
1.

2.

1.
2.

a.

1.
2.

3.

Xtext 1 - Creating a Grammar for an Existing Metamodel
This tutorial presents the framework, a toolsuite for the generation of plain text based model editors. Such textual editors provide syntax highlighting, Xtext
content assist (ctrl-space), an outline, and much more out-of-the-box. You will start by creating a textual syntax for Turing Machines.

Preliminaries
Required Software
Recommended Tutorials
Setting Up Your Workspace

Creating a Grammar
Formatting
Validation
Parsing

Preliminaries
There's a few things to do before we dive into the tutorial itself.

Required Software

For this tutorial, we need you to have Eclipse installed:

Install Eclipse. For what we do, we recommend installing the Eclipse Modeling Tools, with a few extras. Our has the Wiki page on getting Eclipse
details: simply follow the instructions for downloading and installing Eclipse and you should be set.
Open your eclipse instance and install the complete Xtext SDK 2.7.3 from the itemis updatesite: http://download.itemis.de/updates/

Recommended Tutorials

We recommend that you have completed the following tutorials before diving into this one.

Eclipse Plug-ins and Extension Points
Eclipse Modeling Framework (EMF)

This tutorial needs the turingmachine.ecore and the controller you've implemented in the EMF tutorial. If you did not complete the EMF
tutorial, you may download a working turing machine metamodel in the next subsection.

Setting Up Your Workspace

If you have already completed the tutorial and created your own turing machine metamodel, you are encouraged to Eclipse Modeling Framework (EMF)
use it to perform this tutorial. If you did not (or if you want to start from scratch) feel free to follow the steps of this section to retrieve a working metamodel.

Download the zip file with all our prepared tutorial plugins from our Stash. Unzip the file.
Open the context menu within the (on the very left, right-click the empty space).Package-Explorer

http://www.eclipse.org/Xtext/
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Getting+Eclipse
http://download.itemis.de/updates/
https://rtsys.informatik.uni-kiel.de/confluence/display/TUT/Eclipse+Plug-ins+and+Extension+Points
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=10751683
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=10751683
https://git.rtsys.informatik.uni-kiel.de/rest/archive/latest/projects/MISC/repos/tutorials/archive?at=refs%252Fheads%252Fklighd&format=zip

3.
4.

1.
2.

3.

4.

5.
6.
7.

Select . Then chose .Import General > Existing Projects into Workspace
Browse to the location where you unzipped the downloaded plug-ins. Check the check box in front of all the de.cau.cs.kieler.tutorials.

 projects and press klighd.* Finish.

The imported projects contain a meta model for . (You may notice that this tutorial thus also slips in a perfect opportunity to brush up on Turing machines
your knowledge of Turing machines. Consider it a public service and thank us later.) It does not model the tape or the head, only its states and transitions.
It is these Turing machines that we will develop a visualization for over the course of this tutorial.

Creating a Grammar
An Xtext grammar is always related to a specific EMF meta model. The grammar defines a concrete syntax in which instances of the meta model (the
abstract syntax) can be serialized and stored. Xtext supports two ways of linking a grammar with a meta model: either creating a grammar for an existing
meta model, or creating a grammar first and generating a meta model out of it. Here we will use the former approach, reusing the meta model for Turing
Machines that you already defined earlier.

File turing.genmodel New Project... Xtext Xtext Project From Existing Meta Models Next Add... OK
Select your top-level model element as " ", e.g. enter the following values:Entry rule TuringMachine Next

Project name: de.cau.cs.rtprak.login.turing.text (like in previous tutorials, replace "login" by your login name)
Location: your repository path
Name: de.cau.cs.rtprak.login.turing.text.Turing
Extensions: tuxt (the file extension under which your text files will be stored)
Uncheck (not required)Create SDK feature project

Finish an editor is opened with a predefined grammar (Turing.xtext). The fourth line should contain an import statement followed by the
namespace URI of your meta model, which is probably marked with an error. The problem here is that the meta model is not loaded in the Eclipse
instance you are using for development. Fix this problem by replacing the URI by the workspace path of your Turing Machines ecore model, e.g. "

"platform:/resource/de.cau.cs.rtprak.login.turingmodel/model/turing.ecore
The Turing.xtext file is located in the package de.cau.cs.rtprak.login.turing.text together with a file, which can be used Modeling Workflow Engine
to configure code generation. Right-click GenerateTuring.mwe2 and select . If you get an error message like "Run As MWE2 Workflow *ATTENTI

" in the console, type and install Antlr from the update site.ON* It is recommended to use the ANTLR 3 parser generator n
Now a great amount of Java code should have been generated. Add the new plugins to your Eclipse run configuration and start it.
In the new Eclipse instance: and name it test.tuxt (when asked to add the Xtext nature, hit).File New File Yes
Use ctrl + space for getting content assist to create a valid model following the predefined grammar. The syntax will probably look similar to this:

http://en.wikipedia.org/wiki/Turing_machine
http://platform/resource/de.cau.cs.rtprak.login.turingmodel/model/turing.ecore

7.

1.

2.

3.

4.

5.

6.

