
Editors and Views
This tutorial will teach you the basics of writing plugins that run inside the Eclipse framework. You will learn about editors, views, and extension points by
creating one of each yourself. Once you're done with this tutorial, you will have an application that will look something like this:

You may want to download of the presentation explaining the basic concepts you will explore in this tutorial.the slides

Preliminaries
Required Software
General Remarks
Finding Documentation
Preparing the Repository

Creating a Simple Text Editor
Creating a New Plugin
Create the Main Editor Class
Register the Editor
Test the Editor

Creating a Simple View
Creating the View Class
Create the View Extension
Add Content and Label Providers
Use Simple Text Editor as Tape View Input
Create Actions to Move the Tape Head
Test the View

Creating an Extension Point
Defining a Command Class
Defining the Controller Interface
Defining the Extension Point
Accessing the Extension Point
Adding Support for Head Controllers to the View
Adding a Test Head Controller
Implementing Your Own Head Controller

Congratulations!

Preliminaries
There's a few things to do before we dive into the tutorial itself. For example, to do Eclipse programming, you will have to get your hands on an Eclipse
installation first. Read through the following sections to get ready for the tutorial tasks.

Required Software

For this tutorial, we need you to have Eclipse and Git installed:

https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/presentation.pdf?version=1&modificationDate=1428498631000&api=v2

1.

2.

1.
2.
3.
4.

1.
2.

3.

1.

1.

Install Eclipse. For what we do, we recommend installing the Eclipse Modeling Tools, with a few extras. Our has the Wiki page on getting Eclipse
details: simply follow the instructions for downloading and installing Eclipse and you should be set.
You should already have obtained a working Git installation for the first tutorial.

General Remarks

Over the course of this tutorial, you will be writing a bit of code. Here's a few rules we ask you to follow:

All your Java code should be in packages with the prefix , where is your login name as used for your email de.cau.cs.rtprak.login login
address at the institute. From now on, this rule will apply to all tutorials. Once we start with the actual practical projects, we will choose another
package name.
All Java classes, fields, and methods should be thoroughly commented with the standard comment format. Javadoc comments are well Javadoc
supported by Eclipse, providing code completion, syntax highlighting, and further features to help you. The code inside your methods should also
be well commented. Try to think about what kinds of information would help someone unfamiliar with your code understand it.
As you will already have noticed during the first tutorial, our tutorials use Turing machines as the underlying theme. This is partly because we're
computer scientists and computer scientists are expected to choose computer sciency examples, but mostly because Turing machines work great
as examples for the different kinds of topics we will be covering with you. You may thus want to take some time to read up again on the topic. Wiki

 or the material of your Theoretical Computer Science lecture might be a great start.pedia
During this tutorial, we will be using Git mostly from the command line instead of using Eclipse's built-in Git support. This is because we've found
Eclipse's Git support to be too unstable and buggy for us to trust it completely.

Finding Documentation

During the tutorial, we will cover each topic only briefly, so it is always a good idea to find more information online. Here's some more resources that will
prove helpful:

Java Platform, Standard Edition 6 API Specification
As Java programmers, you will already know this one, but it's so important and helpful that it's worth repeating. The API documentation contains
just about everything you need to know about the API provided by Java6.
Eclipse Help System
Eclipse comes with its own help system that contains a wealth of information. You will be spending most of your time in the Platform Plug-in

, which contains the following three important sections:Developer Guide
Programmer's Guide
When you encounter a new topic, such as SWT or JFace, the Programmer's Guide often contains helpful articles to give you a first
overview. Recommended reading.
References -> API Reference
One of the two most important parts of the Eclipse Help System, the API Reference contains the Javadoc documentation of all Eclipse
framework classes. Extremely helpful.
References -> Extension Points Reference
The other of the two most important parts of the Eclipse Help System, the Extension Point Reference lists all extension points of the
Eclipse framework along with information about what they are and how to use them. Also extremely helpful.

Eclipsepedia
The official Eclipse Wiki. Contains a wealth of information on Eclipse programming.
Eclipse Resources
Provides forums, tutorials, articles, presentations, etc. on Eclipse and Eclipse-related topics.

You will find that despite of all of these resources Eclipse is still not as well commented and documented as we'd like it to be. Finding out how stuff works
in the world of Eclipse can thus sometimes be a challenge. However, this does not only apply to you, but also to many people who are conveniently
connected by something called . It should go without saying that if all else fails, often turns up great tutorials or solutions to problems The Internet Google
you may run into. And if it doesn't, Miro and I will be happy to help you as well.

