
1.
2.

3.

Layout Algorithms
Welcome to this tutorial! We will work our way through installing a proper Eclipse setup and developing a first very basic layout algorithm. The layout
algorithm will integrate with (Eclipse Layout Kernel), our very own framework that connects graphical editors with layout algorithms. Once you're ELK
finished, you should be able to write layout algorithms for ELK. And you should have a running Eclipse-based application that should look something like
this:

Preliminaries
Required Software
Finding Documentation

Developing Your First Layout Algorithm
Adding a New Plug-in
Writing the Layout Algorithm

Preliminaries
There's a few things to do before we dive into the tutorial itself. For example, to do Eclipse programming, you will have to get your hands on an Eclipse
installation first. Read through the following sections to get ready for the tutorial tasks.

Required Software

You will first need an Eclipse installation to hack away on layout algorithms with. Since we have a shiny Oomph setup available, this turns out to be
comparatively painless:

Go to and download the Eclipse Installer for your platform. You will find the links at the bottom of the box.this site Try the Eclipse Installer
Start the installer. Click the Hamburger button at the top right corner and select Advanced Mode. Why? Because we're computer scientists, that's
why!

https://github.com/eclipse/elk/wiki
https://www.eclipse.org/downloads/index.php

3.

4.

5.

Select from the section and click Next.Eclipse Modelling Tools Eclipse.org

Next, we need to tell Oomph to get everything ready for layout algorithm development. Download our , click the Plus button at Oomph setup file
the top right corner and add the setup file to the Github Projects catalog. Select the new Graph Drawing entry by clicking the check box to its left.
This will cause an item to appear in the table at the bottom of the window. Once you're done, click Next.

Oomph now asks you to enter some more information. You can usually leave the settings as is, except for the Installation folder name. This will
be the directory under which all your Eclipse installations installed with Oomph will appear, each in a separate sub-directory. Select a proper
directory of your choice and click Next.

Finding Documentation

During the tutorial, we will cover each topic only briefly, so it is always a good idea to find more information . Here's some more resources that may online
prove helpful:

Java™ Platform, Standard Edition 8 API Specification
As Java programmers, you will already know this one, but it's so important and helpful that it's worth repeating. The API documentation contains
just about everything you need to know about the API provided by Java.
Eclipse Help System
Eclipse comes with its own help system that contains a wealth of information. You will be spending most of your time in the Platform Plug-in

, which contains the following three important sections:Developer Guide
Programmer's Guide
When you encounter a new topic, such as SWT or JFace, the Programmer's Guide often contains helpful articles to give you a first
overview. Recommended reading.
References -> API Reference
One of the two most important parts of the Eclipse Help System, the API Reference contains the Javadoc documentation of all Eclipse
framework classes. Extremely helpful.
References -> Extension Points Reference
The other of the two most important parts of the Eclipse Help System, the Extension Point Reference lists all extension points of the
Eclipse framework along with information about what they are and how to use them. Also extremely helpful.

Eclipsepedia
The official Eclipse Wiki. Contains a wealth of information on Eclipse programming.
Eclipse Resources
Provides forums, tutorials, articles, presentations, etc. on Eclipse and Eclipse-related topics.
Eclipse Layout Kernel
Documentation on how the layout infrastructure works and on how to write your own layout algorithms. This is our project, so if you find that
something is unclear or missing, tell us about it!

https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/config/browse/setups/GraphDrawing.setup?raw
http://en.wikipedia.org/wiki/Internet
http://docs.oracle.com/javase/8/docs/api/
http://help.eclipse.org/juno/index.jsp
http://wiki.eclipse.org/Main_Page
http://www.eclipse.org/resources/
https://github.com/eclipse/elk/wiki

1.
2.
3.
4.
5.

1.
2.

3.

1.
2.

3.

1.

2.

You will find that despite of all of these resources Eclipse is still not as well commented and documented as we'd like it to be. Finding out how stuff works
in the world of Eclipse can thus sometimes be a challenge. However, you are not alone: this also applies to many people who are conveniently connected
by something called . It should go without saying that if all else fails, often turns up great tutorials or solutions to problems you may run The Internet Google
into. And if it doesn't, your advisers will be happy to help.

As far as KIELER documentation is concerned, you will find documentation at the . The documentation is not as complete as we (and KIELER Confluence
especially everyone else) would like it to be, however, so feel free to ask those responsible for help if you have questions that the documentation fails to
answer.

