in Figures 2.2 and 2.3.
It is not surprising that most fields of application are related to embedded systems,

because the concepts of data flow can be closely matched with those of block diagrams
for hardware and distributed systems. In fact, the layout methods presented in this
thesis are not restricted to diagrams for the data flow paradigm, but can be applied
more generally to any diagram that is submitted to the same rules (see Section 2.3),
e.g. drawings of hardware circuitry.

2.2 Aesthetics of Diagrams

Aside from general restrictions and drawing conventions, algorithms for automatic
layout are subject to the goal of optimizing a set of aesthetics criteria [51, 6]. The
most important to mention are the following:

Crossings Minimize the total number of crossings between edges.

Direction Maximize the number of edges pointing to a specific direction, e.g. to
the right.

Bends Minimize the total number of bends along the edges.

Area Minimize the total area of the drawing while preserving a minimal distance
between all objects.

AspectRatio Keep the aspect ratio low, that is the width of the drawing divided
by its height for landscape format drawings, and the inverse for portrait format.
A good aspect ratio should be similar to that of a standard screen, which is
about 1.33, or approximate the golden ratio of (1 +

√
5)/2 ≈ 1.62.

The optimization problems related with the first three criteria are NP-hard [28, 27,
29], and in some cases they can even contradict each other (see Figure 2.4). For these
reasons it is impossible to optimize all aesthetics criteria at once, and all drawing
algorithms are forced to use heuristics to address the criteria one by one. The order
in which the criteria are treated determines a precedence among them: the criterion
which is handled by the first heuristic has the highest priority. Therefore the choice
of drawing algorithm has a great impact on the resulting drawing and should depend
on the priority of aesthetics criteria for the specific class of diagrams, or even on the
preference of each user.

2.3 Specialties of Data Flow Diagrams

Although the actual representation of vertices and edges is different for all three
diagrams shown in Figure 2.2, they have some common properties which can be
expressed as drawing conventions for the corresponding graphs:

4



2.3 Specialties of Data Flow Diagrams

Logging

2

Actuator

1

Switch

Subsystem

in1

in2

out1

out2
Step

Ramp

Gain

2*PI

Divide

sensor3

3

sensor2

2

sensor1

1

(a) Simulink

(b) SCADE

(c) LabVIEW

Figure 2.2: Example diagrams from graphical modeling tools
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2 Data Flow Diagrams

Figure 2.3: Example diagram from Ptolemy

Orthogonality Edges are drawn only with horizontal or vertical line segments,
thus all angles formed by edge bends are multiples of 90◦. This drawing con-
straint is also called rectilinear edge routing.

Ports Edges do not connect to their endpoint vertices at arbitrary positions, but
only at prescribed ports.

Hyperedges Some line segments of edges that are incident at the same port of a
vertex may be superposed (see Figure 2.5). These superposed edges can also
be seen as one hyperedge which connects more than two ports.

The Orthogonality and Hyperedges conventions do not have any semantic
meaning, but rather reflect the usual way in which block diagrams are drawn. The
junction points of superposed edges are often drawn as small circles to distinguish
them from crossings of edges that do not belong together.
In contrast, the Ports convention is important to keep the data flow diagrams

unambiguous, for an edge does not only have to specify which operators it connects,
but also which output port is responsible to feed the corresponding flow of data, and
which input ports read from that flow. Four main scenarios are conceivable for the
positions of ports around a vertex:

FreePorts All ports may be drawn at arbitrary positions on the border of their
corresponding vertex.

FixedSides The side of the vertex is prescribed for each port (e.g. the top, bottom,
left, or right border for rectangle-shaped vertices), but the order of ports is free
on each side.

FixedPortOrder The side is fixed for each port, and the order of ports is fixed
for each side.

FixedPorts The exact position is fixed for each port.

6



2.4 Displaying Hierarchy

(a) Drawing that respects direction of flow

(b) Planar drawing

Figure 2.4: Conflict between the Crossings and the Direction criteria

Mixed-case scenarios, in which some ports have fixed positions and others are
free, are not covered in this thesis, because they require very complex handling
and are probably not needed in most applications. Furthermore, only vertices with
rectangular shape are considered to simplify matters; this can be generalized to other
types of shapes by replacing them with their bounding box, i.e. the smallest rectangle
by which they are completely covered.

2.4 Displaying Hierarchy

In most graphical modeling tools the internal behavior of each operator of a data
flow diagram is hidden. This means that to display the internals of an operator
user action is required, e.g. a double-click on the operator. If the operator itself is
described by a data flow model, the result of this action is that a new window holding
the nested diagram is created. The inputs and outputs of the containing vertex are
then displayed as special vertices, as can be seen in the example in Figure 2.6(a).
An alternative for displaying such hierarchical structures is to draw the nested

diagram directly inside the containing vertex, as in Figure 2.6(b). Let for instance A
be an operator whose internal behavior is defined using nested operators a1, . . . , an,
and let E ⊆ {a1, . . . , an} be the subset of operators which are connected with inputs
or outputs of A. By drawing an edge from each a ∈ E to the corresponding ports of
A, the relationship between the external use and the internal behavior of A becomes
much more perceivable. In Figure 2.6(b), data emitted by Box1 flows into Box2,

7



2 Data Flow Diagrams

Figure 2.5: A hyperedge connecting one box with three others

where it is received by Box5. Box5 and Box6 then output their data tokens, which
are sent from Box2 to Box3 and Box4.
These concepts can be summarized to the following drawing requirements:

Hierarchy A vertex may contain other vertices to describe its internal behavior.

ExternalPorts The input and output ports of a vertex may be connected with
its internal vertices.

8



2.4 Displaying Hierarchy

(a) Hidden internal behavior (left), with further specification of Box2 (right)

(b) Directly expressed hierarchy: Box2 is expanded to reveal its internal
behavior

Figure 2.6: Two ways of displaying hierarchy

9



2 Data Flow Diagrams
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3 Related Work

Besides the context of data flow languages and system modeling introduced in Chap-
ter 2, the term data flow diagram and its abbreviation DFD are used in the area of
structured software analysis [7]. In this sense DFDs are used for software requirements
specification and modeling of the interaction between processes and data. Layout of
DFDs has been covered by Tamassia et al. [5] and Doorley et al. [13]. The kind of
diagrams discussed in this thesis is very different, therefore the DFDs of structured
analysis will not be mentioned again, and by data flow diagram we will always refer
to the meaning explained in Chapter 2.
This chapter will give an overview of methods that can be used for automatic

layout and identify previous work about layout with port constraints in literature
and in software.

3.1 Methods of Graph Drawing

There are several approaches to the general problem of graph drawing [6, 42, 39, 59,
11], of which a selection is presented in this section.

Layered approach: The layered or hierarchical layout method is for directed graphs
and emphasizes Direction [56]. It first eliminates cycles in the graph, then
determines a layering of vertices and optimizes this layering with respect to
vertex positions. The hierarchical method was selected as the main approach
for this thesis and is therefore covered with more detail in Chapter 5.

Force-directed approach: This approach creates a model of physical forces and
minimizes the energy of the model [14]. One variant consists in assigning
springs with appropriate forces to each pair of vertices; such methods are called
spring embedders. This very natural approach is widely used and especially
suited to display symmetries of the graph. Edges are mostly drawn straight-
line; see Figure 3.1 for an example.

As planarity of graphs is a topic which is well studied in graph theory, many drawing
methods expect a planar embedding as input. If the graph to be drawn is not planar,
it is first processed in a planarization phase (see Sections 4.2 and 6.1). By doing so,
the highest priority is put on the Crossings criterion. Methods which build on
planarization are the following.

Topology-shape-metrics approach: This method puts second highest priority on
Bends by computing a bend-minimal orthogonal drawing, so the Orthogo-
nality convention is always satisfied; more details are found in Chapter 6.

11



3 Related Work

Figure 3.1: A drawing produced by a force directed method

There are more approaches to orthogonal graph drawing, of which an overview
is given by Eiglsperger, Fekete, and Klau [42].

Visibility approach: A visibility representation is constructed, which maps ver-
tices and edges to horizontal and vertical segments; these are in turn replaced
by drawings of their corresponding elements [60, 6], see Figure 3.2. There are
different variants for the actual shape of vertices and edges, some allowing rec-
tilinear edge style. Visibility representations may be seen as a form of layering,
which means that the Direction criterion can also be taken into account.

Augmentation approach: The graph is augmented by vertices, edges, or both, to
get a graph with specific properties, e.g. one in which all faces have exactly
three edges [54, 23], or a biconnected graph [8]. In their basic variants, these
algorithms usually yield a straight-line drawing (see Figure 3.3).

Mixed model approach: This approach extends methods of straight-line drawing
from the augmentation approach to construct orthogonal or quasi-orthogonal
drawings [41, 32] (see Figure 3.4).

The main specialty that makes layout of data flow diagrams more difficult than
layout of general graphs is that edges are always connected to ports of a vertex (see
Section 2.3). Up to now, port constraints have received little attention in the area
of graph drawing:

• Gansner et al. proposed a method to add port constraints to hierarchical layout
as a displacement in one dimension [25], which means that ports may only
be attached to the vertex side that lies towards the next layer (for outgoing
edges) or the previous layer (for incoming edges). Port constraints with the
FixedPorts scenario are not possible with this approach.

• Eiglsperger et al. include port constraints in their general approach for con-
straints in the orthogonalization phase of orthogonal layout [18]. However, it is
sufficient to handle side constraints in the orthogonalization phase (see Section
6.2.2).

12



3.2 Circuit and Schematic Design

(a) An acyclic directed graph (b) Visibility drawing of
the graph in (a)

Figure 3.2: Example for a visibility drawing deduced from a directed graph: two
vertices are visible if they can be connected with a straight vertical line
without crossing other objects.

(a) Drawing constructed by trian-
gulation

(b) Drawing constructed by
analyzing connectivity of the
graph

Figure 3.3: Examples of techniques following the augmentation approach

• Gutwenger et al. introduced a general structure for port constraints in pla-
narization [31]; this very useful approach facilitates realization of different sce-
narios for port constraints and is presented in Section 6.1.3.

An overview of graph drawing methods that support constraints is given by Tamassia
[58], but ports are not mentioned in that paper.

3.2 Circuit and Schematic Design

Some aspects of the graph drawing problem are related to similar problems in design
of integrated circuits or hardware schematics. It therefore seems natural to look into
these areas, especially for the layout of data flow diagrams, which are very similar
to schematics.

13



3 Related Work

Figure 3.4: Quasi-orthogonal drawing constructed with a mixed-model approach

The general approach of circuit and Very Large Scale Integration (VLSI) design
is the place and route method: first the modules of the circuit are placed, then
wires are routed to connect the modules electrically [3, 61]. There are numerous
different placement methods, of which some are analytical techniques, while others
are based on physical laws or biological phenomena [55]. Routing is usually done by
partitioning the available area into rectangular channels, and each channel is assigned
a set of wires which may use the corresponding area. Wires may only cross if they
lie on different layers to avoid unwanted electrical contact. The number of available
layers may vary depending on the type of circuit and the application. If there is
only one layer, no wire crossings are allowed at all. The Manhattan routing model
uses two layers, one to route channels horizontally and the other to route channels
vertically. An overview of routing methods is given by Hu and Sapatnekar [37].
While methods of graph drawing aim at readability and clarity for human users, the

problem of circuit design is a technical one, and its methods are therefore optimized
to meet the requirements imposed by the respective technical environment. Prevalent
optimization goals are minimization of the number of routing layers, minimization
of the area and minimization of wire lengths. As the time needed to find such a
layout is not a critical aspect, computations may take hours or even days, which is
unacceptable in a user interface environment, where the user should not be forced
to wait for a result for more than few seconds. For these reasons it seems unlikely
that methods from circuit design can practically be applied to the graph drawing
problem.
A more promising area is that of automatic generation of schematic diagrams

[1, 45], which are used for modeling and documentation of hardware systems. Here
the focus is on human readability, so the aesthetics criteria are equivalent to those
used in graph drawing. In terms of schematic design, the basic structure which is
layouted consists of modules and connections. The layout problem is decomposed
into four steps:

1. Logical module placement

2. Logical connection routing

3. Geometrical module placement
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4. Geometrical connection routing

The place and route method used here follows the basic concepts of circuit design.
During the logical phase modules are placed into a grid, and connections are wired
through channels. The geometrical phase determines exact coordinates from these
logical positions.
The two methods that were chosen for further examination, hierarchical layout

and orthogonal layout, are both from the area of graph drawing, which grants them
the advantage of a large research community with solid theoretical backgrounds. The
methods of hardware design outlined in this section are a lot more specific to certain
applications, hence their application to graphs would probably require more work to
be done. While graph drawing methods must be specialized for the requirements of
data flow diagrams, hardware design methods must be generalized to lift them from
their original field of application.

3.3 Graph Drawing Libraries

There are many tools and software libraries that can be used for graph drawing [39].
This section will give a brief overview of existing solutions.

aiSee (AbsInt Angewandte Informatik GmbH) is a commercial graph layout tool
which is optimized for huge graphs. Input is expected in a special textual
format called GDL.

CCVisu (Dr. Dirk Beyer, Simon Fraser University) is a free graph layout tool for
force-directed layout. Input is expected in the textual format RSF. The tool is
available under the GNU Lesser General Public License (LGPL).

GoDiagram (Northwoods Software Corporation) is a commercial library for cre-
ation, visualization, and layout of diagrams. Supported platforms are Java,
.NET, and MFC.

GoVisual (oreas GmbH) is a commercial graph layout library featuring various lay-
out algorithms. Supported platforms are Java (via JNI), C++, .NET, and COM.

GDToolkit (Graph Drawing group of the Univesità Roma Tre, Graph Drawing and
Visualization group of the Università di Perugia) is a partly free C++ library
for handling and layout of graphs, evolved from long-term research projects.
The academic license is limited to 6 months.

Graphviz (http://www.graphviz.org/) is an open source graph layout tool
[26, 25] which is widely used in different applications. Input is expected in the
textual format DOT.

ILOG JViews Diagrammer (ILOG, an IBM company) is a commercial Java library
for creation, visualization, and layout of diagrams.
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JGraph Layout Pro (JGraph Ltd.) is a commercial Java library for graph layout.

OGDF (Algorithm Engineering group of the Dortmund University of Technology,
chair of Prof. Dr. M. Jünger of the University of Cologne, oreas GmbH) is
a free C++ graph drawing library used for academic research which contains
very sophisticated algorithms.

PIGALE (H. de Fraysseix, P. Ossona de Mendez) is a free C++ graph layout library
intended for research on planar graphs and is available under the GNU General
Public License (GPL).

Tom Sawyer Layout (Tom Sawyer Software) is a commercial graph layout library.
Supported platforms are Java, ActiveX, ASP.NET, JSP, and MFC.

uDraw(Graph) (Chair of Prof. Dr. B. Krieg-Brückner, University of Bremen) is a
free graph layout library.

yFiles (yWorks) is a commercial library for layout and visualization of graphs. Sup-
ported platforms are Java, .NET, AJAX, and FLEX.

Zest (Eclipse GEF) is a sub-project of the Eclipse Graphical Editing Framework
(GEF) for layout and visualization of graphs.

The only libraries whose authors clearly state to support port constraints are the
commercial products ILOG JViews Diagrammer, Tom Sawyer Layout, and yFiles. The
free tool Graphviz has only limited support of ports, as the only ways to declare ports
as attachment point of edges are to either give a side of the corresponding vertex,
e.g. north or north-west, or to create a structured vertex or label. In the latter case
the vertex or its label must be assigned an internal structure, so that edges can be
directly connected with particular elements of the internal structure. This is used for
layout of data structures, which may contain pointers that reference other objects.
Unfortunately, none of the open libraries has direct support of port constraints.