Preparing the Repository

We have created a Git repository for everyone to do his tutorials in. You can access the repository online through our Stash tool . You will first over here
have to configure your Stash account:

Login with your Rtsys account information.
Through the button in the top right corner, access your profile.
Switch to the tab.SSH keys
Click and upload a public SSH key that you want to use to access the repository.Add Key

You should now be able to access the repository. Clone it:

Open a console window and navigate to an empty directory that the repository should be placed in.
Enter the command (including the .ssh://git@git.rtsys.informatik.uni-kiel.de:7999/PRAK/12ws-eclipse-tutorials.git
final dot, which tells git to clone the repository into the current directory instead of a subdirectory).
You should now have a clone of the repository in the current directory.

You will use this repository for all your tutorial work, along with everyone else. To make sure that you don't interfere with each other, everyone will work on
a different branch. This is not exactly how people usually use Git, but goes to demonstrate Git's flexibility... Add a branch for you to work in:

Enter git checkout -b login_name

You have just added and checked out a new branch. Everything you commit will go to this branch. To push your local commits to the server (which you will
need to do so we can access your results), do the following:

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Getting+Eclipse
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#javadoctags
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Turing_machine
http://download.oracle.com/javase/6/docs/api/
http://help.eclipse.org/juno/index.jsp
http://wiki.eclipse.org/Main_Page
http://www.eclipse.org/resources/
http://www.google.de
http://git.rtsys.informatik.uni-kiel.de:7990/projects/PRAK/repos/12ws-eclipse-tutorials/browse

1.

1.
2.
3.

4.

5.

6.

1.
2.

1.

2.
3.
4.

5.

1.
2.

3.

4.

Enter git push origin login_name

You would usually have to enter first, but since nobody will mess with your branch this won't be necessary. By the way, you only need to git pull
mention with the first , since Git doesn't know where to push the branch yet. After the first time, Git remembers the origin login_name git push
information and it will be enough to just enter .git push

Creating a Simple Text Editor
OK, with all the preliminaries out of the way let's get working. Fire up Eclipse, choose an empty workspace, close the Welcome panel it will present you
with and follow the following steps.

Creating a New Plugin

For our text editor to integrate into Eclipse, we need to create a plug-in project for it:

New -> Project...
In the project wizard, choose and click .Plug-in Project Next
As the project name, enter . Uncheck (which would put the project into your de.cau.cs.rtprak.login.simple Use default location
workspace), and put it into your local clone of the Git repository instead (the should read something like Location /path/to/git/repository

). Click ./de.cau.cs.rtprak.login.simple Next
As the name, enter . Also, make sure that and are both Simple (login) Generate an activator This plug-in will make contributions to the UI
checked. Click . (Eclipse might ask you whether you want to switch to the , which configures Eclipse to Finish Plug-in Development Perspective
provide the views that are important for plug-in development. Choose . Or . It won't have a big influence on your future...)Yes No
Eclipse has now created your new plug-in and was nice enough to open the , which allows you to graphically edit two Plug-in Manifest Editor
important files of your plugin: and . (By the way, this would be a great time to research the editor and the plugin.xml META-INF/MANIFEST.MF
two files online.) Basically, those two files provide information that tell Eclipse what other plug-ins your plug-in needs and how it works together
with other plug-ins by providing extensions and extension points. Our new plug-in will depend on two other plug-ins, so switch to the Dependencies
tab of the editor and add dependencies to and . Save the editor and close it. (You org.eclipse.ui.editors org.eclipse.jface.text
can always reopen it by opening one of the two mentioned files from the .)Package Explorer
Tell Eclipse that the project is inside a Git repository. Right-click on the project, click , and click . Select Git as the repository Team Share Project
type and click . The repository information should appear and you should be able to simply click .Next Finish

Create the Main Editor Class

We will now create the class that implements the simple text editor. There won't be any programming involved here since we're lazy; instead, we will just
inherit from an existing simple text editor.

New -> .Class
Package: . Name: . Superclass: de.cau.cs.rtprak.login.simple.editors SimpleEditorPart org.eclipse.ui.editors.text.

. Click .TextEditor Finish

Register the Editor

For the editor to be available inside Eclipse, we will have to register it by adding an extension to an extension point.

