
Christian-Albrechts-Universität zu Kiel

Master Thesis

A SyncCharts Editor based on YAKINDU
SCT

cand. inform. Wahbi Haribi

March 14, 2013

Department of Computer Science
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:
Dipl.-Inf. Christian Motika

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Abstract

SyncCharts are a synchronous Statecharts dialect, a graphical formalism to describe
complex reactive systems. In order to allow modeling with SyncCharts, the Kiel
Integrated Environment for Layout Eclipse Rich Client (KIELER) framework offers
an interactive editor. However, it is based on Graphical Modeling Framework (GMF)
and its generation needs a lot of modified and added templates. YAKINDU Statechart
Tools (SCT) is a modeling environment based on the concept of Statecharts, which is
designed for extensibility. Since the representation of SyncCharts is similar to State-
charts, the YAKINDU SCT Editor can be extended to implement a SyncCharts Editor
in order to minimize the effort for maintenance and to allow KIELER developers to
focus on pragmatics or semantics.
In this master thesis an approach is presented that allows the implementation of

a generic SyncCharts Editor based on YAKINDU. It is shown that the presented
approach can be reused for similar editors like an SCCharts Editor with minimal
effort. We evaluate the approach by comparing the maintenance effort with the
standard GMF implementation.

v

vi

Contents

1 Introduction 1
1.1 Reactive Systems . 1

1.1.1 The Synchronous Approach 1
1.1.2 The Graphical Approaches 2

1.2 KIELER Framework . 3
1.3 YAKINDU Open Source . 4
1.4 The Aim of this Thesis . 4
1.5 Overview . 5

2 Related Work 7
2.1 The ThinKCharts Editor . 7

2.1.1 Introduction to SyncCharts 8
2.1.2 The Editor . 8

2.2 SCCharts . 9
2.3 Generation of generic visual editors 9

3 Used Technologies 13
3.1 Eclipse . 13

3.1.1 Eclipse Modeling Framework (EMF) 15
3.1.2 Graphical Editing Framework (GEF) 17
3.1.3 Graphical Modeling Framework (GMF) 17
3.1.4 Xtext and Xtend . 18
3.1.5 Dependency Injection (Google-Guice) 19

3.2 YAKINDU SCT Editor . 20
3.2.1 Sgraph . 21
3.2.2 Stext . 23

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor 27
4.1 Modeling with ThinKCharts Editor 27

4.1.1 SyncCharts elements . 27
4.1.2 Tooling . 31
4.1.3 Validator . 34
4.1.4 Automatic layout . 35

4.2 SCCharts Editor . 35
4.3 YAKINDU SCT Editor . 37

4.3.1 Statecharts Elements . 37
4.3.2 Tooling . 44

vii

Contents

4.3.3 Validator . 46
4.4 Comparison . 47

4.4.1 Syntax . 47
4.4.2 Tooling . 52
4.4.3 Validator . 54
4.4.4 Automatic layout . 55
4.4.5 White spaces . 55

4.5 Project design . 55

5 Implementation 57
5.1 The contribution of Itemis AG . 57

5.1.1 Create a new extended YAKINDU SCT Editor 57
5.1.2 Yakindu extensions, by Itemis AG 65

5.2 Using YAKINDU SCT extension mechanisms for implementing a Sync-
Charts Editor . 67
5.2.1 The Sgraph project . 68
5.2.2 The Stext project . 69
5.2.3 The Editor project . 73
5.2.4 Automatic layout . 76
5.2.5 Reducing white spaces . 78

6 Conclusions 81
6.1 Evaluation . 81
6.2 Summary . 82
6.3 Future Work . 83

6.3.1 SyncChart Importer . 83
6.3.2 Simulation and Code Generation 83
6.3.3 An Actor Oriented Editor based on YAKINDU 83
6.3.4 A SCXML converter . 83

Bibliography 85

viii

List of Figures

1.1 A reactive system that reacts to events coming from the environment 1
1.2 The different areas of the KIELER project 3

2.1 Simulation of the ABRO example in the KIELER framework 7

3.1 The Eclipse workbench (KIELER perspective) 14
3.2 The visual editor for creating Eclipse Modeling Framework (EMF)

models . 16
3.3 The tree-based editor for creating EMF models 17
3.4 The Xtext Domain-Specific Language (DSL) grammar 19
3.5 Dependencies between YAKINDU metamodels 20
3.6 YAKINDU Sgraph . 22
3.7 YAKINDU Stext (EMF class elements) 24
3.8 An excerpt of the Stext expressions definition 26

4.1 Different ThinKCharts Editor states 28
4.2 ThinKCharts Editor reference states 28
4.3 Compartments overview of the KIELER SyncCharts macro state . . 29
4.4 SyncCharts transition types and the history transition 30
4.5 ThinKCharts Editor palette . 31
4.6 ThinKCharts Editor pop-up balloons 32
4.7 ThinKCharts Editor context menu 32
4.8 ThinKCharts Editor properties views 33
4.9 Overview of SCCharts syntax . 36
4.10 Overview of the YAKINDU SCT features 37
4.11 YAKINDU SCT states . 38
4.12 YAKINDU SCT final state . 38
4.13 YAKINDU SCT initial state . 39
4.14 YAKINDU SCT choice . 39
4.15 YAKINDU SCT junction . 40
4.16 YAKINDU SCT composite state . 40
4.17 YAKINDU SCT history state . 41
4.18 YAKINDU SCT scope . 41
4.19 YAKINDU SCT palette . 44
4.20 YAKINDU SCT assistant provider 45
4.21 YAKINDU SCT state properties view 46

ix

List of Figures

4.22 Extending the state and transition elements in the YAKINDU SCT
Sgraph metamodel . 49

4.23 The extended assistant provider . 52
4.24 Extended properties views . 53
4.25 An abstract overview of the project design and the metamodels de-

pendencies . 55
4.26 The ABRO example using the GMF based Thin Kieler SyncCharts

(ThinKCharts) Editor and the SyncCharts Editor based on YAKINDU
SCT before and after applying the automatic layout and reducing
white spaces . 56

5.1 A detailed overview of the project design introduced by the Figure 4.25 67
5.2 The Syncgraph metamodel . 68

6.1 Comparing the manual code of the ThinKCharts Editor and the Sync-
Charts Editor based on YAKINDU SCT 82

x

Abbreviations

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEL Kiel Integrated Environment for Layout

KIML KIELER Infrastructure for Meta Layout

KLay KIELER Layout Algorithms

KAOM KIELER Actor Oriented Modeling

KARMA KIELER Advanced Rendering of Model Appearance

KEG KIELER Editor for Graphs

KEX KIELER Example Management

FSM Finite State Machines

GUI Graphical User Interface

SCADE Safety Critical Application Development Environment

SCT Statechart Tools

RCP Rich Client Platform

IDE Integrated Development Environment

SWT Standard Widget Toolkit

OS Operating System

HTML Hypertext Markup Language

OLE Object Linking and Embedding

COM Component Object Model

UI User Interface

OSGi Open Services Gateway initiative

JVM Java Virtual Machine

KIEM KIELER Execution Manager

xi

List of Figures

EMF Eclipse Modeling Framework

GMF Graphical Modeling Framework

GEF Graphical Editing Framework

XMI XML Metadata Interchange

XML Extensible Markup Language

UML Unified Modeling Language

MVC Model View Controller

DSL Domain-Specific Language

KlePto KIELER leveraging Ptolemy semantics

EBNF Extended Backus-Naur Form

GME Generic Modeling Environment

RSA Rational Software Architect

SM Stereotype Mechanism

MEM Metamodel Extension Mechanism

MOF MetaObject Facility

KIVI KIELER View Management

SCXML State Chart eXtensible Markup Language

XSLT Extensible Stylesheet Language Transformations

ThinKCharts Thin Kieler SyncCharts

SC SyncCharts in C

SJ Synchronous Java

YAKINDU YAKINDU

xii

1 Introduction

1.1 Reactive Systems
A reactive system is a system that continuously reacts to events coming from the
environment as depicted in Figure 1.1. A reaction consists of three phases. The sys-
tem reads input signals from the environment, computes the reaction, and performs
the outputs to the environment [4]. A reactive system is often composed of parallel
interacting subsystems. Communication and synchronization are essential for these
interactions. Safety critical systems often are reactive systems. A typical example

Figure 1.1: A reactive system that reacts to events coming from the environment [4]

is a flight control system of modern airplanes. It allows one plane to take-off, stay
in the air, and land. The system could cause injury or loss of human life if it fails or
encounters errors. Therefore, such systems have to fulfil the timing constraints and
must have a deterministic behavior.

1.1.1 The Synchronous Approach
Modeling and programming reactive systems is not satisfied within traditional pro-
gramming languages. Synchronous languages simplify the describing and analyzing
task by allowing the simple expression of deterministic timing predictable concur-
rency and preemption. Synchronous languages rely on the synchrony hypothesis. In
the synchrony hypothesis, computations are considered to be atomic and assumed

1

1 Introduction

to be instantaneous [13]. The system reacts to its environment in no time. The
notion of physical time is replaced by a notion of clock cycle (logical ticks). Time
is divided into ordered sequences of logical ticks. In each tick, the program reads
the inputs, computes its reaction and suspends. The perfect synchrony hypothesis is
defined as below:

Definition 1 (Perfect Synchrony) A system works in perfect synchrony, if all
reactions of the system are executed in zero time. Hence, outputs are generated at
the same time, when the inputs are read.

The communication between the reactive system and its environment is done
through signals. Each signal is only present or absent in a tick, never both and each
signal is present in a tick only if it is produced in this tick.

1.1.2 The Graphical Approaches

Synchronous languages like Esterel [8] resolve the problems of ensuring the timing
constraints and providing a deterministic behavior encountered by describing com-
plex reactive systems. However, they are not user-friendly and with large systems
the program becomes unclear, which causes that they are not favored in the industry.
Graphical formalisms like Statecharts, SyncCharts, and SCCharts are simpler and
more interactive. They let users create programs graphically manipulating visual
expressions, spatial arrangements of text and graphic symbols [9].
Statecharts [16], conceived by Harel in the 1980s, are a hierarchical model which

enables the expression of complex reactive behavior as well as compositional and
modular. They are able to express the parallelism, hierarchy and some forms of
preemption. However, Statecharts are non-deterministic and do not completely fulfil
the synchrony hypothesis [32].
SyncCharts can be seen as a graphical notation for the Esterel language [6] con-

ceived in the mid nineties. They was created by Charles Andre. SyncCharts are
based on the synchronous paradigm and devoted to programming reactive systems.
They are a Statecharts dialect disposing additionally of a deterministic behavior and
based on the synchrony hypothesis as Esterel is.
The semantics of SyncCharts are restrictive, which causes the increase of rejected

programs deemed as non-constructive [7]. SCCharts [35] are a sequentially construc-
tive Statecharts dialect. They extend SyncCharts with the advantage of admitting
a larger class of programs while preserving deterministic concurrency.
There are several graphical software tools that integrate these graphical for-

malisms. Among these tools are in particular the Kiel Integrated Environment for
Layout Eclipse Rich Client (KIELER)1 Framework and the YAKINDU2 Open Source
project. They are presented in the following two sections.

1http://www.informatik.uni-kiel.de/rtsys/kieler
2http://www.itemis.com/itemis-ag/products/language=en/43503/
yakindu-open-source

2

http://www.informatik.uni-kiel.de/rtsys/kieler
http://www.itemis.com/itemis-ag/products/language=en/43503/yakindu-open-source
http://www.itemis.com/itemis-ag/products/language=en/43503/yakindu-open-source

1.2 KIELER Framework

Figure 1.2: The different areas of the KIELER project

1.2 KIELER Framework
KIELER is an academic research project that integrates a variety of modeling lan-
guages into the rich client platform Eclipse. KIELER is designed to enhance the
graphical model-based design of complex systems by employing automatic layout
in all graphical components of the diagrams within the modeling environment. As
depicted in Figure 1.2, it is composed of four areas:

• Semantics

• Pragmatics

• Layout

• Demonstrators

The semantics area includes the simulators for modeling languages integrated in the
project KIELER and the KIELER Execution Manager (KIEM), which is the infrastruc-
ture for simulators, validators, and other facilities [19][20].
The pragmatics area contains a set of practical aspects, which allows the creation

and modification of models as well as the synthesis of diverse views.
As mentioned before, KIELER enhances the graphical model-based design of com-

plex systems by employing automatic layout [15] in all graphical components of the
diagrams. This feature directly allows changing the structure of the model. The
automatic layout also permits to expand the important parts of a model and to
hide the rest. This technique works immediately without any customisation on each
editor integrated into the KIELER framework.

3

1 Introduction

The demonstrators area contains the editors developed in the context of the
KIELER framework:

• KIELER SCCharts Editor and SyncCharts Editor, to allow the graphical mod-
eling of reactive systems. They are presented in more detail in Chapter 2.

• KIELER Actor Oriented Modeling (KAOM) [22], to permit the rendering and
simulation of actor oriented modeling languages like Ptolemy.

• KIELER Advanced Rendering of Model Appearance (KARMA), a collection of
tools, to enable the customisation of the diagram appearance.

• KIELER Editor for Graphs (KEG), to permit the development of graph algo-
rithms and layout algorithms.

The layout and demonstrators areas are relevant for this work, since we imple-
mented the SyncCharts Editor and SCCharts Editor and used the automatic layout
to range the modeled diagrams.

1.3 YAKINDU Open Source

YAKINDU3 Open Source is a collection of Eclipse-based software tools designed for
the development of embedded systems. It was developed by the Itemis4 AG com-
pany. YAKINDU Open Source is composed of two main projects: YAKINDU Stat-
echart Tools (SCT) and YAKINDU Damos. YAKINDU SCT allows the development
of reactive, event-driven systems using Statecharts. YAKINDU Damos allows the
development of reactive, dataflow–oriented systems 5.

1.4 The Aim of this Thesis

The primary task to be undertaken for this thesis was the development of a graphical
editor for SyncCharts. A main requirement was the ease of maintenance, in par-
ticular compared to the existing GMF based Thin Kieler SyncCharts (ThinKCharts)
Editor. A further requirement was the ease of customization, motivated by the on-
going development of SCCharts, a variant of SyncCharts. At the onset of this thesis
work, YAKINDU SCT was identified as a suitable basis that should be used in this
thesis.

3http://www.itemis.com/itemis-ag/products/language=en/43503/
yakindu-open-source/

4http://www.itemis.de/
5http://code.google.com/a/eclipselabs.org/p/yakindu/

4

http://www.itemis.com/itemis-ag/products/language=en/43503/yakindu-open-source/
http://www.itemis.com/itemis-ag/products/language=en/43503/yakindu-open-source/
http://www.itemis.de/
http://code.google.com/a/eclipselabs.org/p/yakindu/

1.5 Overview

1.5 Overview
The rest of this thesis is organized as follows. Chapter 2 presents related work. It
gives an overview of the ThinKCharts Editor and introduces the SCCharts concept.
Finally, several tools for the development of graphical editors are evaluated.
After that, Chapter 3 presents the technologies used for the implementation of the

SyncCharts Editor based on YAKINDU. It presents the Eclipse platform. Afterwards,
it introduces the EMF, GEF, and GMF technologies, which are used for the generation
of graphical editors. The Xtext and Xtend technologies as well as the Dependency
Injection design pattern are also introduced. Finally, it gives an overview of the
YAKINDU SCT Editor.
Chapter 4 provides a comparison between the ThinKCharts Editor, the SCCharts

Editor, and the YAKINDU SCT Editor. It outlines the requirements to implement
the new SyncCharts Editor as well as the SCCharts Editor and gives an abstract
overview of the project design.
Chapter 5 presents the contribution of Itemis AG in this work and gives an im-

plementation of the SyncCharts Editor as well as the SCCharts Editor.
Finally, Chapter 6 concludes this thesis by summarizing it, evaluating it, and

giving some ideas for future research.

5

1 Introduction

6

2 Related Work

The interest in designing and developing user-friendly software is increasing. Inter-
activity of software applications plays an important role in productivity gains for
programmers. The aim is to make systems easier to use.
Section 2.1 introduces the ThinKCharts Editor, an interactive editor which is re-

placed by the resulting SyncCharts Editor of this work. That provides an overview
of which functionalities the new editor should offer. Section 2.2 introduces SC-
Charts, which are the modeling language used by the SCCharts Editor. Finally, in
Section 2.3 several tools for the development of graphical editors are evaluated.

2.1 The ThinKCharts Editor

Figure 2.1: Simulation of the ABRO example in the KIELER framework

The ThinKCharts Editor is a GMF based editor that allows the graphical modeling
of reactive systems. It was developed and documented by Matthias Schmeling [30]
in the context of his diploma thesis and was enhanced and maintained by Hauke

7

2 Related Work

Fuhrmann [14]. The ThinKCharts Editor was generated using the Graphical Modeling
Framework (GMF) Tooling project, introduced in Section 3.1.3. The GMF Tooling
uses templates to generate a diagram code. However, adding and manipulating
these templates is time-consuming. Therefore, this work extends the YAKINDU SCT
Editor to implement a SyncCharts Editor. This approach minimizes the effort for
maintenance.

2.1.1 Introduction to SyncCharts

The representation of SyncCharts is similar to Statecharts. They use states, tran-
sitions, and actions to describe the behavior of a reactive system. A state can be
either a simple state or a macro state. A simple state is empty, while a macro state
contains a SyncChart. SyncCharts support three types of transitions: strong abor-
tion, weak abortion, and normal termination. A transition is defined by an action,
consisting of a trigger and an effect.
The ABRO example in Figure 2.1 is a typical example, which contains the main

elements of SyncCharts. It combines instantaneous signal reaction, preemption, and
concurrency. It has three input signals A, B, and R and an output signal O. The
system waits concurrently for the input signals A and B before emitting the output
signal O. If at any time the input signal R (Reset) is present, the behavior of the
system is preempted to start from the beginning.

