Sequentially Constructive

Concurrency®

A conservative extension of the
Synchronous Model of Computation

Reinhard v. Hanxleden!, Michael Mendler?, J. Aguado?,
Bjorn Duderstadt?, Insa Fuhrmann?, Christian Motikal,
Stephen Mercer® and Owen O‘Brien?

1 University of Kiel, 2 University of Bamberg, 3 National Instruments

PRETSY Project

*Full version (+ corrections) Tech Rep. Univ. of Kiel, March 2013, ISSN 2192-6247

von Hanxleden, et al. DATE 2013, Grenoble 1

Aim of this Work

" Motivating application: programming safety-critical
embedded systems

= Key challenge: deterministic concurrency

= C, Java et. al.: familiar sequential paradigm,
but concurrent constructs (threads) unpredictable
in functionality and timing

= Synchronous Programming: predictable by

Anctriictinn [~rAncEriictl lono cc) hiit ||n'F miliar +
\.«UIIDLI ULLIUII \bUIIDL UL Ll CIICDD,, NMNUulL Ullilia II 1Hail u

most programmers, restrictive in practice
= Aim of this work: concurrency with synchronous
foundations, without synchronous restrictions

n
\Y

von Hanxleden, et al. DATE 2013, Grenoble

SC in a Nutshell: Taming Concurrency

/Synchronous Languages\ Sequential Languages \

Esterel, Lustre, Signal, ... C, Java, ...

Clocked, cyclic schedule Asynchronous schedule

e by default: single writer per e by default: multiple con-
cycle, all reads initialised current readers/writers

e on demand: separate e on demand: single assign-
multiple assighments by ment synchronisation
clock barrier (pause, wait) (locks, semaphores)

Declarative Imperative

e all micro-step sequential e all sequential control flow
control flow descriptive prescriptive

\ ® resolved by scheduler

\

Y\
L
Ny
.
o

\- resolved by programmer

N\ 4

von Hanxleden, et al. DATE 2013, Grenoble 3

SC in a Nutshell: Taming Concurrency

/ Synchronous Languages\

Esterel, Lustre, Signal, ...

Clocked, cyclic schedule

v deterministic
concurrency and
deadlock freedom

X Heavy restrictions by
\\ constructiveness analy5|s /

/ Sequential Languages \

C, Java, ...

Asynchronous schedule

X No guarantees of
determinism or
deadlock freedom

v’ Intuitive programming
paradlgm /

e all micro-step concurrent
control flow descriptive
= resolved by scheduler

/Sequentlally Constructive Model of Computation (SC MoC)\\

e all micro-step sequential
control flow is prescriptive
* resolved by programmer

.,x“j

von Hanxleden, et al.

DATE 2013, Grenoble

von Hanxleden, et al. DATE 2013, Grenoble

A Sequentially Constructive Program

Req_entry:
pend = false ;
if req then

checkReq =req ;

goto Req entry;

N

req

von Hanxleden, et al.

.
pend = true ;

if pend && grant then |
pend = false ;

_|.ehéckReq

Control <«

-
-

Threads

grant

<
~

pend

Dis_entry:

grant = false ;

if checkReq && free then
grant = true ;

goto Dis entry,;

grant

v

N

free

DATE 2013, Grenoble

A Sequentially Constructive Program

Req_ entry.
gend =hfalse ; i Dis_entry
nreathen - . grant = false; —
- Pen_d = trEJe ; T if checkReq && free @
toe £ i grant = true ;
if pend && grant then 2use
pend =false; — " P . D’ """ T
'~ oto Dis_entry;
L pause; e | EOO DOy
goto Reqg_entry;

Imperative Program Order (sequential access to shared variables):
* “write-after-write” can change value sequentially (prescriptive)
e but not permitted in standard synchronous MoC

von Hanxleden, et al. DATE 2013, Grenoble

A Sequentially Constructive Program

SC MoC: micro-tick thread scheduling
prohibits race conditions ...