Copy to a new subfolder icons in the plug-in folder (right-click the plug-in folder in the and choose -> the attached file Package Explorer New Folde
). You can copy the file by importing it from inside Eclipse (-> ->) or by copying it from outside Eclipse and refreshing r... File Import... File System

the plug-in project afterwards (right-click the plug-in folder in the and choose Package Explorer Refresh).
Open the again and switch to the tab.Plug-in Manifest Editor Extensions
Click , choose the extension point and click .Add... org.eclipse.ui.editors Finish
The extension point is now shown in the list of extensions, along with an extension. Select that extension and edit its details using the fields editor
on the right. Set the ID to , the name to , the icon to de.cau.cs.rtprak.login.simple.editor Simple Text Editor icons/turing-

, the extensions to , the class to , and the default to file.gif simple de.cau.cs.rtprak.login.simple.editors.SimpleEditorPart t
.rue

Save the manifest editor.

Test the Editor

It's time to test your new simple editor in a new Eclipse instance.

Switch back to the tab of the .Overview Plug-in Manifest Editor
Click Launch an Eclipse Application.

For future tests, you can now select in the run menu.Eclipse Application
To enable debug mode for your test instances: open the dialog, select the tab of the Run Configurations Arguments Eclipse Application
configuration, and add -debug -consoleLog as program arguments. This dumps all errors and exceptions to the console view, so you can
directly see what went wrong.
To improve performance, select only the plugins that are necessary: in the tab select , Plug-ins Launch with plug-ins selected below only
deselect , select , and then .Target Platform Workspace Add Required Plug-ins

Make sure that org.eclipse.ui.ide.application is also selected, else you won't be able to launch Eclipse.
The requirements list needs to be updated when the dependencies of your plugins have changed; click Add Required Plug-ins
again for updating.

In the new Eclipse instance, click -> -> . Enter as the project name.New -> Project... General Project test

https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/turing-file.gif?version=1&modificationDate=1428498631000&api=v2

4.

1.

2.
3.

4.

1.

2.
3.

4.

1.

Right-click the new project and click -> As the file name, enter . This will create a new file with that name and open the New File... test.simple
file in your newly added text editor. (You can see that it is your editor by looking at the editor icon, which should look like the icon you downloaded
and put into the icons folder.)

Creating a Simple View
The next task consists of creating a view that is able to display the state of a Turing Machine. We will do this using a table with one column, where each
row represents an entry on the tape of the Turing Machine. The tape shall be infinite to one side, and the position of the read/write head shall be movable
by two buttons. The content of the tape shall be determined by the currently active instance of our simple text editor.

Creating the View Class

We will start by creating a class that will define the view.

Create a class in a new package that extends the class. (make sure TapeViewPart de.cau.cs.rtprak.login.simple.views ViewPart
that in the wizard, the option is checked.)New Java Class Inherited abstract methods
Add a private field of type .tableViewer TableViewer
Your contains a still empty method . This method will be responsible for creating the user interface TableViewPart createPartControl
components of your view. Add the following code to create the table we want to display:

Table table = new Table(parent, SWT.BORDER);
table.setHeaderVisible(true);
TableColumn column = new TableColumn(table, SWT.NONE);
column.setWidth(80);
column.setText("Tape Data");
tableViewer = new TableViewer(table);

The method controls what happens when your part gets the focus. Make sure the focus will then automatically be set to the table by setFocus
adding the following code:

tableViewer.getControl().setFocus();

Create the View Extension

We will now have to register our new view with Eclipse so that it can be seamlessly integrated into the workbench.

Copy the three files , , and to the subfolder of your plug-in as you did it before. (You might tape_head.gif head_present.gif head_absent.gif icons
need to refresh your project again if you did the copying outside of Eclipse.)
Open the file in the and switch to the tab.plugin.xml Plugin Manifest Editor Extensions
Click to add a new extension for the extension point . Right-click the newly added extension and add a new Add org.eclipse.ui.views view
element through the menu.New
Set the view element's properties as follows: ID , name , class de.cau.cs.rtprak.login.simple.view Tape de.cau.cs.rtprak.login.

, category , icon .simple.views.TapeViewPart org.eclipse.ui icons/tape_head.gif

When you start the application, you should now be able to open your view by clicking -> -> .Window Show View Other

Add Content and Label Providers

The idea of JFace viewers is to abstract a bit from the underlying widget (in our case, the table) and instead work on data models that are to be viewed.
Instead of adding items to the table directly, the table viewer is supplied with an input object, a content provider, and a label provider. The content provider
allows the viewer to make sense of the input object and basically allows the viewer to access the input object's data. The label provider translates each
item of data into text and icons that can be used to present the item to the user in the table.