This affirms the assumption that the topic of graph drawing with port constraints
has received comparatively little attention in research so far.
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In this chapter we will introduce the mathematical notation which is needed to
handle graphs and their drawings and which is used throughout this thesis. Most
notation is taken from Di Battista et al. [6], with some adaptions and additions.
Undirected edges are written as {u, v} to distinguish them from directed edges (u, v).
A functional notation is used to declare objects related with an element of the graph,
e.g. vt(e) for the target vertex of e, or Eo(v) for the outgoing edges of v.
Based on the essential definitions, we formally introduce port constraints to iden-

tify the central problem of data flow layout.

4.1 Graphs

An undirected graph is a pair G = (V,E), where V is a finite set and E is a multiset
of multisets e ⊆ V with |e| = 2. The elements of V are called vertices or nodes, and
the elements of E are called edges or connections. An edge e ∈ E with e = {v, v}
is called a self-loop. An edge whose multiplicity in E is greater than one is called
a multiple edge. A simple undirected graph is an undirected graph with no self-
loops and no multiple edges, while a general graph is also called multigraph. The
elements of an edge e = {u, v} are called its endpoints. If there exists an edge
e = {u, v} ∈ E, we call u and v adjacent to each other and e incident to u and
v. The neighbors of a vertex v are its adjacent vertices. The degree of v is the
number of edges which are incident to v. A subgraph of G = (V,E) is a graph
G′ = (V ′, E′) for which V ′ ⊆ V and E′ ⊆ {{u, v} ∈ E : u, v ∈ V ′}. For S ⊂ V
we define G \ S := (V \ S,E \ {{u, v} : u ∈ S ∨ v ∈ S}), and for v ∈ V we write
G \ v := G \ {v}.
A directed graph G = (V,E) consists of a finite set of vertices V and a multiset

E ⊆ V × V . An edge e = (u, v) ∈ E is an outgoing edge of u and an incoming edge
of v. vs(e) := u is called the source of e, and vt(e) := v is called the target of e.
The indegree of a vertex v is the number |Ei(v)| of its incoming edges Ei(v), and its
outdegree is the number |Eo(v)| of outgoing edges Eo(v). A vertex with no outgoing
edges is called a sink of the graph, and a vertex with no incoming edges is called a
source of the graph. The terms and properties defined above for undirected graphs
apply analogously for directed graphs.
A path of a graph is a sequence (v1, . . . , vk) of vertices such that {vi, vi+1} ∈ E

(respectively (vi, vi+1) ∈ E for a directed path) for i ∈ {1, . . . , k − 1}. A path
p = (v1, . . . , vk) is called simple if vi 6= vj for all i 6= j. p is a cycle if v1 = vk. A cycle
(v1, . . . , vk) is called simple if (v1, . . . , vk−1) is a simple path. A graph G is acyclic if
it contains no cycles. It is connected if for each pair (u, v) of vertices there is a path
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between u and v in G. The connected components of G are the maximal connected
subgraphs of G.
The notion of connectivity can be extended to stronger versions: A vertex v in a

connected graph G is a cutvertex if G \ v is not connected. G is called biconnected
if it contains no cutvertices. A pair (u, v) of vertices in a biconnected graph G′

is a separation pair if G′ \ {u, v} is not connected. G′ is called triconnected if it
contains no separation pairs. The maximal subgraphs of an arbitrary graph which
are biconnected or triconnected are respectively called biconnected or triconnected
components.
A topological numbering of a directed graph G = (V,E) is a map t : V → N such

that t(u) < t(v) for all edges e = (u, v). If t is injective, we call it a topological sort.
A connected and acyclic graph is called a tree. A rooted tree is a tree T = (V,E)

with a specific root r ∈ V . All vertices which only have one neighbor are called
leaves of T , except the root; the remaining vertices are the inner vertices of T . The
unique path (v1, . . . , vk) from the root r = v1 to any leaf vk determines a parent-child
relationship between each pair of vertices (vi, vi+1), i < k. An ordered tree is a rooted
tree with a given order of children for each parent vertex.

4.2 Drawings and Planarity

A set M ⊂ R2 is convex if {x + t(y − x) : t ∈ [0, 1]} ⊆ M for each two points
x, y ∈M . M is bounded if there are (l1, l2), (u1, u2) ∈ R2 such that l1 ≤ x1 ≤ u1 and
l2 ≤ x2 ≤ u2 for all (x1, x2) ∈ M . Here we define a curve in R2 as the image of a
continuous mapping γ : [0, 1]→ R2. The power set P(M) of a set M is the set of all
subsets of M .
A drawing of a graph G = (V,E) is a function Γ : V ∪E → P(R2), where for each

v ∈ V the set Γ(v) 6= ∅ is convex, bounded, and closed, and for each e = {u, v} ∈ E
the set Γ(e) is a curve in R2 such that

|Γ(e) ∩ Γ(u)| = |Γ(e) ∩ Γ(v)| =
{

2 if u = v
1 otherwise

.

For a proper drawing the following constraints are usually added to Γ.

DisjointNodes: Γ(u) ∩ Γ(v) = ∅ for all u 6= v ∈ V .

DisjointEdges: Γ(e1) ∩ Γ(e2) is finite for all e1 6= e2 ∈ E.

UnambiguousEdges: Γ(e) ∩ Γ(u) = ∅ for all e = {v1, v2} ∈ E and u ∈ V with
u /∈ e.

Let v ∈ V and Xv := {x′ : (x′, y′) ∈ Γ(v)}, Yv := {y′ : (x′, y′) ∈ Γ(v)}. The position
of v is the point pos(v) := (minXv,minYv), and its size is the vector size(v) :=
(maxXv,maxYv) − pos(v). In the following the terms vertex v and drawing of the
vertex Γ(v) are used interchangeably, as well as the terms edge and drawing of the
edge.
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Figure 4.1: A planar drawing of a graph (circular vertices) and its dual graph (square
vertices)

A drawing Γ is called polyline, if for each edge e its image Γ(e) can be decomposed
into a sequence of straight lines l1, . . . , lh for a minimal h, such that |li ∩ li+1| = 1
for all i ∈ {1, . . . , h − 1}. Then the points {bi} := li ∩ li+1 are the bend points
or bends of e. A polyline drawing is straight-line if h = 1 for all edges, and it is
orthogonal, or rectilinear, if all line segments are aligned horizontally or vertically
(see the Orthogonality drawing convention in Section 2.3). A quasi-orthogonal
drawing is an orthogonal drawing for which the first and the last line segment of
each edge may be aligned non-orthogonally.
An edge crossing is a point x ∈ R2 such that there exist distinct edges e1 =

(u1, v1), e2 = (u2, v2) ∈ E satisfying x ∈ Γ(e1)∩Γ(e2) and x /∈ Γ(u1)∪Γ(v1)∪Γ(u2)∪
Γ(v2). A drawing of a graph is planar if there are no edge crossings. A graph is called
planar if it admits a planar drawing. A planar drawing partitions the plane R2 into
topologically connected regions called faces. There is always exactly one unbounded
face, which is called the external face. Furthermore, a drawing determines a circular
order on the incident edges of each vertex according to their clockwise sequence; this
is called an embedding of the graph. An embedded graph is a graph with a specific
embedding. The dual graph G∗ of an embedded planar graph G consists of a vertex
f∗ for each face f in G, and an edge {f∗, g∗} for each edge in G which is shared by
the two faces f and g. An example is shown in Figure 4.1. Each planar embedding
of a graph is uniquely determined by the corresponding dual graph if we additionally
define the external face.
A drawing of a directed graph is called upward if for each edge e the set Γ(e) is a

curve which monotonically increases in the y-direction, hence all edges are upward
oriented. A graph that admits a drawing which is both planar and upward is called
upward planar [38]. An example for a planar graph which is not upward planar is
shown in Figure 2.4.
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4.3 Port Constraints

A port based graph is a directed graph G = (V,E) together with a finite set P of
ports. For each v ∈ V we write P (v) for the subset of ports that belong to v, and we
require P (u) ∩ P (v) = ∅ for u 6= v. Each edge e = (u, v) ∈ E has a specified source
port ps(e) ∈ P (u) and a target port pt(e) ∈ P (v). We write v(p) for the vertex u for
which p ∈ P (u).
A drawing of a port based graph is a function Γ : V ∪ E ∪ P → P(R2) such that

Γ restricted on V ∪ E yields a proper drawing of the graph G, and

(a) |Γ(p)| = 1 for all p ∈ P ,

(b) Γ(p) is on the boundary of Γ(v) for all p ∈ P (v),

(c) pos(p1) 6= pos(p2) for ports p1 6= p2, and

(d) Γ(ps(e)),Γ(pt(e)) ⊂ Γ(e) for all e ∈ E.

We write pos(p) := x for all ports p with Γ(p) = {x}. For the Hyperedges
convention, one of the drawing constraints must be adjusted.

DisjointEdges: Γ(e1)∩Γ(e2) is finite for all e1, e2 ∈ E for which {ps(e1), pt(e1)}∩
{ps(e2), pt(e2)} = ∅.

Let v ∈ V and the midpoint of its drawing be given as m := pos(v)+ 1
2size(v). For

each port p ∈ P (v) we define the port angle αv(p) as the positive angle between the
vectors pos(p) −m and pos(v) −m (see Figure 4.2). Let the ports of v be ordered
as P (v) = {p1, . . . , pk}. We say that Γ respects the port order of v if αv(pi) < αv(pj)
for all i < j ≤ k. We write N,E, S,W for the top, right, bottom, and left side of a
vertex, respectively, and add an order N < E < S < W. The side of a port p ∈ P (v)
is defined as

Sv(p) =


N if 0◦ ≤ αv(p) < 90◦

E if 90◦ ≤ αv(p) < 180◦

S if 180◦ ≤ αv(p) < 270◦

W if 270◦ ≤ αv(p) < 360◦
.

Port positions are restricted depending on the chosen scenario.

FreePorts: No restrictions are imposed on port positions.

FixedSides: Each port p ∈ P (v) has a prescribed side Sv(p).

FixedPortOrder: Γ must respect a prescribed port order of v, and the side of
each port is fixed.

FixedPorts: The exact position pos(p) is prescribed for each port p ∈ P (v). This
is only meaningful if the shape of Γ(v) is fixed. If the area of Γ(v) is not zero,
these port positions induce an ordering on P (v).
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Figure 4.2: Ports p1, p2, p3 ∈ P (v) with their corresponding angles αv(p1), αv(p2),
and αv(p3)
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The hierarchical layout method works only for directed graphs and aims at empha-
sizing the direction of flow, thus expressing the hierarchy of vertices in the graph.
It was proposed by Sugiyama, Tagawa and Toda [56] and is often called Sugiyama
layout. The term hierarchy here means a precedence among the vertices of the graph
as induced by the directed edges. This is completely different from the notion of
hierarchy introduced in Section 2.4.

5.1 Main Phases

If the input is an arbitrary directed graph, the main phases of the algorithm are the
following.

1. Cycle removal: Break directed cycles by reversing some edges, while keeping
the number of reversed edges as low as possible. In the final drawing the
reversed edges are restored again, so that they point against the predominant
direction of flow.

2. Layer assignment: Create a minimal set of layers L1, . . . , Lk and assign a
layer to each vertex such that for all edges (u, v) the assigned layers Li of u
and Lj of v satisfy i < j. This is possible because after the first phase the
graph is acyclic. Another way of expressing this problem is that of finding a
topological numbering t for which max t(V ) is minimal.

3. Crossing reduction: Find an ordering of the vertices of each layer that
minimizes the number of edge crossings.

4. Node placement: Determine exact positions of all vertices inside their corre-
sponding layers. The vertices must not overlap each other, the ordering from
the previous phase must be respected and the position of each vertex must
be well-balanced with respect to its neighbors. We will call this crosswise
placement.

5. Edge routing: Determine bend points for each edge and the exact distance
between subsequent layers, which we will call lengthwise placement.

Now we will look more closely at some basic methods and heuristics which can be
used for each phase. There are many alternative algorithms which are covered in the
literature [6, 42, 15, 25, 20], but their complete discussion would exceed the scope of
this thesis.
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Figure 5.1: Starting a DFS on vertex 1 will reverse the four dashed edges, while
starting on vertex 2 will reverse only one.

5.1.1 Cycle Removal

The goal of this phase is to find a minimal set of edges for which the graph obtained
by reversing these edges is acyclic. This problem is equivalent to the feedback arc set
problem, which is NP-complete [27]. A very simple and fast heuristic is to perform a
Depth First Search (DFS) and reverse all back edges, but the results highly depend
on the choice of starting vertex and can be very bad in some cases (see Figure 5.1).
A better heuristic is Algorithm 5.1, which is a variant of Greedy-Cycle-Removal from
Di Battista et al. [6]. The algorithm determines an ordering v1, . . . , vn of the vertices
in G. By reversing all edges (vi, vj) for which i > j, all cycles are eliminated [6]. The
worst case asymptotical running time is O(|V |2) because of the implicit loop in line
26. However, in most graphs that loop is executed less often, because it only applies
when a cycle is found.

Algorithm 5.1: GreedyCycleRemoval
1 procedure removeCycles(G: directed graph)
2 foreach node v in G do
3 indeg(v) := indegree of v
4 outdeg(v) := outdegree of v
5 rank(v) := 0
6 Li := list of sinks in G
7 Lo := list of remaining sources in G // Sources which are also sinks are already
8 // processed in line 6
9 r := −1 // Next index for the right group

10 l := 1 // Next index for the left group

12 // All nodes are put either to the left group or to the right group, while keeping
13 // the number of edges going from right to left low.
14 while ∃ v ∈ V : rank(v)=0 do
15 while Li is not empty do
16 remove a node vs from Li

17 rank(vs) := r

18 r := r − 1
19 updateNeighbors(vs)
20 while Lo is not empty do
21 remove a node vs from Lo

22 rank(vs) := l
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23 l := l + 1
24 updateNeighbors(vs)
25 if ∃ v ∈ V : rank(v)=0 then
26 find v for which rank(v)=0 and outdeg(v) − indeg(v) is maximal
27 rank(v) := l

28 l := l + 1
29 updateNeighbors(v)

31 foreach node v, rank(v) < 0, do
32 rank(v) := rank(v) + |V | + 1

34 reverse all edges e = (u, v) for which rank(u) > rank(v)
35 end

37 // Update indeg and outdeg values and the lists of sources and sinks as if v was removed
38 procedure updateNeighbors(v: node)
39 foreach edge e = (v, u), rank(u) = 0, do
40 indeg(u) := indeg(u) − 1
41 if indeg(u) = 0 and outdeg(u) 6= 0 then add u to Lo

42 foreach edge e = (u, v), rank(u) = 0, do
43 outdeg(u) := outdeg(u) − 1
44 if outdeg(u) = 0 and indeg(u) 6= 0 then add u to Li

45 end

5.1.2 Layer Assignment

In this step we want to find layers L1, . . . , Lk for the vertices of the acyclic graph
G. A layering is called proper if all edges e connect only vertices from subsequent
layers. A proper layering is constructed from a general layering by splitting long
edges: given an edge e = (vi, vj), vi ∈ Li, vj ∈ Lj , for which j − i > 1, we add new
dummy vertices vi+1, . . . , vj−1 to the layers Li+1, . . . , Lj−1 and split e into a series
of edges ei, . . . , ej−1 such that eh = (vh, vh+1) for all h ∈ {i, . . . , j − 1} (see Figure
5.2).
The height of a layering L1, . . . , Lk is k. There are other optimization goals for

layer assignment besides minimizing height:

• Minimize the width of the layering, that is the number of vertices in a layer L
for which |L| = max{|Li| : 1 ≤ i ≤ k}. Unfortunately, the problem of finding
a layering with minimal width and height is NP-complete [15].

