Grounding Synchronous Deterministic
Concurrency in Sequential Programming

Reirhard von Aanxleden Michael Mendler
Insa /(uﬁrmann joa%ufh Aquac'/o

Kiel University Bamberg University

Grenoble, France ETAPS-ESOP’14 April, 2014

Overview

A classical problem in concurrent programming.

Determinism and Dea'cHock freedom in multi-thread
shared-memory settings.

An approach for this.

Synchronous Programming (SP) has already solved this for
reactive and embedded systems.

Sound generalisation of SP techniques for main stream
programming.

Context

Synchronous Model of Computation (SMo:
Reactive and embedded systems.
Inspired in synchronous digital circuits.

Synchrony Hypothesis:

Context

Synchronous Model of Computation (SMoC):
L.)
Synchronisation is based on cl(o cks and s Jr\a S.

Classical view of computat

Context

Synchronous Model of Computation (SMoC):
This prevents deadlock and non-determinism.

The soundness of the automata model depends on the
compiler verifying that the Synchrony Hypothesis is valid.

%. Thus, the synchronous interaction

. must satisfy stringent causality

%. requirements.

Context

Synchronous Model of Computation (SMoC):
Yet, the Synchrony Hypothesis is not compositional !

This is aggravated by the fact that reaction to absence is
allowed in some SMoC languages.

;r (4 \
Environment System

b

Context

Synchronous Model of Computation (SMo:

" \ ' , .
We cannot (compositionally) understand /*/ -a/y machine
abstraction without causality analysis in micro-steps.

Context

Synchronous Model of Computation (SMoC):

We cannot (compositionally) understand Mea(y machine
abstraction without causality analysis in micro-steps.

® o e
lﬁx@m _p l

® O d
Circuit
X =Y
Y = X

Context

Esterel synchronous language (Gérard Berry):

Constructiveness relates to electrical stabilisation.
Cyclic circuit that stabilises for all (non-inertial) delays.

present | then > X

present X then emit Y end
else — |

present Y then emit X end
end; -\
pause; Ry
- Circuit

X I AY

Y =421l A X

Context

Synchronous Model of Computation (SMoC):

Gérard Berry (Esterel) has solved this in the context of
synchronous digital circuits.

Causality analysis establishes consistency of a synchronous
macro-step with respect to an asynchronous micro-step

execution model.

What does this mean for shared-memory multi-threaded
code?

10

Contributions

Esterelis extended (first time) as follows:

For multi-threaded shared-memory programs:

Two notions of Berry-constructiveness (Aq, A4):
A, permits explicit initialisations.
A, corresponds to Esterel.

These are presented as fixed point analyses in abstract
domains of variable statuses:
Novel characterisation of must-cannot.

Formally, constructive semantics of Esterel generalises to SC.

11

Contributions

multi-threaded
shared-memory programs

All programs without ||

e

Ao

(Explicit

. Initialisations

12

Language
The syntax (finite tick behaviour) is given by the BNF:

P:=¢|is|!s|s?P:P| P||P| P;P

This contains the necessary control structures for capturing
multiple variable accesses as they occur inside macro-steps.

Programs manipulate Boolean variables B = {1,0} that emulate
the synchronous signal statuses:

present (1,True)
absent (0, False)

13

Operational Si

Concurrent cont
Sequential co

X ; X

14

Abstract Value Domain

The behaviour off a variable takes place in a 4-value domain:

D = {1 < 0 <N

I x |z 1

|
7' Byl z

/ x" ly

. \ oxl,yl T

;x;x?!y:!zll!x\)
e\ ix 7 b
e il - 21

IUR Protocol requires T

15

Abstract Value Domain

Closed intervals.

/ \'ﬁg\:

X
0
1
Arbitrary initial 0%0 0
0
1

memory
" / - \
\ \ 7

o o ® L

VX

=T = S S

—-

© O -~ + I N

p—

16

Abstract Value Domain

Closed intervals.

x ¢ [N
y : | LN
z : [N

.

\0%0

/\\
. \7

/

% /0%0

=T = S S

—-

© O -~ + I N

p—

17

Abstract Value Domain

Closed intervals.

y + (159

z : [159

_) O H PR

S O L + - N

18

Abstract Value

Closed intervals.

S O L + - N

19

Abstract Value

Closed intervals.

20

Abstract Value

Point-wise (sequ

minimum

21

Abstract Value

Information (con

maxi

minimum

22

Abstract Value Domain

Statuses of variable environments E : V - (D).

Kleene’s ter
domain Esterel

23

Abstract Analysis

Sequential-Concurrent R

under which P is

es sequentially
ted.

e et stimulus which is
__________________________ ,) urrent with P.

24

Abstract Analysis

Sequential-Concurre

25

Abstract Analysis

Sequential-Concurre

26

Abstract Analysis

Sequential-Concurre

Abstract Analysis

Sequential-Concurren

Abstract Analysis

Sequential-Concurre

29

Abstract Analysis

The denotational se \esponse Fun-cﬂon that

determines constr yrmation on the

instantaneous res

30

Abstract Analysis

The denotational semantics is given by a Res-ponSe Fur\‘cﬁoh that

determines constructive (non-speculative) information on the
instantaneous response of a program.