We will now create content and label providers to do just that.

Create a class in a new package with the following fields:TuringTape de.cau.cs.rtprak.login.simple.model

private int headPosition = 1;
private StringBuffer text = new StringBuffer();

Hint

In the following, we will be making use of the Standard Widget Toolkit (SWT) and JFace to build a user interface. It might be a good idea now to
search for an introduction to SWT and JFace concepts on the Internet before you proceed.

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/part/ViewPart.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/TableViewer.html
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/tape_head.gif?version=1&modificationDate=1428498631000&api=v2
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/head_present.gif?version=1&modificationDate=1428498631000&api=v2
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/head_absent.gif?version=1&modificationDate=1428498631000&api=v2

1.

2.

3.

4.
5.

6.

7.

8.

1.

Also add corresponding getter and setter methods. (You can simply right-click somewhere in the class and choose -> Source Generate Getters
.)and Setters

Add two constants to the class:

public static final char START_CHAR = '\u25b7';
public static final char BLANK_CHAR = '\u25fb';

Add a method that calculates the tape character at position as follows:getCharacter(int pos) pos
For , return the character .pos == 0 START_CHAR
For , return the character .pos > text.length() BLANK_CHAR
Otherwise, return the text character at index .pos - 1

Add a private field tape of type to and initialize it with a new instance.TuringTape TapeViewPart
Create a class in with two fields and , and add a TapeData de.cau.cs.rtprak.login.simple.model int index char character
constructor for initialization as well as corresponding getter methods.
Create a class in the package that implements TapeContentProvider de.cau.cs.rtprak.login.simple.views IStructuredContentProvi

.der
The methods and may remain empty.dispose() inputChanged()
The method must return an array of objects, where each object must contain all necessary data to be displayed in a getElements()
single row of the table. The number of returned objects corresponds to the number of rows.
Suppose the input element is an instance of . The result of shall be an array of elements. The TuringTape getElements() TapeData
size of the array shall be one more than the maximum of the tape head position and the length of the tape text. The index and character
of each tape data element shall be filled with and the result of , respectively, where is the array i turingTape.getCharacter(i) i
index of the element.

Create a class in the package that extends and TapeLabelProvider de.cau.cs.rtprak.login.simple.views BaseLabelProvider
implements .ITableLabelProvider

Add a private field of type that is initialized from the constructor.tape TuringTape
Add fields and of type .presentImage absentImage Image
Initialize each image using the following code, where is and path_to_image icons/head_present.gif icons/head_absent.gif
, respectively:

image = Activator.imageDescriptorFromPlugin(Activator.PLUGIN_ID, "path_to_image").createImage();

Override the implementation of in to dispose both images after calling . (Right-dispose() TapeLabelProvider super.dispose()
click in the source-code and click -> .)Source Override/Implement Methods
In and , first check whether the element is an instance of and the column index is getColumnImage() getColumnText() TapeData
0, and return otherwise. If the check passes, return the following:null

getColumnImage(): if the index given by the tape data element equals the current value of presentImage tape.
, otherwise.getHeadPosition() absentImage

getColumnText(): a containing the character of the tape data element.String
Add the following lines to in :createPartControl() TapeViewPart

tableViewer.setContentProvider(new TapeContentProvider());
tableViewer.setLabelProvider(new TapeLabelProvider(tape));
tableViewer.setInput(tape);

Use Simple Text Editor as Tape View Input

We will now add code to make the Tape view display the content of a currently active Simple Text Editor.

Add the following methods to :SimpleEditorPart

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/IStructuredContentProvider.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/IStructuredContentProvider.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/BaseLabelProvider.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/ITableLabelProvider.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/graphics/Image.html

1.

2.

3.