2.1.2 The Editor

The ThinKCharts Editor has four main functions:

1. Editing: The editor combines the graphical and textual modeling of SyncCha-
rts. It permits adding, removing, modifying, and manipulating SyncCharts
elements by changing the appearance or arranging them. The palette, located
on the right side in Figure 2.1, displays a list of SyncCharts elements to be
used in the editor. It is also possible to add elements using the context menu
(right-click). The properties tab, located on the bottom in Figure 2.1, allows
the manipulation of attributes of the SyncCharts elements. The ThinKCharts
Editor uses the attribute awareness approach to improve and simplify the cre-
ation of SyncCharts. This approach allows to change the appearance of a
figure in the editor by manipulating attributes.

2. Validation: It permits the syntactic and semantic check of a SyncChart and
ensures that no invalid one is created. It consists of a list of rules that must
be respected during the modeling. If a rule is violated, the faulty element is
marked by an error marker. Examples of validation rules are the recognition
of non-reachable states or the reference of a non-existent signal.

3. Simulation: The KIELER framework offers a SyncCharts simulator [19][20]
based on the KIELER leveraging Ptolemy semantics (KlePto) project [21]. It

8

2.2 SCCharts

offers the user the opportunity to directly execute and simulate the SyncChart.
It is also possible to set and check the values and statutes of variables and
signals as well as triggers and effects during the simulation. Figure 2.1 shows
a SyncChart being simulated. The execution manager offers the opportunity
to run an execution, to execute a SyncChart step by step, and to stop it.
The duration of a step can be manipulated by the user. The active states are
marked with a thick red border on the active diagram editor. Located on the
left side, the data table allows to emit a signal. It also permits to assign a
value to a signal or a variable. The synchronous signals tab, located on the
bottom, shows the signals statuses in each step.

4. Code Generation: It allows to generate SyncCharts in C (SC) [33] and
Synchronous Java (SJ) [23] code from the SyncChart.

The main function of the derived YAKINDU SyncCharts Editor is the editing of
SyncCharts models and the verifying of their validity. Therefore, the editing and
validation parts, presented above, are important in the context of this work.
Since this work aims to implement a SyncCharts Editor as well as a SCCharts

Editor, the following section introduces the SCCharts modeling language.

2.2 SCCharts

SCCharts are an extension of SyncCharts. They are based on sequential construc-
tiveness, which was introduced by von Hanxleden et al. in [35]. An implementation
for the SCCharts concept was presented by Björn Duderstadt in the context of his
diploma thesis [12]. It consists of an editing system based on the NI Diagram SDK,
a Visual Studio solution.
Syntactically, SCCharts do not differ much from SyncCharts. They have the same

graphical elements: states, transitions, etc. However they differ in their semantics
and the use of variables. In the context of this work, the semantics is ignored since
there is no intention to implement a simulator or a code generator for SCCharts,
but the goal is to implement the editor.

2.3 Generation of generic visual editors

Programming and adapting modeling visual editors requires a lot of time and effort.
There are tools that aim to accelerate the development of such editors by providing
a platform for the generation of source code based on a metamodel. An evaluation
of several tools is presented by Amyot et al. in [2]. The tools are Generic Modeling
Environment (GME), Tau G2, Rational Software Architect (RSA), XMF-Mosaic, and
Eclipse with EMF and GEF.

9

2 Related Work

GME 1 is a configurable toolkit for the generation of domain-specific modeling envi-
ronments. It is destined for programming language that supports Component
Object Model (COM) like C++ and C#.

Telelogic Tau G2 2 is a model-driven development environment. It allows the gen-
eration of editors based on Unified Modeling Language (UML) profiles3. Tele-
logic Tau G2 provides two mechanisms for the definition of profiles: Stereotype
Mechanism (SM) and Metamodel Extension Mechanism (MEM).

RSA 4 is a software development environment for the Eclipse platform. It also uses
profiles and provides the SM to define them.

XMF-Mosaic 5 is a development environment for modeling languages for the Eclipse
platform. It is extensible and also provides a metamodel which is defined in a
class diagram in MetaObject Facility (MOF)6/XCore7.

Eclipse is introduced in Section 3.1.

Amyot et al. evaluated the tools by creating a simple metamodel that covers
interesting element notations. Afterwards, they generated a graphical editor using
each tool. The evaluation criteria was the following:

• Graphical completeness: If all the notation elements may be represented.

• Editor usability: If the generated editor supports the simple manipulation of
notation elements and properties as well as undo/redo, load/save, etc.

• Effort: The effort (time and effort) required to learn the tool.

• Language evolution: The effort to extend the older models by changes.

• Integration with other languages: The integration with other tools.

• Analysis capabilities: The capability to analyze and transform a produced
model.

1http://www.isis.vanderbilt.edu/Projects/gme/
2http://www-01.ibm.com/software/rational/
3http://www.uml.org/#UMLProfiles/
4http://www-306.ibm.com/software/awdtools/architect/swarchitect/
5http://www.xactium.com/
6http://www.omg.org/mof/
7http://wiki.eclipse.org/Xcore/

10

http://www.isis.vanderbilt.edu/Projects/gme/
http://www-01.ibm.com/software/rational/
http://www.uml.org/#UMLProfiles/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www.xactium.com/
http://www.omg.org/mof/
http://wiki.eclipse.org/Xcore/

2.3 Generation of generic visual editors

GME Tau G2 RSA XMF-Mosaic Eclipse
Graphical Completeness 0 − −− − +
Editor Usability 0 0 − − ++
Effortlessness 0 − + − −−
Language Evolution + ? ? ? 0
Integration − + + − +
Analysis / Transformation 0 0 − + 0
−− for Very Low, − for Low, 0 for Medium, + for High, ++ for Very High

Table 2.1: Overview of the comparison [2]

Table 2.1 represents the results of the experiment. The comparison shows that
Eclipse is the best in the usability (Editor usability) and the representation of no-
tation elements (Graphical completeness). It offers a good integration solution via
extension points. The language evolution as well as the analysis capabilities are
sufficient (Medium). However, Eclipse is the most difficult to be mastered (Effort).
Amyot et al. concluded that Eclipse appears to be the most viable and mentioned

that the development effort will be proportional to the benefits.

11

2 Related Work

12

3 Used Technologies

In order to implement a SyncCharts Editor based on YAKINDU SCT, several tech-
nologies and tools have been used. They are presented in the following.

3.1 Eclipse

The editor developed in this work is implemented as a set of Eclipse plug-ins. There-
fore, this section introduces the Eclipse platform and gives an overview of its plug-in
concept.
Eclipse1 is a platform developed by IBM in 2001. It is an open source software,

which was used earlier only for the development with the Java programming lan-
guage. It is now used as an Integrated Development Environment (IDE) for the
programming with various languages like Java, PHP, C, and C++.
Eclipse enables the development of rich client applications by providing a Rich

Client Platform (RCP) [18]. It was introduced for the first time in Eclipse version 3.
It allows to reuse Eclipse components for the development of custom client applica-
tions. The RCP is composed of several components, among them there are:

Equinox OSGI2 implements the Open Services Gateway initiative (OSGi). The task
of the OSGi is to run Java code from multiple sources in a single Java Virtual
Machine (JVM) [27]. With Equinox, applications can be implemented in a
modular way. An application can be considered as a set of bundles, which can
be installed, started, and stopped independently.

Core platform controls the life cycle of an Eclipse application. It represents the
basic infrastructure. It is composed of a small number of plug-ins3.

Standard Widget Toolkit (SWT) [25] is a graphical library. It provides the pos-
sibility to produce a Graphical User Interface (GUI), that is well integrated
in the Operating System (OS). The SWT offers many widgets ready to be
used. Among these widgets are buttons, combos, and progress-bars4. It is
also possible to use the standards dialog boxes of the OS, to display Hypertext
Markup Language (HTML) pages using the standard internet browser, and to
support Object Linking and Embedding (OLE)/COM on Windows allowing the
integration of Windows applications.

1http://www.eclipse.org/
3http://en.wikipedia.org/wiki/Plug-in_(computing)/
4http://www.eclipse.org/swt/widgets/

13

http://www.eclipse.org/
http://en.wikipedia.org/wiki/Plug-in_(computing)/
http://www.eclipse.org/swt/widgets/

3 Used Technologies

Figure 3.1: The Eclipse workbench (KIELER perspective)

JFace5 [1] is a User Interface (UI) toolkit designed to work with SWT. It permits
to handle the following tasks: Sorting, filtering, and updating of widgets. It
provides tools for creating wizards and managing preferences. It allows to
manage the connection between graphical components and to display data
through the notion of viewer. JFace proposes, in addition to the standards
dialog boxes of the OS, to use customized dialog boxes.

Eclipse workbench is the graphical solution proposed by the Eclipse RCP. It offers
a collection of elements, which cover the basic needs of programming client
applications. Figure 3.1 represents an overview of the Eclipse workbench. The
workbench provides views, editors, perspectives, and wizards:

Views are used in many different ways. They are typically used for browsing
files or packages, modifying properties, or displaying problems. Besides
the typical use, views also serve to control executions of simulations, to
set inputs, and to display outputs, as it was used in the KIELER project.

Editors are used to edit or browse a document.

Perspectives determine the collection of visible views and their locations in
the user interface. There can only be one selected perspective at any
time.

14

3.1 Eclipse

Wizards allow the user to enter information in a structured way (a sequence
of dialog boxes), which help to perform a task. As seen in Figure 3.1, the
Export Graphs Wizard permits the export of graphical diagrams into the
selected folder with the given destination format.

Eclipse provides the concept of extension points and extensions, which is a mech-
anism that permits the connection between plug-ins. Extension points are defined
in a plug-in to permit other plug-ins, which define extensions, to add functionalities
in the first. Extensions and extension points are described in an Extensible Markup
Language (XML) document, which may be added and modified using the Eclipse
manifest editor.

YAKINDU SCT provides extension points, which are used in the context of this work
to extend the editor by adding functionalities that are relevant to the SyncCharts
Editor.

3.1.1 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) is used in this work to define the underlying
models of the SyncCharts Editor.

EMF6 is an Eclipse framework that generates from a given metamodel a set of Java
classes. It provides a set of adapter classes for the viewing and editing of the model
as well as a basic editor. The metamodel can be described via different languages,
e.g., UML7, XML8, or XML Metadata Interchange (XMI)9.

Modeling

To specify the metamodel with EMF, a file in an ecore format can be created directly
in Eclipse. The ecore modeling elements are presented in the following:

EPackage represents a package.

EClass represents a class, which may contain a set of attributes (EAttribute) and
references (EReference).

EAttribute is an attribute having a name and a type.

EReference is used to associate classes. It points to a reference class and may
represent a containment.

EDataType represents the type that an attribute can be.

6http://www.eclipse.org/modeling/emf/
7http://www.uml.org/
8http://www.w3.org/XML/
9http://www.omg.org/spec/XMI/

15

http://www.eclipse.org/modeling/emf/
http://www.uml.org/
http://www.w3.org/XML/
http://www.omg.org/spec/XMI/

3 Used Technologies

Figure 3.2: The visual editor for creating EMF models

EMF provides a graphical editor, which allows to graphically create and modify
the metamodel using UML-like class diagrams. The advantage of this editor is that
it offers a view of the metamodel allowing the clear understanding of how objects
interact with each other. Figure 3.2 depicts a subset of the YAKINDU SCT Sgraph
metamodel, which is fully explained in Section 3.2.1. The palette, located on the left
side, offers the different elements to be used for modeling the metamodel. Classes
are represented by boxes. The top partition of the box is conceived to define the
name of the class. Attributes are defined in the middle of the box. The partition
in the bottom is destined for operations. As seen in Figure 3.2, the Transition class
has an attribute of type EInt. It inherits from the reaction class. The inheritance
is depicted by a solid line having an unfilled arrowhead. A Reaction consists of an
optional Trigger and an optional Effect.
Besides the graphical editor, EMF allows to define ecore models using a tree-based

editor. Figure 3.3 represents the same subset of the YAKINDU SCT Sgraph metamodel
presented in Figure 3.2. Classes, attributes, and references can be created using the
context menu. The property view permits to define a name, a type, and other
properties.
Ecore models also can be created using the Xcore syntax10.
In the context of this work, the EMF graphical editor is used to understand

YAKINDU SCT metamodels and the EMF tree-based editor is used to create the
metamodel of the SyncCharts Editor.

10http://wiki.eclipse.org/Xcore

16

http://wiki.eclipse.org/Xcore

3.1 Eclipse

Figure 3.3: The tree-based editor for creating EMF models

Implementing Java Code

As mentioned before, EMF generates Java code based on the metamodel. In the first
place, a generator model is generated that allows for implementing Java code. This
model contains information and properties for the code generation, e.g. the model
plug-in identifier, the model directory, the file extension, and the base package. Once
the properties are set, the Generate the Model Core option from the context menu will
create the Java implementation of the EMF model into the selected model directory.

3.1.2 Graphical Editing Framework (GEF)

The Graphical Editing Framework (GEF)11 is an Eclipse plug-in for the creation of
graphical editors and views destined for the Eclipse workbench. It uses the Draw2D12

framework to display the graphics on an SWT13 canvas. The advantage of using GEF
is that it enables simple changes to be applied to the model from the view.

3.1.3 Graphical Modeling Framework (GMF)

EMF defines the underlying models of the SyncCharts Editor and GEF allows to
display the graphics. In order to integrate the EMF models with the GEF framework
and to provide a generative infrastructure for building modeling applications, the
11http://www.eclipse.org/gef/
12http://www.eclipse.org/gef/draw2d/
13http://www.eclipse.org/swt/

17

http://www.eclipse.org/gef/
http://www.eclipse.org/gef/draw2d/
http://www.eclipse.org/swt/

3 Used Technologies

GMF technology is used. GMF14 is an Eclipse plug-in that bridges between EMF and
GEF technologies.
On the one hand, a GMF based editor can be generated using the GMF Tooling

project, which provides a model-driven approach for the generation of graphical
editors in Eclipse. The GMF Tooling was used to generate the ThinKCharts Editor.
On the other hand, a GMF based editor can be created using the GMF runtime,

which provides many features that must be coded by hand. YAKINDU SCT Editor
uses the GMF runtime.

GMF provides figures, which are basically nodes and edges. On the one hand, a
node can be for example a rectangle, an ellipse, or another geometric object. On the
other hand, an edge is a connection between two nodes. A figure may be extended
to create a custom one.
As previously stated, GMF is used to generate a graphical editor. The latter is

equipped with tools allowing the creation of diagrams (e.g., add figures into the
editor or create a connection between two figures). Once the diagram is ready, it is
saved in the form of a notation model. That preserves the structure and hierarchy
of the diagram as well as the position and size of the modeling objects.

3.1.4 Xtext and Xtend

In the context of this work, Xtext defines the YAKINDU SCT textual language, which
is extended to define the SyncCharts textual language. Xtext generates an EMF
metamodel. The metamodel for the textual language of YAKINDU SCT (Stext) is
presented in Section 3.2.2. Xtend is used in YAKINDU SCT to check the type confor-
mance of expressions, which are introduced in Section 3.2.2.

Xtext

Xtext15 is a framework that allows the user to define his own Domain-Specific Lan-
guage (DSL). It consists of a set of plug-ins, which can be installed in the Eclipse
IDE. The grammar of the DSL is specified using the Xtext textual language.
Xtext generates an ecore model. It also permits to reuse and extend an existing

ecore model. Xtext uses EMF for the generation of a DSL editor. The generated
editor offers many useful features like syntax coloring, code completion, and static
analysis.
Figure 3.4 shows a subset of the Xtext textual language, which generates the EMF

metamodel presented in Figure 3.2 and Figure 3.3. The Interface rule specifies that
an interface may either be a Variable or a Signal. The Signal rule specifies that a
signal definition starts with defining its direction, followed by the literal signal and
the name. The Signal direction may be an input, an output, or both. The direction
is specified by writing the literals input or output. The name represents the signal
identifier. A Variable rule specifies that a variable definition may start with the
14http://www.eclipse.org/modeling/gmp/
15http://xtext.itemis.com/xtext/language=en/36527/about-xtext

18

http://www.eclipse.org/modeling/gmp/
http://xtext.itemis.com/xtext/language=en/36527/about-xtext

3.1 Eclipse

Figure 3.4: The Xtext DSL grammar

literal static, followed by the type and the name. The type is an enumeration. It
contains the possible types that a variable may be.

Xtend

Xtend is a programming language. It facilitates the use of Java by making the code
easier to read and to write. Further details on how to use Xtend can be found on
the Xtend website16.

3.1.5 Dependency Injection (Google-Guice)

Dependencies between software artifacts (classes, packages, functions, etc.) make it
difficult to update and maintain a software. YAKINDU SCT is designed for exten-
sibility. Therefore, it uses the Dependency Injection concept and precisely Google
Guice to remove hard-coded dependencies.
Dependency Injection [36] is a design pattern that allows to dynamically create

dependencies between different classes. By using this method, the dependencies
between classes are no longer hard-coded and expressed in the code statically but
dynamically determined at runtime.
Google Guice17 is a Java software framework for Dependency Injection. It is

released by Google under the Apache Licence. Google Guice uses a special module
16http://help.eclipse.org/helios/topic/org.eclipse.xpand.doc/help/Xtend_

language.html
17http://code.google.com/p/google-guice/

19

http://help.eclipse.org/helios/topic/org.eclipse.xpand.doc/help/Xtend_language.html
http://help.eclipse.org/helios/topic/org.eclipse.xpand.doc/help/Xtend_language.html
http://code.google.com/p/google-guice/

3 Used Technologies

YAKINDU BASE YAKINDU SCT

Types

Base

Stext

Sgraph

Figure 3.5: Dependencies between YAKINDU metamodels

to define the relations between interfaces and their implementations. To use this
module, an injector must be instantiated. The corresponding class has to be passed
as a parameter to the injector. The @Inject annotation enables to get an instance
of any of the bound classes.