(eNe =S >

((lehe =SV {{x')}

CSv{(xT)} ifl=<SKx)
(ixNe == SV{{(x°)} ifS(x) <0

S v {(x!®T])} otherwise

(PIIQNZ = ((P))e V ({Q))e

31

Abstract Analysis

The denotational semantics is given by a Response Funcﬁoh

(PY)YS ifxlecC
((x?2P:Q)e =7 Q)2 ifx°€C
S Vvupp(((P)2) V upp({{Q))¢) otherwise

(N it cmpl(P, ©) = (0}
(P; Q) = -

PV upp (((Q))(())C) otherwise

S—

32

Abstract Anal

Statuses of variable

[L, L]

4
EVWVLYONWLEBINES

33

Abstract Anal

Statuses of variable

evwironments E 2 V = [(D).

orojection

34

Abstract Analysis

Exampl-e
((ix; x 2y 1z || 1x))¢
[T, T] (L, L] [0,0] [1,1] [T, 7]
i VA
(1] 10, Tl [1,0] [0,1] [1,T]
PR LJ_,T] }
[0,0] N[N I [0, 7]

[L, 0]
x’y’Z X;Y;Z

Sequential Concurrent

35

Abstract Analysis

Eample

((jx; x?ly: !Z))g vV ({x))g

=

h\
|

T

[0 0]\ [i s O [0, T
[1,0]7 /
/
[L, LISy RN, v, Z

Sequential Concurrent

B [T, T]

36

Abstract Analysis

Exampl-e
((ix; x 2y = 12)¢ V ({Ix)2
[T, 4 RO [1,1] [T,T]
T /N
x[11] 10Tl [L,0] [0,1] [1,T]
- [0,1] - } R
[0,0] L, 1] R [0, T]
o \ /
—
[1, L1577 RN, v, Z

Sequential Concurrent

37

Abstract Analysis

Exampl-e
((ix; x 2y = 12)¢ V ({Ix)2
[T, 4 RO [1,1] [T,T]
T /N
x[11] 10Tl [L,0] [0,1] [1,T]
- [0,1] - } R
[0,0] L, 1] R [0, T]
o \ /
—
[1, L1577 RN, v, Z

Sequential Concurrent

38

Abstract Analysis

Exampl-e
(x5 x 21y = 1z))g V ((lx)2
[T,T\] RO [1,1] [T,T]
! VAN
x[11] =5 10Tl [L,0] [0,1] [1,T]
> P 1139 [J_, T] }
[0,0] [i]| - Y, Z [L,1] [0, T]

[1,0] \
J_J_ / X,¥,Z

Sequential Concurrent

39

Abstract Anal

[ig [T, T]
.
) \
X [1,1]\ [iag
— 8
[0,0]\ , T]

P
BE L BB, v, Z
Sequential Concurrent

40

Abstract Analysis

Sxample
((jx; x?ly:lz|| !x))‘g

[T4 1

T,0 (L, L] [0,0] [1,1] [T, 7]
i / R/

(1] 10, Tl ERUN01] [1,T]
oAl LTI A

[0,0]\ LJ_, 1] Y, Z [1,1] [0, T]

[L, 0] \ /
X, VI EET]
Sequential Concurrent

41

Abstract Analysis

Example
((jx; x?ly: !z))g vV ({x))g

(18 T\] L, 1] [0,0] [1,1] [T,7T

1 A } \
x [1,1] /[0 Ul [1,0] [0,1] [1,T]

- [0,1] -

10,0] |1, 1] ,1]1 [0,

e y,z[l\]/[T]

—

[L1] v,z [1,T]

Sequential Concurrent

42

Abstract Analysis

Examp!e
((jx; x?ly: !z))g v {({1x)).g

[T, 4} X

" EEERNO [1,1] [T, T]
n E /

X [1;1]\ /[O, T] ~ [J_, O] O,]_] [1, T]

_~10,1] [L,7] } \

[0,0] Wil N o

11,017 v,z 1 \] /[7]

/

R [1,T]

Sequential Concurrent

43

Abstract Analysis

Examp!e
((jx; x?ly: !z))g v {({1x)).g

X
[T, T] [1, 1] 0 B [T, T]
[1,T] \)

=SNG~

l]
x,y[l,l]\ /\[O,T]\ [1 0,1] [1,T]
oAl LTI A
10,0] |1, 1] ,z [L,1] [0, T]
s or AV
—
[L, I BT]

Sequential Concurrent

44

Abstract Analysis

Sxample
(G ; x 21y = 1z))8 V ({Ix))e
[7,4)
.10 (L, L] [0,0] [1,1] [T, 7]
LI / \ }
x,y [1L1] 10, T] I [1,0] [0,1] [1,T]
o LJ_, T] }
10,0] [158K} y,z [1,1] [0, T]
[, 0]
[L,{] A [L, T]

Sequential Concurrent

45

Abstract Anal

[, T]

Concurrent

46

Constructiveness Results

Definftion:

Program P is:

strongly Berry-constructive (A,-constructive) iff
Vx € V. (uC.{(P)))(x) € {1,0,1}

Berry-constructive (A;-constructive) iff
vx € V. (uC.((P))2)(x) € {0,1}

Theorem:
P is Ay-constructive implies that P is A;-constructive and
P is A;-constructive implies that P is SC.

48

Conclusions

Signals can be emulated and generalised using share
variables + synchronisation constraints.

SC permits arbitrary (IUR)* tick cycles.

Berry-constructive reactions corresponds to a single (IUR)
tick cycle.

Fixed point analysis on sequential\parallel lattice I(D).

SCis a conservative extension of Berry-constructiveness.

49

Conclusions

All programs without ||

are SC

_ Constructive semantics of
Esterelgeneralises to $C.

Open Problerr

Extend results to full £

Develop fixed point st

51

	Foliennummer 1
	Overview
	Context
	Context
	Context
	Context
	Context
	Context
	Context
	Context
	Contributions
	Contributions
	Language
	Operational Semantics
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Value Domain
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Abstract Analysis
	Constructiveness Results
	Conclusions
	Conclusions
	Open Problems