• Minimize the number of dummy vertices introduced by long edges.

A simple and linear running time heuristic consists in determining the longest path
to a sink, see Algorithm 5.2. In this very common algorithm all sinks s are put into
the last layer (h(s) = 1), and all other vertices are assigned a height h(v) equal to
the number of edges on a longest path to a sink plus one. This guarantees that the
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height of the resulting layering is minimal, but the width and the number of dummy
vertices can become unnecessarily high, as seen in Figure 5.3(a).

Algorithm 5.2: LongestPathLayering
1 procedure layering(G: directed graph)
2 foreach v in G do
3 visit(v)
4 k := max{h(v) : v ∈ V }
5 put each v into layer Lk−h(v)+1

6 end

8 procedure visit(v: node)
9 if h(v) 6=⊥ then

10 hm := 1
11 foreach edge e = (v, u), u 6= v, do // Self−loops are ignored during
12 visit(u) // layer assignment
13 hm := max{hm, h(u)}
14 h(v) := hm

15 end

To improve this I propose moving some vertices to preceding layers, as in Algo-
rithm 5.3. The balanced layering algorithm is greedy in that it decides locally for
each vertex whether moving it to a preceding layer could improve the layering, thus
greedily computing a local optimum. The algorithm runs in time O(|V |+ |E|+ |D|),
where D is the set of dummy vertices implied by the output of the longest path
layering. An example output of balanced layering is presented in Figure 5.3(b).

5.1.3 Crossing Reduction

The problem of crossing reduction for layered graphs, which consists in setting an
order of vertices for each layer, is NP-complete, even if there are only two layers
[28]. Nevertheless it is easier to find heuristics to set the order of vertices for two
layers than to optimize the whole graph at once. For this reason this phase is usually
solved with a layer-by-layer sweep: choose an arbitrary order for layer L1, then for

Figure 5.2: A layered graph with two dummy vertices for the long edge (1,4) and one
for the edge (2,4)
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(a) A longest path layering of a directed graph

(b) A balanced layering of the graph

Figure 5.3: Example for which balanced layering is clearly better than longest path
layering

Algorithm 5.3: BalancedLayering
1 procedure balanceLayering(G: directed graph)
2 determine layers L1, . . . , Lk for G using longest path layering
3 foreach layer Lj , j ≥ 3, do
4 foreach v ∈ Lj , indegree of v ≥ outdegree of v, do
5 r := max{i : (u, v) ∈ E, u ∈ Li} + 1
6 foreach layer Li, r ≤ i < j with increasing i, until a fitting layer is found, do
7 if |Li| ≤ |Lj | then
8 move v to the fitting layer Li

9 end

each i ∈ {1, . . . , k − 1} optimize the order for layer Li+1 while keeping the vertices
of layer Li fixed. Afterwards the same proceeding is applied backwards, and it can
then be repeated for a specified number of iterations.

In the resulting two-layer crossing problem we have a fixed layer L1 and a variable
layer L2. For a given set of vertices {v1, . . . , vn} we define the unique rank of each
vertex vj to be j. The goal is to assign ranks r2(v) ∈ {1, . . . , |L2|} to each v ∈ L2

depending on the ranks r1(v′) ∈ {1, . . . , |L1|} of the vertices v′ ∈ L1. These ranks
determine the order of vertices in each layer. The most commonly used methods,
barycenter and median, achieve ranking by first calculating values a(v) ∈ R for each
v ∈ L2 and then sorting the vertices in L2 according to these values. The following
functions are used:
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Barycenter:

ab(v) :=
1

|Ei(v)|
∑

(u,v)∈Ei(v)

r1(u)

Median:
am(v) := r1(ū)

for {(u1, v), . . . , (uh, v)} = Ei(v), r1(ui) ≤ r1(ui+1) for all i ∈ {1, . . . , h − 1},
ū := ubh/2c

For isolated vertices vs we set ab(vs) = am(vs) = 0.

5.1.4 Node Placement

From this step on it is relevant whether horizontal or vertical overall layout direction
is used: horizontal layout places the layers from left to right, while vertical layout
places them top down. Only horizontal layout is discussed here, but of course the
concepts for vertical layout are analogous. We assume functions ri for each layer Li

which map each vertex to its rank as output from the crossings reduction phase.
For crosswise vertex placement in horizontal layout the vertices of each layer are

arranged vertically. Sander proposes a two-phase method [52]: determine a correct
initial placement, then balance vertex positions. For this purpose the concept of
linear segments is introduced; here a linear segment is a set which contains either
a single regular vertex or all dummy vertices introduced to split a single long edge
(see Figure 5.4). It is important to put multiple dummy vertices of a linear segment
at the same vertical position, so that the associated long edge does not receive too
many bend points. For each vertex v we write S(v) for the linear segment for which
v ∈ S(v).
The segment ordering graph describes the required order of linear segments. It

contains an edge (S1, S2) if and only if the linear segments S1 and S2 contain ver-
tices v1 ∈ S1 and v2 ∈ S2 which are located in the same layer Li and are ordered
subsequently, thus their ranks satisfy ri(v2) = ri(v1) + 1. Sander’s algorithm (see

(a) A layered graph with its linear segments (b) The segment ordering graph
with a possible numbering and
topmost alignment

Figure 5.4: Linear segments and their ordering graph
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Algorithm 5.4) sets the vertical position of all vertices by performing a topological
sort on the segment ordering graph GS , which is possible because GS is acyclic, and
then finding the topmost position of each linear segment. This is done by keeping
the current size s(L) of each layer L as the topmost position for each new vertex in
that layer. A fixed value d is also added, which is expected as input of the algorithm
and holds the minimal distance between the drawings of vertices.

Algorithm 5.4: InitialNodePlacement
1 procedure initialPlacement(G: directed graph, L1, . . . , Lk: layers, d: real)
2 define the segment ordering graph GS = (VS , ES) by
3 VS := set of linear segments in G
4 ES := ∅
5 foreach layer Li do
6 foreach u, v ∈ Li, ri(v) = ri(u) + 1, do
7 ES := ES ∪ {(S(u), S(v))}
8 determine a topological sort t for GS

10 s(L) := 0 for all layers L
11 foreach S ∈ VS in increasing order of t(S) do
12 p := 0 // Topmost position, depending on
13 foreach v ∈ S do // current layer sizes
14 get the layer Li of v
15 p := max{p, s(Li) + d}
16 foreach v ∈ S do
17 set vertical position y(v) of v to p
18 get the layer Li of v
19 s(Li) := p + height of node v // All nodes are assumed to have fixed
20 end // width and height

Because after the initial vertex placement all vertices are at their topmost vertical
position, Sander proposes a pendulum method [52] to balance the drawing. Here
a modified version is used, which is illustrated in Algorithm 5.5. First a reference
layer is chosen, whose vertices are kept at their initial positions. All other layers are
arranged according to the edges which connect the layers using a formula which is
similar to the barycenter method for crossing reduction. These requested position
movements must be validated so that

• the order of vertices is preserved,

• the minimal distance between vertices is preserved, and

• the size of the overall drawing does not change.

Such a validation is performed twice for each layer Li to ensure that linear segments
which span over multiple layers are handled correctly.
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Algorithm 5.5: BalancedNodePlacement
1 procedure balancedPlacement(G: directed graph, L1, . . . , Lk: layers, d: real)
2 initialPlacement(G, L1, . . . , Lk, d)
3 find a reference layer Lr for which s(Lr) = max{s(Li) : i ∈ {1, . . . , k}}
4 ∆(S(v)) := 0 for all v ∈ Lr // The reference layer is not moved
5 foreach layer Li, i > r with increasing i, do
6 createDeltas(Li)
7 validateDeltas(Li)
8 foreach layer Li, i > r with decreasing i, do
9 validateDeltas(Li)

10 foreach layer Li, i < r with decreasing i, do
11 createDeltas(Li)
12 validateDeltas(Li)
13 foreach layer Li, i < r with increasing i, do
14 validateDeltas(Li)
15 foreach linear segment S do
16 move each v ∈ S by ∆(S)
17 end

19 // Create initial values ∆(v) for each v ∈ Li, indicating by how much
20 // the node wants to move
21 procedure createDeltas(Li)
22 ∆l := 0 // The last assigned ∆ value
23 foreach v ∈ Li in increasing order of ri(v), ∆(S(v)) =⊥, do
24 if i > r then Ev := Ei(v) else Ev := Eo(v)
25 if |Ev| = 0 then
26 ∆(S(v)) := ∆l

27 else
28 ∆(S(v)) := 1

|Ev|
∑

{u,v}∈Ev

(y(u) + ∆(S(u))− y(v))

29 ∆l := ∆(S(v))
30 end

32 // Change the ∆ values so the size of the graph does not grow and nodes do not overlap
33 procedure validateDeltas(Li)
34 ∆m := s(Lr)− s(Li) // The maximal allowed ∆ value
35 foreach v ∈ Li in decreasing order of ri(v) do
36 ∆m := min {∆m,max{∆(S(v)), 0}}
37 ∆(S(v)) := ∆m

38 end

5.1.5 Edge Routing

In classical hierarchical polyline drawing the edge routing phase is very easy: draw
all edges connecting vertices of subsequent layers by a straight line, and insert bend
points where dummy vertices were used to split a long edge. If we want to achieve
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Figure 5.5: Rectilinear edge routing between layers using vertical line segments

rectilinear edge routing, there is a lot more work to do, as each edge that cannot
be represented by a single horizontal line needs a vertical line segment (see Figure
5.5). A proper order of vertical line segments is important to avoid additional edge
crossings. To accomplish this, each edge e connecting vertices from layers Li and Li+1

is assigned a routing slot of rank r(e), which is then drawn at the horizontal position
x := x(Li) + b(Li) + r(e)d, where x(Li) is the horizontal position at which layer Li

is drawn, b(Li) is the amount of horizontal space needed by layer Li, and d is the
minimal distance to be left blank between any two line segments. Two bend points are
inserted to create the vertical line segment: (x, ys(e)) and (x, yt(e)), where ys(e) and
yt(e) are the fixed vertical positions of the source and target port of e, respectively.
If Ei ⊆ E is the set of edges leaving layer Li, the amount of horizontal space needed
for routing slots depends on the maximal assigned rank ri,max, and the position of
Li+1 can be determined as x(Li+1) = x(Li)+b(Li)+(ri,max +1)d. The set of vertical
positions occupied by an edge e is Y (e) := [min{ys(e), yt(e)},max{ys(e), yt(e)}]; the
basic rule for rank assignment is r(e) 6= r(e′) for edges e, e′ with Y (e) ∩ Y (e′) 6= ∅.
I propose a straightforward edge routing method: sort the edges Ei by some

criteria and then assign ranks as needed (see Algorithm 5.6). For two edges e, e′ with
Y (e) ∩ Y (e′) 6= ∅ these criteria must decide which edge should get the smaller rank.
For example, the following checks could be performed to decide whether r(e) < r(e′):

1. ys(e) < yt(e) and ys(e′) < yt(e′) and ys(e) > ys(e′)

2. ys(e) > yt(e) and ys(e′) > yt(e′) and yt(e) < yt(e′)

The symmetric cases apply for r(e) > r(e′), and for remaining cases the edges are
treated as equivalent.

Algorithm 5.6: EdgeSortingEdgeRouter
1 procedure routeEdges(Li, Li+1: layers)
2 E′i := {e ∈ Ei : ys(e) 6= yt(e)} // Set of edges which need a vertical segment
3 sort the edges E′i by some criteria, yielding a sequence e1, . . . , e|E′

i|
4 foreach edge ej ∈ E′i with increasing j do
5 r(ej) := min{n ∈ N | ∀ek ∈ E′i, k < j : r(ek) = n⇒ Y (ej) ∩ Y (ek) = ∅}
6 end
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Figure 5.6: A possible coloring of the edges from the second to the third layer of
Figure 5.5

Sander suggests sorting the source and target ports of edges and then assigning
ranks according to this order [52], as in Algorithm 5.7. Although it is more efficient,
this basic version of the proposed method can lead to additional edge crossings, as
it would place the edge (4, 8) left of (5, 8) in Figure 5.5. The rank assignment in line
8 needs to be altered to improve this.

Algorithm 5.7: EndpointSortingEdgeRouter
1 procedure routeEdges(Li, Li+1: layers)
2 create ordered list C of entries (e, y), sorted by y
3 foreach e ∈ Ei, ys(e) 6= yt(e), do
4 insert (e, ys(e)) and (e, yt(e)) into C in proper order
5 U := ∅ // Set of edges which occupy the current position
6 foreach (e, y) ∈ C in increasing order do
7 if y = min{ys(e), yt(e)} then
8 r(e) := max{r(e′) : e′ ∈ U}+ 1
9 U := U ∪ e

10 else
11 U := U \ e
12 end

Another approach is given by Baburin [2], who reduces the problem of rank as-
signment for edge routing to a graph coloring problem. A new directed graph
G∗i = (V ∗i , E

∗
i ) is created for each pair (Li, Li+1) of layers for which edges need

to be routed. The nodes of G∗i are the edges Ei from layer Li to layer Li+1, and
for two edges e1, e2 we define (e1, e2) ∈ E∗i if and only if Y (e1) ∩ Y (e2) 6= ∅ and
assigning ranks r(e1) < r(e2) would not lead to more edge crossings than in the case
r(e1) > r(e2) (see Figure 5.6). The checks that need to be performed here are the
same needed for sorting of the edges in Algorithm 5.6. Now the vertices of G∗i need
to be colored, i.e. a map c : V ∗i → N must be determined such that c(e1) 6= c(e2) for
all (e1, e2) ∈ E∗i and max{c(e) : e ∈ V ∗i } must be as low as possible. Furthermore we
require c(e1) < c(e2) if (e1, e2) ∈ E∗i and (e2, e1) /∈ E∗i . With the resulting coloring
we can set r(e) := c(e).
Until now only Algorithm 5.6 is implemented for edge routing in our layout frame-

work (see Section 7.1).
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5.2 Port Constraints

5.2.1 Fixed Ports

When ports are used to determine the source and target point of each edge, the
number of crossings does no longer depend only on the order of vertices, but also
on the order of ports for each vertex. In the FixedPorts scenario (see Section
4.3) the algorithms for crossing reduction must be extended to handle the prescribed
port positions. The FixedPortOrder scenario is reduced to FixedPorts by
distributing ports evenly on each side, although optimizations would be conceivable.
In the case of the Barycenter and Median methods the extension is straightforward,

because we only need to adjust the formulas to calculate the a(v) values (see Section
5.1.3). This is done by using local port ranks for each vertex and extending vertex
ranks so that for each v ∈ L1 and p ∈ P (v) the sum of the rank of v and the rank of
p is unique. Given a set of ordered ports P (v) = {p1, . . . , pk} for each vertex v and
port ranks r(pj) := j, we define the ranks of the ordered vertices v1, . . . , vh in the
layer L1 to be

r1(vi) :=
∑
g<i

|P (vg)|.

Now the new formulas for crossing reduction are as follows.

