
Grenoble, France                   ETAPS-ESOP’14                      April, 2014 

Bamberg University 

Michael Mendler 
Joaquín Aguado 

Reinhard von Hanxleden 
Insa Fuhrmann 

Kiel University 



Overview 
A classical problem in concurrent programming. 
 

Determinism and Dead-lock freedom in multi-thread  
shared-memory settings. 

2 

An approach for this. 
 

Synchronous Programming (SP) has already solved this for 
reactive and embedded systems. 

 
Sound generalisation of SP techniques  for main stream 
programming. 



Context 
Synchronous Model of Computation (SMoC): 

 
Reactive and embedded systems. 
 
Inspired in synchronous digital circuits. 
 
Synchrony Hypothesis: 

System 

tick 

stimulus 

response 

tick 

3 



Context 
Synchronous Model of Computation (SMoC): 

 

Synchronisation is based on clocks and signals. 
 

Classical view of computation: Mealy  machine.  

I/O 

I/O 

4 



Context 
Synchronous Model of Computation (SMoC): 

 
This prevents deadlock and non-determinism. 
 
The soundness of the automata model depends on the 
compiler verifying that the Synchrony Hypothesis is valid. 

I/O 

I/O 

Thus, the synchronous interaction 
must satisfy stringent causality 
requirements.  

5 



Context 
Synchronous Model of Computation (SMoC): 

 
Yet, the Synchrony Hypothesis is not compositional ! 
 
This is aggravated by the fact that reaction to absence is 
allowed in some SMoC languages.  

System 

tick 

6 



Context 
Synchronous Model of Computation (SMoC): 

 

We cannot (compositionally) understand Mealy  machine 
abstraction without causality analysis in micro-steps.  

System 

tick 

System 
stimulus 

response 

7 



Context 
Synchronous Model of Computation (SMoC): 

 

We cannot (compositionally) understand Mealy  machine 
abstraction without causality analysis in micro-steps.  

Circuit 
X = ¬Y 
Y = ¬X 

Y 

X 

¬X/Y ¬Y/X ‖ 

8 



Context 
Esterel synchronous language (Gérard Berry): 
 

Constructiveness relates to electrical stabilisation. 
Cyclic circuit that stabilises for all (non-inertial) delays.  

present I then  
 present X then emit Y end 
else 
 present Y then emit X end 
end; 
pause; 
... Circuit 

X = I ∧ Y 
Y = ¬I ∧ X 

I 

X 

Y 

9 



Context 
Synchronous Model of Computation (SMoC): 

 
Gérard Berry (Esterel ) has solved this in the context of 
synchronous digital circuits.  
 
Causality analysis establishes consistency of a synchronous 
macro-step with respect to an asynchronous micro-step 
execution model. 
 
What does this mean for shared-memory multi-threaded 
code?  

10 



Contributions 
Esterel is extended (first time) as follows: 
 

For multi-threaded shared-memory programs: 
 
Two notions of Berry-constructiveness (Δ0, Δ1):  
 Δ0 permits explicit initialisations. 
 Δ1 corresponds to Esterel. 
 
These are presented as fixed point analyses in abstract 
domains of variable statuses:  
 Novel characterisation of must-cannot. 

 
Formally, constructive semantics of Esterel generalises to SC. 

11 



Contributions 

SC (Δ∗)  
All programs without ‖ 
are SC 

Esterel 
Berry 
Constructive 

Sequentially 
Constructive 

[DATE’13] 

Explicit 
initialisations  

multi-threaded  
shared-memory programs  

12 



Language 
The syntax (finite tick behaviour) is given by the BNF: 
 

𝑃 ≔ 𝜖  ¡𝑠  !𝑠 | 𝑠?𝑃:𝑃   𝑃 𝑃 |  𝑃;𝑃 
 
This contains the necessary control structures for capturing 
multiple variable accesses as they occur inside macro-steps. 
 
Programs manipulate Boolean variables B = {1,0} that emulate 
the synchronous signal statuses:  
 

present  (1,𝑇𝑇𝑇𝑇)  
absent  (0,𝐹𝐹𝐹𝐹𝐹) 

13 



Operational Semantics 
Concurrent control flow is descriptive. 
Sequential control flow is prescriptive. 

14 



Abstract Value Domain 
The behaviour off a variable takes place in a 4-value domain: 
𝐷 = {⊥ < 0 < 1 < ⊤} 

15 

IUR Protocol requires ⊤ 



Closed intervals. 

Abstract Value Domain 

16 

Arbitrary initial 
memory 



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥,⊤  

17 

𝑦 ∶ ⊥,⊤  

𝑧 ∶ ⊥,⊤  



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥, 0  

18 

𝑦 ∶ ⊥,⊤  

𝑧 ∶ ⊥,⊤  



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥, 0  

19 

𝑦 ∶ 0,⊤  

𝑧 ∶ ⊥,⊤  



Closed intervals. 

Abstract Value Domain 

𝑥 ∶ ⊥, 0  

20 

𝑦 ∶ 0,⊤  

𝑧 ∶ ⊥, 1  



Point-wise (sequential) ≼-lattice: 

Abstract Value Domain 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

maximum 

minimum 

(≼,∨) 

21 



Information (concurrent) ⊑-semi-lattice: 

Abstract Value Domain 

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

(⊒,⊓) 

maximal 

22 

minimum 



Statuses of variables are keep in environments  𝐸 ∶ 𝑉 ↦ 𝐼(𝐷).  