/**
 * Returns the text that is currently displayed in the editor.
 * @return the currently displayed text
 */
public String getText() {
 return getDocumentProvider().getDocument(getEditorInput()).get();
}
/** The listener that is currently registered for this editor. */
private IDocumentListener registeredListener;
/**
 * Registers the given runnable as listener for changes to the text
 * of this editor.
 * @param runnable a runnable to register as text listener
 */
public void registerTextListener(final Runnable runnable) {
 registeredListener = new IDocumentListener() {
 public void documentAboutToBeChanged(DocumentEvent event) {}
 public void documentChanged(DocumentEvent event) {
 runnable.run();
 }
 };
 getDocumentProvider().getDocument(getEditorInput())
 .addDocumentListener(registeredListener);
}
/**
 * Removes the last registered text listener.
 */
public void disposeTextListener() {
 if (registeredListener != null) {
 if (getDocumentProvider() != null) {
 getDocumentProvider().getDocument(getEditorInput())
 .removeDocumentListener(registeredListener);
 }
 registeredListener = null;
 }
}

Add the following code to :TapeViewPart

/** The editor part that is currently set as input for the viewer. */
private SimpleEditorPart currentInput;
/**
 * Sets the displayed text of the given editor part as input of the
 * viewer, if the editor part is a SimpleEditorPart.
 * @param part workbench part to set as input
 */
private void setInput(final IWorkbenchPart part) {
 if (part instanceof SimpleEditorPart && part != currentInput) {
 if (currentInput != null) {
 currentInput.disposeTextListener();
 }
 currentInput = (SimpleEditorPart) part;
 Runnable runnable = new Runnable() {
 public void run() {
 tape.setText(new StringBuffer(currentInput.getText()));
 tableViewer.refresh();
 }
 };
 runnable.run();
 currentInput.registerTextListener(runnable);
 }
}

Add the following code to :createPartControl()

3.

1.

2.

1.
2.
3.
4.

5.
6.

1.
2.

IWorkbenchWindow workbenchWindow = getSite().getWorkbenchWindow();
IWorkbenchPage activePage = workbenchWindow.getActivePage();
if (activePage != null) {
 setInput(activePage.getActivePart());
}
workbenchWindow.getPartService().addPartListener(new IPartListener() {
 public void partActivated(final IWorkbenchPart part) {
 setInput(part);
 }
 public void partDeactivated(final IWorkbenchPart part) {}
 public void partBroughtToTop(final IWorkbenchPart part) {}
 public void partClosed(final IWorkbenchPart part) {}
 public void partOpened(final IWorkbenchPart part) {}
});

Create Actions to Move the Tape Head

If we want to add buttons to the view's tool bar, we will have to ask its to do that for us:IToolbarManager

Get the tool bar manager using the following code:

IToolBarManager toolBarManager = getViewSite().getActionBars().getToolBarManager();

Add two actions to the toolbar manager by extending the class and implementing the method.Action run()
It is convenient to add actions as anonymous nested classes.
The first action shall have the text "L". When it is run, it shall move the head to the left (to the top in the table viewer), if the head is not
already at position 0.
The second action shall have the text "R". When it is run, it shall move the head to the right.
You should call after any change to the variable.tableViewer.refresh() tape.headPosition

Test the View

If you open an instance of the simple text editor and open the Tape view, the view should correctly display the editor's text on a tape, and the L and R
buttons should move the tape head.

Creating an Extension Point
For the final part of the tutorial, we will now use the extension point mechanism of Eclipse to add some behavior to our Turing Machines. An extension point
is basically a well-defined point where other plug-ins can register to add functionality. The extension point is basically defined by an XML Schema file that
defines an interface; other plug-ins may access this interface using XML code in their file, so-called . Our extension point will plugin.xml extensions
provide an interface for classes that define behavior of a Turing Machine, and we will call them head controllers (programs that control the tape head).

Defining a Command Class

We will start by defining a class representing a command that will be passed to a selected head controller.

Add a class to the package .HeadCommand de.cau.cs.rtprak.login.simple.controller
Add a nested public static enumeration with values , , and .Action WRITE ERASE NULL
Add a nested public static enumeration with values , , and .Direction LEFT RIGHT NONE
Add the following private fields:

private Action action;
private Direction direction;
private char newChar;

Add a constructor to initialize the fields.
Add getter methods to access the fields.

Defining the Controller Interface

We will now define an interface that all head controllers will have to implement:

Add an interface in the package .IHeadController de.cau.cs.rtprak.login.simple.controller

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/action/IToolBarManager.html
http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/action/Action.html

2.

1.
2.

3.

4.
5.
6.

7.

8.
9.

1.

Add the following methods to the interface:

/**
 * Calculate the next command depending on the currently seen character.
 * @param character the currently seen character
 * @return the next command specifying which character to write and
 * which direction to move the head
 */
HeadCommand nextCommand(char character);

/**
 * Reset the internal state of the head controller.
 */
void reset();

Defining the Extension Point

We will now define the extension point that head controllers will be registered at.