Barycenter:

ab(v) :=
1

|Ei(v)|
∑

(u,v)∈Ei(v)

(r1(u) + r(ps(u, v)))

Median:
am(v) := r1(v(p̄)) + r(p̄)

for P̃ := {ps(e) : e ∈ Ei(v)} = {p1, . . . , pk}, r1(v(pi)) + r(pi) < r1(v(pi+1)) +
r(pi+1) for all i ∈ {1, . . . , k − 1}, p̄ := pbk/2c

An additional difficulty comes up when the source port of an edge is not on the
right side of the source vertex, or the target port is not on the left side of the target
vertex. In these cases additional bend points are needed to route the edge around
the vertex, as seen in Figure 5.7. For this purpose routing slots of different ranks
must be assigned on each side of a vertex, similarly to layer-to-layer edge routing in
Section 5.1.5. An additional phase is added after crossing reduction and before node
placement; all edges which need additional bend points are processed here, as well
as self-loops. A rough sketch of the method is shown in Algorithm 5.8. The ranks
assigned in this phase must be considered in the edge routing phase following later
on. The maximal number of bend points per edge is 8 if routing around edges is
needed, as opposed to 4 in the simple case.
For example, the self-loop (4, 4) in Figure 5.7 is assigned routing slots of rank 1 on

the left, bottom and right side of vertex 4, while the edge (2, 4) is assigned a routing
slot of rank 2 on the bottom side of vertex 4.
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Figure 5.7: Routing of edges around vertices

Algorithm 5.8: AdditionalEdgeRouter
1 procedure routeEdges(L1, . . . , Lk: layers)
2 foreach layer Li do
3 foreach v ∈ Li do
4 foreach port p of v do
5 assign routing slots for all self−loops starting in p
6 assign routing slots for all other edges starting or ending in p
7 assign ranks to all routing slots of v
8 end

As an output of this additional routing phase, the number of routing slots for
the top and the bottom side of each vertex v, together with the given height of
v, determines the amount of space that is needed to place v inside its layer. This
information is passed to the node placement phase, so that the free space that is left
around each vertex suffices for its assigned routing slots.

5.2.2 Free Ports

If the FreePorts scenario is given, a preprocessing step sorts all ports of a vertex
by input and output ports, i.e. ports at which only incoming or only outgoing edges
are incident, respectively. All input ports are put to the left of the corresponding
vertex, while output ports are put to the right. By this we achieve

• conformance with the usual drawing convention for ports (inputs left, outputs
right),

• consistency with the representation of flow by drawing layers from left to right,
and

• no additional bend points, as the additional routing discussed in Section 5.2.1
is not needed.

For this reason it is sufficient to consider the FixedSides scenario as the only al-
ternative to FixedPorts. So now let the side of each port be fixed, but the order
of ports on each side be variable. This leads to the additional task of finding an
order of ports for each vertex that minimizes the number of crossings, together with
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the order of vertices in each layer. Again the extension of the methods of crossing
reduction from Section 5.1.3 is quite simple: instead of calculating values a(v) to
order the vertices, calculate values a(p) to order the ports first, then determine a(v)
as the average of all a(p) values for the ports of v. For each port p let Ei(p) be the
set of edges which are incoming at that port.

Barycenter:

ab(p) :=
1

|Ei(p)|
∑

(u,v)∈Ei(p)

(r1(u) + r(ps(u, v)))

Median:
am(p) := r1(v(p̄)) + r(p̄)

for P̃ := {ps(e) : e ∈ Ei(p)} = {p1, . . . , pk}, r1(v(pi)) + r(pi) < r1(v(pi+1)) +
r(pi+1) for all i ∈ {1, . . . , k − 1}, p̄ := pbk/2c

5.2.3 Hyperedges

The Hyperedges convention must be considered at multiple phases:

• Layer assignment (Section 5.1.2): if more than one long edge is incident at one
port, the same dummy vertices should be used (see Figure 5.8).

• Edge routing (Sections 5.1.5 and 5.2.1): edges incident at the same port should
use the same routing slots.

The first point can be handled using Algorithm 5.9, which is executed for each edge
in the graph and creates connections between vertices of subsequent layers. However,
this extension can lead to problems in the following layout phases if crossing reduction
is not adjusted. If, for example, backwards crossing reduction is performed for the
second layer of the graph in Figure 5.8 while keeping the vertices of the third layer
fixed as (3, c, d), it can happen that the dummy vertex b is placed above a because of
its outgoing connection to vertex 3. This means that the linear segments {a, c} and
{b, d} would cross each other, ultimately leading to a forbidden cycle in the segment
ordering graph for node placement.
To resolve this problem, two new rules must be added for each linear segment

S = {v1, . . . , vk} representing a long edge:

Figure 5.8: The long edges (1, 3) and (1, 4) share the dummy vertex b in layer 2.
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1. For each dummy vertex vi, i ∈ {2, . . . , k}, only one incoming connection may
be considered for crossing reduction, namely (vi−1, vi).

2. For each dummy vertex vi, i ∈ {1, . . . , k − 1}, only one outgoing connection
may be considered for crossing reduction, namely (vi, vi+1).

Algorithm 5.9: LongHyperedges
1 procedure createLayerConnection(L1, . . . , Lk: layers, e: edge)
2 let Ls be the layer for which vs(e) ∈ Ls

3 let Lt be the layer for which vt(e) ∈ Lt

4 if t− s = 1 then
5 directly connect vs(e) and vt(e)
6 else
7 // Associations between ports and existing linear segments are created in line 27
8 get the linear segment S associated with the source port ps(e)
9 if S =⊥ then

10 get the linear segment S associated with the target port pt(e)
11 if S =⊥ then
12 create a new dummy node d in Li, i := s+ 1
13 create a linear segment S for d
14 connect vs(e) and d
15 else
16 // Another edge with the same source or target port exists
17 connect vs(e) and the dummy node in S whose layer is Ls+1

18 find the dummy node d in S whose layer Li has maximal i < t

20 while i < t− 1 do
21 create a new dummy node d′ in Li+1

22 add d′ to S
23 connect d and d′

24 d := d′, i := i+ 1

26 connect d and vt(e)
27 associate S with ps(e) and pt(e)
28 end

Routing of hyperedges can be handled by creating routing slots and assigning ranks
for each port instead of doing it for each edge. Then all edges which belong to the
same port can use the same rank values for routing.

5.2.4 Model Hierarchy and External Ports

If the data flow model to be layouted has Hierarchy (see Section 2.4), the basic
graph structure is extended so that each vertex is itself a nested graph v = (Vv, Ev),
which can be empty. Then layout of the resulting tree structure can be performed
recursively, as it is done in Algorithm 5.10.
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Algorithm 5.10: HierarchyLayout
1 procedure hierarchyLayout((V,E): directed hierarchical graph)
2 foreach v = (Vv, Ev) ∈ V , Vv 6= ∅, do
3 hierarchyLayout((Vv, Ev))
4 adjust the size of v to contain the drawing of (Vv, Ev)
5 perform flat layout of (V,E) using the layered approach
6 end

Figure 5.9: Routing of edges to external ports

The additional specification of ExternalPorts leads to another form of nested
graphs, in which for each vertex v = (Vv, Ev) the edges of the nested graph may also
contain v itself, that is Ev ⊆ Vv×Vv ∪{v}×Vv ∪Vv×{v}. To handle this, the ports
P (v) of v are treated as ordinary vertices in the layered graph (Vv, Ev) with layers
L1, . . . , Lk. The first layer L1 is reserved for input ports, while the last layer Lk is
reserved for output ports. This is allowed because input ports are always sources
and output ports are always sinks of the layered graph.
During edge routing these input and output port layers must be specially handled,

especially if there are input ports which are not on the left side, or output ports
which are not on the right side. These cases require additional bend points (see
Figure 5.9), and if there are multiple edges which need to be routed along the top
or bottom side of the parent vertex, proper ranks need to be assigned to minimize
the number of crossings. This could be done using similar techniques as those used
for layer-to-layer edge routing.
Our currently used implementation is quite simplistic, since it assigns routing slots

on the external sides of the drawing on demand, without considering which order of
edges actually minimizes the number of crossings. Better methods need yet to be
found for this specific subproblem.
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6 Alternative Approach: Orthogonal
Layout

The term orthogonal layout is sometimes used for any layout method that produces
rectilinear edge shape, but here it is used in the narrower sense of a method based
on orthogonalization, which is called the topology-shape-metrics approach [59].

There are three main phases for this approach:

1. Planarization determines the topology of the graph, that is a specific planar
embedding. If the graph is not planar, vertices must be added to eliminate
edge crossings.

2. Orthogonalization adds shape by computing 90◦ bends for all edges, but with-
out specifying the exact length of each line segment. The total number of
bends is minimized for a specific embedding, because bend minimization over
all planar embeddings is NP-complete [29].

3. Compaction computes the final metrics, so that all vertices and bend points
have assigned positions.

The basic version of this method, first proposed by Tamassia [57], processes undi-
rected graphs and is therefore not suited for the Direction aesthetic. More recent
research has led to extensions for directed graphs, which will be discussed in the
following sections.
Many of the algorithms used in this approach expect the input graph to be con-

nected. For this reason we will proceed by applying the topology-shape-metrics
approach to each connected component and then recomposing their drawings.

6.1 Planarization

6.1.1 Planar Subgraphs and Edge Reinsertion

The basic scheme for planarization is shown in Algorithm 6.1. To complete the
algorithm, we need a method for finding an embedded planar subgraph G′ = (V,E′),
and a method for inserting an edge into a given planar embedding. The latter can
be solved efficiently by maintaining the dual graph G∗ for the fixed embedding, see
Algorithm 6.2. A Breadth First Search (BFS) in the dual graph is used to determine
the minimal set of edges which need to be crossed, as seen in Figure 6.1.
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Figure 6.1: The edge {4, 8} can be inserted using the shortest path in the dual graph
which passes the faces e, g, and i, shown with dotted lines. There are
several other admissible shortest paths in this case.

Algorithm 6.1: Planarization
1 procedure planarize(G = (V,E): graph)
2 find a planar subgraph G′ = (V,E′) of G
3 determine a planar embedding for G′

4 foreach e ∈ E \ E′ do
5 insert e into G′ minimizing the number of crossings
6 replace each edge crossing by a dummy node
7 update the embedding of G′

8 end

Algorithm 6.2: FixedEdgeInsertion
1 procedure insertEdge(e = (u, v): edge, G′: embedded planar graph, G∗: dual graph of G′)
2 determine sets of faces Fu, Fv which respectively have u, v on their border
3 foreach f ∈ Fu do
4 perform a BFS in G∗ until a face f ′ ∈ Fv is reached
5 determine the BFS path f1, . . . , fh with f1 = f , fh = f ′

6 insert e along the edges used for the first shortest path
7 end

The trivial way of finding a planar subgraph is to use G′ = (V, ∅), because a graph
with no edges is always planar. Another simple alternative is to use a spanning tree
of G, which is also always planar. However, planarizing the graph with too many
edges which are inserted into a fixed embedding can lead to bad results in some
cases (see Figure 6.2). For optimal results a maximum planar subgraph must be
computed, which is a planar subgraph with the greatest possible number of edges.
This problem is NP-hard [27]. Another problem, finding a maximal planar subgraph,
consists in finding a planar subgraph for which any additionally added edge would
make the subgraph non-planar. This can be solved efficiently using Algorithm 6.3
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Figure 6.2: The edge (4, 5) cannot be inserted into the fixed embedding without
creating a crossing, although the graph is planar.

and a method for testing planarity of a graph, which is usually done by testing
each biconnected component, because a graph is planar if and only if its biconnected
components are planar. There are linear time algorithms to test a biconnected graph
for planarity, e.g. the algorithm of Hopcroft and Tarjan [36].

Algorithm 6.3: MaximalPlanarSubgraph
1 procedure createSubgraph(G = (V,E): graph)
2 initialize subgraph G′ = (V,E′) with E′ = ∅
3 foreach e ∈ E do
4 if (V,E′ ∪ {e}) is planar then
5 E′ := E′ ∪ {e}
6 end

Gutwenger, Mutzel, and Weiskircher have shown that it is possible to insert an
edge into a planar graph minimizing the number of crossings over all possible em-
beddings [34]. This is done using SPQR trees [33, 48], which are a representation of
the triconnected components of a graph.

6.1.2 Upward Planarization

If the input graph is directed, as this is the case for data flow diagrams, planarization
must be extended to enable the edges to be drawn in a consistent direction. The
task of finding a planar embedding that allows such a consistent edge direction is
called upward planarization.
Testing whether an arbitrary directed graph is upward planar is NP-complete [29],

but for single-source graphs, i.e. graphs which have exactly one source, it can be
done efficiently [38]. The hierarchical layout method in Chapter 5 shows that an
upward drawing does always exist if the input graph G is acyclic. This leads to
Algorithm 6.4 for upward planarization, which uses a cycle removal step as discussed
in Section 5.1.1, then creates a single-source graph and planarizes it. Methods for
finding upward planar subgraphs and proper edge insertion are given by Chimani et
al. [9].
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Algorithm 6.4: UpwardPlanarization
1 procedure planarize(G = (V,E): directed graph)
2 eliminate cycles of G
3 add a node ŝ to V
4 foreach source s′ in G do
5 add an edge (ŝ, s′) to E
6 determine a suitable upward planar subgraph G′ = (V,E′)
7 foreach e ∈ E \ E′ do
8 insert e into G′ in a proper manner
9 replace each edge crossing by a dummy node

10 update the upward embedding of G′

11 end

The output of upward planarization is a planar embedding with some annotations
for the layering of vertices. To be able to use this information in the topology-shape-
metrics approach, the orthogonalization phase must be able to handle the embedding
properly so that the resulting shape of the drawing is really upward. An alternative
would be to use the annotated embedding as input for the node placement and edge
routing phases of the hierarchical layout method. In this case upward planarization
is used to replace the layering and crossing reduction phases used in hierarchical
layout [9].
As upward planarity has been investigated for quite some time, there are more

approaches to it, such as the work of Didimo [12]. Their complete discussion would
exceed the scope of this thesis.

6.1.3 Embedding Constraints

In a recent work Gutwenger, Klein, and Mutzel proposed a formalism to describe
constraints for the planarization phase and gave algorithms to efficiently planarize a
graph under such constraints [31]. Constraints on the order of incident edges can be
assigned individually to each vertex.
An embedding constraint C(v) for a vertex v is an ordered tree whose leaves are the

edges which are incident to v. The inner vertices of C(v) are called constraint nodes
and are assigned an attribute of type gc, mc, or oc. The order of the leaves of C(v)
together with the constraint nodes represents the set of admissible cyclic clockwise
orders of the edges incident to v. Constraint nodes can influence these admissible
orders:

• gc (grouping constraint node): The order of children may be arbitrarily per-
muted.

• mc (mirror constraint node): The order of children may be reversed.

• oc (oriented constraint node): The order of children is fixed.

The constraint tree shown in Figure 6.3 admits 12 different cyclic orders for the edges
e1, . . . , e6; for example, (e1, e2, e3, e5, e4, e6) and (e3, e2, e1, e6, e4, e5) are allowed.
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Figure 6.3: An embedding constraint for a vertex of degree 6

Embedding constraints are very convenient to describe all four scenarios for port
constraints given in Section 4.3. Given a vertex v with ports P (v), the corresponding
embedding constraint can be constructed as follows:

FreePorts: Set the root of C(v) to a gc-node nr. Create a gc-node np for each
port p ∈ P (v) and add it to nr. Add each incident edge as child of np for
the corresponding port p. The side of each port must be determined in the
orthogonalization phase.

