
SCCharts: The Railway Project Report

Steven Smyth

Real-Time Systems and Embedded Systems Group
Department of Computer Science

Kiel University, Germany

Oberseminar, SoSem 14
27.08.2014



Overview

SCCharts Extensions
Roadmap
Referenced SCCharts

The Railway Project
Project Overview
Language Evaluation
Tooling Evaluation

Outlook
Brainstorming on Improvements
Upcoming Lectures



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Roadmap

Category Feature OSem Rail Status

Core
Referenced SCCharts

Map & For

Declaration

Arrays
Const
Extern
Structs

Hostcode Function calls

1 / 25



SCCharts Extensions - Referenced SCCharts
1 scchart delay {
2 input int ticksToWait;
3 input bool clock;
4 int counter = 0;
5
6 initial state init
7 --> done immediate with
8 counter >= ticksToWait
9 --> init with

10 clock / counter = counter + 1;
11
12 final state done;
13 }

1 scchart emitter {
2 input bool clock;
3 input bool metrum;
4 output bool emit = false;
5
6 initial state wait
7 references delay
8 bind clock to clock,
9 ticksToWait to metrum

10 >-> emit;
11
12 state emit {
13 entry / emit = true;
14 exit / emit = false;
15 }
16 --> wait;
17 }

2 / 25



SCCharts Extensions - Referenced SCCharts
1 scchart delay {
2 input int ticksToWait;
3 input bool clock;
4 int counter = 0;
5
6 initial state init
7 --> done immediate with
8 counter >= ticksToWait
9 --> init with

10 clock / counter = counter + 1;
11
12 final state done;
13 }

1 scchart emitter {
2 input bool clock;
3 input bool metrum;
4 output bool emit = false;
5
6 initial state wait
7 references delay
8 bind clock to clock,
9 ticksToWait to metrum

10 >-> emit;
11
12 state emit {
13 entry / emit = true;
14 exit / emit = false;
15 }
16 --> wait;
17 }

2 / 25



SCCharts Extensions - Referenced SCCharts
1 scchart clock {
2 input bool msClock;
3 output bool second, minute, hour;
4 const int SEC = 1000, MIN = 60,
5 HOUR = 60;
6
7 region seconds:
8
9 initial state seconds

10 references emitter
11 bind clock to msClock,
12 metrum to SEC,
13 emit to second
14 >-> seconds;
15
16 region minutes:
17
18 initial state minutes
19 references emitter
20 bind clock to second,
21 metrum to MIN,
22 emit to minute
23 >-> minutes;
24
25 region hours:
26
27 initial state hours
28 references emitter
29 bind clock to minute,
30 metrum to HOUR,
31 emit to hour
32 >-> hours;
33 }