3.2 YAKINDU SCT Editor

YAKINDU SCT Editor is a set of Eclipse plug-ins for the modeling with State-
charts [16]. It is based on EMF, GEF, and GMF, which offer sophisticated features for
the development of graphical editors. The advantage of using these technologies is
the simplicity to adapt the editor to changes [2]. The SyncCharts Editor presented
here extends the YAKINDU SCT Editor. The metamodel used by the latter allows to
represent Statecharts. Therefore, it should be adapted to the SyncCharts syntax.
In the following, the YAKINDU SCT Editor metamodel is presented. This permits to
delimit where to make changes in the metamodel.

YAKINDU SCT Editor provides two metamodels for the definition of its syntax.
As depicted in Figure 3.5, the Stext metamodel extends the Sgraph metamodel as
well as the Types and Base18 metamodels, which are implemented by the YAKINDU
Base project. The YAKINDU Base project contains elements used together with
the YAKINDU Damos project. The Stext defines the textual representation of State-
charts. It implements the interfaces and reactions as well as the expression language,
which will be used to write the triggers and effects. The Sgraph metamodel extends
the Base metamodel. It defines the graphical representation of Statecharts. It spec-
ifies how regions, states, and transitions are defined.

18org.yakindu.base.types

20

3.2 YAKINDU SCT Editor

3.2.1 Sgraph

Sgraph19 is the metamodel for the graphical representation of the abstract elements
of a Statechart (see Figure 3.6).
The basic elements introduced in the Sgraph consist of: Statechart, Region, Vertex,

State, and Transition. In the following, these are described.

Statechart

The Statechart is the root element of the model. It extends SpecificationElement,
ReactiveElement, ScopedElement, and CompositeElement. A SpecificationElement has
a String attribute allowing to specify a textual definition in an element. The latter
may be, e.g., an interface or a reaction declaration. This part is supported by
the Stext metamodel introduced in the next subsection. A ReactiveElement has
two attributes: reactions and localReactions. Each of these attributes contains zero
or more elements of type Reaction. A Reaction contains two attributes. The trigger
attribute is of type Trigger and the effect attribute is of type Effect. A ScopedElement
comprises a list of elements of type Scope as well as a namespace attribute. A Scope
consists of Declarations, Events, and Variables. These are also implemented in the
Stext metamodel. A CompositeElement is composed of a list of Regions.

Region

A Region extends the NamedElement from the Basemetamodel. It comprises Vertices,
a priority of type EInt, and exactly one CompositeElement. It means that every
element that contains a Region is a composite element. A Region may be contained
by a State or a Statechart.

Vertex

A Vertex has the following attributes: parentRegion, incomingTransitions, and outgo-
ingTransitions. The parentRegion attribute is of type Region. It contains the parent
region, in which the current vertex is included. The incomingTransition and outgo-
ingTransitions are two lists of Transitions that represent respectively the incoming
and outgoing transitions of the current vertex. A Vertex may be extended by a
RegularState or a Pseudostate.

State

On the one hand, a RegularState may be a State or a Finalstate. On the other hand,
a Pseudostate may be extended by a Choice, a Synchronization (also called junction),
an Entry, or an Exit. A State extends SpecificationElement, ReactiveElement, Scope-
dElement, RegularState, and CompositeElement. It contains several attributes: An
19org.yakindu.sct.model.sgraph

21

3 Used Technologies

Figure 3.6: YAKINDU Sgraph

22

3.2 YAKINDU SCT Editor

orthogonal attribute of type EBoolean, substatechart of type Statechart, substatechar-
tId of type EString, subchart of type EBoolean, simple of type EBoolean, composite
of type EBoolean, and leaf of type EBoolean. An Entry has an attribute of type
EntryKind. EntryKind is an enumeration. It can be either initial, shallowHistory, or
deepHistory. The initial option means that the Entry is an initial state. The shal-
lowHistory and deepHistory options refer to a history state.

Transition

A Transition is a SpecificationElement and at the same time a Reaction. This involves
that a Transition is composed of Triggers and Effects. It has an attribute of type
EString named specification.
The following subsection presents the Stext metamodel, which represents the tex-

tual representation of Statecharts.

3.2.2 Stext

The metamodel presented in Figure 3.7 is the Stext20 metamodel. It extends the
Sgraph, Base, and Types metamodels. The Types metamodel implements the events
and variables types.
Starting from the top root element is the best way to understand the diagram. It

contains a list of elements of type DefRoot. A DefRoot may be a StatechartRoot, a
StateRoot, or a TransitionRoot. The elements StatechartRoot, StateRoot, and Tran-
sitionRoot have each one an attribute respectively of type StatechartSpecification,
StateSpecification, and TransitionSpecification.

StatechartSpecification

A StatechartSpecification extends the ScopedElement from the Sgraph metamodel. It
is composed of elements of type StatechartScope. A StatechartScope may be either
an InterfaceScope and an InternalScope. The InterfaceScope comprises declarations.
A declaration may be of type EventDefinition, VariableDefinition, or OperationDef-
inition. Note that the InterfaceScope has an identifier attribute, which is used to
distinguish between the interfaces defined into a StatechartSpecification. An Event-
Definition extends the Event element from the Sgraph metamodel. It has several
attributes. The direction attribute is of type Direction. The Direction is an enu-
meration, which is composed of the literals: local, in, and out. The EventDefinition
also has an attribute, which represents the type of an event (e.g., integer, boolean,
or real). A VariableDefinition extends the Variable element already defined in the
Sgraph metamodel. It has two attributes of type EBoolean. An attribute expresses
whether the variable is only for reading. The other attribute determines whether
it is an external variable. The VariableDefinition also has another attribute of type

20org.yakindu.sct.model.stext

23

3 Used Technologies

Figure 3.7: YAKINDU Stext (EMF class elements)

24

3.2 YAKINDU SCT Editor

Expression. The Expression element will be explained later. An OperationDefinition
allows to declare an operation in an InterfaceScope.

StateSpecification

A StateSpecification contains a Scope attribute. The Scope element is already defined
in the Sgraph metamodel. As mentioned in the previous subsection, the Scope
element consists of Declarations, Events, and Variables. Hence, the deduction of the
possibility to specify Declarations, Events, and Variables in a State and therefore a
State extends SpecificationElement. A StateScope enables to define a collection of
declarations within a state.

TransitionSpecification

A TransitionSpecification comprises a TransitionReaction. The latter is a Reaction,
which has already been introduced in the previous subsection. The conclusion
here is that a TransitionSpecification permits to specify the ReactionTrigger and Re-
actionEffect of a Transition. A ReactionTrigger contains a list of triggers of type
EventSpec. A ReactionTrigger also contains a guardExpression attribute of type Ex-
pression. An EventSpec may either be a BuiltinEventSpec, a TimeEventSpec, or a
RegularEventSpec. A BuiltinEventSpec is a trigger, which denotes when to fire the
ReactionEffect (entry, exit, always, or oncycle). The TimeEventSpec consists of a
TimeEventType, a value, and an unit attributes. The TimeEventType is an enumer-
ation and contains the values after and after. The TimeEventSpec expresses the
physical time when the ReactionEffect is to be fired (e.g., after 5 seconds). The Reg-
ularEventSpec contains an event of type Expression. A ReactionEffect comprehends a
list of actions of type Expression or EventRaisingExpression.

Expression

Expressions in YAKINDU SCT are similar to Java programming languages. In the fol-
lowing, several examples are presented followed by the different kinds of expressions
that are provided by the Stext metamodel.

A || B
cond ? A : B
((A && B) || (!C && V==30))

Several elements compose an Expression. Figure 3.8 shows an excerpt of its defini-
tion. A PrimitiveValueExpression has an attribute of type Literal. A Literal may be
a BoolLiteral, an IntLiteral, a RealLiteral, a HexLiteral, or a StringLiteral. The Ex-
pression permits to express conditions (ConditionalExpression). LogicalAndExpression,
LogicalOrExpression, LogicalNotExpression, and ShiftExpression allow to express the
logical and shift expressions (&&, ||, !, <<, >>). BitwiseXorExpression, BitwiseOr-
Expression, and BitwiseAndExpression permit to define the bitwise arithmetic expres-
sions. A LogicalRelationExpression expression has three elements. The leftOperand

25

3 Used Technologies

and rightOperand are of type Expression. The RelationalOperator is an enumera-
tion, which is composed of literals that enables the comparison of the left and right
operands (e.g., <, >, or ==). The Expression enables the definition of statements,
which can be either an assignment expression (AssignmentExpression), operation call,
or raising an event (EventRaisingExpression). The elements NumericalAddSubtractEx-
pression, NumericalMultiplyDivideExpression, and NumericalUnaryExpression permit to
express the addition, subtraction, multiplication, division, and the unary arithmetic
operations (positive, negative, and complement). ParenthesizedExpression implies
that an expression may be surrounded by parenthesis.

Figure 3.8: An excerpt of the Stext expressions definition

26

4 ThinKCharts/SCCharts Editor vs
YAKINDU SCT Editor

As mentioned in Chapter 1, the aim of this work is to implement a SyncCharts Editor
as well as a SCCharts Editor that extend the YAKINDU SCT Editor. However, the
latter allows the modeling based on the concept of Statecharts. This chapter presents
the ThinKCharts Editor, the SCCharts Editor, and the YAKINDU SCT Editor. Then, a
comparison between the editors is provided. The aim of this comparison is to search
out which features of YAKINDU SCT Editor can be reused, which features should be
adapted, and which features are to be added. This approach allows to minimize the
effort for maintenance. Finally, the project design is presented.

4.1 Modeling with ThinKCharts Editor
The ThinKCharts Editor offers several elements, which allow the modeling of Sync-
Charts. Besides these elements, the editor provides several features allowing the
manipulation of the modeled SyncChart. This section represents the different Sync-
Charts elements as well as the provided features: Palette, pop-up balloons, context
menu, properties view, and validator. Finally, it gives an overview of the automatic
layout.

4.1.1 SyncCharts elements
As mentioned in Chapter 2, SyncCharts use states, transitions, and actions to de-
scribe the behavior of a reactive system.

Regions A region is included in a state. It allows grouping children states and
transitions. A state may have many parallel regions. A region may have a
name. It has exactly one initial state. It is represented by a rectangle having
a dashed line border. Figure 4.3 shows two parallel regions included in a
macro state.

States According to its use, there are several ways to represent a state, as depicted
in Figure 4.1. A simple state is a state without internal behavior and regions.
It may have a name. A simple state is represented by a circle or an ellipse
with a black outline. A macro state contains at least one region. It also may
have a name. The macro state is drawn with a rounded rectangle, which is
composed of three main compartments. The top compartment, marked in Fig-
ure 4.3 with a rectangle having a green dashed border line, allows to display

27

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Simple State

Simple State

Macro State

Figure 4.1: Different ThinKCharts Editor states

the name. The middle compartment, surrounded with a red dashed border
lined rectangle, allows to define the interface declaration and action declara-
tion, which are subsequently introduced. This compartment is constituted by
an arbitrarily number of sub-compartments, which may be of type interface
compartment or action compartment. An interface compartment contains the
interface declaration. It is marked in the figure with a purple dashed rectangle.
An action compartment contains the action declaration. It is surrounded with
an orange dashed border line in the figure. The bottom compartment, with
the blue dashed border lined rectangle, contains a set of parallel regions.
A state may be set to an initial or a final state by manipulating its attributes.
An initial state is represented by a thick border line. A final state has a double
border line. Note that a state may be initial, final, or both at the same time.
In the latter case, it is represented by a thick double border line.
The conditional state is a pseudo state. It is drawn as a filled black circle that
contains the letter C in the middle.

Figure 4.2: ThinKCharts Editor reference states

A state may also be a textual or a reference state. A textual state contains
statements of the Esterel language. A reference state [5] uses instances of an
another state, which may belong to another SyncChart (see Figure 4.2).

Interface declarations As mentioned previously, a state contains an interface dec-
laration. An interface declaration is composed of either signals and variables
declarations.
A signal may be local or it may belong to an interface by setting the attributes
input and output. The attributes define the signal direction. A signal can be
an input signal, an output signal, or both (input output signal). Besides the

28

4.1 Modeling with ThinKCharts Editor

A, B, O,Interface:

A and B / OOnEntryAction:

B / OOnExitAction:

SimpleState

Macro State

Figure 4.3: Compartments overview of the KIELER SyncCharts macro state

direction, a signal has a name and may have a type in the case of a valued
signal. The type can be one of the following literals: pure, bool, int, unsigned,
float, host, double, and string. The pure type means that a signal has no value
(pure signal). The host type is provided by the host system. A combine
operator may also be chosen for a signal. It serves to combine multiple values
of a signal in case it is emitted more than one in the same tick [3]. The possible
combine operators are NONE,+, *, max, min, or, and, and host. A host combine
operator implies that an operator from the host language is selected. A signal
may be initialized.
A variable has a name and should have a type. Like a valued signal, a vari-
able may also be initialized. The difference is that a variable does not have
a direction and a combine operator. However, a variable may be set as a
constant.

State action/suspension There are three types of state actions [26]: OnEntry ac-
tions, OnInside actions, and OnExit actions. The state action is followed
by other actions, which may be expressed in the same way as the transition
actions. In Figure 4.3 the OnEntry and OnExit actions are used.
The suspension may not contain an effect. How it may be expressed is shown
in the following example:
(A and B) / Suspend;

Transitions A transition is a connection that permits to link two states. The editor
supports three types of transitions: weak abortion, strong abortion, and normal
termination [5]. Figure 4.4 represents the different types of a transition. The
first transition type, shown in the figure, is the weak abortion transition. It is
represented by a simple black arrow. The second transition type is the strong
abortion transition. It is represented by an arrow, which has a red circle source

29

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

H

Figure 4.4: SyncCharts transition types and the history transition

decorator. The transition type, with the green triangle source decorator, is the
normal termination transition.

A transition can additionally be declared as a history transition, in which case,
it is represented by an arrow that ends with a rounded target decorator. The
history transition target decorator is filled with a grey color. It contains the
letter H inside. Note that a history transition may be a weak abortion, a
strong abortion, or a normal termination transition.

A state can have more than one enabled outgoing transition. Therefore, a
transition must have a priority number (1 for the highest priority).

Transition actions A transition action is composed of a trigger, effects, and other
options. It can be expressed as follows:

<delay> <Trigger> / <Effects>;

The sharp symbol (#) is optional. It means that the transition is an immediate
transition [5]. The delay may be an integer number. For example, 2 S waits for
the second strictly future presence of S [5]. The trigger is a boolean expression.
Effects are operations executed when the trigger is satisfied. An effect may be
a signal emission or a variable assignment

The following examples show how a transition action is represented:

I / O;
3 I / O;
I / A,B;
(A and (B or V=30));
pre(I) / O;
?S=5 / O

These examples illustrate the use of simple actions, the delay, the immediate
transition, and complex boolean expression as a trigger. The pre() operator
returns the presence status of a signal in the previous tick. As mentioned
in Chapter 1, a signal is either present or absent in a tick. ? is the value
operator. It returns the value of a valued signal. In the last example, the
trigger is satisfied if the value of the signal S is equal to 5. Note that the
trigger and effects are optional.

30

4.1 Modeling with ThinKCharts Editor

4.1.2 Tooling

Palette

The ThinKCharts Editor provides a palette in order to manually edit a SyncChart.
Figure 4.5 shows the different elements offered by the palette, which allows to add
a state, a transition, or a textual code [31].

Figure 4.5: ThinKCharts Editor palette

Note that the palette does not offer all the required elements for the modeling of
SyncCharts, such as regions. Other elements can be added using the context menu
and the pop-up balloons menu (See Figure 4.7).

Structure-Based Editing

Structure-Based Editing is a KIELER feature, which is based on the technique of
model transformation [17]. It is used in the SyncCharts Editor to modify the se-
mantic structure of a SyncChart, without using any graphical information.
The interaction between the user and the Structure-Based Editing in KIELER

framework is enabled by using the pop-up balloons menu and the context menu.

Pop-up balloons Pop-up balloons appear when hovering over a SyncCharts element
in the diagram. Figure 4.6 shows the pop-up balloon that appears when a state
is selected. It allows to

• create a successor for the selected state.
• create a predecessor for the selected state.
• add a choice element.
• add a region with an initial state.
• create a self loop.
• create a new state and move all existing regions to the new one.
• move all regions to the parent state and remove the selected state.
• switch between a state, an initial state, a final state, and an initial final

state.

31

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Figure 4.6: ThinKCharts Editor pop-up balloons

Context menu As depicted in Figure 4.7, the context menu can be used to add
states, transitions, signals, variables, regions, and state actions/suspensions.
The context menu can be opened by a right-click mouse operation on the
appropriate element (e.g. a right-click on a region to create a state or on a
state to add a region).

Figure 4.7: ThinKCharts Editor context menu

Once the user adds an element to the SyncChart, it is no longer possible
to modify it using the palette and the context menu. Therefore, there is a
properties view.