Developing Your First Layout Algorithm
Now that the preliminaries are out of the way, it's time to develop your first layout algorithm! It will, however, be a very simple one. This tutorial focuses on
creating Eclipse plug-ins and on learning how to develop with ELK.

Adding a New Plug-in

We need to create a new plug-in to implement the layout algorithm in. Switch back to the Java or Plug-in Development perspective and follow these steps:

Click > > > > .File New Other... Plug-in Development Plug-in Project
Enter as the project name. Click .de.cau.cs.kieler.simplelayout Next
Set the execution environment to . (do this for all plug-ins that you create!)JavaSE-1.8
Uncheck all checkboxes in the group and click .Options Finish
If Eclipse asks you whether the perspective should be opened, choose either or . It doesn't make much of a Plug-in Development Yes No
difference anyway.

Writing the Layout Algorithm

When writing our layout algorithm, we are going to need to be able to access code defined in several other plug-ins. To do that, we need to add
dependencies to those plug-ins:

In your new plug-in, open the file . The plug-in manifest editor will open. Open its tab.META-INF/MANIFEST.MF Dependencies
Add dependencies to the following plug-ins:

org.eclipse.elk.core
org.eclipse.elk.graph

Save the editor.

Layout algorithms interface with ELK by means of a layout provider class that has to be created and registered with KIML.

Right-click the source folder of your plug-in and click > .New Class
Set the package to , enter as the class name, and select de.cau.cs.kieler.simplelayout SimpleLayoutProvider org.eclipse.elk.

 as the superclass. (This will only be available through the dialog if you have saved the plug-in core.AbstractLayoutProvider Browse
manifest editor; if you haven't, Eclipse won't know about the new dependencies yet.)
Select and click .Generate comments Finish

Implement the layout provider class:

Add the following constants:

/** default value for spacing between nodes. */
private static final float DEFAULT_SPACING = 15.0f;

Use the following code as the skeleton of the method:layout(...)

http://www.google.de
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Home

2.

3.
4.

1.
2.
3.
4.

progressMonitor.begin("Simple layouter", 1);
KShapeLayout parentLayout = layoutGraph.getData(KShapeLayout.class);

float objectSpacing = parentLayout.getProperty(CoreOptions.SPACING_NODE);
if (objectSpacing < 0) {
 objectSpacing = DEFAULT_SPACING;
}

float borderSpacing = parentLayout.getProperty(CoreOptions.SPACING_BORDER);
if (borderSpacing < 0) {
 borderSpacing = DEFAULT_SPACING;
}

// TODO: Insert actual layout code.

progressMonitor.done();

Press or select from the context menu to add all required imports.CTRL+SHIFT+O Source > Organize Imports
It is now time to write the code that places the nodes.Your code should place them next to each other in a row, as seen in the screenshot at the
beginning of the tutorial.

Before you can test your layout code, you will have to register your new layout provider with ELK.

Right-click the package and select de.cau.cs.kieler.simplelayout New > File.
Create a file and double click it to open it. simple.elkm
When asked whether you want to add the , select .Xtext nature yes
The file is used to specify meta information for your layout algorithm. For this, copy the following code snippet into your editor:

Tips

The following tips might come in handy...

Read the documentation of the and meta models. The input to the layout algorithm is a that has child KGraph KLayoutData KNode KNo
s for every node in the graph. Iterate over these nodes by iterating over the list of the argument.de getChildren() parentNode

Retrieve the size of a node and set its position later using the following code:

KShapeLayout nodeLayout = node.getData(KShapeLayout.class);

// Retrieving the size
float width = nodeLayout.getWidth();
float height = nodeLayout.getHeight();

// Setting the position
nodeLayout.setXpos(x);
nodeLayout.setYpos(y);

objectSpacing is the spacing to be left between each pair of nodes.
borderSpacing is the spacing to be left to the borders of the drawing. The top left node's coordinates must therefore be at least (bor

.derSpacing, borderSpacing)
At the end of the method, set the width and height of such that it is large enough to hold the whole drawing, including parentLayout
borders.
A complete layout algorithm will of course also route the edges between the nodes. Ignore that for now – you will do this at a later step.

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KGraph+Meta+Model
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KLayoutData+Meta+Model

4.

5.
6.
7.
8.

9.
10.

1.
2.
3.
4.

a.
b.
c.

d.
5.

1.
2.
3.
4.