FixedSides: Set the root of C(v) to an oc-node nr. Create a gc-node ns for each
side s ∈ {N,E,S,W}. Create a gc-node np for each port p ∈ P (v) and add it
to ns for the corresponding side s. Add each incident edge as child of np for
the corresponding port p.

FixedPortOrder Set the root of C(v) to an oc-node nr. Iterate over the ports
p ∈ P (v) in proper order, create a gc-node np for each p and add it to nr. Add
each incident edge as child of np for the corresponding port p.

FixedPorts: Since the exact position of ports is not relevant for planarization, the
same structure as for FixedPortOrder can be used.

A planar embedding of a graph G with embedding constraints C is called ec-
planar with respect to C if for all constrained vertices v ∈ V the order of edges
incident to v is admissible in C(v). (G,C) is ec-planar if there exists an ec-planar
embedding of G with respect to C. Gutwenger et al. have shown that ec-planarity
can be tested by performing a suitable expansion E(G,C) of G, testing the resulting
graph E(G,C) for planarity and applying additional checks to the SPQR tree of each
biconnected component of E(G,C) [31, 48]. They also gave an algorithm to insert an
edge respecting embedding constraints with the minimal number of crossings among
all ec-planar embeddings.
Optimal edge insertion was not yet realized in our current implementation; instead

of that, I propose a modification of Algorithm 6.2 that can be used to insert an edge
e into a fixed ec-planar embedding. The exact description of such an algorithm is
missing in the paper of Gutwenger et al. [31].
What we need is a method for finding the set of admissible faces at the endpoints of

e = {u, v} depending on the embedding constraints C(u) and C(v). Let G′ = (V,E′)
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be a graph with an ec-planar embedding represented by incidence lists E(v) for each
v ∈ V . The rank of an edge e with respect to an endpoint v of e is the index of e
in the incidence list of v. Given an edge ei /∈ E′ and an endpoint v of ei, Algorithm
6.5 traverses the constraint tree and recursively computes for each constraint node
n the number of already placed edges π(n), the smallest rank %(n) of already placed
edges, and the set α(n) of admissible ranks for ei, relative to the edges in n.

Algorithm 6.5: ECAdmissibleFaces

1 procedure admissibleFaces(ei: edge to be inserted, v: an endpoint of ei)
2 let r be the root of the embedding constraint tree C(v)
3 visitConstraint(r)
4 return α(r)
5 end

7 // Traverse the constraint tree with recursive calls and collect information about the edges
8 procedure visitConstraint(n: constraint node)
9 if n is an edge then

10 if n = ei then
11 π(n) := 0
12 α(n) := {0}
13 else if n ∈ E′ then
14 π(n) := 1
15 %(n) := rank of n in v
16 else π(n) := 0
17 else
18 // The constraint node has children {c1, . . . , ck}
19 foreach child cj do visitConstraint(cj)
20 π(n) :=

∑
j<k

π(cj)

21 %(n) := min{%(cj) : j < k, π(cj) > 0}

23 if n is an oc−node then
24 There is at most one child c which has α(c) 6=⊥; copy α(n) from α(c), if it exists,

and add the sum of π(cj) values for preceding cj to each value in α(n).
25 if n is a mc−node then
26 Determine whether normal or mirrored order is used from the position of the child

c with smallest %(c).
27 if this order is ambiguous then consider both variants in α(n)
28 Copy α(n) from the child which has α(c) 6=⊥, if it exists, and add the sum of

π(cj) values for subsequent (mirrored order) or preceding (normal order) cj
to each value in α(n).

29 if n is a gc−node then
30 reorder the children of n according to their % values
31 if there is a child c for which α(c) 6=⊥ then
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32 if π(c) > 0 then
33 Copy α(n) from α(c), and add the sum of π(cj) values for preceding cj in

the new order to each value in α(c).
34 else
35 α(n) := α(c)
36 foreach cj in the new order do
37 foreach r in α(c) do
38 add r +

∑
i<j

π(ci) to α(n)

39 end

6.2 Orthogonalization

6.2.1 The GIOTTO Approach

The first algorithm for orthogonalization was proposed by Tamassia [57]. Each vertex
is represented by a single point in a grid, and the approach is limited to vertices with
maximal degree of four. The idea is to determine a series of orthogonal left and right
bends for each edge, and to specify the length of each line segment in the following
compaction phase (Section 6.3). This method was extended in GIOTTO [59] to handle
vertex degrees greater than four: each vertex v is expanded to a rectangular structure
of vertices v1, . . . , vk such that the incident edges of v can be distributed to v1, . . . , vk

and each vi, i ≤ k, has at most four incident edges (see Figure 6.4). In the final
drawing v is represented by a rectangle which is made large enough to cover all grid
points assigned to v1, . . . , vk. The order of incident edges is inherited from the planar
embedding; in addition, each edge must be assigned a side of the vertex at which it
is attached. This is very convenient with FixedSides or more restricted scenarios
for port constraints, but can lead to unnecessary bends in the FreePorts scenario.
Klau and Mutzel have proposed another extension which does not need to specify

the side of each edge [43]. Here each high degree vertex is expanded to a ring structure
as shown in Figure 6.5(a), and the enclosed face is constrained to be of rectangular
shape. To prevent vertices from becoming too large in the final drawing, a quasi-
orthogonal drawing is obtained using straight-line segments as in Figure 6.5(b). If
a real orthogonal drawing is required, an additional bend could be inserted as in
Figure 6.5(c).
The approaches for orthogonalization discussed so far are originally implemented

with a transformation to a flow network, for which a flow of minimal cost is computed.
An alternative is to formulate the problem as an Integer Linear Program (ILP), which
can be processed using a constraint solver library. For this purpose we will introduce
some new notation.
Given an embedded undirected graph G = (V,E), we define the set of directed
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6 Alternative Approach: Orthogonal Layout

(a) Structure of vertices created for a vertex with degree 6

(b) Final representation of the
vertex

Figure 6.4: Representation of high degree vertices in the GIOTTO model

edges ε and the cyclic ordered sets of incident edges ε(v) for each v ∈ V , and write

ε := {(v, w), (w, v) : {v, w} ∈ E},
ε(v) := {(v, w) : {v, w} ∈ E} = {e1, . . . , ek},

and FI , FO for the sets of inner and outer faces, respectively, where |FO| = 1. The
edges in ε(v) are ordered according to the given embedding. Each face f is a cyclic
ordered set containing the edges found when traversing the border of f with f on
the right side (see Figure 6.6). For each e = (v, w) ∈ ε we define variables re for
the number of right bends and le for the number of left bends on the edge {v, w}
in direction v to w. Furthermore we define for each e = (v, w) ∈ ε a variable ae

which denotes the angle between e and its cyclic predecessor in ε(v) at vertex v as
multiples of 90◦. The resulting ILP for the GIOTTO model is the following [18]:

minimize
∑

{v,w}∈E

(
l(v,w) + r(v,w)

)
subject to

(T1)
∑

e∈ε(v)

ae = 4 ∀v ∈ V

(T2)
∑
e∈f

(ae + le − re) =
{

2|f | − 4 f ∈ FI

2|f |+ 4 f ∈ FO
∀f ∈ FI ∪ FO

(T3) l(v,w) = r(w,v) ∀(v, w) ∈ ε
le, re ∈ N ∀e ∈ ε
ae ∈ {1, . . . , 4} ∀e ∈ ε
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6.2 Orthogonalization

(a) Structure of vertices created for a vertex with degree 6

(b) Quasi-orthogonal rep-
resentation

(c) Orthogonal representa-
tion with additional bends

Figure 6.5: Representation of high degree vertices proposed by Klau and Mutzel

(T1) expresses the fact that the angles of incident edges around each vertex must
form a total of 360◦. (T2) is a condition used to keep the edge bends consistent with
the shape of each face [57]. (T3) is needed in order that the two directed versions of
each undirected edge have consistent bend numbers.

6.2.2 The Kandinsky Approach

The Kandinsky approach of Fößmeier and Kaufmann aims at supporting high degree
vertices without having to expand them as in the GIOTTO approach [21, 22]. This
is done by allowing multiple edges to touch the same side of a vertex. To avoid
overlapping of vertices and edges an important constraint is added: for two edges
{v, w} and {v, u} which are attached at the same side of v at least one of the edges
must bend. Edge bends which are added due to this restriction are called vertex-
bends, whereas other bends are called face-bends.

Using the notation from Section 6.2.1 we introduce new variables lve , rv
e , l

w
e , r

w
e for

the vertex-bends of each edge e = (v, w) ∈ ε. The variables le, re are used for the

47



6 Alternative Approach: Orthogonal Layout

Figure 6.6: The inner face can be represented by f={(1,2),(2,3),(3,4),(4,3),(3,1)}.

face-bends of e. The ILP formulation of the Kandinsky model is as follows:

minimize
∑

{v,w}∈E

(
lv(v,w) + l(v,w) + lw(v,w) + rv

(v,w) + r(v,w) + rw
(v,w)

)
subject to

(K1)
∑

e∈ε(v)

ae = 4 ∀v ∈ V

(K2)
∑

e=(v,w)∈f

(ae + lve + le + lwe − rv
e − re − rw

e )

=
{

2|f | − 4 f ∈ FI

2|f |+ 4 f ∈ FO
∀f ∈ FI ∪ FO

(K3) lv(v,w) + rv
(v,w) ≤ 1 ∀(v, w) ∈ ε

(K4) a(v,w) + lv(v,u) + rv
(v,w) ≥ 1 ∀v ∈ V ∀(v, u), (v, w)

subsequent in ε(v)
(K5) lv(v,w) = rv

(w,v), l(v,w) = r(w,v), l
w
(v,w) = rw

(w,v) ∀(v, w) ∈ ε

lv(v,w), r
v
(v,w), l

w
(v,w), r

w
(v,w) ∈ {0, 1} ∀(v, w) ∈ ε

le, re ∈ N ∀e ∈ ε
ae ∈ {0, . . . , 4} ∀e ∈ ε

Constraints (K1), (K2), and (K5) are analogous to (T1), (T2), and (T3), respec-
tively. (K3) means that each edge may have at most one vertex-bend for each
endpoint. (K4) expresses the basic rule that at least one of multiple edges attached
at the same vertex side must bend.
Eiglsperger et al. presented extensions of the Kandinsky method to add drawing

constraints using additional variables and rows for the ILP [18, 16]. These ideas can
be used to add side constraints for FixedSides or more restricted port constraints
scenarios. A fixed order of ports does not need to be handled in the orthogonalization
phase, because if the given embedding is ec-planar (see Section 6.1.3), the port order
is implied by the fixed order of incident edges for each vertex. The port constraints
introduced by Eiglsperger et al. are only needed in a mixed scenario that allows
constrained edges and free edges at the same vertex. As stated in Section 2.3, we have
no need for such a scenario. Therefore I propose slightly modified side constraints
to obtain a simplified model based on Eiglsperger’s ideas [16].
Now let the side of each (v, w) ∈ ε be prescribed by values sv

(v,w), s
w
(v,w) ∈ {N,E, S,W}

for the attachment side at vertices v and w. For each v ∈ V we require the ordered
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6.3 Compaction

list ε(v) = {e1, . . . , ek} to start with the first edge e1 = (v, w) as seen from the top
left corner of v in clockwise direction, and we introduce a new variable cv, which
denotes the angle between e1 and a fictive edge attached at the top side of v, as
multiples of 90◦. For example, a vertex v which has only one incident edge attached
on the right side would have a value cv = 1. To ensure that the cv values remain
consistent in the whole graph, we add the following rows to the ILP [18]:

(C1) cv +
∑

1<i≤k

aei ≤ 4 ∀v ∈ V, ε(v) = {e1, . . . , ek}

(C2) cv +
∑

1<i≤k′
aei + lv(v,w) + l(v,w) + lw(v,w) ∀{v, w} ∈ E,

−rv
(v,w) − r(v,w) − rw

(v,w) − cw −
∑

1<i≤l′
ae′

i
ε(v) = {e1, . . . , ek}, (v, w) = ek′ ,

+4h(v,w) = 2 ε(w) = {e1, . . . , el}, (w, v) = el′

Constraint (C1) expresses that the angles of edges cannot exceed 360◦. (C2) is used
to keep the cv values consistent between all connected vertices. The variables he

are added for each edge e ∈ ε; in (C2) they express that the sum of the preceding
variables modulo 4 should be 2. The prescribed sides can be set using the following
constraint:

(C3) cv +
∑

1<i≤k

aei =


0 sv

(v,w) = N
1 sv

(v,w) = E
2 sv

(v,w) = S
3 sv

(v,w) = W

∀(v, w) ∈ ε,
ε(v) = {e1, . . . , ek}, (v, w) = ek′

The correctness of the ILP formulation of the Kandinsky model and of additional
constraints has been shown by Eiglsperger [16].
Further work on the Kandinsky model was done by Barth, Mutzel, and Yildiz,

who provided a polynomial time algorithm which approximates the minimal number
of bends, thus avoiding the possibly exponential running time for solving the ILP [4].

6.3 Compaction

The final phase of this orthogonalization approach has as input an orthogonal rep-
resentation, that is an embedded graph enriched with information about bends and
edge directions, and computes concrete lengths for all line segments of edges, so that
position values for vertices and bend points can be implied. Optimization goals are
minimal area of the final drawing, minimal total edge length and minimal length
of the longest edge. All three optimization problems are NP-complete for general
orthogonal representations [49].
As most compaction algorithms expect the graph to have a maximal vertex degree

of four, the graph must be transformed into a normalized form [16], if this was not
already done for the orthogonalization phase (see Section 6.2.1). This is done by
replacing each vertex v by a structure which consists of one vertex for each corner
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6 Alternative Approach: Orthogonal Layout

of v and one vertex for each port of v, as seen in Figure 6.7. Additionally, all bend
points are replaced by vertices.
An orthogonal representation is called refined if all faces have rectangular shape.

There are very efficient algorithms for refined orthogonal representations, such as
Algorithm 6.6, which runs in linear time and minimizes area of the drawing. An
orthogonal representation can be turned into a refined form by adding vertices and
edges [6].

Algorithm 6.6: FastRefinedCompaction
1 procedure compact(G: embedded planar graph with refined orthogonal representation)
2 Construct graph G∗h by contracting maximal paths of vertical edges to a node and

orienting horizontal edges from left to right.
3 Construct graph G∗v by contracting maximal paths of horizontal edges to a node and

orienting vertical edges top down.

5 foreach v∗ in G∗h do
6 x := number of edges on the longest path to a source in G∗h
7 foreach v in G for which one of the edges contracted to v∗ is incident do
8 set the horizontal grid coordinate of v to x

10 foreach v∗ in G∗v do
11 y := number of edges on the longest path to a source in G∗v
12 foreach v in G for which one of the edges contracted to v∗ is incident do
13 set the vertical grid coordinate of v to y
14 end

The drawback of compaction algorithms based on refinement is that the process of
refining an orthogonal representation can distort the drawing and can lead to results
which are far from optimal. Better approaches have been developed, such as the
algorithm of Klau and Mutzel, which is based on an ILP [44], and the algorithm
of Eiglsperger and Kaufmann, which is specialized for vertices with prescribed sizes
[19].

Figure 6.7: Normalization of an orthogonal representation
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Implementations of the approaches discussed in this thesis are integrated into the Kiel
Integrated Environment for Layout for the Eclipse RichClientPlatform (KIELER)1.
This chapter gives an overview of KIELER, the main Application Programming
Interface (API) used for automatic diagram layout, and experimental results of the
implementation.