Open the file in the and switch to the tab.plugin.xml Plugin Manifest Editor Extension Points
Click the button and enter as the extension point's ID, and Add de.cau.cs.rtprak.login.simple.headControllers Head

 as its name. Shorten the schema file's file name to . Make sure that Controllers schema/headControllers.exsd Edit extension point
 is checked and click .schema when done Finish

Eclipse will now have opened the new schema file in the , a graphical editor similar to the Extension Point Schema Editor Plugin Manifest Editor
that provides a way to define things that might be easier than directly editing the text files.
In the new editor, open the tab.Definition
Add a new element named .controller
Add three new attributes to the element:controller

First attribute: name , use , type , translatable .id required string false
Second attribute: name , use , type , translatable .name required string true
Third attribute: name , use , type , implements class required java de.cau.cs.rtprak.login.simple.controller.

. This is the attribute that will tell us which Java class actually implements the controller that is to be registered at our IHeadController
extension point. To make sure that we know how to speak to the class, we require it to implement the interface we defined for head
controllers.

Add a sequence to the element. Right-click the sequence and click -> . Set the of the sequence to 0, extension New controller Min Occurrences
and set to be .Max Occurrences Unbounded
Save the editor and switch back to the .Plugin Manifest Editor
On the Runtime tab, add to the list of packages exported by the plug-in. This is necessary de.cau.cs.rtprak.login.simple.controller
because plug-ins that want to provide extensions for the extension point must provide a class that implements . For this to IHeadController
work, those plug-ins must have access to that interface; thus, we have to export the package containing it.

Accessing the Extension Point

We will now add a class that will be in charge of loading all extensions registered at our new extension point.

Add a class to the package . Add the following code, replacing HeadControllers de.cau.cs.rtprak.login.simple.controller login
with your login name in as usual:EXTENSION_POINT_ID

1.

1.

2.

/**
 * Class that gathers extension data from the 'headControllers' extension point
 * and publishes this data using the singleton pattern.
 * @author msp
 */
public class HeadControllers {
 /** Identifier of the extension point */
 public final static String EXTENSION_POINT_ID = "de.cau.cs.rtprak.login.simple.headControllers";
 /** The singleton instance of the {@code HeadControllers} class */
 public final static HeadControllers INSTANCE = new HeadControllers();
 /** list of head controller ids with associated names. */
 private List<String[]> controllerNames = new LinkedList<String[]>();
 /** map of controller ids to their runtime instances. */
 private Map<String, IHeadController> controllerMap = new HashMap<String, IHeadController>();
 /**
 * Creates an instance of this class and gathers extension data.
 */
 HeadControllers() {
 IConfigurationElement[] elements = Platform.getExtensionRegistry()
 .getConfigurationElementsFor(EXTENSION_POINT_ID);
 for (IConfigurationElement element : elements) {
 if ("controller".equals(element.getName())) {
 String id = element.getAttribute("id");
 String name = element.getAttribute("name");
 if (id != null && name != null) {
 try {
 IHeadController controller = (IHeadController)element
 .createExecutableExtension("class");
 controllerNames.add(new String[] {id, name});
 controllerMap.put(id, controller);
 }
 catch (CoreException exception) {
 StatusManager.getManager().handle(exception, Activator.PLUGIN_ID);
 }
 }
 }
 }
 }

 /**
 * Returns a list of controller ids and names. The arrays in the list are
 * all of size 2: the first element is an id, and the second element is the
 * associated name. The controller name is a user-friendly string to be
 * displayed in the UI.
 * @return a list of controller ids and names
 */
 public List<String[]> getControllerNames() {
 return controllerNames;
 }

 /**
 * Returns the head controller instance for the given id.
 * @param id identifier of a head controller
 * @return the associated controller
 */
 public IHeadController getController(final String id) {
 return controllerMap.get(id);
 }
}

Adding Support for Head Controllers to the View

We will now have to add support for head controllers to our view.

Open the class and add the private fields of type and of type TapeViewPart checkedControllerAction IAction currentController IHea
.dController

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/action/IAction.html

2.

3.

4.
5.

6.

1.