3 / 25



SCCharts Extensions - Referenced SCCharts

4 / 25



Overview

SCCharts Extensions
Roadmap
Referenced SCCharts

The Railway Project
Project Overview
Language Evaluation
Tooling Evaluation

Outlook
Brainstorming on Improvements
Upcoming Lectures



Project Overview

5 / 25



Project Overview

5 / 25



Project Overview

IC_ST_0 IC_ST_1

IC_ST_2

IC_ST_3

IC_ST_4

IC
_L

N
_0

IC_LN_1

IC
_L

N
_2

IC_LN_3

IC_LN_4

IC
_L

N
_5

IC_JCT_0

OC_ST_0

OC_ST_2

OC_ST_3OC_ST_4

O
C

_L
N

_0

OC_JCT_0

OC_LN_1

OC_LN_2

O
C

_L
N

_3

OC_LN_4

O
C

_L
N

_5
OC_ST_1

IO_LN_0

IO
_L

N
_1

IO_LN_2 OI_LN_0

OI_LN_1

OI_LN_2

K
IO

_L
N

_0

K
IO

_L
N

_1

KH_ST_0

KH_ST_1

KH_ST_2

KH_ST_3

KH_ST_4

KH_ST_5

K
H

_L
N

_0

KH_LN_1

KH_LN_7

K
H

_L
N

_8

KH_LN_4

KH_LN_3

K
H

_L
N

_2

KH_ST_6

KH_LN_6

KH_LN_5

Model Railway Track Layout
Realtime and Embedded Systems Group

Symbols

Inner Circle

Outer Circle

Kicking Horse Pass

Interconnections

Track segments

Bridge

Track specialties

Railroad crossing

Point or crossing

Directions

Unidirectional block

Bidirectional block with
forward direction

Preferred direction

Point operating unit

Lighting

Block signal

Block isolation

Electronics

Reed contact

http://www.informatik.uni−kiel.de/~railway/
Stephan Höhrmann, January 2006

0 1 0

0

1

0

1 105432 9876

16 15 14 1321 1920 18 17 12

22

23

0

11

23

7

6

5

8

12

13

17

19

20

21

22

23

26

25

24

29

27

9

14

0

3

2

1

10

11

18

16

28

4

15

42

42

5 / 25



Project Overview - Controller Size

Approximatly...

I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states

I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions

I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes

I 256.000 dependencies
I in 50.000 nodes

I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes

I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks

I 1.400.000 lines of generated C code
I still 650.000 lines after beautifier

I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier

I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

Approximatly...
I 135.000 states
I 17.000 regions
I 152.000 transitions

I 127.000 SCG nodes
I 256.000 dependencies

I in 50.000 nodes
I 88.000 scheduling blocks
I 1.400.000 lines of generated C code

I still 650.000 lines after beautifier
I 3.000 lines of own C code

As comparison: The Wrist Watch has ~400 states.

6 / 25



Project Overview - Controller Size

14.04.14 04.05.14 24.05.14 13.06.14 03.07.14 23.07.14 12.08.14
0

5000

10000

15000

20000

25000

30000

LOC

Tutorials

S2S-Controller

Tests

Dynamic Controller

Java GUI

C Redesign

Android App

(taken from the final presentation of the railway project)

7 / 25



Project Overview - Joint Work

8 / 25



Overview

SCCharts Extensions
Roadmap
Referenced SCCharts

The Railway Project
Project Overview
Language Evaluation
Tooling Evaluation

Outlook
Brainstorming on Improvements
Upcoming Lectures



Language Evaluation

To which extent would you like to use the following modeling/programming
languages for this project?

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Language Preferences

harldy usable

good

ok

perfect

9 / 25



Language Evaluation

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

General determinism

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Deterministic concurrency

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Sequentiality

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Composability

worse

good

bad

excellent

10 / 25



Language Evaluation

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

General determinism

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Deterministic concurrency

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Sequentiality

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Composability

worse

good

bad

excellent

10 / 25



Language Evaluation

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Solving abstract problems

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Solving low-level problems

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Understandability

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Simplicity

worse

good

bad

excellent

11 / 25



Language Evaluation

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Solving abstract problems

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Solving low-level problems

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Understandability

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Simplicity

worse

good

bad

excellent

11 / 25



Language Evaluation

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Separate Timing & Functionality

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Maintainability

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Debugging

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Team development

worse

good

bad

excellent

12 / 25



Language Evaluation

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Separate Timing & Functionality

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Maintainability

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Debugging

worse

good

bad

excellent

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Team development

worse

good

bad

excellent

12 / 25



Language Evaluation

What were the most challenging functionalities to be
implemented?

I Dealing with cyclic dependencies x2
I Mutual exclusion problems x3
I Design and compiling problems x2
I ... and feature specific problems

13 / 25



Language Evaluation

What were the most challenging functionalities to be
implemented?

I Dealing with cyclic dependencies x2

I Mutual exclusion problems x3
I Design and compiling problems x2
I ... and feature specific problems

13 / 25



Language Evaluation

What were the most challenging functionalities to be
implemented?

I Dealing with cyclic dependencies x2
I Mutual exclusion problems x3

I Design and compiling problems x2
I ... and feature specific problems

13 / 25



Language Evaluation

What were the most challenging functionalities to be
implemented?

I Dealing with cyclic dependencies x2
I Mutual exclusion problems x3
I Design and compiling problems x2

I ... and feature specific problems

13 / 25



Language Evaluation

What were the most challenging functionalities to be
implemented?

I Dealing with cyclic dependencies x2
I Mutual exclusion problems x3
I Design and compiling problems x2
I ... and feature specific problems

13 / 25



Language Evaluation

First conclusions...

I Performs better than other synchroneous languages,
I is understandable, simplistic and maintainable,
I but still needs better support for debugging, composability

and team development.