7.1 The KIELER Framework

The KIELER framework is a platform for experimental approaches to graphical model-
based design and for combination of different aspects of graphical modeling, such as
methods of model editing, visualization of simulation, and automatic layout. Unlike
its preceding project, the Kiel Integrated Environment for Layout (KIEL), which was
developed as a stand-alone Java application [50], KIELER builds on Eclipse (Eclipse
Foundation, Inc.), an extensible platform comprised of various integrated develop-
ment environments. The Eclipse project was originally created by IBM in 2001 and
is now maintained by an open source community.
Eclipse has some subprojects which form an important basis for KIELER:

• The Eclipse Modeling Framework (EMF) contains tools to create structured
data models which can be used as a basis for graphical editors or central data
structures of an application. EMF features Java code generation from an ab-
stract model and model storage in eXtensible Markup Language (XML) format.
Additional projects provide transformation, validation, and comparison of EMF
models.

• The Graphical Editing Framework (GEF) supplies the functionality needed to
create a graphical editor in Eclipse, following the model-view-controller design
pattern.

• The Graphical Modeling Framework (GMF) can be used to generate Java code
for graphical editors on top of EMF and GEF. This is done with additional
models which describe different aspects of the generated editor.

One goal of KIELER is to provide multiple graphical editors for model-based design.
As a base for experimental layout methods for data flow diagrams a simple data
flow editor was created using GMF (see Figure 7.1). This editor was used to create
and modify example diagrams, together with an additional generator for data flow
models.

1http://rtsys.informatik.uni-kiel.de/trac/kieler
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7 Experimental Results

Figure 7.1: A simple data flow editor created with Eclipse GMF

A central subproject of KIELER is the KIELER Infrastructure for Meta Layout
(KIML), which has an interface that connects GMF diagram editors with the layout
algorithms. The basic work on KIML was done by Schipper [53], who also created a
KIML interface for the Graphviz layout tool (see Section 3.3).

7.2 Implementation

The Eclipse platform is composed of a multitude of plug-ins, i.e. Java libraries which
are packed into JAR files and loaded on demand. Consequently, all subprojects of
KIELER, including the single layout algorithms, are implemented in Java as Eclipse
plug-ins. This allows users to install separate subprojects independently from each
other. The implementation of the hierarchical layout algorithm described in Chapter
5 is available as a feature for Eclipse on the KIELER web page2. The same files can
alternatively be used as Java class libraries outside of Eclipse. The API is outlined in
Section 7.2.1; more details and the complete source code can be found on the project
web page.

2http://rtsys.informatik.uni-kiel.de/trac/kieler
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7.2 Implementation

7.2.1 Layout API

Layout algorithms are able to connect to KIML using the abstract class KimlAbstract-
LayoutProvider, which is the superclass for all base classes of implemented layout
algorithms. The central data structure is KGraph, an EMF model used to exchange
graph-based data between different modules, to add supplementary information to
each element of the graph, and to store it as XML file. This graph model can contain
ports as well as layout data such as location and size of each vertex. Progress of an
algorithm can be tracked using a progress monitor, which can be used to display a
progress bar during computation, enable the user to abort it, and measure execution
times (see Section 7.3.2). The relevant classes for the layout API are shown as a class
diagram in Figure A.1 (Appendix A).
The steps required to execute a KIML layout algorithm are as follows.

1. Create an instance of KGraph that represents the graph to be layouted. If the
source is a diagram, this means mapping the model underlying the diagram to
an instance of the EMF model KGraph. If performance of automatic layout is
crucial, keeping a single instance consistent with the diagram is also an option.

2. Create a progress monitor instance, and connect it to the user interface if
needed.

3. Create an instance of the selected layout provider, that is a subclass of KimlAb-
stractLayoutProvider holding an implementation of the desired layout algorithm.
This instance may be buffered, so that the same instance is used when layout
is performed repeatedly, which significantly boosts performance.

4. Execute the doLayout method of the layout provider, passing the top vertex of
the KGraph instance and the progress monitor as arguments. The reason why
a vertex is passed instead of the whole graph is that each vertex may contain
internal vertices and edges to support hierarchy as introduced in Section 2.4.
If the graph has hierarchical structure, layout must be applied recursively,
beginning with the deepest nested graph.

5. The KGraph instance is now enriched with layout information; read this data
and apply it to the original graph model, or directly to the corresponding
diagram.

General options of the layout algorithms can be set using a preference store, that is
an interface that maps named preferences to their values. Eclipse provides preference
stores that can be manipulated on preference pages (see Figure 7.2) and stored in
XML format (see Listing 7.1). If the layout library is used outside of Eclipse, a
specialized implementation of preference stores is required, otherwise the algorithms
will only use default settings.
Options related to a special layout instance can be set as supplementary informa-

tion for each object in the KGraph structure. Such options include the scenarios for
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Listing 7.1: A data flow model stored in XML format
<?xml version="1.0" encoding="UTF−8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:dataflow="http://www.inf...
<dataflow:DataflowModel xmi:id="_e5UlIOfiEd20OaZJ2fh_UQ">
<boxes xmi:type="dataflow:Box" xmi:id="_hVwyYOfiEd20OaZJ2fh_UQ" name="Box">
<inputs xmi:type="dataflow:InputPort" xmi:id="_jE9fIOfiEd20OaZJ2fh_UQ"/>
<outputs xmi:type="dataflow:OutputPort" xmi:id="_jWnP0OfiEd20OaZJ2fh_UQ"/>
<boxes xmi:type="dataflow:Box" xmi:id="_p53hcOfiEd20OaZJ2fh_UQ" name="Box One">
<inputs xmi:type="dataflow:InputPort" xmi:id="_Yg_−4OfnEd2J26Kmvy4vvQ"/>
<outputs xmi:type="dataflow:OutputPort" xmi:id="_ZBakUOfnEd2J26Kmvy4vvQ"/>
<outputs xmi:type="dataflow:OutputPort" xmi:id="_wgqdAOfnEd2J26Kmvy4vvQ"/>
<connections xmi:type="dataflow:Connection" xmi:id="_7TTgMOfnEd2J26Kmvy4vvQ" ...
<connections xmi:type="dataflow:Connection" xmi:id="_75sx0OfnEd2J26Kmvy4vvQ" ...

</boxes>
...

port constraints presented in Section 2.3. This means that for each vertex it may
be individually set whether its ports should be kept fixed or may be moved by the
layout provider.

7.2.2 Internal Structure

The layout algorithms were implemented using the strategy design pattern, which
consists in providing an interface for each phase of the algorithm and one or more
implementations. In our application, these concrete algorithm implementations can
be selected by the user to customize the layout method. For example, all algorithms
for the cycle removal phase implement the interface ICycleRemover. Furthermore,
all algorithm implementations extend the abstract class AbstractAlgorithm, which
provides basic functionality to handle progress monitors.
Figure A.2 shows a class diagram with all modules of hierarchical layout. The

following modules and corresponding implementations are included:

ICycleRemover: Interface for cycle removal (see Section 5.1.1)

DFSCycleRemover: Cycle removal using DFS

GreedyCycleRemover: Implementation of Algorithm 5.1

ILayerAssigner: Interface for layer assignment (see Section 5.1.2)

LongestPathLayerAssigner: Implementation of Algorithm 5.2

BalancingLayerAssigner: Implementation of Algorithm 5.3

ICrossingReducer: Interface for Crossing Reduction (see Section 5.1.3)

LayerSweepCrossingReducer: Crossing reduction with a layer-by-layer sweep;
needs a single-layer crossing reducer to process each layer.

ISingleLayerCrossingReducer: Interface for crossing reduction for the two-layer cross-
ing reduction problem
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Figure 7.2: A preference page for customization of layout algorithms

BarycenterCrossingReducer: Implementation of the barycenter method

INodewiseEdgePlacer: Interface for routing of edges around vertices (see Section 5.2.1);
the term nodewise is used to distinguish this module from the routing of edges
between layers, which is called layerwise edge placement.

SortingNodewiseEdgePlacer: Implementation for routing around vertices that
sorts the edges according to some criteria

INodePlacer: Interface for vertex placement (see Section 5.1.4)

BasicNodePlacer: Implementation of Algorithm 5.4

BalancingNodePlacer: Implementation of Algorithm 5.5

IEdgeRouter: Interface for edge routing (see Section 5.1.5)

RectilinearEdgeRouter: Uses a layerwise edge placer to determine bend points
for the edges between each pair of subsequent layers, and provides routing
to external ports (see Section 5.2.4).

ILayerwiseEdgePlacer: Interface for routing of edges between two subsequent layers

SortingLayerwiseEdgePlacer: Implementation of Algorithm 5.6

Internally the hierarchical layout algorithm uses a data structure that represents a
layered graph; its class diagram is shown in Figure A.3. This data structure contains
a representation of layer elements, which are vertices of the layered graph, and are
related to either a vertex from the original graph, or a dummy vertex introduced
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because of a long edge, or an external port of the parent vertex. Layer connections
are edges of the layered graph that connect layer elements from subsequent layers.
Element loops are edges of the layered graph that represent self-loops.
The modules of the orthogonal layout algorithm are shown in the class diagram in

Figure A.4. The currently implemented modules are the following:

IPlanarizer: Interface for the planarization phase (see Section 6.1)

PortConstraintsPlanarizer: Creates embedding constraints as described in Sec-
tion 6.1.3, and uses an implementation of ec-planarization such as EdgeIn-
sertionECPlanarizer.

EdgeInsertionECPlanarizer: Simple implementation of planarization with em-
bedding constraints that removes all edges from the graph and reinserts
them using ECEdgeInserter

ECEdgeInserter: Edge insertion for a fixed ec-planar embedding using BFS in
the dual graph; includes Algorithm 6.5.

IOrthogonalizer: Interface for the orthogonalization phase (see Section 6.2)

KandinskyILPOrthogonalizer: Uses an ILP solver library to solve the Kandinsky
ILP given in Section 6.2.2. Currently the library lp_solve is used, which
is an open source C library for mixed integer linear programming.

ICompacter: Interface for the compaction phase (see Section 6.3)

NormalizingCompacter: Creates a normalized orthogonal representation and ap-
plies a compaction algorithm for normalized representations, such as Re-
finingCompacter.

RefiningCompacter: Creates a refined orthogonal representation and applies a
compaction algorithm for refined representations, such as LayeringCom-
pacter.

LayeringCompacter: Implementation of Algorithm 6.6

The orthogonal layout algorithm uses a graph structure that represents undirected
graphs, because most modules expect their input graph to be undirected. The basic
structure is shown in the class diagram in Figure A.5. The edges of this structure
called slim graph (to distinguish it from the EMF structure KGraph) have designated
source and target vertices to allow the structure to express direction of edges, e.g.
for upward planarization. However, the incoming and outgoing edges of each vertex
are organized in a common list of incident edges. Each entry of that list has a type
value indicating whether the edge is incoming or outgoing. Similarly, each face holds
lists of the edges found when traversing the border of that face, and each entry of
such a list has a flag that indicates whether the edge is traversed in forward or in
backwards direction.
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Figure 7.3: A sample output of the orthogonal layout method

7.3 Results

Sections 7.3.1 and 7.3.2 cover experimental results for the hierarchical layout algo-
rithm. For multiple reasons the orthogonal layout was only partly implemented:

• The algorithms for planarization are very complex, especially where ec-planarity
is required. Up to now only the edge insertion algorithm for fixed ec-planar
embeddings was implemented, and the graph with no edges is used as planar
subgraph for edge insertion.

• The Kandinsky model with simplified side constraints is currently implemented
as an ILP for orthogonalization (see Section 6.2.2). Probably the current im-
plementation is not yet correct, because sometimes it yields peculiar results.

• For compaction the orthogonal representation is currently normalized and then
refined as described in Section 6.3. It is unclear how to apply the resulting grid
coordinates to a drawing in which vertices have prescribed size. This leads to
very unpleasant drawings, where edges which are meant to be straight appear
oblique (see Figure 7.3). Obviously other compaction methods need to be
evaluated.

A sample output of the algorithm is shown in Figure 7.3, where the current problems
of orthogonalization and compaction are apparent.
The images showing the output of the implemented algorithms were created by

directly drawing the layout information of the KGraph data structure, instead of
applying this layout to the original diagram. This ensures that the pure algorithm
output is visualized, without modification by the diagram framework.
The implementation of hierarchical layout supports both horizontal and vertical

layout (see Figure 7.4), but only horizontally arranged drawings are shown to be
compatible with the original diagrams from SCADE, Simulink, and Ptolemy, which
are also drawn horizontally.
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(a) Horizontal layout (b) Vertical layout

Figure 7.4: Output of hierarchical layout with different layout options

7.3.1 Comparison of Layouts

Seven outputs of the hierarchical layout algorithm are presented in Figures 7.5 to
7.11 and compared with hand-made layouts from real examples. This was done by
reproducing the original examples in the KIELER simple dataflow editor and then
using KIML to execute the layout algorithm. The current implementation provides
only rectangular vertex shapes, therefore the operators of the original diagrams are
replaced by rectangular boxes.
The FixedPorts scenario was applied to all examples, and the following modules

were used.

Cycle removal: GreedyCycleRemoval (Algorithm 5.1)

Layer assignment: BalancedLayering (Algorithm 5.3)

Crossing reduction: Layer-by-layer sweep with barycenter heuristic, one iteration

Node placement: BalancedNodePlacement (Algorithm 5.5)

Edge routing: EdgeSortingEdgeRouter (Algorithm 5.6), including routing around
vertices and routing to external ports

Now we will take a closer look at the example diagrams and their generated layouts.

1. (Figure 7.5) In the first example both the hand-made and the automatic layout
have a very clear appearance, and the structure of both drawings is similar.
The SCADE diagram holds a special detail: the PRE and the initialization op-
erators on the bottom right (merged to a FBY box for the automatic layout)
are reversed so they point to the same direction as the following leftward edges,
which helps to make the drawing more compact. This feature is not yet sup-
ported by present implementations of automatic layout, and it is not clear how
desirable this is in practice.
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2. (Figure 7.6) The hand-made layout of the second example achieves a good as-
pect ratio by routing a part of the diagram to the top left, thus compromising
the left-to-right flow of data. The automatic layout has some problems, al-
though the direction of flow has a better representation than in the hand-made
layout. The routing of edges around the ExternalConditions operator could be
improved by changing the order of edges. The two FBY operators and their
connected boxes PointReset and null_speed on the bottom right could be moved
two layers further to the left. The automode operator would induce less edge
crossings if it was placed above the or box.

3. (Figure 7.7) In the third example the LQR and the Discrete State Estimator
operators are again reversed in the hand-made drawing, which is arranged
very accurately and has only one edge crossing. The automatic layout has
some more crossings between the second and the third layer, but the other
parts of the drawing have a clear routing of edges.

4. (Figure 7.8) The two back edges of the fourth example are routed through the
bottom of the hand-made drawing, while the automatic layout routes them
through the middle, which leads to additional crossings. Although the place-
ment of vertices is quite similar in both variants, the overall edge routing of
the automatic layout is clearly inferior in this case.

5. (Figure 7.9) The original diagram of example 5 has a good aspect ratio at the
cost of less uniform edge direction. In contrast, the automatic layout achieves
a very clear emphasis of the data flow, but its aspect ratio is worse. Here we
also see that in Ptolemy the representation of edges is slightly different than
in the previous examples, as it is not strictly orthogonal.