TuringMachine {
 states {
 State blub {
 },
 State blah {
 outgoing {
 Transition {
 target blub
 }
 }
 }
 }
}

The predefined grammar is not very nice. That's why now your creative part comes into play. Change the Xtext grammar file to a grammar of your liking,
which should support a simple and readable syntax for Turing Machines. All required documentation for this task is found at .http://www.eclipse.org/Xtext/

Some hints:

The predefined grammar contains one grammar rule for each meta model class. This general structure can be kept in most cases.
Ecore enumerations (EEnum) must be defined with an grammar rule (see documentation). This is not correct in the predefined grammar enum
and is marked with a TODO note.
At some points you will need to reference other elements, which need to have some kind of identifier string in order to do this. If those elements
do not have a string attribute yet, you need to modify the meta model and add such an attribute.
There are some predefined terminal rules that can be reused and are already imported in the grammar file. Click on org.eclipse.xtext.

 at the top of the document and hit F3 to see those terminal definitions.common.Terminals

Test the new grammar by re-generating the code (after the first time, the GenerateTuring workflow should be available in the run configurations menu) and
starting a test instance of Eclipse. Use your newly designed textual syntax for writing a Turing Machine that copies the input word infinitely often.

Formatting
Xtext supports automatic formatting, which is available in the text editor with right-click or ctrl+shift+F. However, the formatter must be configured Format
in order to generate good results. Write a formatter configuration that fits well to your syntax by editing the generated file in the TuringFormatter forma

 subpackage. Learn how this is done by reading the .tting Xtext reference documentation Runtime Concepts Formatting

Validation
The generated code includes some automatic validation of models with respect to syntactic issues. If the token sequence in a text file does not conform to
the grammar, error markers are shown at appropriate points in the text. However, this should be augmented by semantic validation by checking high-level
properties of the model. Implement such a semantic validation by editing the generated file in the subpackage. LeaTuringJavaValidator validation
rn how this is done by reading the . You should implement at least the Xtext reference documentation Runtime Concepts Validation Custom Validation
following checks:

Is there exactly one initial state?
Are all states reachable through transitions starting from the initial state?

Parsing
The generated code includes a parser for text files in your syntax. This parser is simply used with the same interface as for any other EMF models:
resource sets (see the). Your final task for this tutorial is to reuse the Turing Xtext reference documentation Integration with EMF and Other EMF Editors
controller you implemented in the EMF tutorial for simulating Turing Machine models, this time applying it to text files. However, instead of using a .tuxt
fixed path to your model file, we will now use a in order to set the file path dynamically. This contribution will be put into the popup menu menu contribution
of the / view by configuring a visibility expression that tests the currently selected (right-clicked) elements. The contribution shall Navigator Project Explorer
only be visible if the selected files have the extension tuxt, which is assigned to our mighty textual syntax.

Go to the plugin where you created and registered , the Turing Machine simulator. Open TuringHeadController plugin.xml Dependencies
and add org.eclipse.ui if not on the list yet. Go to and add org.eclipse.ui.menus.Extensions
Add a element to the new extension and set " " as (without menuContribution popup:org.eclipse.ui.popup.any?after=additions locationURI
quotation marks).
Add a element to the with the following attributes:command menuContribution

commandId: de.cau.cs.rtprak.login.setSimFile
label: Set Simulation File

Add a element to the , and add an element to the with the following attributes:visibleWhen command iterate visibleWhen
operator: and
ifEmpty: false

Add an element to the with the following attribute:adapt iterate
type: org.eclipse.core.resources.IResource

http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://popuporg.eclipse.ui.popup.any?after=additions

6.

7.

8.

9.

10.

11.

Add a element to the with the following attributes:test adapt
property: org.eclipse.core.resources.extension
value: tuxt

Add a new extension org.eclipse.ui.commands and add a element to it with the following attributes:command
id: de.cau.cs.rtprak.login.setSimFile
name: Set Simulation File
Click on to open a dialog for creation of a new handler class. Name the new class and put it into some defaultHandler SetFileHandler
package of that plugin. Remove the suggested interface and set as superclass org.eclipse.core.commands.AbstractHandler
instead.

Use the following method stub for (this requires a plugin dependency to org.eclipse.core.resources):SetFileHandler

/**
 * {@inheritDoc}
 */
@Override
public Object execute(ExecutionEvent event) throws ExecutionException {
 ISelection selection = HandlerUtil.getCurrentSelection(event);
 if (selection instanceof IStructuredSelection) {
 Object element = ((IStructuredSelection) selection).getFirstElement();
 if (element instanceof IFile) {
 IFile file = (IFile) element;
 // TODO update the static reference to the simulation file
 }
 }
 return null;
}

Add a public static field named to and directly set that field in the TODO part of the method modelFile TuringHeadController execute
shown above.
Use the resource set code shown in the EMF tutorial for loading model files (without the stand-alone part) in order to load the in the modelFile i

 method.nitialize
Now you should be able to simulate models written in your textual syntax: start Eclipse, right-click a textual Turing Machine file (*.tuxt), select Set

, and run simulation in your Tape view using the correct controller.Simulation File

This tutorial was originally created by Christoph Daniel Schulze and Miro Spönemann for the Eclipse Project WT 12/13.

	Xtext 1 - Creating a Grammar for an Existing Metamodel