32

4.1 Modeling with ThinKCharts Editor

Properties view

The properties view allows the user to modify an element of the SyncChart (e.g. the
user used a weak abortion transition and wants to change it to a strong abortion
transition). Figure 4.8(a) represents the properties of a state. The properties view
allows the manipulation of the Label and the Interface Declaration. The type of a state
may be changed by choosing one of the following options: NORMAL, CONDITIONAL,
REFERENCE, or TEXTUAL. The properties view also permits to set a state as initial
or final.
The properties of a transition are depicted in Figure 4.8(b). The type of a tran-

sition may be selected via a combo-box: weak abortion, strong abortion, or normal
termination. The Label property allows to define the transition action. The delay
and immediate options of the transition action may also be set using the Delay and
Is Immediate properties. The properties view also permits to set the transition to
a history via the Is History property and to modify the transition priority via the
Priority property.
As previously stated, a signal has a name, a direction, a type, an initial value,

and a combine operator. All these options can be modified by the properties view
(see Figure 4.8(c)).
Figure 4.8(d) represents the properties of a variable, which consist of a Name, a

Type, an Initial Value, a Host Type, and a Const (Set to true if the variable should
be a constant).

(a) State properties view (b) Transition properties view

(c) Signal properties view (d) Variable properties view

Figure 4.8: ThinKCharts Editor properties views

33

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

4.1.3 Validator
To statically validate a SyncChart, KIELER offers a mechanism for syntax and seman-
tics checks. These permit to avoid inconsistent and/or erroneous models. Therefore,
the editor provides some restrictions, which are represented in the form of validity
rules. These are:

• Conditional states must not be initial or final.

• Conditional states must not contain regions.

• Conditional states must not contain signals.

• Conditional states must not contain actions.

• Conditional states must not contain a suspension trigger.

• Conditional states must have outgoing transitions.

• Only textual or reference states may contain body text.

• Every state needs at least one incoming transition.

• States need an ID.

• States within a region need to have different IDs.

• IDs should be of standard identifier type.

• A state can only have one outgoing normal termination.

• Signal name may not be empty.

• The interface declaration is not empty but there are no signals and variables
defined.

• The root state should have at least one region containing at least one state.

• There should be exactly one root state which represents the whole SyncChart.

• Every region should have exactly one initial state.

• A hierarchical state with an outgoing normal termination has to contain at
least one final state in every parallel region.

• Only signals in the root state may be global inputs or outputs.

• Only valued signals may have a combine type other than NONE.

• Priorities have to be at least 1.

• Immediate transitions must not have a delay.

34

4.2 SCCharts Editor

• Delays have to be at least 1.

• Normal termination may not have a trigger.

• Normal termination must have the lowest priority.

• Strong aborts must have the highest priority.

• Simple states may not have a normal termination transition.

• Simple states cannot have strong aborts.

• Priorities of outgoing transitions need to be distinct.

• Transitions of conditionals must be immediate.

• SyncCharts do not support inter-level transitions.

• Pure signals cannot be assigned a value.

• Valued signals must be assigned a value.

• Trigger must have an effect.

4.1.4 Automatic layout

As mentioned in Section 1.2, KIELER provides automatic layout mechanisms to ar-
range the modeled diagrams elements. The ThinKCharts Editor uses the dot1 lay-
out [29], which is the ideal layout for the SyncCharts models. It also offers the
option to apply the automatic layout after the model has been changed.
These were the main features that the ThinKCharts Editor offers. The following

section introduces the SCCharts Editor.

4.2 SCCharts Editor
The SCCharts syntax is introduced by von Hanxleden et al. in [34]. Valid SyncCha-
rts are also valid SCCharts, which means that the SyncCharts syntax introduced in
Section 4.1.1 must be supported by the SCCharts Editor.
As mentioned in Section 2.2, SyncCharts and SCCharts syntactically only differ

by variables. Variables in SCCharts may have a direction. Some examples are
presented in the following:

input bool x
output real y=1.0
inputoutput int z
bool l

1http://www.graphviz.org/

35

http://www.graphviz.org/

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Root state

Final state

Connector

Initial state

Interface
Declaration

Named
simple states

Transition
trigger/effect

Region ID

Immediate
trigger

Transition
priority

Strong abortWeak abort

Normal
termination

History transition
Entry/During/
Exit actions

Anonymous
simple states

Macro state

Local
Declaration

Suspension

Signal

(a) SCCharts-overview from [34]

(b) SCCharts-overview modeled using the SCCharts Editor based on
YAKINDU SCT

Figure 4.9: Overview of SCCharts syntax

36

4.3 YAKINDU SCT Editor

x and y are respectively input and output variables. y has initially the value 1.0.
The variable z is an input and output variable at the same time. l is a local variable.
Figure 4.9 shows the SCCharts-overview example introduced in [34] and its mod-

eling using the SCCharts Editor based on YAKINDU SCT.
The following section deals with the features provided by the YAKINDU SCT Editor.

4.3 YAKINDU SCT Editor

YAKINDU SCT is a software tool that allows the development of embedded systems.
It is also a framework that allows to define tailored Statechart dialects. More details
about the semantics of Statecharts are in [16]. YAKINDU SCT provides an editor, a
simulator, and a code generator (see Figure 4.10). The editor is relevant for this
work. It is presented in this section, beginning with its provided elements which
allow the modeling of Statecharts, followed by the Palette, the context menu, the
assistant provider, the properties view, and finally the validator.

Figure 4.10: Overview of the YAKINDU SCT features2

4.3.1 Statecharts Elements

YAKINDU SCT Editor provides several elements for the modeling of Statecharts.
This subsection shows how the elements are represented in the editor. For more
information on the semantics see the YAKINDU SCT documentation.

2http://statecharts.org/documentation.html

37

http://statecharts.org/documentation.html

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Regions A region enables to group other Statecharts elements in a state. A state
may have an arbitrary number of regions. Every region has a priority and an
optional name. The state On in Figure 4.10 contains a region, which includes
other elements.

States There are two kinds of states in YAKINDU SCT: regular states and pseudo
states.
On the one hand, a regular state can be a normal state (A normal state will
just be called state), or a final state. A state is represented by a rounded
rectangle. Figure 4.11 shows two overviews of states. The difference is that
the state on the right side contains a region, whereas the state on the left
side contains no regions. A state is composed of three main compartments.
The top compartment contains the name of the state. Note that a name must
be set. The middle compartment is the text compartment, which enables
the definition of local reactions. The bottom compartment may contain an
arbitrary number of regions.

(a) A state without regions (b) A state having a region

Figure 4.11: YAKINDU SCT states

A final state cannot have outgoing transitions and must have one incoming
transition. The incoming transition may carry events and actions. Figure 4.12
shows how final states are drawn in YAKINDU SCT.

Figure 4.12: YAKINDU SCT final state

On the other hand, a pseudo state may be an initial state, a choice, or a junc-
tion. A pseudo state does not contain other elements. It has no name and

38

4.3 YAKINDU SCT Editor

may not define local reactions compared with a state. An initial state must
have one outgoing transition and should not have incoming transitions. The
outgoing transition may not carry events and actions. Figure 4.13 depicts a
Statechart, which consists of an initial state, a state, and a transition connect-
ing them. The initial state is represented by a filled black circle. The choice
and the junction elements are presented later.

Figure 4.13: YAKINDU SCT initial state

Transitions A transition connects two elements, which can be a state, an initial
state, a final state, a choice, a junction, a composite state, a shallow history,
or a deep history. YAKINDU SCT supports only one type of transition. A
transition can carry events and actions. It has also a priority. The transition
that was modeled first has the higher priority.

Choice A choice is a pseudo state. It can have an arbitrary number of incoming
transitions and outgoing transitions. It is drawn as a diamond without filling
(see Figure 4.14).

Figure 4.14: YAKINDU SCT choice

Junction A junction is a pseudo state. It permits to join transitions to improve the
arrangement of the Statecharts. Figure 4.14 depicts the graphical representa-
tion of a junction.

39

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Figure 4.15: YAKINDU SCT junction

Composite state A composite state is a state that contains other Statecharts. On
the one hand, a composite state may contain orthogonal states as depicted in
Figure 4.16(a). Each of the orthogonal states is included in a region and is
independent from the other. On the other hand, a composite state can contain
submachine states. A submachine state includes another entire Statechart dia-
gram. Figure 4.16(b) represents a submachine state that includes a Statechart
named AnotherStatechart.

(a) Orthogonal States (b) Submachine States

Figure 4.16: YAKINDU SCT composite state

Shallow history and deep history The shallow history and the deep history are
pseudo states. They can be placed inside a region. Figure 4.17(a) repre-
sents a shallow history, which is drawn as a filled circle having the letter H.
The deep history, shown in Figure 4.17(b), is also represented by a filled circle
having the letter H followed additionally by the symbol *.

40

4.3 YAKINDU SCT Editor

(a) Shallow history (b) Deep history

Figure 4.17: YAKINDU SCT history state

Scopes A scope allows to define a namespace, interface scopes and internal scopes.
The namespace is used to qualify references to the Statechart. The interface
scope enables the definition of declarations (event declarations, variable decla-
rations, etc.) that can be shared with the environment. One global (without
a name) and an arbitrary number of named interface scopes may be declared
in a scope. The internal scope allows to define declarations, which are visible
only for contained states.
In Figure 4.18 a scope example is presented. The scope has a namespace. It
contains a global interface, a named interface, and an internal scope.

Figure 4.18: YAKINDU SCT scope

Declarations As previously stated, interface and internal scopes allow to define
declarations. A declaration may be an event declaration, a variable declaration,
an operation, or a local reaction.

Event declarations An event declaration must have an identifier (unique name).
It may have a direction (input or output) and a type. The typesystem of
YAKINDU SCT contains the following simple types: boolean, integer, real, boolean,

41

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

string, and void. Note that an event declaration defined by an interface scope
must have a direction and an event declaration defined by an internal scope
has no direction. Here are some examples of events declarations:

in event e1
out event e2
in event e3:boolean
local event e4

e1 and e2 are respectively input and output events. They have no values. e3
is an input event, which has the boolean type. e4 is a local event.

Variable declarations Like an event declaration, a variable declaration has an iden-
tifier. However, it has no direction, must have a type, and may be initialized.
Some examples are presented in the following:

var V:boolean
var V:integer=10

Operations An operation consists of a name, multiple parameters (optional), and a
return type.

operation Op(A:boolean): boolean
operation Op(A:boolean, B:integer, C:real): boolean

Local reactions A local reaction is composed of a reaction trigger and a reaction
effect. It is declared as below:

LocalReaction: ReactionTrigger ’/’ ReactionEffect

Reaction triggers A reaction trigger may contain regular events, time events, built-
in events, and boolean expressions.

ReactionTrigger: (Event ("," Event)*
(=> ’[’ Expression ’]’)?) | ’[’ Expression ’]’

• Regular events: A regular event is simply represented by an event.

• Time events: A time event is either an after or an every trigger.

after time (unit)?
after 5 s
every time (unit)?
every 100 ms

• Built-in events: A built-in event may be an entry, exit, or always trigger.

• Expressions: Expressions are represented below.

42

4.3 YAKINDU SCT Editor

Operator Symbol
logical relations less than <

equal or less than <=
greater than >
equal or greater than >=
equal ==
not equal ! =

shift operators shift left <<
shift right >>

binary arithmetic operators plus +
minus −
multiply ∗
divide /
modulo %

unary arithmetic operators positive +
negative −
complement ∼

Table 4.1: YAKINDU SCT operators

Expressions Within expressions one may express logical expressions, bitwise arith-
metic, arithmetic expressions, and bit shifting. The operators offered by
YAKINDU SCT are represented in Table 4.1.

Assignment Symbol
simple assignment =
multiply and assign ∗ =
divide and assign / =
calculate modulo and assign % =
add and assign + =
subtract and assign − =
bitshift left and assign <<=
bitshift right and assign >>=
bitwise AND and assign & =
bitwise XOR and assign ∧ =
bitwise OR and assign | =

Table 4.2: YAKINDU SCT assignments

Reaction Effect A reaction effect has a list of statements:
ReactionEffect: Statement (’;’ Statement)* (’;’)?
Statement: Assignment | EventRaising | OperationCall

43

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

A statement may be an assignment, an event raising, or an operation call.
YAKINDU SCT offers the assignments depicted in Table 4.2.
Event raising is expressed by the literal raise followed by an event. Operation
call is performed by calling the already declared operation with the name and
passing the parameters.

4.3.2 Tooling
Palette

Figure 4.19: YAKINDU SCT palette

The palette provided by YAKINDU SCT offers all the graphical elements for the
modeling of Statecharts: Transition, state, composite state (orthogonal state and
submachine state), region, initial state, shallow history, deep history, final state, exit
point, choice, and synchronization. The palette is shown in Figure 4.19.
An element may also be added to a Statechart using the assistant provider.

Assistant provider

The assistant provider used by YAKINDU SCT extends the GMF modeling assistant
providers. It serves to contribute to the modeling of Statecharts by offering the
possibility of adding several elements into the diagram.

YAKINDU SCT offers two types of assistant providers:
Connection creation assistant The connection creation assistant allows to create

an incoming or outgoing transition between two vertices. Vertices were intro-
duced in Section 3.2.1 (A vertex is an element, which may have incoming and
outgoing transitions like a state or a choice).
The connection creation assistant appears when hovering over a vertex. It
can be used by choosing the incoming or outgoing connection handle and the
connection to another vertex. By draging the connection to a region, the
connection creation assistant offers additionally the possibility to create a new
vertex or to use an existing one. Figure 4.20(a) represents the connection
creation assistant that creates an outgoing transition with the option to create
a new vertex.

44

4.3 YAKINDU SCT Editor

(a) Connection creation assistant

(b) Pop-up bar on states (c) Pop-up bar on regions

Figure 4.20: YAKINDU SCT assistant provider

45

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Pop-up bar assistant provider YAKINDU SCT permits add elements using a pop-up
bar. Figure 4.20(b) shows the pop-up bar that appears when hovering over
a state. It allows the creation of regions inside. Figure 4.20(c) represents
the pop-up bar that appears when hovering over a region, which allows the
creation of vertices.

Properties view

Figure 4.21: YAKINDU SCT state properties view

The YAKINDU SCT Editor allows the modification of elements properties through
a properties view. The user can manipulate names, transition reactions, states local
reactions, and more other properties. Figure 4.21 shows the properties view of a
state. The text box on the left side serves to enter the local reaction. Besides
the possibility to manipulate the name of a state, the properties view enables to
specify a submachine (in the case of a submachine state) and to define the outgoing
transitions priorities by ordering them.

4.3.3 Validator
The YAKINDU SCT Editor offers several validity rules to avoid inconsistent and/or
erroneous models. There are two kinds of validity rules: Validity rules for the
graphical representation and validity rules for the textual language. Here are the
validity rules for the graphical representation:

• A state should have a name.

• A node must be reachable.

• A final state should have no outgoing transitions.

• A state should have at least one outgoing transition.

• An initial entry should have no incoming transitions.

46

4.4 Comparison

• An initial entry should have a single outgoing transition.

• An entry must not have more than one outgoing transition.

• Outgoing transitions from entries cannot have a trigger or guard.

• A choice must have at least one outgoing transition.

• A choice should have one outgoing default transition.

The validity rules for the textual language are:

• An action should have an effect.

• Entry and exit events are allowed as local reactions only.

• Only one default/unnamed interface is allowed.

• In/Out declarations are not allowed in internal scope.

• Local declarations are not allowed in interface scope.

• The evaluation result of a time expression must be of type integer.

• The evaluation result of a guard expression must be of type boolean.

• The nested assignment of the same variable is not allowed.

• The ’void’ type is invalid for variables.

4.4 Comparison
In the previous section, the features offered by the ThinKCharts Editor and the
YAKINDU SCT Editor were presented. In order to implement a SyncCharts Editor
based on YAKINDU SCT, several elements and features must be added or extended.
This section aims to summarize the necessary changes to be made. Only changes
that are relevant for the modeling of SyncCharts are considered in this work. The
challenge is to make the fewest possible changes so that an update of the original
editor does not require a lot of adjustments on the extended editor or better none
at all.
The SyncCharts syntax must be fully supported by the new editor. The following

subsection gives an overview of the required changes on YAKINDU SCT syntax.

4.4.1 Syntax
This subsection is divided into two parts. The first part compares the graphical
representation of KIELER SyncCharts and YAKINDU SCT. The second part compares
the textual description language.

47

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

ThinKCharts YAKINDU SCT

Transition

State

Reference states

Initial state

Final state

History

Junction

Choice

Text compart-
ment

Table 4.3: Comparison of the graphical representation
48

4.4 Comparison

Figure 4.22: Extending the state and transition elements in the YAKINDU SCT
Sgraph metamodel

49

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Graphical representation

Table 4.3 summarizes the different graphical elements of both editors. It permits to
deduce that the transition element must be extended in this work. YAKINDU SCT
provides only one transition type. However, SyncCharts require three transition
types (weak abortion, strong abortion, and normal termination). A transition may
also be of type history. This option is not supported by YAKINDU SCT. Histories
in the latter are pseudo states. The state element should also be adapted. A state
should have the possibility to be set to an initial or final state (YAKINDU SCT initial
and final states are no longer needed). Junctions have no meaning in SyncCharts,
therefore they are ignored. The choice element looks different in YAKINDU SCT,
which is here not deemed a sufficient reason for modifying it. YAKINDU SCT provides
a text compartment for interface declarations. It is no longer required since interfaces
must be declared into a state scope.