6. (Figure 7.10) The hand-made layout of example 6 uses two back edges from
Symbol1 and Symbol2 to theMultiplexor operator to obtain a better aspect ratio.
Again the automatic layout reveals its focus on maintaining the direction of
flow. The overall appearance of its drawing is quite good, but the edge going
from the GaussNoise box to SeqToArray (names were abbreviated to limit box
sizes) has a negative interference with the edge from Symbol2 to correlator2, as
they have horizontal line segments that are drawn very close to each other.

7. (Figure 7.11) In the last example we see a very unpleasant hand-made lay-
out, which has obviously received little effort by the designer. The routing of
connections is much more perceivable in the automatic layout. However, the
latter does not make good use of the diagram area, since a large part does not
contain any vertices. A better variant would be to place some of the addition
and multiplication operators on top of each other instead of arranging them
in a row, but that would violate the proper layering, and would require an
extension of the whole layout method.

Since the first six examples that were chosen for comparison originate from official
demonstrations of their respective software product, it is likely that the manually
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arranged layout of these diagrams has been done with special care. This is not always
possible in industrial applications, since it can be very time consuming to perform a
good manual diagram layout, and time is often scarce when deadlines are pressing.
The last example (see Figure 7.11) is taken from a practical course on model-based
design, in which students were given the task to model a distributed real-time system
using SCADE. This extract of a SCADE diagram demonstrates very well the result of
a quick-and-dirty hand-made layout, which is clearly inferior to the automatic layout
in this case.

Some statistics for aesthetics criteria in the example drawings and the original
diagrams are presented in Table 7.1. The number given for Direction indicates the
number of leftward edges in the drawing, which should be as small as possible for an
optimal emphasis of flow direction.

The statistics show that the first phase of the hierarchical layout method, cycle
removal, has the greatest impact on the drawing by emphasizing Direction, since
for this criterion the automatic layout is equal or better than the hand-made drawing
in all seven cases. Another factor that contributes to this, but leads to a worse aspect
ratio in most cases, is the restriction in layer assignment that edges may only point
to the right. Crossing reduction and bend minimization have a rather low priority
in the hierarchical method, which is directly reflected by the data in Table 7.1.

Generally, the output of hierarchical layout becomes more confusing when there
are many long edges in the layering. Diagrams such as the one in Figure 7.12, which
is a generated model with only one outgoing edge per vertex, receive a very compact
layout. In the comparisons covered above the average number of outgoing edges per
vertex is 1.34.

An interesting aspect that is not covered by the examples so far is the layout of
diagrams with hierarchy as in Section 2.4. The hard part here is the routing to
external ports. The current implementation of the hierarchical layout method has a
basic support for such routing, as can be seen in Figure 7.13.

Table 7.1: Statistics of example diagrams (orig. means original diagram, and hl.
means hierarchical layouter)

Crossings Direction Bends AspectRatio
Example orig. hl. orig. hl. orig. hl. orig. hl.

(SCADE) 1 0 4 7 1 63 70 1.88 2.06
(SCADE) 2 7 22 5 3 57 81 1.67 2.35

(Simulink) 3 1 6 5 1 23 42 2.77 2.84
(Simulink) 4 1 8 2 2 18 27 2.02 1.48
(Ptolemy) 5 1 2 3 1 19 31 1.57 5.29
(Ptolemy) 6 6 4 2 0 28 25 1.94 3.19
(SCADE) 7 22 18 4 0 46 38 1.53 2.44
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7.3.2 Execution Time Analysis

This section presents measurement data for the execution time of the hierarchical
layout method, shown in Figure 7.14. Execution times were determined on an AMD
Sempron 3000+ processor for different randomly generated graphs. Each value was
calculated as the average of the values for five random graphs of equal size, where
for each graph the lowest execution time of five consecutive runs was taken. Time
values were measured using a specialized progress monitor which allows to track the
execution of each submodule of the algorithm. The resulting values can be displayed
in a tree view, as seen in Figure 7.15. The example shows that in the current
implementation most time is taken by the crossing reduction phase, followed by the
edge routing phase.
When large graphs are created in GMF, the diagram framework consumes a great

amount of memory, so that the user interface becomes too slow to be able to perform
proper execution time measurements. For this reason all measurements were carried
out using a new separate Java application, which is able to create random graphs,
execute a layout algorithm, and store the results of its progress monitor in Comma
Separated Values (CSV) format.
Figure 7.14(a) presents measurements for generated graphs G = (V,E) with vary-

ing |V | and |E| = |V | in logarithmic scale. The curve is roughly linear with an
approximate slope of 1.1, hence the overall runtime behavior is nearly linear3 in the
number of vertices. For graphs with about 15 000 or less vertices the algorithm takes
less than a second, which proves its suitability for automatic layout in a user interface
environment.
The runtime behavior for generated graphs with a fixed number of 100 vertices

and varying number of edges is shown in linear scale in Figure 7.14(b). Here we see
that the curve rises much faster than in the previous case, and reaches execution
time of one second for only 100 vertices and about 1 700 edges. This proves that
the average vertex degree has a much greater impact on the execution time than the
total number of vertices and edges. One reason for this is that for vertices with a lot
of incident edges the number of long edges that stretch over multiple layers is likely
to be high, so that dummy vertices must be inserted to obtain a proper layering.
The consequence is that the problem size rises with regard to the total number of
vertices. Methods to avoid this in favor of a better asymptotical running time are
discussed by Eiglsperger et al. [20].

To give an impression of the complexity of the layout problem for such large graphs,
Figure 7.16 shows the result of the automatic layout of a graph with 100 vertices
and 500 edges.

3Real linear runtime behavior would yield a linear curve of slope 1 in logarithmic scale.
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(a) Original SCADE diagram

(b) Hierarchical layout

Figure 7.5: Comparison Example 1. Calculation of the speed of a vehicle for
the environment simulation of a cruise control system, from a SCADE
demonstration
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(a) Original SCADE diagram

(b) Hierarchical layout

Figure 7.6: Comparison Example 2. Environment model of an airplane system, from
a SCADE demonstration
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(a) Original Simulink diagram

(b) Hierarchical layout

Figure 7.7: Comparison Example 3. Simulation of a cart carrying an inverted pen-
dulum, from a Simulink demonstration
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(a) Original Simulink diagram

(b) Hierarchical layout

Figure 7.8: Comparison Example 4. Simulation of liquid dynamics in a tank, from a
Simulink demonstration
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(a) Original Ptolemy diagram

(b) Hierarchical layout

Figure 7.9: Comparison Example 5. Computation of prime numbers using the sieve
of Eratosthenes, from a Ptolemy demonstration
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(a) Original Ptolemy diagram

(b) Hierarchical layout

Figure 7.10: Comparison Example 6. Synchronous dataflow model for orthogonal
communication, from a Ptolemy demonstration
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(a) Original SCADE diagram

(b) Hierarchical layout

Figure 7.11: Comparison Example 7. Extract of a controller for a model railway
driven by a time-triggered network, from a practical course on model-
based design
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7.3 Results

Figure 7.12: Hierarchical layout of a diagram created using a random model genera-
tor, with 30 vertices and one outgoing edge per vertex

Figure 7.13: Hierarchical layout implementing edge routing to external ports
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� � ��� ��� ��� ����

�����

�

�����

�

�����

�
	��������������	������������ �"!#�$�"%'&(���*)+���,�-��.

/10
23
45617
856
92
:<;=

(b) Varying number of outgoing edges per vertex for 100 vertices

Figure 7.14: Execution times of hierarchical layout
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Figure 7.15: Execution times for each single algorithm phase on a graph with ten
vertices, distributed to four layers (screenshot)
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(a) Overview of the drawing

(b) Close-up view of a small part

Figure 7.16: Hierarchical layout of a graph with 100 vertices and 500 edges
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8 Conclusion

This thesis introduces the problem of graph drawing for port based graphs with its
special aspects of port constraints, hyperedges, and hierarchy with external ports.
Two methods are discussed with regard to this problem: hierarchical layout, us-
ing the layered approach, and orthogonal layout, using the topology-shape-metrics
approach. The former could be implemented successfully, while the latter requires
further investigation to obtain a proper implementation.

The layered approach is extended by algorithms for crossing reduction with dif-
ferent scenarios of port constraints, handling of hyperedges that connect multiple
ports, and a new approach for displaying model hierarchy. The effectiveness of these
new concepts is demonstrated by the outputs of the implementation, which yields
acceptable results and is very fast if the average vertex degree is not too high. Thus
the hierarchical layout method appears very suitable for extension and adaptation,
and its implementation can be used as a solid basis for further improvements. The
strategy design pattern, which was consequently realized in the implementation, al-
lows simple substitution of single modules. Hierarchical layout is especially effective
for sparse graphs, i.e. graphs with few edges, but an increasing number of edges per
vertex leads to confusing drawings and long running times. The main emphasis of
this algorithm lies on the direction of flow, which is consequently arranged in one
direction as much as possible.

Although the experimental results of the hierarchical and orthogonal layout meth-
ods cannot be directly compared yet, the topology-shape-metrics approach has some
theoretical advantages over the layered approach. Since its first phase, planariza-
tion, has the goal of minimizing the global number of edge crossings, the resulting
drawings are likely to become more readable than the output of hierarchical lay-
out, which suffers from a large number of crossings in many cases. Furthermore,
methods that are based on planarity have very strong theoretical backgrounds, since
the topics of planarity and planarization have gained intensive research during the
past decades, whereas the layered approach is built largely on applicatory heuris-
tics that are difficult to examine mathematically. One should therefore expect the
topology-shape-metrics approach to yield satisfying results after more resarch about
its application to data flow diagrams and more work on its implementation. Promis-
ing concepts are those of upward planarization, which can be used to add direction of
edges to this method, and of embedding constraints, which were shown to be suitable
for representation of the scenarios of port constraints in data flow diagrams.
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8.1 Future Work

The following matters can be analyzed to improve the hierarchical layout method:

• The balanced layering algorithm can be extended to more special cases. For
example, the two FBY operators on the bottom right of Figure 7.6(b) and the
two connected boxes PointReset and null_speed could be moved three layers to
the left, thus shortening the incident connections.

• The implementation of the crossing reduction phase can be optimized, for in
some cases it leads to obviously suboptimal vertex orderings, as with the au-
tomode box in Figure 7.6(b), which would have a better placement on top of
the or box.

• The ordering of edges for routing around vertices needs improvement. In Figure
7.6(b), the edges that are routed around the ExternalConditions box on the left
have a quite confusing order; two crossings could be eliminated by choosing a
different edge placement.

• The whole layout algorithm could be extended for better handling of the
FreePorts scenario. Some edge bends can be eliminated by moving the
corresponding ports.

• Operators for which all outgoing edges were reversed for cycle removal could
be reversed to emphasize their role as part of the cycles and possibly obtain a
more compact drawing. Prior to the implementation of this feature it should
be evaluated how such layouts are perceived.

• Diagrams such as the one in Figure 7.11(b) would probably benefit from the
possibility to place vertices on top of each other that would normally be ar-
ranged in a row. As this would require to allow connections between vertices
of the same layer, a simpler approach could be to reverse some of the edges in
such a row (see the X and + operators in Figure 7.11(b)) in order to break the
linear dependencies and allow a more compact layering.

• A vertex that is very broad forces the layer to which it is assigned to be broad
as well. Currently all other vertices are aligned in the center of their layer,
which is not good for sources and sinks. This should be extended so that left
and right alignment is also possible. Another idea would be to stretch broad
vertices over multiple layers.

• The edge routing to external ports can be improved to minimize the number
of crossings.

For orthogonal layout the following issues require further research:

• The new approaches of planarization with embedding constraints [31] and up-
ward planarization [9] should be merged to support both concepts.
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• Many algorithms for planarization need an implementation of SPQR trees,
which is quite complex [33]. The free OGDF library contains such an implemen-
tation, but is written in C++. It should be analyzed whether connecting to
OGDF via Java Native Interface (JNI) or writing a new implementation would
be better with regard to implementation time and effectiveness.

• A variant of GIOTTO orthogonalization should be implemented and compared
with the Kandinsky implementation. The latter must be reviewed and checked
for errors.

• Different compaction methods should be evaluated and implemented.

• Hyperedges and external ports can be considered for integration into the or-
thogonal layout method, introducing new constraints and extensions for each
layout phase.

Furthermore, other graph drawing methods besides the layered approach and the
topology-shape-metrics approach could be analyzed and extended to handle the spe-
cialties of data flow diagrams.
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Appendix A: Class Diagrams

de::cau::cs::kieler::kiml::layout::services::KimlAbstractLayoutProvider

doLayout(layoutNode : KLayoutNode,progressMonitor) : void
getLayouterInfo() : KLayouterInfo
setEnabled(state : boolean) : void
isEnabled() : boolean

EXTENSION_POINT_ID : String
ATTRIBUTE_ID : String
ATTRIBUTE_CLASS : String
ATTRIBUTE_NAME : String
ATTRIBUTE_ICON : String
enabled : boolean

de::cau::cs::kieler::klodd::hierarchical::HierarchicalDataflowLayoutProvider

setPreferenceStore(preferenceStore) : void
doLayout(layoutNode : KLayoutNode,progressMonitor) : void
getLayouterInfo() : KLayouterInfo
updateModules() : void
setNodeSizes(parentNode : KLayoutNode) : void
restoreCycles() : void

LAYOUTER_NAME : String
COLLECTION_NAME : String
PREF_MIN_DIST : String
DEF_MIN_DIST : float
PREF_CYCLE_REM : String
VAL_DFS_CYCLE_REM : String
VAL_GREEDY_CYCLE_REM : String
PREF_LAYER_ASS : String
VAL_LONGP_LAYER_ASS : String
VAL_BAL_LAYER_ASS : String
preferenceStore
minDist : float
graphConverter : GraphConverter
cycleRemover : ICycleRemover
layerAssigner : ILayerAssigner
crossingReducer : ICrossingReducer
nodewiseEdgePlacer : INodewiseEdgePlacer
nodePlacer : INodePlacer
edgeRouter : IEdgeRouter

de::cau::cs::kieler::klodd::orthogonal::OrthogonalDataflowLayoutProvider

setPreferenceStore(preferenceStore) : void
doLayout(layoutNode : KLayoutNode,progressMonitor) : void
getLayouterInfo() : KLayouterInfo
updateModules() : void
applyLayout(components : List,parentNode : KLayoutNode) : void

LAYOUTER_NAME : String
COLLECTION_NAME : String
PREF_MIN_DIST : String
DEF_MIN_DIST : float
preferenceStore
minDist : float
planarizer : IPlanarizer
orthogonalizer : IOrthogonalizer
compacter : ICompacter

<<interface>>
de::cau::cs::kieler::kiml::layout::KimlLayoutGraph::KLayoutNode

getChildNodes() : EList
getOutgoingEdges() : EList
getIncomingEdges() : EList
getParentNode() : KLayoutNode
setParentNode(value : KLayoutNode) : void
getLayout() : KNodeLayout
setLayout(value : KNodeLayout) : void
getLabel() : KNodeLabel
setLabel(value : KNodeLabel) : void
getIdString() : String
setIdString(value : String) : void
getPorts() : EList