Req entry .
pend = false ; Dis_entry :
if req then e | W' grant =false;

pend =true;, —————if checkReq && free then
checkReq =req ; grant = true ;
Ifpend && grant then| /pﬁ :

pend = fals‘ﬁ\-/ t Di:s' entry:
pause ; 8010 Mn- ey

goto Req entry;

Concurrency Scheduling Constraints (access to shared variables):
e “write-before-read” for concurrent write/reads

e “write-before-write” for concurrent & non-confluent writes

e to be implemented by the compiler ...

von Hanxleden, et al. DATE 2013, Grenoble 10

von Hanxleden, et al. DATE 2013, Grenoble 11

A Constructive Game of Schedulability

logically reactive program

programmer

compiler

e defines the rules
* prescribes sequential

execution order

* leaves concurrency Compiler = Player
to compiler and run e determines winning
time strategy

e Free Schedules” e restricts concurrency to

ensure determinacy and
deadlock freedom
e Admissible Schedules”

= run-time system @
Programmer @ é

deadlocks, oscillation,
non-determinism, metastability

von Hanxleden, et al. DATE 2013, Grenoble

Run-time = Opponent

* tries to choose a
spoiling execution from
admissible schedules

12

Sequential Admissibility

Basic Idea:

Sequentially ordered variable accesses

e are enforced by the programmer

e cannot be reordered by compiler or run-time platform
e exhibit no races

Only concurrent writes/reads to the same variable

e generate potential data data races

* must be resolved by the compiler

e can be ordered under multi-threading and run-time

The following applies to concurrent variable accesses only ...

von Hanxleden, et al. DATE 2013, Grenoble 13

Organising Concurrent Variable Accesses

SC Concurrent Variable Access Protocol:

%y, confluent relative writes 4

confluent / @Od 167 \’6,.@

absolute —
T reads

writes .@—9 {r’“ }———7

concurrent, multi-writer, multi-reader variables

Definition: A runfora SCG G = (N,E) is SC-admissible if, for
all ticks in this run, and for all concurrent node instances
[TODO]... [TODO:

what’s ,,absolute” ,relative”, examples,
,confluent” ?]

von Hanxleden, et al. DATE 2013, Grenoble 14

Sequential Constructiveness

programmer
@ —» SC compiler

- run-time
Definition: @

A program is (strongly) sequentially constructive (SC) if
for each initial configuration and input:

1. there exists an SC-admissible run

2. every SC-admissible run generates the same determinate
sequence of macro responses (in bounded time)

von Hanxleden, et al. DATE 2013, Grenoble 19

von Hanxleden, et al. DATE 2013, Grenoble

Analysing Sequential Constructiveness

By over-approximating concurrency and confluence the
following static node relations are introduced:

ni —ww VD concurrent, non-confluent absolute writes
N1 —rwr N n, absolute write and n, conccurent, non-confluent read

—>wi absolute write, concurrent non-confluent relative write.

von Hanxleden, et al. DATE 2013, Grenoble 22

Analysing Sequential Constructiveness

(03
Definition: A program is acyclic SC (ASC) schedulable if in its

SCG thereisno cycle that contains edges induced by —, ., i
S| 7N\

Theorem: Every ASC schedulable program is sequentially
constructive.

\1_12,2: pend = true

|L13,2: checkReq:reql |L22,1 : grant = false
Wl’ ~ N 1 B /1v—vr
L14,0: pend L23,1: checkReq
&& grant && free
e trye

true <4

Wr

|L15,0: pend = falsel |L24,1: grant = truel

__L25d1_|
Q7o) (st
T

@ (et
[TODO: running example, no cycle, non-deterministic’example: cycle!
von Hanxleden, et al. DATE 2013, Grenoble 23

von Hanxleden, et al. DATE 2013, Grenoble

Conclusion

This Talk

* Clocked, synchronous model of execution for imperative,
shared-memory multi-threading

e Conservatively extends synchronous programming (Esterel)
by standard sequential control flow (Java, C)

Future Plans)

* Full-scale implementation within PRETSY Project
(Precision-timed Synchronous Processing)
e Develop algorithms for SC-analysis: Constructiveness + WCRT
e Detailed semantical study of the class of SC programs
vis-a-vis other notions of constructiveness (Pnueli & Shalevy,
Berry, Signal, ...)
PRETSY Project: www.pretsy.org

von Hanxleden, et al. DATE 2013, Grenoble 40

Thank you |

