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Overview 
A classical problem in concurrent programming. 
 

Determinism and Dead-lock freedom in multi-thread  
shared-memory settings. 

2 

An approach for this. 
 

Synchronous Programming (SP) has already solved this for 
reactive and embedded systems. 

 
Sound generalisation of SP techniques  for main stream 
programming. 



Context 
Synchronous Model of Computation (SMoC): 

 
Reactive and embedded systems. 
 
Inspired in synchronous digital circuits. 
 
Synchrony Hypothesis: 

System 

tick 

stimulus 

response 

tick 
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Context 
Synchronous Model of Computation (SMoC): 

 

Synchronisation is based on clocks and signals. 
 

Classical view of computation: Mealy  machine.  

I/O 

I/O 
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Context 
Synchronous Model of Computation (SMoC): 

 
This prevents deadlock and non-determinism. 
 
The soundness of the automata model depends on the 
compiler verifying that the Synchrony Hypothesis is valid. 

I/O 

I/O 

Thus, the synchronous interaction 
must satisfy stringent causality 
requirements.  
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Context 
Synchronous Model of Computation (SMoC): 

 
Yet, the Synchrony Hypothesis is not compositional ! 
 
This is aggravated by the fact that reaction to absence is 
allowed in some SMoC languages.  

System 

tick 

6 



Context 
Synchronous Model of Computation (SMoC): 

 

We cannot (compositionally) understand Mealy  machine 
abstraction without causality analysis in micro-steps.  

System 

tick 

System 
stimulus 

response 
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Context 
Synchronous Model of Computation (SMoC): 

 

We cannot (compositionally) understand Mealy  machine 
abstraction without causality analysis in micro-steps.  

Circuit 
X = ¬Y 
Y = ¬X 

Y 

X 

¬X/Y ¬Y/X ‖ 
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Context 
Esterel synchronous language (Gérard Berry): 
 

Constructiveness relates to electrical stabilisation. 
Cyclic circuit that stabilises for all (non-inertial) delays.  

present I then  
 present X then emit Y end 
else 
 present Y then emit X end 
end; 
pause; 
... Circuit 

X = I ∧ Y 
Y = ¬I ∧ X 

I 

X 

Y 
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Context 
Synchronous Model of Computation (SMoC): 

 
Gérard Berry (Esterel ) has solved this in the context of 
synchronous digital circuits.  
 
Causality analysis establishes consistency of a synchronous 
macro-step with respect to an asynchronous micro-step 
execution model. 
 
What does this mean for shared-memory multi-threaded 
code?  
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Contributions 
Esterel is extended (first time) as follows: 
 

For multi-threaded shared-memory programs: 
 
Two notions of Berry-constructiveness (Δ0, Δ1):  
 Δ0 permits explicit initialisations. 
 Δ1 corresponds to Esterel. 
 
These are presented as fixed point analyses in abstract 
domains of variable statuses:  
 Novel characterisation of must-cannot. 

 
Formally, constructive semantics of Esterel generalises to SC. 
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Contributions 

SC (Δ∗)  
All programs without ‖ 
are SC 

Esterel 
Berry 
Constructive 

Sequentially 
Constructive 

[DATE’13] 

Explicit 
initialisations  

multi-threaded  
shared-memory programs  
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Language 
The syntax (finite tick behaviour) is given by the BNF: 
 

𝑃 ≔ 𝜖  ¡𝑠  !𝑠 | 𝑠?𝑃:𝑃   𝑃 𝑃 |  𝑃;𝑃 
 
This contains the necessary control structures for capturing 
multiple variable accesses as they occur inside macro-steps. 
 
Programs manipulate Boolean variables B = {1,0} that emulate 
the synchronous signal statuses:  
 

present  (1,𝑇𝑇𝑇𝑇)  
absent  (0,𝐹𝐹𝐹𝐹𝐹) 
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Operational Semantics 
Concurrent control flow is descriptive. 
Sequential control flow is prescriptive. 
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Abstract Value Domain 
The behaviour off a variable takes place in a 4-value domain: 
𝐷 = {⊥ < 0 < 1 < ⊤} 
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IUR Protocol requires ⊤ 



Closed intervals. 