<<interface>>
org::eclipse::emf::ecore::EObject

eClass() : EClass
eResource() : Resource
eContainer() : EObject
eContainingFeature() : EStructuralFeature
eContainmentFeature() : EReference
eContents() : EList
eAllContents() : TreeIterator
eIsProxy() : boolean
eCrossReferences() : EList
eGet(feature : EStructuralFeature) : Object
eGet(feature : EStructuralFeature,resolve : boolean) : Object
eSet(feature : EStructuralFeature,newValue : Object) : void
eIsSet(feature : EStructuralFeature) : boolean
eUnset(feature : EStructuralFeature) : void

performs layout

performs layout

<<interface>>
de::cau::cs::kieler::core::IKielerPreferenceStore

contains(name : String) : boolean
getBoolean(name : String) : boolean
getDefaultBoolean(name : String) : boolean
getDefaultDouble(name : String) : double
getDefaultFloat(name : String) : float
getDefaultInt(name : String) : int
getDefaultLong(name : String) : long
getDefaultString(name : String) : String
getDouble(name : String) : double
getFloat(name : String) : float
getInt(name : String) : int
getLong(name : String) : long
getString(name : String) : String
isDefault(name : String) : boolean
setDefault(name : String,value : double) : void
setDefault(name : String,value : float) : void
setDefault(name : String,value : int) : void
setDefault(name : String,value : long) : void
setDefault(name : String,defaultObject : String) : void
setDefault(name : String,value : boolean) : void
setToDefault(name : String) : void
setValue(name : String,value : double) : void
setValue(name : String,value : float) : void
setValue(name : String,value : int) : void
setValue(name : String,value : long) : void
setValue(name : String,value : String) : void
setValue(name : String,value : boolean) : void

<<interface>>
de::cau::cs::kieler::core::alg::IKielerProgressMonitor

begin(name : String,totalWork : int) : void
done() : void
worked(work : int) : void
isCanceled() : boolean
subTask(work : int) : IKielerProgressMonitor
getSubMonitors() : List
getParentMonitor() : IKielerProgressMonitor
getTaskName() : String
getExecutionTime() : double

1

1

uses

uses

Figure A.1: Main classes for the layout API, including layout providers for hierarchi-
cal layout and orthogonal layout
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Appendix A: Class Diagrams

<<realize>>

<<interface>>
de::cau::cs::kieler::core::alg::IAlgorithm

reset() : void
reset(monitor : IKielerProgressMonitor) : void
setProgressMonitor(monitor : IKielerProgressMonitor) : void

de::cau::cs::kieler::core::alg::AbstractAlgorithm

reset() : void
reset(monitor : IKielerProgressMonitor) : void
setProgressMonitor(monitor : IKielerProgressMonitor) : void
getMonitor() : IKielerProgressMonitor

progressMonitor : IKielerProgressMonitor

<<realize>>

<<interface>>
de::cau::cs::kieler::core::slimgraph::alg::ICycleRemover

removeCycles(graph : KSlimGraph) : void
restoreGraph() : void
getReversedEdges() : List

de::cau::cs::kieler::core::slimgraph::alg::AbstractCycleRemover

reset() : void
restoreGraph() : void
getReversedEdges() : List
reverseEdges() : void

reversedEdges : LinkedList

<<realize>>

de::cau::cs::kieler::core::slimgraph::alg::DFSCycleRemover

removeCycles(graph : KSlimGraph) : void
dfsVisit(node : KSlimNode) : void

nextDfs : int

de::cau::cs::kieler::core::slimgraph::alg::GreedyCycleRemover

reset() : void
removeCycles(graph : KSlimGraph) : void
updateNeighbors(node : KSlimNode) : void

indeg : int[]
outdeg : int[]
sources : LinkedList
sinks : LinkedList

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ILayerAssigner

assignLayers(kGraph : KSlimGraph,parentNode : KLayoutNode) : LayeredGraph

<<realize>>

de::cau::cs::kieler::klodd::hierarchical::impl::BalancingLayerAssigner

<<create>> BalancingLayerAssigner(basicLayerAssigner : ILayerAssigner)
assignLayers(graph : KSlimGraph,parentNode : KLayoutNode) : LayeredGraph
balanceElement(layeredGraph : LayeredGraph,elemIter : ListIterator) : void

basicLayerAssigner : ILayerAssigner

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ISingleLayerCrossingReducer

reduceCrossings(layer : Layer,forward : boolean) : void
reduceCrossings(layer : Layer) : void

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ICrossingReducer

reduceCrossings(layeredGraph : LayeredGraph) : void

de::cau::cs::kieler::klodd::hierarchical::impl::BarycenterCrossingReducer

reduceCrossings(layer : Layer,forward : boolean) : void
reduceCrossings(layer : Layer) : void
calcBarycenter(ranks : List) : double
calcBarycenter(forwardRanks : List,backwardsRanks : List) : double

de::cau::cs::kieler::klodd::hierarchical::impl::LayerSweepCrossingReducer

<<create>> LayerSweepCrossingReducer(layerReducer : ISingleLayerCrossingReducer)
reduceCrossings(layeredGraph : LayeredGraph) : void

layerReducer : ISingleLayerCrossingReducer

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::INodewiseEdgePlacer

placeEdges(layeredGraph : LayeredGraph) : void

de::cau::cs::kieler::klodd::hierarchical::impl::SortingNodewiseEdgePlacer

placeEdges(layeredGraph : LayeredGraph) : void
placeEdges(element : LayerElement) : void
addToSlot(node : KLayoutNode,port : KLayoutPort,slotList : List,slotMap : Map,fromPos : float,toPos : float) : void
addToSlot(port1 : KLayoutPort,port2 : KLayoutPort,slotList : List,slotMap : Map,fromPos : float,toPos : float) : void
hasOutgoing(element : LayerElement,port : KLayoutPort) : boolean
hasIncoming(element : LayerElement,port : KLayoutPort) : boolean
assignRanks(slotList : List,size : float) : int
getRankFor(port : KLayoutPort,slotList : List,ranks : int) : int

layoutDirection : KLayoutOption

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::INodePlacer

placeNodes(layeredGraph : LayeredGraph,minDist : float) : void

de::cau::cs::kieler::klodd::hierarchical::impl::BasicNodePlacer

reset() : void
placeNodes(layeredGraph : LayeredGraph,minDist : float) : void
getMovableSegments() : LinearSegment[]
sortLinearSegments(layeredGraph : LayeredGraph) : LinearSegment[]
createUnbalancedPlacement(sortedSegments : LinearSegment[]) : void
processExternalLayer(layer : Layer) : void

DIST_FACTOR : float
minDist : float
layoutDirection : KLayoutOption
sortedSegments : LinearSegment[]

de::cau::cs::kieler::klodd::hierarchical::impl::BalancingNodePlacer

<<create>> BalancingNodePlacer(basicNodePlacer : BasicNodePlacer)
placeNodes(layeredGraph : LayeredGraph,minDist : float) : void
createRequests(layer : Layer,forward : boolean) : void
validateRequests(layer : Layer) : void
calcPosDelta(connection : LayerConnection,forward : boolean) : float
isMovable(layer : Layer) : boolean

basicNodePlacer : BasicNodePlacer
minDist : float
maxWidth : float
layoutDirection : KLayoutOption
moveRequests : float[]

<<realize>>

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ILayerwiseEdgePlacer

placeEdges(layer : Layer,minDist : float) : int
getSlotMap() : Map

de::cau::cs::kieler::klodd::hierarchical::impl::SortingLayerwiseEdgePlacer

reset() : void
placeEdges(layer : Layer,minDist : float) : int
getSlotMap() : Map

EDGE_DIST : float
slotMap : Map

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::IEdgeRouter

routeEdges(layeredGraph : LayeredGraph,minDist : float) : void

de::cau::cs::kieler::klodd::hierarchical::impl::RectilinearEdgeRouter

<<create>> RectilinearEdgeRouter(layerwiseEdgePlacer : ILayerwiseEdgePlacer)
routeEdges(layeredGraph : LayeredGraph,minDist : float) : void
processOutgoing(layer : Layer) : void
processLoops(layer : Layer) : void
processExternalPorts(layeredGraph : LayeredGraph) : void
processExternalLayer(layeredGraph : LayeredGraph,layer : Layer) : void
createPointFor(port : KLayoutPort,element : LayerElement,loop : ElementLoop) : KPoint

layerwiseEdgePlacer : ILayerwiseEdgePlacer
minDist : float
layerPos : float
maxCrosswisePos : float
maxLengthwiseAddPos : float

de::cau::cs::kieler::klodd::hierarchical::impl::LongestPathLayerAssigner

reset() : void
assignLayers(kGraph : KSlimGraph,parentNode : KLayoutNode) : LayeredGraph
visit(node : KSlimNode) : int

layeredGraph : LayeredGraph

1

1

1

1

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

Figure A.2: Modules for the hierarchical layout algorithm, all implemented as sub-
classes of AbstractAlgorithm
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Figure A.3: Central data structure for the hierarchical layout algorithm, representing
a layered graph
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Appendix A: Class Diagrams

<<realize>>

<<interface>>
de::cau::cs::kieler::core::alg::IAlgorithm

reset() : void
reset(monitor : IKielerProgressMonitor) : void
setProgressMonitor(monitor : IKielerProgressMonitor) : void

de::cau::cs::kieler::core::alg::AbstractAlgorithm

reset() : void
reset(monitor : IKielerProgressMonitor) : void
setProgressMonitor(monitor : IKielerProgressMonitor) : void
getMonitor() : IKielerProgressMonitor

progressMonitor : IKielerProgressMonitor

<<realize>>

<<interface>>
de::cau::cs::kieler::klodd::orthogonal::modules::IPlanarizer

planarize(graph : KSlimGraph) : void

<<interface>>
de::cau::cs::kieler::klodd::orthogonal::modules::IOrthogonalizer

orthogonalize(graph : KSlimGraph) : void

<<interface>>
de::cau::cs::kieler::klodd::orthogonal::modules::ICompacter

compact(graph : KSlimGraph,minDist : float) : void

de::cau::cs::kieler::klodd::orthogonal::impl::PortConstraintsPlanarizer

<<create>> PortConstraintsPlanarizer(ecPlanarizer : IPlanarizer)
planarize(graph : KSlimGraph) : void
createConstraints(graph : KSlimGraph) : void
createConstraintFor(port : KLayoutPort,parent : EmbeddingConstraint,node : TSMNode) : EmbeddingConstraint

ecPlanarizer : IPlanarizer

de::cau::cs::kieler::klodd::orthogonal::impl::ec::EdgeInsertionECPlanarizer

planarize(graph : KSlimGraph) : void

<<realize>>

de::cau::cs::kieler::klodd::orthogonal::impl::ec::ECEdgeInserter

reset() : void
setGraph(graph : KSlimGraph) : void
insertEdge(edge : KSlimEdge,sourceConstraint : EmbeddingConstraint,targetConstraint : EmbeddingConstraint) : void
getEdgePlacings(insEdge : KSlimEdge,node : KSlimNode,constraint : EmbeddingConstraint,outgoing : boolean) : List
analyzeConstraint(constraint : EmbeddingConstraint,outgoing : boolean) : ConstraintResult
shortestPath(insEdge : KSlimEdge,sourcePlacings : List,targetPlacings : List) : DualPath
bfsPath(sourceFace : KSlimFace,targetFaces : List) : List
insertEdge(insEdge : TSMEdge,path : DualPath) : void
insertEdge(sourceNode : KSlimNode,sourceRank : int,targetNode : KSlimNode,targetRank : int) : TSMEdge
getIteratorFor(border : List,node : KSlimNode,rank : int) : ListIterator
getBorderIndexFor(borders : List,node : KSlimNode) : int

graph : KSlimGraph
inserted : boolean[]
forwardSelfLoop : boolean

de::cau::cs::kieler::klodd::orthogonal::impl::KandinskyLPOrthogonalizer

orthogonalize(graph : KSlimGraph) : void
getErrorMessage(returnValue : int) : String
makeIlp(graph : KSlimGraph)
setK1Constraint(node : KSlimNode,ilp,i : int) : void
setK2Constraint(face : KSlimFace,external : boolean,ilp,i : int) : void
setK3Constraint(edge : KSlimEdge,ilp,i : int) : void
setK4Constraint(node : KSlimNode,leftEdge : IncEntry,rightEdge : IncEntry,ilp,i : int) : void
setK5Constraint(edge : KSlimEdge,ilp,i : int) : void
setU12Constraint(node : KSlimNode,ilp,i : int) : void
setU4Constraint(edge : KSlimEdge,ilp,i : int) : void
addSideConstraint(edge : KSlimEdge,side : KPortPlacement,ilp,isTarget : boolean) : void
addDummyNodeConstraint(node : KSlimNode,ilp) : void
applySolution(graph : KSlimGraph,ilp) : void
getSide(sideValue : int) : Side

SOLVE_TIMEOUT : long
rows : KandinskyRows
cols : KandinskyCols

de::cau::cs::kieler::klodd::orthogonal::impl::NormalizingCompacter

reset() : void
<<create>> NormalizingCompacter(normalizedCompacter : ICompacter)
compact(graph : KSlimGraph,minDist : float) : void
createNormalizedGraph(inputGraph : KSlimGraph) : KSlimGraph
addCornerNodes(graph : KSlimGraph,currentNode : TSMNode,origNode : TSMNode,startSide : Side,endSide : Side) : TSMNode
getEndpointNode(graph : KSlimGraph,edge : KSlimEdge,portDescriptor : PortDescriptor,rank : int,source : boolean) : Pair
buildDualGraph(normalizedGraph : KSlimGraph) : void
transformMetrics(origGraph : KSlimGraph,abstrWidth : int,abstrHeight : int) : void
transformMetrics(compactables : List,graph : KSlimGraph,horizontal : boolean,abstrSize : int) : float

normalizedCompacter : ICompacter
startNodeMap : Map
endNodeMap : Map
minDist : float

de::cau::cs::kieler::klodd::orthogonal::impl::RefiningCompacter

reset() : void
<<create>> RefiningCompacter(refinedCompacter : ICompacter)
compact(graph : KSlimGraph,minDist : float) : void
getRefinements(face : KSlimFace) : List
getFrontEdge(border : List,startIndex : int) : BorderEntry
applyRefinements(graph : KSlimGraph,refinements : List) : List
insertEdge(graph : KSlimGraph,refinementEdge : RefinementEdge,face : KSlimFace) : KSlimFace
getIteratorFor(face : KSlimFace,node : KSlimNode,side : Side) : ListIterator
containsNode(edge : KSlimEdge,forward : boolean,node : KSlimNode) : boolean
buildExternalFrame(graph : KSlimGraph) : KSlimFace

refinedCompacter : ICompacter
northFrame : TSMEdge
eastFrame : TSMEdge
southFrame : TSMEdge
westFrame : TSMEdge
frameConnected : boolean

<<realize>>

de::cau::cs::kieler::klodd::orthogonal::impl::LayeringCompacter

compact(graph : KSlimGraph,minDist : float) : void
buildTopoBars(graph : KSlimGraph,horizontal : boolean) : void
getTopoBar(node : TSMNode,horizontal : boolean,index : int) : TopoBar
nextNode(node : KSlimNode,side : Side) : TSMNode
visit(topoBar : TopoBar,direction : Side) : void

topoBars : TopoBar[]

<<realize>>

1

1

de::cau::cs::kieler::klodd::orthogonal::impl::ec::EmbeddingConstraint

<<create>> EmbeddingConstraint(type : Type,parent : EmbeddingConstraint,obj : Object)

type : Type
children : List
parent : EmbeddingConstraint
object : Object

uses

1

1

<<realize>>

<<realize>>

Figure A.4: Modules for the orthogonal layout algorithm, all implemented as sub-
classes of AbstractAlgorithm
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Figure A.5: Central data structure for the orthogonal layout algorithm, representing
an undirected graph
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