5.

package de.cau.cs.kieler.simplelayout

bundle {
 label "Simple Layout Algoritms"
 metadataClass SimpleMetaDataProvider
}

algorithm simple(SimpleLayoutProvider) {
 label "Simple Test Layouter"
 metadataClass SimpleOptions

 supports org.eclipse.elk.spacing.border
 supports org.eclipse.elk.spacing.node
}

You still have to register the file with Eclipse. Open the file again and switch to the tab.META-INF/MANIFEST.MF Extensions
Add an extension for .org.eclipse.elk.core.layoutProviders
Right-click the extension and click > .New provider
Set the class to your bundle's meta data provider class name (use the browse button and enter). Note that SimpleMetaDataProvider Simple

 is automatically generated from the file you created. Its name is specified by the keyword in the MetaDataProvider .elkm metadataClass bun
 section. What is also created is the class, which contains everything you need to access layout options from within your dle SimpleOptions

layout algorithm.
Save the editor
Your workspace should look similar to this

We will now have to add a new run configuration that will start an Eclipse instance with your layout code loaded into the application, ready to be used.

Click > Run Debug Configurations...
Right-click and click . Set the configuration's name to .Eclipse Application New Layout Test
In the tab, make sure the the program arguments include and .Arguments -debug -consoleLog
On the tab, set to . Plug-ins Launch with plug-ins selected below only

Click .Deselect All
Check the item in the tree.Workspace
Check the following plugins under are checked:Target Platform

de.cau.cs.kieler.kgraph.text.ui
de.cau.cs.kieler.klighd.xtext
org.eclipse.ui.ide.application
org.eclipse.platform

Click . Press it twice (just to be sure!).Add Required Plug-ins
Click to save your changes and then to start an Eclipse instance to test with.Apply Debug

Test the layouter in your new Eclipse instance:

Click > > > and set the project name to something like .New Project... General Project Test
Right-click the new project and click > . Enter a meaningful name and click .New Other > KGraph > Random KGraph Finish
Open the .kgt file. To show up the Diagram vie, select > > Other... > Other > DiagramWindow Show View
Open the view through > > > > . Move the view somewhere such that you can Layout Window Show View Other... Eclipse Diagram Layout Layout
see the view and the diagram simultaneously.
Chose your in the section of the . (If the shows no properties, click the white Simple Test Layouter Layout Algorithm Layout View Layout View
background in the once.)Diagram View

6.

1.

2.

You should see something similar to this

Once you're satisfied with your node placement code, it's time to take care of edge routing.

Add a new method that will implement the edge routing using the following skeleton code:

/**
 * Routes the edges connecting the nodes in the given graph.
 *
 * @param parentNode the graph whose edges to route.
 * @param yStart y coordinate of the start of the edge routing area.
 * @param objectSpacing the object spacing.
 * @return height used for edge routing.
 */
private float routeEdges(final KNode parentNode, final float yStart, final float objectSpacing) {
 // TODO: Implement edge routing

 return 0;
}

Add a call to in your method and implement the latter.routeEdges(...) doLayout(...)

Tips

Here's a few tips for implementing the edge routing:

Each edge shall be drawn with three orthogonal line segments: one vertical segment below the start node, one vertical segment below
the target node, and a horizontal segment that connects the two.
The horizontal segments of two different edges shall not have the same y-coordinate. Two neighboring horizontal segments shall be
placed at a distance of objectSpacing.
See the screenshot at the top of the tutorial for an example.
Find the edges in a graph by calling or on the nodes.getOutgoingEdges() getIncomingEdges()
You can add bend points to edges through the edge's edge layout:

KEdgeLayout edgeLayout = edge.getData(KEdgeLayout.class);
KPoint bendPoint = KLayoutDataFactory.eINSTANCE.createKPoint();
edgeLayout.getBendPoints().add(bendPoint);

You will want to clear the list of bend points of each edge layout before adding bend points to it. This will remove all bend points the
edge had prior to invoking your layout algorithm.
Set the values of the points returned by and according to the positions where an edge getSourcePoint() getTargetPoint()
leaves its source node and reaches its target node.
If you want, you can improve the edge routing code by allowing horizontal segments to share the same y-coordinate if that doesn't
make them overlap. Your goal could be to produce an edge routing that uses as little space as possible.
If that's not enough yet: can you find a way to find an order of the horizontal segments such that as few edge crossings as possible are
produced?

Once you're done implementing the edge routing code, test it by running your debug configuration again, as before.

The drawing framework does something . Or at least it thinks it is intelligent. When the source point or target point of an intelligent
edge does not touch the boundary of a node, it moves them such that they touch the boundary. This can be confusing when you
calculate and specify positions in the code that are not reflected in the diagram you see.

	Layout Algorithms