14 / 25



Language Evaluation

First conclusions...

I Performs better than other synchroneous languages,

I is understandable, simplistic and maintainable,
I but still needs better support for debugging, composability

and team development.

14 / 25



Language Evaluation

First conclusions...

I Performs better than other synchroneous languages,
I is understandable, simplistic and maintainable,

I but still needs better support for debugging, composability
and team development.

14 / 25



Language Evaluation

First conclusions...

I Performs better than other synchroneous languages,
I is understandable, simplistic and maintainable,
I but still needs better support for debugging, composability

and team development.

14 / 25



Language Evaluation - Features
Extended features 1/4

irrelevant

important

not important

very important

Extended features 2/4

irrelevant

important

not important

very important

Extended features 3/4

irrelevant

important

not important

very important

Extended features 4/4

irrelevant

important

not important

very important

15 / 25



Language Evaluation - Features
Extended features 1/ 4

irrelevant

important

not important

very important

Extended features 2/ 4

irrelevant

important

not important

very important

Extended features 3/4

irrelevant

important

not important

very important

Extended features 4/4

irrelevant

important

not important

very important

15 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3
−→ Nice!

16 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions

−→ Map & For
I Broken features

I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3
−→ Nice!

16 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3
−→ Nice!

16 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay

−→ Fix it!
I None x3

−→ Nice!

16 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3
−→ Nice!

16 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3

−→ Nice!

16 / 25



Language Evaluation - Features

Which (extended) features did you miss?

I Generating multiple similar regions
−→ Map & For

I Broken features
I complex final states x2
I conditional termination
I count delay
−→ Fix it!

I None x3
−→ Nice!

16 / 25



Overview

SCCharts Extensions
Roadmap
Referenced SCCharts

The Railway Project
Project Overview
Language Evaluation
Tooling Evaluation

Outlook
Brainstorming on Improvements
Upcoming Lectures



Tooling Evaluation

Your opinion about the overall quality of the SCCharts development tools...

beginning end

SCCharts tools quality

hardly usable

advanced

ok

professional

hardly usable

advanced

ok

professional

17 / 25



Tooling Evaluation

Small models
creation

Large model creation Small model
debugging

Large model
debugging

Quality of modeling aspects 1/2

hardly usable

advanced

ok

professional

hardly usable

advanced

ok

professional

18 / 25



Tooling Evaluation

Small models
creation

Large model creation Small model
debugging

Large model
debugging

Quality of modeling aspects 1/ 2

hardly usable

advanced

ok

professional

hardly usable

advanced

ok

professional

18 / 25



Tooling Evaluation

Code generation Understanding
semantics

User interface Documentation Support

Quality of modeling aspects 2/2

hardly usable

advanced

ok

professional

hardly usable

advanced

ok

professional

19 / 25



Tooling Evaluation - Compiler Performance

14.04.14 04.05.14 24.05.14 13.06.14 03.07.14 23.07.14 12.08.14
0

1000

2000

3000

4000

5000

6000

7000

Compiletime [s]

(taken from the final presentation of the railway project)

20 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code

So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)

I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)

I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)

I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)

I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations

I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)

I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)

I Obfuscated bad code, mainly due to xtend extensions
val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!

... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation - Compiler Performance
In a nutshell: Inefficient code
So far: focus on correctness and not efficiency.

I Unnecessary content calls (eAllContent, content, etc.)
I Unnecessary list operations (size, toList, etc.)
I Unwary use of ecore implementations (ELists instead of Lists)
I Over-complicated generic implementations (generic ≯ specialized)
I Missing caches, duplicated operations
I Unnecessary serializations in KiCo (extremely costly)
I Often straight-forward approach (e.g. dependency analysis)
I Obfuscated bad code, mainly due to xtend extensions

val ctrlRegion = state.createRegion(GENERATED PREFIX + "Ctrl").uniqueName

Bottom line: We need more reviews!
... and hopefully more sensitive towards efficiency.

However, visualization of large models is another problem!

21 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use

I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features

I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain

I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used

I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)

I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes

I SCCharts is a science project: language has it’s roots in
theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

CONTRA remarks

I Not all extended features are stable enough to use
I Still a lot of bugs/not working features
I Debugging not schedulable models is a pain
I Only one processor core is used
I Big automata often confusing (visualization)
I Eclipse crashes
I SCCharts is a science project: language has it’s roots in

theory. Some features are theoretically very nice and
interesting but in practice not really necessary.