In order to adapt the state and transition elements, the Sgraph metamodel is
extended (see Figure 4.22). This is explained in more details in Section 5.2.1.

These were the required modifications on the graphical representation. In the
following, the textual description language is analysed.

Textual description language

The textual description language represents the elements that are defined using text
compartments. Types, declarations, triggers, effects, expressions, and operations are
the main elements of the textual description language. Table 4.4 gives a comparison
of these elements. The KIELER SyncCharts features directly supported by YAKINDU
SCT are marked in green and the features that are not supported are marked in red.

Events do not differ much from Signals. Besides the difference in the notation, a
signal may have a double direction, e.g. input output signal S. The editor presented
in this thesis uses events to emulate signals. Events are extended to adapt their
notation and to be allowed to have a double direction. YAKINDU SCT provides a sat-
isfactory type system. It is fully preserved in the new editor. Declarations, triggers,
and effects should be adapted to SyncCharts needs. Expressions and operations
should not be changed. However, the pre operator must be added.

50

4.4 Comparison

ThinKCharts YAKINDU SCT

Types

• int
• bool
• float
• double
• pure (for pure signals)
• unsigned
• host

• integer
• boolean
• real
• void
• string

Declarations
• pure signals
• valued signals
• variables

• events
• variables

Triggers

• immediate
• delay
• expression

• regular event
• time event
• built-in event
• expression

Effects
• signal emitting
• variable assignment

• assignment
• event raising
• operation call

Expressions

• logical expressions
• arithmetic expressions

• logical expressions
• arithmetic expressions
• bitwise arithmetic
• bit shifting

51

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Operations

• compare operators
• logical operators
• arithmetic operators
• pre operator (pre(I))
• value operator (?I)

• compare operators
• logical operators
• arithmetic operators
• bitwise operators
• bit shifting operators
• value operator

Table 4.4: Comparison of the textual description language. The KIELER features
directly supported by YAKINDU are marked in green and the features
that are not supported are marked in red

4.4.2 Tooling
Palette

The palette offered by the SyncCharts Editor based on YAKINDU SCT contains only
elements that permit the modeling of SyncCharts. The elements are: weak abortion
transition, strong abortion transition, normal termination transition, state, initial
state, final state, region, and choice. Note that initial and final states are simply
states with a predefined initial or final option.

(a) Connection creation assistant

(b) Pop-up bar on regions

Figure 4.23: The extended assistant provider

52

4.4 Comparison

Assistant provider

The YAKINDU SCT Editor offers his own mechanism for the Structure-Based Editing.
The modeling assistant provider as the pop-up balloons provided by the KIELER
framework allows to add several elements into the diagram. It is used by the editor
implemented by this work and adapted for the SyncCharts syntax.

Connection creation assistant The extended connection creation assistant allows
to create the three types of transitions. The vertices that this feature may
create are states, initial states, final states, or choices. Figure 4.23(a) depicts
the extended connection creation assistant.

Pop-up bar assistant provider It permits to add a region to a state. It also allows to
add a state, an initial state, a final state, or a choice to a region. Figure 4.23(b)
represents the pop-up bar implemented by this work.

(a) Transition properties view

(b) State properties view

Figure 4.24: Extended properties views

53

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

Properties view

As mentioned in Section 4.4.1, transition and state elements are derived by this
work. Therefore, the properties views of these elements should be adapted:

• Adapting the transition properties view to allow the user to change the tran-
sition type and to set the transition as history.

• Adapting the state properties view permits to define a state as initial, final,
or both.

Figure 4.24 shows the properties views of transitions and states implemented by
this work.

4.4.3 Validator
YAKINDU SCT offers several validity rules, which are used by the editor implemented
by this work. Since there are elements that were added or modified, new validity
rules should be defined and several rules should be overridden. The ThinKCharts
Editor validity rules are taken into account in the new editor.
The validity rules that are added by this work are presented below:

• A diagram should have exactly one region.

• The root region should have exactly one state.

• The root state may not be an initial state.

• The root state may not be a final state.

• The root state may not have incoming/outgoing transitions.

• Simple states may not have a normal termination transition.

• A state can only have one outgoing normal termination.

• A macro state with an outgoing normal termination has to contain at least
one final state in every parallel region.

• Every region should have exactly one initial state.

• A normal termination may not have a trigger.

• Simple states cannot have strong aborts

• Inter-level transitions are forbidden.

• Every choice needs an incoming transition.

• A trigger should be a signal or a variable of type boolean.

• Cannot assign a value to a pre operator.

54

4.5 Project design

4.4.4 Automatic layout
The automatic layout provided by KIELER is used by the SyncCharts Editor as well
as the SCCharts Editor based on YAKINDU SCT to arrange models. Figure 4.26
shows the ABRO example modeled using the SyncCharts Editor after and before
applying the automatic layout.

4.4.5 White spaces
The diagrams modeled using YAKINDU SCT are not compact enough. They contain
white spaces, which are reduced by this work as shown in Figure 4.26. White spaces
may be reduced as bellow:

• Eliminating the white space under a state name.

• Reducing the font size of labels and text compartments.

• Minimizing the vertical spacing inside a state.

4.5 Project design
This chapter provided the requirements for the implementation of the new editor. In
order to implement a generic editor based on YAKINDU SCT, a global project extends
the Sgraph and Stext metamodels to implement the Syncgraph and Synctext meta-
models, as depicted in Figure 4.25. Since, SyncCharts and SCCharts syntactically
only differ by variables, the SyncCharts Editor and SCCharts Editor use together
the Syncgraph metamodel for the graphical representation of their elements. Each
editor extends the Synctext metamodel to implement the variable definition accord-
ing to their syntax.

Global

Syncgraph

Synctext

SyncCharts

SCCharts

SyncChartstext

SCChartstext

YAKINDU SCT

Sgraph

Stext

YAKINDU KIELER

Figure 4.25: An abstract overview of the project design and the metamodels
dependencies

55

4 ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor

(a) using the GMF based ThinKCharts Editor (b) before automatic layout

(c) after automatic layout and before reducing
white spaces

(d) after automatic layout and reducing white
spaces

Figure 4.26: The ABRO example using the ThinKCharts Editor and the SyncCharts
Editor based on YAKINDU SCT before and after applying the auto-
matic layout and reducing white spaces

56

5 Implementation

This chapter consists of two parts. The first part presents the contribution of Itemis
AG in this work. The second part introduces the implementation of the SyncCharts
Editor as well as the SCCharts Editor.

5.1 The contribution of Itemis AG

Itemis AG provided technical support for the creation of a new extended YAKINDU
SCT Editor. They also adapted the YAKINDU SCT Editor to improve its extensibility.

5.1.1 Create a new extended YAKINDU SCT Editor

Creating a derived YAKINDU SCT Editor can be divided into three parts. The first
part creates a new editor plug-in. The second part creates a new Xtext project
for the definition of the SyncCharts grammar. In the third part, a new plug-in is
created for the integration of the SyncCharts grammar into the editor implemented
at the first part. The different parts are presented in the following.

Editor

This part creates the editor plug-in, which extends the editor plug-in of the YAKINDU
SCT project. Extension points are also extended in order to register the editor.

• Create a new Eclipse plug-in: The first step is to create a new plug-in named
de.cau.cs.kieler.yakindu.synccharts.ui.editor for the case of the SyncCharts Edi-
tor.

• Create a folder obj16 for icons: The folder contains additional icons (e.g., editor
logo and palette icons like strong abortion icon).

• Add the require-Bundle org.yakindu.sct.ui.editor to the project: This plug-in
implements the YAKINDU SCT Editor. It is required in order to be extended.

• Create the de.cau.cs.kieler.yakindu.synccharts.ui.editor.editor package, which con-
tains the following classes: SyncChartsDiagramEditor, and SyncChartsDiagra-
mActionBarContributor.

57

5 Implementation

– The SyncChartsDiagramEditor class extends StatechartDiagramEditor. It
defines the editor identifier:

1 public static final String ID =
2 "de.cau.cs.kieler.yakindu.ui.editor.editor.SyncChartsDiagramEditor";

It also overrides the method getContributorId() in order to return the new
editor identifier:

1 @Override
2 public String getContributorId() {
3 return ID;
4 }

– The SyncChartsDiagramActionBarContributor class extends DiagramAc-
tionBarContributor. It overrides the getEditorId() as well as the getEdi-
torClass() method to return the extended editor identifier and the Sync-
ChartsDiagramEditor class.

1 @Override
2 protected String getEditorId() {
3 return SyncChartsDiagramEditor.ID;
4 }
5
6 @Override
7 protected Class<SyncChartsDiagramEditor> getEditorClass() {
8 return SyncChartsDiagramEditor.class;
9 }

It also overrides the init() method to fix a saving problem in Eclipse
Indigo.

1 @Override
2 public void init(IActionBars bars) {
3 super.init(bars);
4 //workaround for
5 // https://bugs.eclipse.org/bugs/show_bug.cgi?id=346648
6 bars.setGlobalActionHandler(GlobalActionId.SAVE, null);
7 }

• Register the editor: In order to register the editor, the following lines extend
four extension points. The Editors extension point registers the editor infor-
mation (e.g., name, icon, and extensions). The propertyContributor1 enables
the tabbed properties view. The propertyTabs describes the tabs for a contrib-
utor. The propertySections describes the sections for a contributor. It specifies
for each Statecharts element whose class implements its editpart. Editparts
are implemented by GEF. They are responsible for applying changes to the
model in the editor. The extensions are defined in the plugin.xml presented in
Listing 5.1.

1http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_
properties_view.html

58

http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html

5.1 The contribution of Itemis AG

Listing 5.1: Extending org.yakindu.sct.ui.editor Extension Points
1 <!-- Editor -->
2 <extension point="org.eclipse.ui.editors">
3 <editor
4 class="de.cau.cs.kieler.yakindu.synccharts.ui.
5 editor.editor.SyncChartsDiagramEditor"
6 contributorClass="de.cau.cs.kieler.yakindu.synccharts.ui.
7 editor.editor.SyncChartsDiagramActionBarContributor"
8 default="true"
9 extensions="ysc"

10 icon="icons/obj16/logo-16.png"
11 id="de.cau.cs.kieler.yakindu.synccharts.ui.
12 editor.editor.SyncChartsDiagramEditor"
13 matchingStrategy="org.eclipse.gmf.runtime.diagram.ui.resources.
14 editor.parts.DiagramDocumentEditorMatchingStrategy"
15 name="YAKINDU SyncCharts Editor">
16 </editor>
17 </extension>
18
19 <extension point="org.eclipse.ui.views.properties.tabbed.propertyContributor"
20 id="prop-contrib">
21 <propertyContributor
22 contributorId="de.cau.cs.kieler.yakindu.synccharts.ui.
23 editor.editor.SyncChartsDiagramEditor"
24 labelProvider="org.yakindu.sct.ui.editor.
25 propertysheets.SheetLabelProvider">
26 <propertyCategory category="domain"/>
27 <propertyCategory category="visual"/>
28 <propertyCategory category="extra"/>
29 </propertyContributor>
30 </extension>
31
32 <extension point="org.eclipse.ui.views.properties.tabbed.propertyTabs"
33 id="proptabs">
34 <propertyTabs
35 contributorId="de.cau.cs.kieler.yakindu.synccharts.ui.
36 editor.editor.SyncChartsDiagramEditor">
37 <propertyTab
38 category="domain"
39 id="property.tab.domain"
40 label="Model"/>
41 <propertyTab
42 category="visual"
43 id="property.tab.AppearancePropertySection"
44 label="Appearance"/>
45 <propertyTab
46 category="visual"
47 id="property.tab.DiagramPropertySection"
48 label="Diagram"/>
49 </propertyTabs>
50 </extension>
51
52 <extension point="org.eclipse.ui.views.properties.tabbed.propertySections"
53 id="propsections">
54 <propertySections
55 contributorId="de.cau.cs.kieler.yakindu.synccharts.ui.
56 editor.editor.SyncChartsDiagramEditor">
57 <!-- State model section -->
58 <propertySection
59 id="property.section.domain.state"
60 tab="property.tab.domain"
61 class="org.yakindu.sct.ui.editor.propertysheets.

59

5 Implementation

62 StatePropertySection">
63 <input type="org.yakindu.sct.ui.editor.editparts.
64 StateEditPart"/>
65 <input type="org.yakindu.sct.ui.editor.editparts.
66 StateNameEditPart"/>
67 <input type="org.yakindu.sct.ui.editor.editparts.
68 StateTextCompartmentEditPart"/>
69 <input type="org.yakindu.sct.ui.editor.editparts.
70 StateTextCompartmentExpressionEditPart"/>
71 </propertySection>
72 <!-- Statechart model section -->
73 <propertySection
74 id="property.section.domain.statechart"
75 tab="property.tab.domain"
76 class="org.yakindu.sct.ui.editor.propertysheets.
77 StatechartPropertySection">
78 <input type="org.yakindu.sct.ui.editor.editparts.
79 StatechartNameEditPart"/>
80 <input type="org.yakindu.sct.ui.editor.editparts.
81 StatechartTextEditPart"/>
82 <input type="org.yakindu.sct.ui.editor.editparts.
83 StatechartTextExpressionEditPart"/>
84 </propertySection>
85 <!-- Transition model section -->
86 <propertySection
87 id="property.section.domain.transition"
88 tab="property.tab.domain"
89 class="org.yakindu.sct.ui.editor.propertysheets.
90 TransitionPropertySection">
91 <input type="org.yakindu.sct.ui.editor.editparts.
92 TransitionEditPart"/>
93 <input type="org.yakindu.sct.ui.editor.editparts.
94 TransitionExpressionEditPart"/>
95 </propertySection>
96 <!-- Entry model section -->
97 <propertySection
98 id="property.section.domain.entry"
99 tab="property.tab.domain"

100 class="org.yakindu.sct.ui.editor.propertysheets.
101 EntryPropertySection">
102 <input type="org.yakindu.sct.ui.editor.editparts
103 .EntryEditPart"/>
104 </propertySection>
105 <!-- Exit model section -->
106 <propertySection
107 id="property.section.domain.exit"
108 tab="property.tab.domain"
109 class="org.yakindu.sct.ui.editor.propertysheets.
110 ExitPropertySection">
111 <input type="org.yakindu.sct.ui.editor.editparts.
112 ExitEditPart"/>
113 </propertySection>
114 <!-- Region model section -->
115 <propertySection
116 id="property.section.domain.region"
117 tab="property.tab.domain"
118 class="org.yakindu.sct.ui.editor.propertysheets.
119 RegionPropertySection">
120 <input type="org.yakindu.sct.ui.editor.editparts.
121 RegionEditPart"/>
122 </propertySection>
123 <!-- Choice model section -->

60

5.1 The contribution of Itemis AG

124 <propertySection
125 id="property.section.domain.choice"
126 tab="property.tab.domain"
127 class="org.yakindu.sct.ui.editor.propertysheets.
128 ChoicePropertySection">
129 <input type="org.yakindu.sct.ui.editor.editparts.ChoiceEditPart"/>
130 </propertySection>
131 </propertySections>
132 </extension>

• Create the de.cau.cs.kieler.yakindu.synccharts.ui.editor.wizards package: This pa-
ckage implements the wizard that opens when creating a new diagram. It con-
tains the SyncChartsCreationWizard class, which extends CreationWizard. This
class defines an identifier for the wizard.

1 public static final String ID =
2 "de.cau.cs.kieler.yakindu.synccharts.ui.editor.wizards." +
3 "SyncChartsCreationWizard";

The class also overrides the addPages() method in order to implement the
wizard page for the creation of a SyncCharts diagram. The method allows to
set the wizard title and its description text.

1 @Override
2 public void addPages() {
3 modelFilePage = new CreationWizardPage("DiagramModelFile", getSelection(),
4 "ysc");
5 modelFilePage.setTitle("KIELER YAKINDU SyncCharts Diagram");
6 modelFilePage.setDescription("Create a new KIELER YAKINDU SyncCharts
7 Diagram File");
8 addPage(modelFilePage);
9 }

• Register the wizard: The wizard must be registered. Therefore, the following
lines should be added to the plugin.xml presented in Listing 5.1:

1 <!-- New Diagram Wizard -->
2 <extension point="org.eclipse.ui.newWizards">
3 <wizard
4 category="KIELER"
5 class="de.cau.cs.kieler.yakindu.synccharts.ui
6 .editor.wizards.SyncChartsCreationWizard"
7 icon="icons/obj16/logo-16.png"
8 id="de.cau.cs.kieler.yakindu.synccharts.ui
9 .editor.wizards.SyncChartsCreationWizard"

10 name="KIELER YAKINDU SyncCharts Diagram"
11 project="false">
12 </wizard>
13 </extension>

Xtext

This part creates the Xtext project, which implements the SyncCharts grammar
by extending the Stext grammar and adapting the elements already mentioned in
Section 4.4.1.

61

5 Implementation

• Create the Xtext project de.cau.cs.kieler.yakindu.synccharts.model.stext having
the name de.cau.cs.kieler.yakindu.synccharts.model.stext.SyncExp and the exten-
sions syncexp. Then, add the require-Bundle org.yakindu.sct.model.stext to al-
low the overriding of the YAKINDU SCT Stext grammar.

• Extend the Stext grammar by adding the following code to the syncexp.xtext
file:

Listing 5.2: This code is a subset of the SyncCharts grammar. The latter is intro-
duced in Section 5.2.

