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Aim of this Work

" Motivating application: programming safety-critical
embedded systems

= Key challenge: deterministic concurrency

= C, Java et. al.: familiar sequential paradigm,
but concurrent constructs (threads) unpredictable
in functionality and timing

= Synchronous Programming: predictable by
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most programmers, restrictive in practice
= Aim of this work: concurrency with synchronous
foundations, without synchronous restrictions
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SC in a Nutshell: Taming Concurrency

/Synchronous Languages\ Sequential Languages \

Esterel, Lustre, Signal, ... C, Java, ...

Clocked, cyclic schedule Asynchronous schedule

e by default: single writer per e by default: multiple con-
cycle, all reads initialised current readers/writers

e on demand: separate e on demand: single assign-
multiple assighments by ment synchronisation
clock barrier (pause, wait) (locks, semaphores)

Declarative Imperative

e all micro-step sequential e all sequential control flow
control flow descriptive prescriptive

\ ® resolved by scheduler
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\- resolved by programmer
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SC in a Nutshell: Taming Concurrency

/ Synchronous Languages\

Esterel, Lustre, Signal, ...

Clocked, cyclic schedule

v deterministic
concurrency and
deadlock freedom

X Heavy restrictions by
\\ constructiveness analy5|s /

/ Sequential Languages \

C, Java, ...

Asynchronous schedule

X No guarantees of
determinism or
deadlock freedom

v’ Intuitive programming
paradlgm /

e all micro-step concurrent
control flow descriptive
= resolved by scheduler

/Sequentlally Constructive Model of Computation (SC MoC)\\

e all micro-step sequential
control flow is prescriptive
* resolved by programmer
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A Sequentially Constructive Program

Req_entry:
pend = false ;
if req then

checkReq =req ;

goto Req entry;

N

req
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pend = true ;

if pend && grant then |
pend = false ;

_|.ehéckReq

Control <«

-
-

Threads

grant

<
~

pend

Dis_entry:

grant = false ;

if checkReq && free then
grant = true ;

goto Dis entry,;

grant

v

N

free
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A Sequentially Constructive Program

Req_ entry.
gend =hfalse ; i Dis_entry
nreathen - . grant = false; —
- Pen_d = trEJe ; T if checkReq && free @
toe £ i grant = true ;
if pend && grant then 2use
pend =false; — " P . D’ """ T
'~ oto Dis_entry;
L pause; e | EOO DOy
goto Reqg_entry;

Imperative Program Order (sequential access to shared variables):
* “write-after-write” can change value sequentially (prescriptive)
e but not permitted in standard synchronous MoC
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A Sequentially Constructive Program

SC MoC: micro-tick thread scheduling
prohibits race conditions ...

Req entry .
pend = false ; Dis_entry :
if req then e | W' grant =false;

pend =true;, —————if checkReq && free then
checkReq =req ; grant = true ;
Ifpend && grant then| /pﬁ :

pend = fals‘ﬁ\-/ t Di:s' entry:
pause ; 8010 Mn- ey

goto Req entry;

Concurrency Scheduling Constraints (access to shared variables):
e “write-before-read” for concurrent write/reads

e “write-before-write” for concurrent & non-confluent writes

e to be implemented by the compiler ...
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A Constructive Game of Schedulability

logically reactive program

programmer

compiler

e defines the rules
* prescribes sequential

execution order

* leaves concurrency Compiler = Player
to compiler and run e determines winning
time strategy

e Free Schedules” e restricts concurrency to

ensure determinacy and
deadlock freedom
e Admissible Schedules”

= run-time system @
Programmer @ é

deadlocks, oscillation,
non-determinism, metastability
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Run-time = Opponent

* tries to choose a
spoiling execution from
admissible schedules
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Sequential Admissibility

Basic Idea:

Sequentially ordered variable accesses

e are enforced by the programmer

e cannot be reordered by compiler or run-time platform
e exhibit no races

Only concurrent writes/reads to the same variable

e generate potential data data races

* must be resolved by the compiler

e can be ordered under multi-threading and run-time

The following applies to concurrent variable accesses only ...
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Organising Concurrent Variable Accesses

SC Concurrent Variable Access Protocol:

%y, confluent relative writes 4

confluent / @Od 167 \’6,.@

absolute —
T reads

writes .@—9 {r’“ }———7

concurrent, multi-writer, multi-reader variables

Definition: A runfora SCG G = (N,E) is SC-admissible if, for
all ticks in this run, and for all concurrent node instances
[TODO]... [TODO:

what’s ,,absolute” ,relative”, examples,
,confluent” ?]
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Sequential Constructiveness

programmer
@ —» SC compiler

- run-time
Definition: @

A program is (strongly) sequentially constructive (SC) if
for each initial configuration and input:

1. there exists an SC-admissible run

2. every SC-admissible run generates the same determinate
sequence of macro responses (in bounded time)
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Analysing Sequential Constructiveness

By over-approximating concurrency and confluence the
following static node relations are introduced:

ni —ww VD concurrent, non-confluent absolute writes
N1 —rwr N n, absolute write and n, conccurent, non-confluent read

—>wi absolute write, concurrent non-confluent relative write.
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Analysing Sequential Constructiveness

(03
Definition: A program is acyclic SC (ASC) schedulable if in its

SCG thereisno  cycle that contains edges induced by —, ., i
S| 7N\

Theorem: Every ASC schedulable program is sequentially
constructive.

\1_12,2: pend = true

|L13,2: checkReq:reql |L22,1 : grant = false
Wl’ ~ N 1 B /1v—vr
L14,0: pend L23,1: checkReq
&& grant && free
e trye

true <4

Wr

|L15,0: pend = falsel |L24,1: grant = truel

__L25d1_|
Q7o) (st
T

@ (et
[TODO: running example, no cycle, non-deterministic’example: cycle!
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Conclusion

This Talk

* Clocked, synchronous model of execution for imperative,
shared-memory multi-threading

e Conservatively extends synchronous programming (Esterel)
by standard sequential control flow (Java, C)

Future Plans )

* Full-scale implementation within PRETSY Project
(Precision-timed Synchronous Processing)
e Develop algorithms for SC-analysis: Constructiveness + WCRT
e Detailed semantical study of the class of SC programs
vis-a-vis other notions of constructiveness (Pnueli & Shalevy,
Berry, Signal, ...)
PRETSY Project: www.pretsy.org
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