Abstract Value Domain 
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Arbitrary initial 
memory 



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥,⊤  
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𝑦 ∶ ⊥,⊤  

𝑧 ∶ ⊥,⊤  



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥, 0  
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𝑦 ∶ ⊥,⊤  

𝑧 ∶ ⊥,⊤  



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥, 0  
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𝑦 ∶ 0,⊤  

𝑧 ∶ ⊥,⊤  



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥, 0  
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𝑦 ∶ 0,⊤  

𝑧 ∶ ⊥, 1  



Point-wise (sequential) ≼-lattice: 

Abstract Value Domain 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

maximum 

minimum 

(≼,∨) 
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Information (concurrent) ⊑-semi-lattice: 

Abstract Value Domain 

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

(⊒,⊓) 

maximal 
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minimum 



Statuses of variables are keep in environments  𝐸 ∶ 𝑉 ↦ 𝐼(𝐷).  

Abstract Value Domain 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

Kleene’s ternary 
domain Esterel 
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Sequential-Concurrent Reaction Model  

Abstract Analysis 

Initialisation under which 𝑃 is 
activated. 
 
Value of variables sequentially 
before 𝑃 is started. 

External stimulus which is 
concurrent with 𝑃. 
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Sequential-Concurrent Reaction Model  

Abstract Analysis 

⊥,⊥  

⊥,⊤  
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Sequential-Concurrent Reaction Model  

Abstract Analysis 

¡𝑥 
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Sequential-Concurrent Reaction Model  

Abstract Analysis 

𝑥? 
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Sequential-Concurrent Reaction Model  

Abstract Analysis 
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Sequential-Concurrent Reaction Model  

Abstract Analysis 

⊓ 
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The denotational semantics is given by a Response Function that 
determines constructive (non-speculative) information on the 
instantaneous response of a program. 

Abstract Analysis 

𝜖 𝐶
𝑆 ∶= 𝑆 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  
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The denotational semantics is given by a Response Function that 
determines constructive (non-speculative) information on the 
instantaneous response of a program. 

Abstract Analysis 

𝜖 𝐶
𝑆 ∶= 𝑆 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  
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The denotational semantics is given by a Response Function. 

Abstract Analysis 
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Statuses of variables are keep in environments  𝐸 ∶ 𝑉 ↦ 𝐼(𝐷).  

Abstract Analysis 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

lower projection 
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Statuses of variables are keep in environments  𝐸 ∶ 𝑉 ↦ 𝐼(𝐷).  

Abstract Analysis 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

lower projection 

upper projection 
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Example 

Abstract Analysis 

35 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑥,𝑦, 𝑧 𝑥, 𝑦, 𝑧 



Example 

Abstract Analysis 
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⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
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⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  
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⊥,⊤  𝑦, 𝑧 𝑥, 𝑦, 𝑧 

𝑥 



Example 

Abstract Analysis 
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⊥,⊥  

0,0  

1,1  
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0,1  
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0,⊤  
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𝑥 



Example 

Abstract Analysis 
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⊥,⊥  

0,0  
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Example 

Abstract Analysis 
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⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

𝑦, 𝑧 

𝑥, 𝑦, 𝑧 

𝑥 



Example 

Abstract Analysis 
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⊥,⊥  
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Example 

Abstract Analysis 
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Example 

Abstract Analysis 
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Abstract Analysis 
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Abstract Analysis 
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Abstract Analysis 
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Example 

Abstract Analysis 
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⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

𝑧 𝑥,𝑦 

𝑦 ∶ 1,1  
𝑧 ∶ ⊥,⊥  } 



Abstract Analysis 
Example 

𝑥 ∶ 1,1  

𝑦 ∶ 1,1  𝑧 ∶ ⊥,⊥  
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Definition:  
Program 𝑃 is:  

 
 strongly Berry-constructive (Δ0-constructive) iff 

∀𝑥 ∈ 𝑉. 𝜇𝜇. 𝑃 𝐶
⊥ 𝑥 ∈ {⊥, 0,1} 

 
 Berry-constructive  (Δ1-constructive) iff 

∀𝑥 ∈ 𝑉. 𝜇𝜇. 𝑃 𝐶
0 𝑥 ∈ {0,1} 

 

Theorem: 
𝑃 is Δ0-constructive implies that 𝑃 is Δ1-constructive and  
𝑃 is Δ1-constructive implies that 𝑃 is SC.  

Constructiveness Results 

48 



Conclusions 

Signals can be emulated and generalised using share 
variables + synchronisation constraints. 
 
SC permits arbitrary (IUR)* tick cycles. 
 
Berry-constructive reactions corresponds to a single (IUR) 
tick cycle. 
 
Fixed point analysis on sequential\parallel lattice 𝐼(𝐷). 
 
SC is a conservative extension of Berry-constructiveness. 
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Conclusions 

SC 
All programs without ‖ 
are SC 

Constructive semantics of 
Esterel generalises to SC. 50 



Open Problems 

Extend results to full Esterel (V7) syntax. 
 
Develop fixed point semantics for SC. 

51 
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