Abstract Value Domain 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

Kleene’s ternary 
domain Esterel 

23 



Sequential-Concurrent Reaction Model  

Abstract Analysis 

Initialisation under which 𝑃 is 
activated. 
 
Value of variables sequentially 
before 𝑃 is started. 

External stimulus which is 
concurrent with 𝑃. 

24 



Sequential-Concurrent Reaction Model  

Abstract Analysis 

⊥,⊥  

⊥,⊤  

25 



Sequential-Concurrent Reaction Model  

Abstract Analysis 

¡𝑥 

26 



Sequential-Concurrent Reaction Model  

Abstract Analysis 

𝑥? 

27 



Sequential-Concurrent Reaction Model  

Abstract Analysis 

28 



Sequential-Concurrent Reaction Model  

Abstract Analysis 

⊓ 

29 



The denotational semantics is given by a Response Function that 
determines constructive (non-speculative) information on the 
instantaneous response of a program. 

Abstract Analysis 

𝜖 𝐶
𝑆 ∶= 𝑆 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

30 



The denotational semantics is given by a Response Function that 
determines constructive (non-speculative) information on the 
instantaneous response of a program. 

Abstract Analysis 

𝜖 𝐶
𝑆 ∶= 𝑆 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

31 



The denotational semantics is given by a Response Function. 

Abstract Analysis 

32 



Statuses of variables are keep in environments  𝐸 ∶ 𝑉 ↦ 𝐼(𝐷).  

Abstract Analysis 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

lower projection 

33 



Statuses of variables are keep in environments  𝐸 ∶ 𝑉 ↦ 𝐼(𝐷).  

Abstract Analysis 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  

⊥,⊤  

lower projection 

upper projection 

34 



Example 

Abstract Analysis 

35 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑥,𝑦, 𝑧 𝑥, 𝑦, 𝑧 



Example 

Abstract Analysis 

36 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑦, 𝑧 𝑥, 𝑦, 𝑧 

𝑥 



Example 

Abstract Analysis 

37 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑦, 𝑧 𝑥, 𝑦, 𝑧 

𝑥 



Example 

Abstract Analysis 

38 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑦, 𝑧 𝑥, 𝑦, 𝑧 

𝑥 



Example 

Abstract Analysis 

39 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

𝑦, 𝑧 

𝑥, 𝑦, 𝑧 

𝑥 



Example 

Abstract Analysis 

40 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

𝑦, 𝑧 

𝑥, 𝑦, 𝑧 

𝑥 ⊓ 



Example 

Abstract Analysis 

41 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

𝑦, 𝑧 

𝑥 

𝑥,𝑦, 𝑧 



Example 

Abstract Analysis 

42 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑦, 𝑧 

𝑦, 𝑧 

𝑥 

𝑥 



Example 

Abstract Analysis 

43 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑦, 𝑧 

𝑦, 𝑧 

𝑥 

𝑥 



Example 

Abstract Analysis 

44 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑧 

𝑦, 𝑧 

𝑥 

𝑥,𝑦 



Example 

Abstract Analysis 

45 

⊥,⊥  

0,0  

1,1  

⊤,⊤  

⊥, 0  

0,1  

1,⊤  

⊥, 1  

0,⊤  
⊥,⊤  

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  𝑧 

𝑦, 𝑧 

𝑥 

𝑥,𝑦 ⊓ 



Example 

Abstract Analysis 

46 

⊥,⊥  0,0  1,1  ⊤,⊤  

⊥, 0  0,1  1,⊤  

⊥, 1  0,⊤  

⊥,⊤  

𝑧 𝑥,𝑦 

𝑦 ∶ 1,1  
𝑧 ∶ ⊥,⊥  } 



Abstract Analysis 
Example 

𝑥 ∶ 1,1  

𝑦 ∶ 1,1  𝑧 ∶ ⊥,⊥  
47 



Definition:  
Program 𝑃 is:  

 
 strongly Berry-constructive (Δ0-constructive) iff 

∀𝑥 ∈ 𝑉. 𝜇𝜇. 𝑃 𝐶
⊥ 𝑥 ∈ {⊥, 0,1} 

 
 Berry-constructive  (Δ1-constructive) iff 

∀𝑥 ∈ 𝑉. 𝜇𝜇. 𝑃 𝐶
0 𝑥 ∈ {0,1} 

 

Theorem: 
𝑃 is Δ0-constructive implies that 𝑃 is Δ1-constructive and  
𝑃 is Δ1-constructive implies that 𝑃 is SC.  

Constructiveness Results 

48 



Conclusions 

Signals can be emulated and generalised using share 
variables + synchronisation constraints. 
 
SC permits arbitrary (IUR)* tick cycles. 
 
Berry-constructive reactions corresponds to a single (IUR) 
tick cycle. 
 
Fixed point analysis on sequential\parallel lattice 𝐼(𝐷). 
 
SC is a conservative extension of Berry-constructiveness. 

49 



Conclusions 

SC 
All programs without ‖ 
are SC 

Constructive semantics of 
Esterel generalises to SC. 50 



Open Problems 

Extend results to full Esterel (V7) syntax. 
 
Develop fixed point semantics for SC. 

51 


	Foliennummer 1
	Overview
	Context
	Context
	Context
	Context
	Context
	Context
	Context
	Context
	Contributions
	Contributions
	Language
	Operational Semantics
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Constructiveness Results
	Conclusions
	Conclusions
	Open Problems

