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SCCharts Extensions - Referenced SCCharts
1 scchart delay {
2 input int ticksToWait;
3 input bool clock;
4 int counter = 0;
5
6 initial state init
7 --> done immediate with
8 counter >= ticksToWait
9 --> init with

10 clock / counter = counter + 1;
11
12 final state done;
13 }

1 scchart emitter {
2 input bool clock;
3 input bool metrum;
4 output bool emit = false;
5
6 initial state wait
7 references delay
8 bind clock to clock,
9 ticksToWait to metrum

10 >-> emit;
11
12 state emit {
13 entry / emit = true;
14 exit / emit = false;
15 }
16 --> wait;
17 }

2 / 25
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SCCharts Extensions - Referenced SCCharts
1 scchart clock {
2 input bool msClock;
3 output bool second, minute, hour;
4 const int SEC = 1000, MIN = 60,
5 HOUR = 60;
6
7 region seconds:
8
9 initial state seconds

10 references emitter
11 bind clock to msClock,
12 metrum to SEC,
13 emit to second
14 >-> seconds;
15
16 region minutes:
17
18 initial state minutes
19 references emitter
20 bind clock to second,
21 metrum to MIN,
22 emit to minute
23 >-> minutes;
24
25 region hours:
26
27 initial state hours
28 references emitter
29 bind clock to minute,
30 metrum to HOUR,
31 emit to hour
32 >-> hours;
33 }
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Project Overview - Controller Size

Approximatly...

I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.
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Project Overview - Controller Size
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Project Overview - Joint Work
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Language Evaluation

To which extent would you like to use the following modeling/programming
languages for this project?

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Language Preferences

harldy usable

good

ok

perfect
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Language Evaluation
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Separate Timing & Functionality
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Language Evaluation

What were the most challenging functionalities to be
implemented?

I Dealing with cyclic dependencies x2
I Mutual exclusion problems x3
I Design and compiling problems x2
I ... and feature specific problems
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Language Evaluation

First conclusions...

I Performs better than other synchroneous languages,
I is understandable, simplistic and maintainable,
I but still needs better support for debugging, composability

and team development.
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Language Evaluation - Features
Extended features 1/4

irrelevant

important

not important

very important

Extended features 2/4

irrelevant

important

not important

very important

Extended features 3/4

irrelevant

important

not important

very important

Extended features 4/4

irrelevant

important

not important

very important
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Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3
−→ Nice!
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Tooling Evaluation

Your opinion about the overall quality of the SCCharts development tools...

beginning end

SCCharts tools quality

hardly usable

advanced

ok

professional

hardly usable

advanced

ok

professional
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Tooling Evaluation

Small models
creation

Large model creation Small model
debugging

Large model
debugging

Quality of modeling aspects 1/2

hardly usable

advanced

ok

professional
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advanced

ok

professional
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Tooling Evaluation

Code generation Understanding
semantics

User interface Documentation Support

Quality of modeling aspects 2/2

hardly usable

advanced

ok

professional

hardly usable

advanced

ok

professional
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Tooling Evaluation - Compiler Performance
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(taken from the final presentation of the railway project)
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Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code

So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!
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Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.
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Tooling Evaluation

PRO remarks

I Good/Awesome support x2
I Compiler finally fast enough x2
I Neat and understandable for small automata
I SCCharts is a science project: quick bugfixing direct

contact to developers
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Outlook - Brainstorming

At the moment we’re working on/thinking about...

I Adaptive Zooming
I needs fine tuning
I however, is there a best fit?

I Lazy Loading for referenced SCCharts
I Transformation tracing

I propagate compilation results to top level
I Further assessment of the project results

I First large models
I Survey results
I Technical Report
I Upcoming student theses
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Outlook - Upcoming lectures

The next oportunities for SCCharts...

I Embedded System Design in WSem 14/15
I Controlling the NXTs with SCCharts

I Embedded System Project in SSem 15
I Probably also an NXT project
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The End

Thank you very much for your attention!
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