Add a list of registered head controllers to the view's menu (which can be opened using the small white triangle) in the createPartControl()
method:

IMenuManager menuManager = getViewSite().getActionBars().getMenuManager();
for (String[] controllerName : HeadControllers.INSTANCE.getControllerNames()) {
 final String id = controllerName[0];
 String name = controllerName[1];
 Action action = new Action(name, IAction.AS_RADIO_BUTTON) {
 public void run() {
 if (checkedControllerAction != null) {
 checkedControllerAction.setChecked(false);
 }
 this.setChecked(true);
 checkedControllerAction = this;
 currentController = HeadControllers.INSTANCE.getController(id);
 }
 };
 if (checkedControllerAction == null) {
 action.run();
 }
 menuManager.add(action);
}

Implement the following method in the class:TuringTape

public void execute(final IHeadController controller)

The method shall have the following properties:

Determine the character at the current head position using .getCharacter(getHeadPosition())
Call with the current character as parameter.controller.nextCommand()
Depending on the action in the returned head command, either write the returned new character to the current position in text (), WRITE
or write the blank symbol (), or do nothing. If the current position exceeds the end of the text, append enough blank characters up ERASE
to the current position, then append the new character.
Depending on the direction in the returned head command, either move the head to the left (but no further than position 0), or to the
right, or do nothing.

Copy the files and to the icons folder.step.gif reset.gif
Add an action to the toolbar of the Tape view with text and icon which does the following:Step step.png

Check whether the current head controller is not , than call .null tape.execute(currentController)
Refresh the table viewer with its method.refresh()
Note: actions don't need images, but only image descriptors. Thus, to set the action's icon to , you can use something like the step.png
following:

Activator.imageDescriptorFromPlugin(Activator.PLUGIN_ID, "path_to_icon");

Add another action with text Reset and icon reset.png which does the following:
Check whether the current head controller is not , then call the method on .null reset() currentController
Set the current head position to 1.
Refresh the table viewer with its method.refresh()

Adding a Test Head Controller

Before creating a proper head controller in another plug-in, we will add a test controller to check whether all this stuff works.

Add a new class to the package:NullController de.cau.cs.rtprak.login.simple.controllers

https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/step.gif?version=1&modificationDate=1428498631000&api=v2
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/10751522/reset.gif?version=1&modificationDate=1428498631000&api=v2

1.

2.

3.

1.

2.

3.
4.

/**
 * Head controller that does nothing, for testing.
 * @author msp
 */
public class NullController implements IHeadController {
 /**
 * {@inheritDoc}
 */
 public HeadCommand nextCommand(final char character) {
 return new HeadCommand(Action.NULL, Direction.NONE, '_');
 }

 /**
 * {@inheritDoc}
 */
 public void reset() {
 }
}

Open the and switch to the tab. Add your Plugin Manifest Editor Extensions de.cau.cs.rtprak.login.simple.headControllers
extension point. Add a element with ID , name , controller de.cau.cs.rtprak.login.simple.nullController Null Controller
and class .de.cau.cs.rtprak.login.simple.controller.NullController
Start the application and observe how your program behaves if you change the action and direction in the class. You can NullController
actually change both while the application is running, but only if you have started it in the Debug mode. In that case, Eclipse will actually hot-swap
your changes into the running application. Sorcery!

Implementing Your Own Head Controller

We will now create a new plug-in with a new head controller:

Create a new plug-in . (Remember to create the project in your Git repository.) In the de.cau.cs.rtprak.login.simple.extension Plugin
, add to the dependencies of the new plug-in.Manifest Editor de.cau.cs.rtprak.login.simple

Create a new class that implements :IHeadController
Assuming that the initial head position is 1, the controller shall copy the input text infinitely often. So if the tape initially contains the word h

, the controller shall generate .ello hellohellohellohe...
Your class needs some private fields to store the internal state of the controller, and you may need some special character as marker.
Imagine how a Turing Machine would do this.
It is not allowed to store data that can grow infinitely, since a Turing Machine may only have a finite number of states. This means that
you may store single characters or numbers, but you must not store Strings, StringBuffers, arrays, lists, or sets.

Register the new controller class using an extension in the new plug-in.
Test your controller.

Congratulations!
Congratulations, you just made a big step towards understanding how Eclipse works. Plus, you've refreshed your knowledge on Turing Machines along the
way. Eclipse is an industry standard technology, and having experience programming against it is a valuable skill for you.

If you have any comments and suggestions for improvement concerning this tutorial, please don't hesitate to tell us about them!

	Editors and Views