1 grammar de.cau.cs.kieler.yakindu.model.stext.Synctext
2 with org.yakindu.sct.model.stext.SText
3
4 generate synctext "http://kieler.cs.cau.de/yakindu/stext/"
5
6 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
7 import "http://www.yakindu.org/sct/statechart/SText" as stext
8 import "http://www.yakindu.org/sct/sgraph/2.0.0" as sgraph
9 import "http://www.yakindu.org/base/types/2.0.0" as types

10
11 /******** INTERFACE DECLARATION *************** */
12 ////defines the possible scopes for a state
13 StateScope:
14 {SimpleScope} declarations+=(VariableDeclaration
15 | SignalDeclaration
16 | OperationDeclaration
17 | LocalReaction)*;

• Modify the generation workflow to register the Stext grammar by adding the
lines 4 to 7 to the StandaloneSetup in GenerateSyncexp.mwe2:

1 bean = StandaloneSetup {
2 scanClassPath = true
3 platformUri = "${runtimeProject}/.."
4 registerGeneratedEPackage = "org.yakindu.sct.model.stext.stext.
5 StextPackage"
6 registerGenModelFile = "platform:/resource/org.yakindu.sct.model.stext/
7 model/SText.genmodel"
8 }

Integration

As mentioned in Chapter 3, a transition, a state, or a Statechart can contain further
specifications. A specification specifies a textual definition in an element. This part
allows the integration of the textual definition into the specification of an element.
It gives the implementation for the case of a transition. The following classes should
be created in the same way for the state and the Statechart specifications.

• Create an Eclipse plug-in de.cau.cs.kieler.yakindu.synccharts.ui.integration.stext
and add the require-Bundles de.cau.cs.kieler.yakindu.synccharts.model.stext and
de.cau.cs.kieler.yakindu.synccharts.model.stext.ui.

62

5.1 The contribution of Itemis AG

• Create the following package: de.cau.cs.kieler.yakindu.synccharts.ui.integration.-
stext.parsers. This package integrates the parsers that parse transition, state,
and Statechart specifications to check for the correct syntax and to create the
internal representation form.

– Create the TransitionAntlrParser that extends SyncExpParser:

1 package de.cau.cs.kieler.yakindu.synccharts.ui.integration.stext.parsers;
2
3 import org.yakindu.sct.model.stext.stext.TransitionSpecification;
4 import de.cau.cs.kieler.yakindu.synccharts.model.stext.
5 parser.antlr.SyncExpParser;
6
7 public class TransitionAntlrParser extends SyncExpParser {
8 @Override
9 protected String getDefaultRuleName() {

10 return TransitionSpecification.class.getSimpleName();
11 }
12 }

– Create the TransitionContentAssistParser that extends SyncExpParser:

1 package de.cau.cs.kieler.yakindu.synccharts.ui.integration.stext.parsers;
2
3 import java.util.Collection;
4 import org.antlr.runtime.RecognitionException;
5 import org.eclipse.xtext.ui.editor.contentassist.antlr.FollowElement;
6 import org.eclipse.xtext.ui.editor.contentassist.antlr.
7 internal.AbstractInternalContentAssistParser;
8 import de.cau.cs.kieler.yakindu.synccharts.model.stext.ui.
9 contentassist.antlr.SyncExpParser;

10 import de.cau.cs.kieler.yakindu.synccharts.model.stext.ui.
11 contentassist.antlr.internal.InternalSyncExpParser;
12
13 public class TransitionContentAssistParser extends SyncExpParser {
14 @Override
15 protected Collection<FollowElement> getFollowElements(
16 AbstractInternalContentAssistParser parser) {
17 try {
18 InternalSyncExpParser typedParser
19 = (InternalSyncExpParser) parser;
20 typedParser.entryRuleTransitionSpecification();
21 return typedParser.getFollowElements();
22 } catch (RecognitionException ex) {
23 throw new RuntimeException(ex);
24 }
25 }
26 }

• Create the following package: de.cau.cs.kieler.yakindu.synccharts.ui.integration.-
stext.modules.

63

5 Implementation

– Create the TransitionRuntimeModule that extends SyncExpRuntimeMod-
ule:

1 package de.cau.cs.kieler.yakindu.synccharts.ui.integration.stext.modules;
2
3 import org.eclipse.xtext.parser.IParser;
4 import de.cau.cs.kieler.yakindu.synccharts.model.
5 stext.SyncExpRuntimeModule;
6 import de.cau.cs.kieler.yakindu.synccharts.ui.integration.
7 stext.parsers.TransitionAntlrParser;
8
9 public class TransitionRuntimeModule extends SyncExpRuntimeModule {

10 @Override
11 public Class<? extends IParser> bindIParser() {
12 return TransitionAntlrParser.class;
13 }
14 }

– Create the package TransitionUIModule that extends SyncExpUiModule:
1 package de.cau.cs.kieler.yakindu.synccharts.ui.integration.stext.modules;
2
3 import org.eclipse.ui.plugin.AbstractUIPlugin;
4 import org.eclipse.xtext.ui.editor.contentassist.
5 antlr.IContentAssistParser;
6 import de.cau.cs.kieler.yakindu.synccharts.model.
7 stext.ui.SyncExpUiModule;
8 import de.cau.cs.kieler.yakindu.synccharts.ui.integration.
9 stext.parsers.TransitionContentAssistParser;

10
11 public class TransitionUIModule extends SyncExpUiModule {
12 public TransitionUIModule(AbstractUIPlugin plugin) {
13 super(plugin);
14 }
15
16 @Override
17 public Class<? extends IContentAssistParser>
18 bindIContentAssistParser() {
19 return TransitionContentAssistParser.class;
20 }
21 }

• Create the following class in the default package:
1 package de.cau.cs.kieler.yakindu.synccharts.ui.integration.stext;
2
3 import org.yakindu.sct.ui.editor.extensions.AbstractExpressionsProvider;
4 import com.google.inject.Module;
5 import de.cau.cs.kieler.yakindu.synccharts.ui.integration.
6 stext.modules.TransitionRuntimeModule;
7 import de.cau.cs.kieler.yakindu.synccharts.ui.integration.
8 stext.modules.TransitionUIModule;
9

10 public class TransitionExpressionProvider
11 extends AbstractExpressionsProvider {
12
13 @Override
14 protected Module getRuntimeModule() {
15 return new TransitionRuntimeModule();
16 }
17

64

5.1 The contribution of Itemis AG

18 @Override
19 protected Module getUIModule() {
20 return new TransitionUIModule(Activator.getDefault());
21 }
22 }

The YAKINDU SCT Editor was extended to create a new editor. The derived
editor extends the Stext metamodel presented in Section 3.2.2. It allows to modify
the editparts, the palette, the properties view, and the assistant provider using
extension points. However, it is not possible to extend the Sgraph metamodel in
order to implement a derived SyncCharts transition and state. During this work,
Itemis extended their framework to allow for deriving specific types in the Sgraph
model. The modifications are discussed in the following.

5.1.2 Yakindu extensions, by Itemis AG

Itemis AG allowed the adaption of the Sgraph using extension points. The following
lines may be added to the plugin.xml to integrate an extended metamodel into the
editor. The extended Sgraph is named Syncgraph in the SyncCharts Editor based
on YAKINDU.

1 <extension point="org.eclipse.emf.ecore.generated_package">
2 <package
3 uri="http://kieler.cs.cau.de/yakindu/sccharts/"
4 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncgraphPackage"
5 genModel="model/syncgraph.genmodel"/>
6 </extension>

The extended elements should be bound to the editor. In order to do that, Itemis AG
improved the editor API by providing aModule class org.yakindu.sct.ui.editor.module.-
SCTModul. The Module class provides default bindings for the metamodel, the
palette, the Diagram Initializer, and the editparts. This is done with Google Guice,
which was introduced in Section 3.1.5. The diagram initializer specifies the default
Statecharts elements by creating a new diagram. The code in Listing 5.3 depicts
the relevant subset of the SCTModul class to implement the SyncCharts Editor.
The methods may be overridden to return the appropriate classes, e.g., create a
DefaultSyncPaletteFactory class, which defines the palette elements, and override the
getPaletteFactory() method to return the new class. The getFileExtension() method
in line 33 can be overridden to return the extended editor file extension. The get-
ContributorId() method in line 44 can be overridden to change the property page.
The getTranisitionEditPart() (line 48) may be overridden to extend the editpart of a
transition.

65

5 Implementation

Listing 5.3: A subset of the SCTModul class

1 /**
2 * returns an implementation if {@link IMetaModelTypeFactory} that registers
3 * the default statechart {@link IElementType}s. Override if you want to
4 * contribute custom element types
5 *
6 */
7 protected Class<? extends IMetaModelTypeFactory> getMetaModelTypeFactory() {
8 return StatechartMetaModelTypeFactory.class;
9 }

10
11 /**
12 * returns an implementation of {@link ISCTPaletteFactory} that registeres
13 * the default palette entries. Override if you want to add or remove
14 * palette entries.
15 */
16 protected Class<? extends ISCTPaletteFactory> getPaletteFactory() {
17 return DefaultSCTPaletteFactory.class;
18 }
19
20 /**
21 * returns an implementation of {@link IDiagramInitializer} that initializes
22 * new created diagrams.
23 *
24 * @return
25 */
26 protected Class<? extends IDiagramInitializer> getDiagramInitializer() {
27 return DefaultDiagramInitializer.class;
28 }
29
30 /**
31 * Returns the default file extension for diagrams.
32 */
33 protected String getFileExtension() {
34 return "sct";
35 }
36
37 /**
38 * Override the property sheet id if you want to contribute your own
39 * property sheets via
40 * org.eclipse.ui.views.properties.tabbed.propertyContributor extension
41 * point
42 *
43 */
44 protected String getContributorId() {
45 return "org.yakindu.sct.ui.editor.editor.StatechartDiagramEditor";
46 }
47
48 protected Class<? extends IGraphicalEditPart> getTransitionEditPart() {
49 return TransitionEditPart.class;
50 }

The support provided by Itemis AG made it possible to implement an extended
SyncCharts Editor. The following section presents the implementation details.

66

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

Editor

Global

Syncgraph

Synctext

SyncCharts

SCCharts

Editor

SyncChartstext

Editor

SCChartstext

KIELERYAKINDU

YAKINDU SCT

Editor
sct.ui.editor

Sgraph
sct.model.sgraph

Stext
sct.model.stext

yakindu.ui.editor

yakindu.model.stext

yakindu.sgraph

yakindu.synccharts.ui.editor

yakindu.synccharts.model.stext

yakindu.sccharts.ui.editor

yakindu.sccharts.model.stext

org.yakindu.* de.cau.cs.kieler.*

Figure 5.1: This figure gives a detailed overview of the project design shown in Fig-
ure 4.25. It also shows the projects names. The red arrows show the
dependencies between the sub-projects

5.2 Using YAKINDU SCT extension mechanisms for
implementing a SyncCharts Editor

As mentioned in Section 1.4, the aim of this thesis is to implement a SyncCharts
Editor and a SCCharts Editor based on YAKINDU SCT. Figure 5.1 shows the design
of the project and gives an overview of the dependencies between its sub-projects.
This work proposes a generic approach for the implementation of both editors. The
Global project contains the elements used in common. It extends the Sgraph meta-
model to implement the Syncgraph metamodel. Since SyncCharts and SCCharts
have the same graphical representation, Syncgraph is used together by both editors.
The Global project also extends the Stext metamodel to implement the Synctext
metamodel. The latter is extended by the SyncCharts Editor and the SCCharts
Editor to add special requirements. Syntactically, SyncCharts and SCCharts differ
by variables. The editor implemented by the Global project extends the palette, the
diagram initializer, the editparts, the properties view, and the modeling assistant
provider.
This section is divided into five parts. The first part presents the Sgraph project,

which contains the Syncgraph metamodel. The second part gives an overview of the
Stext projects, which implement the Synctext metamodel as well as the SyncCha-
rtstext and the SCChartstext. The third part presents the implementation of the
Editor projects. The fourth part implements the automatic layout to arrange the
modeled diagrams. The last part gives an overview of reducing white spaces.

67

5 Implementation

5.2.1 The Sgraph project
The Sgraph project (de.cau.cs.kieler.yakindu.sgraph) implements the Syncgraph meta-
model as well as the validator for the graphical representation.

Metamodel

The Syncgraph metamodel shown in Figure 5.2 extends the Sgraph metamodel to
add two elements: SyncTransition and SyncState. A SyncTransition extends the
Sgraph transition. It has additionally the attributes type and isHistory. The type
may be one of the following options: WEAKABORT, STRONGABORT, or NORMAL-
TERMINATION. The isHistory attribute is of type boolean. It is set to true if the
transition is a history transition. A SyncState extends the state already existing in
the Sgraph metamodel. It adds the isInitial and isFinal attributes of type boolean,
which reflect respectively if a state is an initial or final state.

Figure 5.2: The Syncgraph metamodel

Validator for the graphical representation

The validator package de.cau.cs.kieler.yakindu.sgraph.validator implements the valid-
ity rules for the graphical representation presented in Section 4.4.3. It contains the
SyncGraphJavaValidator class, which extends the SGraphJavaValidator (The YAKINDU
SCT Sgraph validator). The following code is a subset of the SyncGraphJavaValidator
class. It implements the outgoingTransitionCount() validity rule, which verifies that
a final state has no outgoing transitions. The method tests if the state is a final state
(line 9). In the case of a final state, it returns a warning if the number of outgoing
transitions is greater than zero (lines 10 - 13).

68

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

1 public static final String ISSUE_FINAL_STATE_OUTGOING_TRANSITION
2 = "A final state should have no outgoing transition.";
3
4 /**
5 * Verify that a final state has no outgoing transitions
6 */
7 @Check(CheckType.FAST)
8 public void outgoingTransitionCount(SyncState finalState) {
9 if (finalState.isIsFinal()) {

10 if ((finalState.getOutgoingTransitions().size() > 0)) {
11 warning(ISSUE_FINAL_STATE_OUTGOING_TRANSITION, finalState,
12 null, -1);
13 }
14 }
15 }

The SyncGraphJavaValidator implements only the validity rules for the graphical
representation. The validator for the textual language is presented with the Sync-
text, SyncChartstext, and SCChartstext metamodels in the following.

5.2.2 The Stext project

The Stext project implements the elements of the textual description language that
are not supported by YAKINDU SCT, which are introduced in Section 4.4.1. The
Stext project is composed of three projects. The Global project (de.cau.cs.kieler.-
yakindu.model.stext) contains the Synctext metamodel, which extends the Stext
metamodel and the global validator for the textual language. The de.cau.cs.kieler-
.yakindu.synccharts.model.stext and de.cau.cs.kieler.yakindu.sccharts.model.stext pro-
jects contain respectively the SyncChartstext and SCChartstext metamodels. The
Stext sub-projects are presented in the following.

de.cau.cs.kieler.yakindu.model.stext

The de.cau.cs.kieler.yakindu.model.stext, shown in Figure 5.1, is an Xtext project.
It implements the Synctext metamodel and the global validator for the textual
language. The validator is introduced in Section 5.2.2.
The Synctext extends the Stext grammar, which can be found in the plug-in

org.yakindu.sct.model.stext. The code in Listing 5.4 shows the adaption of the
YAKINDU SCT grammar to a grammar that can be used in common by the Sync-
Charts Editor and the SCCharts Editor.

Listing 5.4: The Synctext grammar
1 grammar de.cau.cs.kieler.yakindu.model.stext.Synctext
2 with org.yakindu.sct.model.stext.SText
3
4 generate synctext "http://kieler.cs.cau.de/yakindu/stext/"
5
6 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
7 import "http://www.yakindu.org/sct/statechart/SText" as stext
8 import "http://www.yakindu.org/sct/sgraph/2.0.0" as sgraph
9 import "http://www.yakindu.org/base/types/2.0.0" as types

69

5 Implementation

10
11 /******** INTERFACE DECLARATION *************** */
12 ////defines the possible scopes for a state
13 StateScope:
14 {SimpleScope} declarations+=(VariableDeclaration
15 | SignalDeclaration
16 | OperationDeclaration
17 | LocalReaction)*;
18
19 /**/
20 /* Signal Definition */
21 /**/
22 SignalDeclaration returns sgraph::Event:
23 SignalDefinition;
24
25 SignalDefinition:
26 {EventDefinition} (isInput?=’input’)? (isOutput?=’output’)? ’signal’
27 name=ID (’:’ type=[types::Type|FQN] (’=’ varInitialValue=Expression)?
28 (’with’ varCombineOperator=CombineOperator)?)? ’;’;
29
30 /**/
31 /* Variable Definition */
32 /**/
33 // A dummy VariableDefinition declaration,
34 // which will be override by an other grammar
35 VariableDefinition:
36 {VariableDefinition} ’variable’ name=ID ’;’;
37
38 /**/
39 /* LocalReactionScope */
40 /**/
41 LocalReaction:
42 (trigger=(LocalReactionTrigger | ReactionTrigger))?
43 (’/’ effect=(ReactionEffect | SuspendEffect)) ’;’;
44
45 SuspendEffect returns sgraph::Effect:
46 {SuspendEffect} ’Suspend’;
47
48 LocalReactionTrigger returns sgraph::Trigger:
49 {ReactionTrigger} stateReaction=StateReaction
50 (’&&’ reactionTrigger=ReactionTrigger?)?;
51
52 StateReaction:
53 Entry | Inside | Exit;
54
55 Entry:
56 {Entry} ’Entry’;
57
58 Inside:
59 {Inside} ’During’;
60
61 Exit:
62 {Exit} ’Exit’;
63
64 /****************** TRANSITION ****************** */
65 // The ReactionTrigger is a Trigger and has an Expression,
66 // an optional delay and isImmediate option represented with a ’#’
67 ReactionTrigger returns sgraph::Trigger:
68 {ReactionTrigger} (isImmediate?=’#’)? (delay=INT)? ((trigger=RegularEventSpec)
69 | (’[’ guardExpression=Expression ’]’));
70
71 // The ReactionEffect is an Effect.