22 / 25



Tooling Evaluation

PRO remarks

I Good/Awesome support x2
I Compiler finally fast enough x2
I Neat and understandable for small automata
I SCCharts is a science project: quick bugfixing direct

contact to developers

23 / 25



Tooling Evaluation

PRO remarks

I Good/Awesome support x2

I Compiler finally fast enough x2
I Neat and understandable for small automata
I SCCharts is a science project: quick bugfixing direct

contact to developers

23 / 25



Tooling Evaluation

PRO remarks

I Good/Awesome support x2
I Compiler finally fast enough x2

I Neat and understandable for small automata
I SCCharts is a science project: quick bugfixing direct

contact to developers

23 / 25



Tooling Evaluation

PRO remarks

I Good/Awesome support x2
I Compiler finally fast enough x2
I Neat and understandable for small automata

I SCCharts is a science project: quick bugfixing direct
contact to developers

23 / 25



Tooling Evaluation

PRO remarks

I Good/Awesome support x2
I Compiler finally fast enough x2
I Neat and understandable for small automata
I SCCharts is a science project: quick bugfixing direct

contact to developers

23 / 25



Overview

SCCharts Extensions
Roadmap
Referenced SCCharts

The Railway Project
Project Overview
Language Evaluation
Tooling Evaluation

Outlook
Brainstorming on Improvements
Upcoming Lectures



Outlook - Brainstorming

At the moment we’re working on/thinking about...

I Adaptive Zooming
I needs fine tuning
I however, is there a best fit?

I Lazy Loading for referenced SCCharts
I Transformation tracing

I propagate compilation results to top level
I Further assessment of the project results

I First large models
I Survey results
I Technical Report
I Upcoming student theses

24 / 25



Outlook - Brainstorming

At the moment we’re working on/thinking about...
I Adaptive Zooming

I needs fine tuning
I however, is there a best fit?

I Lazy Loading for referenced SCCharts
I Transformation tracing

I propagate compilation results to top level
I Further assessment of the project results

I First large models
I Survey results
I Technical Report
I Upcoming student theses

24 / 25



Outlook - Brainstorming

At the moment we’re working on/thinking about...
I Adaptive Zooming

I needs fine tuning
I however, is there a best fit?

I Lazy Loading for referenced SCCharts

I Transformation tracing
I propagate compilation results to top level

I Further assessment of the project results
I First large models
I Survey results
I Technical Report
I Upcoming student theses

24 / 25



Outlook - Brainstorming

At the moment we’re working on/thinking about...
I Adaptive Zooming

I needs fine tuning
I however, is there a best fit?

I Lazy Loading for referenced SCCharts
I Transformation tracing

I propagate compilation results to top level

I Further assessment of the project results
I First large models
I Survey results
I Technical Report
I Upcoming student theses

24 / 25



Outlook - Brainstorming

At the moment we’re working on/thinking about...
I Adaptive Zooming

I needs fine tuning
I however, is there a best fit?

I Lazy Loading for referenced SCCharts
I Transformation tracing

I propagate compilation results to top level
I Further assessment of the project results

I First large models
I Survey results
I Technical Report
I Upcoming student theses

24 / 25



Outlook - Upcoming lectures

The next oportunities for SCCharts...

I Embedded System Design in WSem 14/15
I Controlling the NXTs with SCCharts

I Embedded System Project in SSem 15
I Probably also an NXT project

25 / 25



Outlook - Upcoming lectures

The next oportunities for SCCharts...
I Embedded System Design in WSem 14/15

I Controlling the NXTs with SCCharts

I Embedded System Project in SSem 15
I Probably also an NXT project

25 / 25



Outlook - Upcoming lectures

The next oportunities for SCCharts...
I Embedded System Design in WSem 14/15

I Controlling the NXTs with SCCharts
I Embedded System Project in SSem 15

I Probably also an NXT project

25 / 25



The End

Thank you very much for your attention!


	SCCharts Extensions
	Roadmap
	Referenced SCCharts

	The Railway Project
	Project Overview
	Language Evaluation
	Tooling Evaluation

	Outlook
	Brainstorming on Improvements
	Upcoming Lectures