70

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

72 ReactionEffect returns sgraph::Effect:
73 {ReactionEffect} actions+=Expression (=> ’,’ actions+=Expression)*; // (’;’)?;
74
75 /****************** Expressions ***************** */
76 // Override the stext::PrimaryExpression
77 // remove the ActiveStateReferenceExpression
78 // and add PreValueExpressionreturns that returns
79 // the value of a variable or the status of a signal in the previous tick.
80 PrimaryExpression returns stext::Expression:
81 PrimitiveValueExpression
82 | FeatureCall
83 | ActiveStateReferenceExpression
84 | PreValueExpression
85 | ParenthesizedExpression
86 | EventValueReferenceExpression
87 ;
88
89 //todo: pre(x) should return the same type of x
90 PreValueExpression returns stext::Expression:
91 {PreValueExpression} ’pre’ ’(’ value=FeatureCall ’)’;
92
93 /**************** COMBINE OPERATORS *************** */
94 enum CombineOperator returns CombineOperator:
95 NONE="’none’" | ADD="’+’" | MULT="’*’" | MAX="’max’" |
96 MIN="’min’" | OR="’or’" | AND="’and’" | HOST="’host’";

The Synctext grammar allows the declaration of signals, variables, operations, and
local reactions in a state scope (lines 13 - 17). A SignalDefinition (lines 25 - 28)
defines a signal, which may be an input signal, an output signal, or both. It has an
identifier name, an optional type, an optional initialValue, and an optional Combi-
neOperator. The VariableDefinition (line 35) may be overridden by the SyncCharts
and SCCharts grammar to define the appropriate variables definition notation. The
LocalReaction (lines 41 - 43) has a trigger and an effect. A trigger may be either
a LocalReactionTrigger or a ReactionTrigger. The LocalReactionTrigger (lines 48 -
52) is composed of a StateReaction (Entry, During, Exit) and an optional Reaction-
Trigger. The ReactionTrigger (lines 67 - 69) has an optional isImmediate option, an
optional delay, and either a RegularEventSpec or an Expression. An effect may be
either a ReactionEffect or a SuspendEffect. The ReactionEffect (lines 72 - 73) is a
list of Expressions delimited by a comma. The SuspendEffect (lines 45 - 46) may
be expressed by the Suspend literal. The Expression is implemented by the Stext
grammar. The PrimaryExpression (lines 80- 87) is overridden to remove the ActiveS-
tateReferenceExpression and to add the PreValueExpression (line 84). The latter (lines
90 - 91) implements the pre operator. The CombineOperator (lines 94 - 96) is an
enumeration. It represents the combine operators for signals and variables.
The Synctext grammar is extended by the SyncCharts grammar to implement its

special definitions. The implementation is included in the de.cau.cs.kieler.yakindu.-
synccharts.model.stext project, which is introduced in the following.

de.cau.cs.kieler.yakindu.synccharts.model.stext

The project de.cau.cs.kieler.yakindu.synccharts.model.stext provides the SyncCharts-
text metamodel that extends the Synctext metamodel, as shown in Figure 4.25. It

71

5 Implementation

is used to define the textual language for the SyncCharts Editor. It uses the Sync-
text grammar and adapts it to add the variable definition. The following lines are
extracted from the SyncChartstext grammar:

1 /**/
2 /* Variable Definition */
3 /**/
4 // Override the Synctext VariableDefinition rule
5 // A variable is a Declaration. It has a Direction, a Name, a Type,
6 // an InitialValue, and a CombineOperator
7 VariableDefinition:
8 {VariableDefinition} (isStatic?=’static’)? type=[types::Type|FQN] name=ID
9 (’=’ varInitialValue=Expression)? ’;’;

A VariableDefinition (lines 7 - 9) defines a variable. A variable can be static. It has
a type, an identifier name, and an optional initialValue, which may be an expression.
The Synctext grammar is also extended by the SCCharts grammar to imple-

ment the textual language of the SCCharts Editor. The implementation of the
de.cau.cs.kieler.yakindu.sccharts.model.stext project is presented in the following.

de.cau.cs.kieler.yakindu.sccharts.model.stext

As mentioned in Section 4.2, SCCharts allow variables to have a direction. This
project provides the SCChartstext metamodel, which defines the variable defini-
tion of the SCCharts Editor. It extends the Synctext metamodel as depicted in
Figure 5.1. The following code shows its implementation in the Xtext grammar:

1 /**/
2 /* Variable Definition */
3 /**/
4 // Override the Synctext VariableDefinition rule
5 // A variable is a Declaration. It has a Direction, a Name, a Type,
6 // an InitialValue and a CombineOperator
7 VariableDefinition:
8 {VariableDefinition} (isInput?=’input’)? (isOutput?=’output’)?
9 (isStatic?=’static’)? type=[types::Type|FQN] name=ID

10 (’=’ initialValue=Expression)?
11 (’with’ varCombineOperator=CombineOperator)? ’;’;

A VariableDefinition (lines 7 - 11) defines a variable, which can have a direction (input,
output). A variable may be static. It has a type, a name, an optional initialValue,
and an optional CombineOperator.
The Stext project provides a validator for the textual language. It is discussed in

the following.

The validator

The validator is implemented in the de.cau.cs.kieler.yakindu.model.stext.validation
package. The SyncJavaValidator class extends the STextJavaValidator class from the
YAKINDU SCT Editor. It implements several methods, which represent the validity
rules for the textual language. It also overrides some Stext validity rules to adapt
them.

72

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

In order to add supplement checks for the type conformance, the SyncTypeInfer-
rer class from the de.cau.cs.kieler.yakindu.sccharts.model.stext.types package extends
the STextDefaultTypeInferrer class. STextDefaultTypeInferrer is written in the Xtend
language. The SyncTypeInferrer allows the check for the PreValueExpression type
conformance (e.g., for A=pre(B), A and B should have the same type).
The validator may be extended by the SyncCharts Editor and the SCCharts Editor

to add special requirements. It permits to avoid inconsistent models by displaying
the appropriate error or warning in the Editor. The Editor project is presented in
the following.

5.2.3 The Editor project
There are three Editor projects, as depicted in Figure 5.1. The Global Editor project
de.cau.cs.kieler.yakindu.ui.editor implements the objects used in common by the Sync-
Charts Editor and the SCCharts Editor.

de.cau.cs.kieler.yakindu.ui.editor

This Global Editor project extends the YAKINDU SCT Editor to add the additional
elements defined in the Sgraph project. It implements the editparts, the palette, the
properties view, the modeling assistant provider, and the diagram initializer.

Editparts The package de.cau.cs.kieler.yakindu.ui.editor.parts contains the implemen-
tation of the editparts for the SyncState and the SyncTransition. The following
code is an extract of the SyncTransitionEditPart:

1 /**
2 * Update the source decorator (red circle for strong abortion, green
3 * triangle for normal termination, and no decorator for weak abortion)
4 *
5 * @param The
6 * transition figure
7 */
8 private void updateTransitionSourceDecorator(TransitionFigure transition) {
9 EObject element = resolveSemanticElement();

10 if (element instanceof SyncTransition) {
11 TransitionType type = ((SyncTransition) element).getType();
12 switch (type) {
13 case WEAKABORT:
14 transition.setSourceDecoration(null);
15 break;
16 case NORMALTERMINATION:
17 transition.setSourceDecoration(TransitionDecorator
18 .createNormalTerminationDecoration(getMapMode().DPtoLP(
19 TransitionDecorator.LINE_WIDTH)));
20 break;
21 case STRONGABORT:
22 transition.setSourceDecoration(TransitionDecorator
23 .createStrongAbortDecoration(getMapMode().DPtoLP(
24 TransitionDecorator.LINE_WIDTH)));
25 break;
26 }
27 }
28 }

73

5 Implementation

It extends the TransitionEditPart class, which implements the editpart of the
Statecharts transitions. The SyncTransitionEditPart updates the transition
source decorator when the type changes. If the transition is a weak abortion
transition (lines 13 - 15), the source decorator is empty. If the transition is a
normal termination (lines 16 - 20), the method createNormalTerminationDeco-
ration() creates a green triangle source decorator. If the transition is a strong
abortion transition (lines 21 - 25), a red circle source decorator is created.

The YAKINDU SCT Editor displays the <name> literal by default when a state
or a region name is left empty. This feature is removed by overriding the
getEditString() method from the AttributeParser class, which is extended by
the KielerAttributeParser class.

Palette The palette is implemented by the KielerPaletteFactory class, which is in-
cluded in the de.cau.cs.kieler.yakindu.ui.editor.factory package. It extends the
DefaultSCTPaletteFactory class from the YAKINDU SCT Editor to define ele-
ments properties (type, name, and icon) and to bind them to the palette.

1 protected void createInitialStateEntry(PaletteContainer container) {
2 container.add(new CreationToolEntry("Initial State",
3 "Creates an initial state",
4 getType(KielerMetaModelTypeFactory.SYNC_INITIAL_STATE_ID),
5 findIcon("icons/obj16/Initial-State-16.png"),
6 findIcon("icons/obj32/Initial-State-32.png")));
7 }

The lines above defines an initial state element. Once all elements of the
palette are defined, they can be bound by the createPaletteEntries() method
presented below:

1 public void createPaletteEntries(PaletteRoot root) {
2 PaletteContainer container = createToolsCategory(root);
3 createTransitionEntry(container);
4 createStateEntry(container);
5 createInitialStateEntry(container);
6 createFinalStateEntry(container);
7 createRegionEntry(container);
8 createChoiceEntry(container);
9 }

Properties view The Properties views are implemented by the de.cau.cs.kieler.yakin-
du.ui.editor.propertysheets package. The package contains the SyncStateProper-
tySection and the SyncTransitionPropertySection classes. The SyncTransition-
PropertySection extends the TransitionPropertySection class, which implements
the properties view of the YAKINDU SCT transitions. The following code is an
extract of the SyncTransitionPropertySection class:

74

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

1 /**
2 * Create the selection Combo. It allows to select the transition type
3 * (WEAKABORT, STRONGABORT or NORMALTERMINATION)
4 *
5 * @param parent
6 * the parent Composite
7 */
8 private void createTransitionTypeControl(Composite parent) {
9 Label kindLabel = getToolkit().createLabel(parent, "Transition Type: ");

10 GridDataFactory.fillDefaults().applyTo(kindLabel);
11 transitionTypeKindViewer = new ComboViewer(parent, SWT.READ_ONLY
12 | SWT.SINGLE);
13 transitionTypeKindViewer.setContentProvider(new ArrayContentProvider());
14 transitionTypeKindViewer.setLabelProvider(new LabelProvider());
15 transitionTypeKindViewer.setInput(TransitionType.values());
16 GridDataFactory.fillDefaults().grab(true, false)
17 .applyTo(transitionTypeKindViewer.getControl());
18 }

It creates a combo-box to allow the user to select the transition type (weak
abortion, strong abortion, or normal termination).

Modeling assistant provider The KielerModelingAssistantProvider from the de.cau.-
cs.kieler.yakindu.ui.editor.assistent package implements the modeling assistant
provider. It overrides the getTypesForPopupBar(), getTypesForTarget(), and
getTypesForSource() methods from the ModelingAssistantProvider class to bind
the graphical elements used by the SyncCharts Editor and the SCCharts Ed-
itor. The getTypesForPopupBar() returns the elements displayed by the pop-
up bar assistant provider. The getTypesForTarget() and getTypesForSource()
methods return the elements displayed by the connection creation assistant.
The following code shows the implementation of the getTypesForPopupBar()
method:

1 @Override
2 public List<IElementType> getTypesForPopupBar(IAdaptable host) {
3 IGraphicalEditPart editPart = (IGraphicalEditPart) host
4 .getAdapter(IGraphicalEditPart.class);
5 if (editPart instanceof RegionEditPart
6 || editPart instanceof RegionCompartmentEditPart)
7 return Lists.newArrayList(SYNC_INITIAL_STATE, SYNC_STATE,
8 SYNC_FINAL_STATE, CHOICE);
9 if (editPart instanceof StateEditPart

10 || editPart instanceof StateFigureCompartmentEditPart)
11 return Lists.newArrayList(REGION);
12 return Lists.newArrayList();
13 }

The method returns an initial state, a simple state, a final state, and a choice
(line 7) if the host element is a region (line 5). It returns a region (line 11) if
the host element is state (line 9).

Diagram initializer The KielerDiagramInitializer class extends the DefaultDiagramIni-
tializer. It is contained in the de.cau.cs.kieler.yakindu.ui.editor.factory package.
The following method initializes the Statechart diagram:

75

5 Implementation

1 @Override
2 public void initModel(Statechart statechart, Diagram diagram,
3 PreferencesHint preferencesHint) {
4 // Create an root Region
5 Region region = factory.createRegion();
6 //add the root Region to the Statechart
7 statechart.getRegions().add(region);
8 Node regionView = ViewService.createNode(diagram, region,
9 SemanticHints.REGION, preferencesHint);

10 setRegionViewLayoutConstraint(regionView);
11
12 // Create the root State
13 SyncState state = syncfactory.createSyncState();
14 state.setName(statechart.getName());
15
16 // create the state region
17 Region stateregion = factory.createRegion();
18 state.getRegions().add(stateregion);
19 stateregion.setName(INITIAL_REGION_NAME);
20 region.getVertices().add(state);
21 Node stateNode = ViewService.createNode(
22 getRegionCompartmentView(regionView), state,
23 SemanticHints.STATE, preferencesHint);
24 setStateViewLayoutConstraint(stateNode);
25 }

The method initModel() creates the root region (line 5) and adds the latter to
the Statechart (line 7). It also creates the root state (line 13) and a region
inside (line 17). the root state has the same Statechart name (line 14), which
is given in the creation wizard while creating a new diagram.

de.cau.cs.kieler.yakindu.synccharts.ui.editor and de.cau.cs.kieler.yakindu.sccharts.ui.-
editor projects extend the de.cau.cs.kieler.yakindu.ui.editor project to register the ed-
itors and to set the diagram file extension for each editor. Every project defines its
extensions as introduced in Section 5.1.1. This work adds additional extensions for
the automatic layout. The following subsection gives an overview of the automatic
layout integration in the SyncCharts Editor and the SCCharts Editor.

5.2.4 Automatic layout
As mentioned in Section 4.1.4, the ideal layout for the SyncCharts models is the
dot layout. In order to register this layout as default for the SyncCharts Editor
and the SCCharts Editor, the de.cau.cs.kieler.kiml [15] project offers the layoutInfo
extension point, which is extended in the plugin.xml of each editor. The following
lines specify the properties of the SyncCharts/SCCharts diagram with regard to
automatic layout:

1 <extension
2 point="de.cau.cs.kieler.kiml.layoutInfo">
3 <option
4 class="org.yakindu.sct.model.sgraph.Region"
5 option="de.cau.cs.kieler.diagramType"
6 value="de.cau.cs.kieler.layout.diagrams.stateMachine">
7 </option>

76

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

8 <option
9 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncState"

10 option="de.cau.cs.kieler.diagramType"
11 value="de.cau.cs.kieler.layout.diagrams.boxes">
12 </option>
13 <option
14 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncState"
15 option="de.cau.cs.kieler.spacing"
16 value="1.0">
17 </option>
18 <option
19 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncState"
20 option="de.cau.cs.kieler.borderSpacing"
21 value="1.0">
22 </option>
23 <option
24 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncState"
25 option="de.cau.cs.kieler.sizeConstraint"
26 value="[MINIMUM_SIZE, DEFAULT_MINIMUM_SIZE]">
27 </option>
28 <option
29 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncState"
30 option="de.cau.cs.kieler.expandNodes"
31 value="true">
32 </option>
33 <option
34 class="de.cau.cs.kieler.yakindu.sgraph.syncgraph.SyncState"
35 option="de.cau.cs.kieler.interactive"
36 value="true">
37 </option>
38 <option
39 class="org.yakindu.sct.model.sgraph.Region"
40 option="de.cau.cs.kieler.borderSpacing"
41 value="5.0">
42 </option>
43 <option
44 class="org.yakindu.sct.model.sgraph.Region"
45 option="de.cau.cs.kieler.direction"
46 value="RIGHT">
47 </option>
48 <semanticOption
49 class="org.yakindu.sct.model.sgraph.Scope"
50 config="de.cau.cs.kieler.synccharts.diagram.
51 custom.HVLayoutConfig">
52 </semanticOption>
53 <semanticOption
54 class="org.yakindu.sct.model.sgraph.Reaction"
55 config="de.cau.cs.kieler.synccharts.diagram.
56 custom.ActionLayoutConfig">
57 </semanticOption>
58 <semanticOption
59 class="org.yakindu.sct.model.sgraph.Scope"
60 config="de.cau.cs.kieler.synccharts.diagram.
61 custom.AnnotationsLayoutConfig">
62 </semanticOption>
63 <semanticOption
64 class="org.yakindu.sct.model.sgraph.Reaction"
65 config="de.cau.cs.kieler.synccharts.diagram.
66 custom.AnnotationsLayoutConfig">
67 </semanticOption>
68 </extension>
69 </plugin>

77

5 Implementation

The extension specifies for a SyncState the following properties:

• spacing=’1.0’ (lines 13 - 17)

• borderSpacing=’1.0’ (lines 18 - 22)

• sizeContraint=’[MINIMUM_SIZE, DEFAULT_MINIMUM_SIZE]’

• expandNodes=True (lines 28 - 32)

• interactive=True (lines 33 - 37)

The KIELER View Management (KIVI) [24] project offers the option to apply the
automatic layout after the model has been changed. The de.cau.cs.kieler.yakindu.-
synccharts.kivi and the de.cau.cs.kieler.yakindu.sccharts.kivi projects contain both the
LayoutAfterModelChangedCombination class, which integrates this feature respec-
tively in the SyncCharts Editor and the SCCharts Editor. The projects use the
de.cau.cs.kieler.core.kivi.combinations extension point to register this feature and to
allow its use by the KIELER framework.

5.2.5 Reducing white spaces

As mentioned in Section 4.4.5, white spaces can be reduced by eliminating the white
space under a state name, reducing the font size, and minimizing the vertical spacing
inside a state.

White space under states names

The minimum size of a state in YAKINDU SCT is 40 pixels in height and 40 pixels in
width. The size can be configured by manipulating the DEFAULT_NODE_WIDTH
and DEFAULT_NODE_HEIGHT attributes of the SyncMapModeUtils class from the
de.cau.cs.kieler.yakindu.ui.editor.figures.utils package.

1 private static final int DEFAULT_NODE_WIDTH = 30;
2 private static final int DEFAULT_NODE_HEIGHT = 30;

Font size of labels and text compartments

The SyncPreferenceInitializer class from the de.cau.cs.kieler.yakindu.ui.editor.preference
package allows to set the default font for the editor. The following lines set the
verdena font size 8 as default.

1 // set default font
2 FontData defaultFont = new FontData("Verdana", 8, SWT.NONE);
3 PreferenceConverter.setDefault(getPreferenceStore(),
4 IPreferenceConstants.PREF_DEFAULT_FONT, defaultFont);

78

5.2 Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor

Vertical spacing inside states

The default vertical spacing provided by YAKINDU SCT is 5 pixels. The following
lines minimize the vertical spacing to 0 pixel. They are extracted from the SyncState
class, which is included in the de.cau.cs.kieler.yakindu.ui.editor.figures package.

1 public SyncStateFigure() {
2 // reduce white spaces
3 ((GridLayout) this.getLayoutManager()).verticalSpacing=0;
4 }

This chapter presented the contribution of Itemis AG and gave details about the
implementation of the SyncCharts Editor as well as the SCCharts Editor based on
YAKINDU SCT. The next chapter evaluates and summarises this work. It also gives
some ideas for future research.

79

5 Implementation

80

6 Conclusions

This work implements a SyncCharts Editor as well as a SCCharts Editor by extend-
ing the YAKINDU SCT Editor instead of completely creating an independent editor.
The following section evaluates this approach by means of maintenance effort.

6.1 Evaluation

In order to evaluate this work that aimed in minimizing maintenance effort, the
following criteria are measured in the ThinKCharts Editor and the new SyncCharts
Editor based on YAKINDU SCT: Number of lines of the code, number of classes,
number of plug-ins, and number of dependencies. The results are presented in
Table 6.1.

ThinKCharts SyncCharts Editor Based on YAKINDU Reduction
Editor Global SyncCharts Total % Rate

A M A M A M A M A M
Plug-ins 12 6 4 3 4 3 8 6 33 0
Packages 61 20 36 14 30 11 66 25 - -
Classes 473 220 100 24 62 30 162 54 66 75
Lines of code 125.446 10.146 53.792 1.388 53.603 341 107.395 1729 15 83
Dependencies 78 34 28 62 21
A=All
M=Manual

Table 6.1: This table compares the source code (the manual code only as well as the
manual code and the auto generated) of the ThinKCharts Editor and the
SyncCharts Editor based on YAKINDU. It also shows the reduction rate
of the SyncCharts Editor based on YAKINDU source code

In the first place, the table permits to compare both editors based on the criteria
mentioned above and gives an overview of the reduction rate of the SyncCharts
Editor based on YAKINDU SCT source code. Hand coded as well as auto generated,
the number of plug-ins and the number of packages do not differ much in both
editors. The ThinKCharts Editor contains 473 classes, 220 of them are hand coded.
The SyncCharts Editor based on YAKINDU contains less plug-ins. It is composed of
162 classes, only 54 of them are hand coded. The ThinKCharts Editor has 125.446
lines of code. It has 10.146 lines of hand coded code. The SyncCharts Editor based

81

6 Conclusions

6

25

54

1729

62

1 10 100 1000 10000 100000

Plug-ins

Packages

Classes

Lines of code

SyncCharts Editor based on
YAKINDU SCT

ThinKCharts Editor

Dependencies

Figure 6.1: Comparison of the manual code of the ThinKCharts Editor and the Sync-
Charts Editor based on YAKINDU SCT. The horizontal axis has a log-
arithmic scale. It represents the number of plug-ins, packages, classes,
lines of code, and dependencies

on YAKINDU contains 18.051 less lines of code. It has only 1.729 lines of hand coded
code (a reduction rate of 83%). This is significantly smaller than the number of
lines of hand coded code in the ThinKCharts Editor. The number of dependencies
in the SyncCharts Editor based on YAKINDU is also smaller than the number of
dependencies of the ThinKCharts Editor. There is a difference of 16 dependencies.
Figure 6.1 compares the manual code of the ThinKCharts Editor and the SyncCharts
Editor based on YAKINDU SCT. The results show that the approach used in this work
provides a SyncCharts Editor which is much more maintainable than the ThinKCharts
Editor, which contains more hand coded classes and code.
In the second place, Table 6.1 shows the efficiency of the generic editor imple-

mented by this work. As depicted in Figure 5.1, the Global project is extended by
the SyncCharts Editor. The latter contains 3 plug-ins, 11 packages, 30 classes, and
341 lines of code, which are manually written (not auto generated). The SCCharts
Editor was extended from the Global project with minimal effort.

6.2 Summary

This master thesis presented an approach on how to implement a SyncCharts Editor
and a SCCharts Editor based on YAKINDU SCT in a generic way. The SCCharts
Editor allows the modeling based on the concept of Statecharts. Part of this work is
a detailed comparison between the ThinKCharts Editor and the YAKINDU SCT Editor.
That aimed in providing Itemis AG with necessary information for generalizing the
YAKINDU SCT to make an implementation of various Statechart dialects based on
YAKINDU SCT possible.

82

6.3 Future Work

This approach minimized the effort of maintenance of the SyncCharts Editor and
the new SCCharts Editor. It also contributed to the improvement of the extensibility
of the YAKINDU SCT project.

6.3 Future Work

Some ideas for future extensions and research based on this work are presented in
the following.

6.3.1 SyncChart Importer

This master thesis provided a SyncCharts Editor, which will be integrated in the
KIELER framework. When replacing the ThinKCharts Editor, it is no longer possible
to edit old models.
Furthermore, the KIELER framework provides a model transformations infrastruc-

ture, which allows to transform an Esterel program into a SyncChart [28]. However,
the resulting SyncChart may only be edited using the ThinKCharts Editor.
A SyncChart Importer may be implemented in order to import old models to the

new format.

6.3.2 Simulation and Code Generation

As stated in Section 2.1, the KIELER framework provides a SyncCharts simula-
tor [19][20] based on the KlePto project [21]. The simulator offers the user the oppor-
tunity to directly execute and simulate a SyncChart. The KIELER framework also
allows to generate C-Code from a SyncChart. These two features could be interest-
ing for the SyncCharts Editor and the SCCharts Editor, which were implemented
in this work.

6.3.3 An Actor Oriented Editor based on YAKINDU

As mentioned in Section 1.2, the KAOM project permits rendering and simulating
actor oriented modeling languages like Ptolemy. An idea for a future work is to
implement a KAOM Editor based on YAKINDU Damos1.

6.3.4 A SCXML converter

State Chart eXtensible Markup Language (SCXML)2 is an XML notation that allows
to describe Statecharts [10]. It enables to represent hierarchy, history, concurrency,
and synchronization [11]. The objective of SCXML is to generify state diagrams
notations.

1http://code.google.com/a/eclipselabs.org/p/yakindu/
2http://www.w3.org/TR/2005/WD-scxml-20050705/

83

http://code.google.com/a/eclipselabs.org/p/yakindu/
http://www.w3.org/TR/2005/WD-scxml-20050705/

6 Conclusions

KIELER SyncCharts as well as SCCharts models are represented in the XMI nota-
tion, which is developed for representing UML diagrams. A valuable future work is
to represent them in the SCXML notation. This can be done by adapting the editor
serializer or by converting the generated XMI notation using an Extensible Stylesheet
Language Transformations (XSLT) script.

84

Bibliography

[1] SWT/JFace in Action: GUI Design with Eclipse 3.0 (1st ed.). page 496. Man-
ning Publications, 2004.

[2] Daniel Amyot, Hanna Farah, and Jean-Francois Roy. Evaluation of Develop-
ment Tools for Domain-Specific Modeling Languages. In In System Analysis
and Modeling: Language Profiles, volume 4320, pages 183 – 197. Springer, 2006.

[3] Charles André. SyncCharts: A visual representation of reactive behaviors.
Technical Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France,
Rev. April 1996.

[4] Charles André. Semantics of S.S.M (Safe State Machine). Technical report,
Esterel Technologies, Sophia-Antipolis, France, April 2003. http://www.
esterel-technologies.com.

[5] Charles André. Semantics of SyncCharts. Technical Report ISRN I3S/RR–
2003–24–FR, I3S Laboratory, Sophia-Antipolis, France, April 2003.

[6] Charles André. Computing SyncCharts reactions. Electronic Notes in Theoret-
ical Computer Science, 88(33):3–19, 2004.

[7] Gérard Berry. The Constructive Semantics of Pure Esterel. Draft
Book, 1999. ftp://ftp-sop.inria.fr/esterel/pub/papers/
constructiveness3.ps.

[8] Gérard Berry and Georges Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Science of Computer Program-
ming, 19(2):87–152, 1992.

[9] Steven D. Bragg, Carl G. Driskill, Ground Systems Group, Inc Frontier Engi-
neering, Stillwater, and OK. Diagrammatic-graphical programming languages
and DoD-STD-2167A. In Cost Effective Support Into the Next Century, pages
211–220. AUTOTESTCON ’94. IEEE Systems Readiness Technology Confer-
ence. ’, AUTOTESTCON ’94., Sep 1994.

[10] Jenny Brusk and Torbjörn Lager. Developing Natural Language Enabled Games
in (Extended) SCXML. In International Symposium on Intelligence Techniques
in Computer Games and Simulations.

85

http://www.esterel-technologies.com
http://www.esterel-technologies.com
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps

6 Bibliography

[11] Jenny Brusk, Torbjörn Lager, Anna Hjalmarsson, and Preben Wik. DEAL –
Dialogue Management in SCXML for Believable Game Characters. In Future
Play ’07 Proceedings of the 2007 conference on Future Play.

[12] Björn Duderstadt. Sccharts: A sequentially constructive statecharts dialect.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, November 2012.

[13] Stephen A. Edwards Dumitru Potop-Butucaru. Compiling Esterel. Springer,
2007.

[14] Hauke Fuhrmann. On the Pragmatics of Graphical Modeling. Dissertation,
Christian-Albrechts-Universität zu Kiel, Faculty of Engineering, Kiel, 2011.

[15] Hauke Fuhrmann, Miro Spönemann, Michael Matzen, and Reinhard von
Hanxleden. Automatic layout and structure-based editing of UML diagrams.
In Proceedings of the 1st Workshop on Model Based Engineering for Embedded
Systems Design (M-BED’10), Dresden, March 2010.

[16] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[17] Michael Matzen. A generic framework for structure-based editing of graphical
models in Eclipse. Diploma thesis, Christian-Albrechts-Universität zu Kiel, De-
partment of Computer Science, March 2010. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf.

[18] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse Rich Client
Platform : Designing, Coding, and Packaging Java™ Applications, Second Edi-
tion. Addison-Wesley Professional, 2010.

[19] Christian Motika. Semantics and execution of domain specific models—
KlePto and an execution framework. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, De-
cember 2009. http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/cmot-dt.pdf.

[20] Christian Motika, Hauke Fuhrmann, and Reinhard von Hanxleden. Semantics
and execution of domain specific models. In 2nd Workshop Methodische En-
twicklung von Modellierungswerkzeugen (MEMWe 2010) INFORMATIK 2010,
GI-Edition – Lecture Notes in Informatics (LNI), pages 891–896, Leipzig, Ger-
many, September 2010. Bonner Köllen Verlag.

[21] Christian Motika, Hauke Fuhrmann, Reinhard von Hanxleden, and Edward A.
Lee. Executing domain-specific models in Eclipse. Technical Report 1214,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Oc-
tober 2012. ISSN 2192-6247.

86

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf

6 Bibliography

[22] Christian Motika, Miro Spönemann, Hauke Fuhrmann, Christoph Krüger,
John Julian Carstens, and Reinhard von Hanxleden. KIELER Actor Oriented
Modeling (KAOM). Poster presented at 9th Biennial Ptolemy Miniconference
(PTCONF’11), Berkeley, CA, USA, February 2011.

[23] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. Synchronous
Java: Light-weight, deterministic concurrency and preemption in Java. Techni-
cal Report 1213, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, October 2012. ISSN 2192-6247.

[24] Martin Müller. View management for graphical models. Master thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
December 2010. http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/mmu-mt.pdf.

[25] Steve Northover and Mike Wilson. SWT: The Standard Widget Toolkit, Volume
1. Addison-Wesley Professional, 2004.

[26] André Ohlhoff. Simulating the Behavior of SyncCharts. Student research
project, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, February 2006. http://rtsys.informatik.uni-kiel.de/
~biblio/downloads/theses/aoh-st.pdf.

[27] Mark Rogalski. The eclipse rich client platform. Technical report, IBM, 2005.
http://www.eclipse.org/ercp/RCP-TechPaper.pdf.

[28] Ulf Rüegg, Christian Motika, and Reinhard von Hanxleden. Interactive trans-
formations for visual models. In 3rd Workshop Methodische Entwicklung von
Modellierungswerkzeugen (MEMWe 2011) at conference INFORMATIK 2011,
GI-Edition – Lecture Notes in Informatics (LNI), Berlin, Germany, October
2011. Bonner Köllen Verlag.

[29] Arne Schipper. Layout and Visual Comparison of Statecharts. Diploma the-
sis, Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
December 2008. http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/ars-dt.pdf.

[30] Matthias Schmeling. ThinKCharts—the thin KIELER SyncCharts editor.
Student research project, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, September 2009. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/schm-st.pdf.

[31] Christian Schneider. On integrating graphical and textual modeling. Diploma
thesis, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, February 2011. http://rtsys.informatik.uni-kiel.de/
~biblio/downloads/theses/chsch-dt.pdf.

87

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mmu-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mmu-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aoh-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aoh-st.pdf
http://www.eclipse.org/ercp/RCP-TechPaper.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/chsch-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/chsch-dt.pdf

6 Bibliography

[32] Michael von der Beeck. A comparison of STATECHARTS Variants. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages 128 – 148. Springer-
Verlag, 1994.

[33] Reinhard von Hanxleden. Synccharts in c—a proposal for light-weight, de-
terministic concurrency. In Albert Benveniste, Stephen A. Edwards, Edward
Lee, Klaus Schneider, and Reinhard von Hanxleden, editors, SYNCHRON’09—
Proceedings of Dagstuhl Seminar 09481, number 09481 in Dagstuhl Semi-
nar Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI),
Schloss Dagstuhl, Germany, 22–27 November 2009.

[34] Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha
Roop. SCCharts—Sequentially Constructive Statecharts for safety-critical ap-
plications. submitted, 2013.

[35] Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Partha Roop, Stephen Mercer, and Owen
O’Brien. Sequentially Constructive Concurrency—A Conservative Extension of
the Synchronous Model of Computation. Technical report, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, to appear.

[36] Hong Yul Yang, Ewan Tempero, and Hayden Melton. An Empirical Study into
Use of Dependency Injection in Java. In Software Engineering, 2008. ASWEC
2008. 19th Australian Conference on.

88

	Introduction
	Reactive Systems
	The Synchronous Approach
	The Graphical Approaches

	KIELER Framework
	YAKINDU Open Source
	The Aim of this Thesis
	Overview

	Related Work
	The ThinKCharts Editor
	Introduction to SyncCharts
	The Editor

	SCCharts
	Generation of generic visual editors

	Used Technologies
	Eclipse
	Eclipse Modeling Framework (EMF)
	Graphical Editing Framework (GEF)
	Graphical Modeling Framework (GMF)
	Xtext and Xtend
	Dependency Injection (Google-Guice)

	YAKINDU SCT Editor
	Sgraph
	Stext

	ThinKCharts/SCCharts Editor vs YAKINDU SCT Editor
	Modeling with ThinKCharts Editor
	SyncCharts elements
	Tooling
	Validator
	Automatic layout

	SCCharts Editor
	YAKINDU SCT Editor
	Statecharts Elements
	Tooling
	Validator

	Comparison
	Syntax
	Tooling
	Validator
	Automatic layout
	White spaces

	Project design

	Implementation
	The contribution of Itemis AG
	Create a new extended YAKINDU SCT Editor
	Yakindu extensions, by Itemis AG

	Using YAKINDU SCT extension mechanisms for implementing a SyncCharts Editor
	The Sgraph project
	The Stext project
	The Editor project
	Automatic layout
	Reducing white spaces

	Conclusions
	Evaluation
	Summary
	Future Work
	SyncChart Importer
	Simulation and Code Generation
	An Actor Oriented Editor based on YAKINDU
	A SCXML converter

	Bibliography

