Xtend la - Model Transformations

This installment of our little series of tutorials will be all about Xtend, a programming language that looks very similar to Java, but which adds some very
convenient features. Xtend code compiles to Java and and was developed using Xtext. In fact, once you gain experience working with Xtend you will
probably appreciate the power of Xtext even more.

In this and the following tutorial, we will focus on two particular areas where Xtend excels:
® Model transformation. You will be using Xtend to transform a given Turing Machine into a model of a simple programming language. (this tutorial)
® Code generation. You will be using Xtend to generate code for a given model of the simple programming language in an arbitrary programming
language (except perhaps Brainfuck or Whitespace). The generated program will implement and simulate the Turing Machine without relying on
its model. (the next tutorial)

In essence, you will be following the way compilers generate code: generate an abstract model representation of the program, and turn that representation
into actual code.

As in the previous tutorial, we refer you to the Xtend documentation instead of explaining everything in this tutorial. Oh, and here's the slides of our
presentation that accompanied this tutorial.

Exciting stuff, so let's begin

® Preliminaries
® Writing the Transformation
® Testing the Transformation

Preliminaries

We have prepared a metamodel of our simple imperative programming language:

To work with the language, the first thing you will have to do is to download an archive of three plug-in projects. The projects contain the metamodel and a
simple textual language for it. Here's some at-a-glance info:

® Model files have the file extension ".imperative", while textual files have the file extension ".pseudo”. When saving a model using EMF, the file
extension of the file you save the model into will determine the output format.

® Each | f St at enent requires both, a statement for the true case and a statement for the false case. You will not always need both. Use a Bl ock
statement as an empty statement when required.

Writing the Transformation

Now that you have familiarized yourself with the programming language's metamodel it's time to start working on your transformation:

1. Add a new plug-in project de. cau. cs. rt pr ak. <l ogi n>. conpi | er to your workspace. Be sure to uncheck the option This plug-in will make
contributions to the Ul. Add dependencies to the two projects containing the Turing Machine metamodel and the programming language
metamodel.

2. Add an Xtend Class to your project. The class should be placed in a subpackage where all the transformation code will go, such asde. cau. cs.
rtprak. <l ogi n>. conpil er.transform

3. You will notice that your new class is marked with an error marker because of a missing dependency of the new plug-in project to or g. ecl i pse.
xt ext . xbase. | i b. If you hover over the error with your mouse, you can have Eclipse add all libraries required by Xtend to your project.

4. Define an entry method for the transformation that takes a Tur i ngMachi ne instance as an argument and returns a Pr ogr am You can use the
following (incomplete) method as a starting point:

http://www.eclipse.org/xtend/
http://en.wikipedia.org/wiki/Brainfuck
http://en.wikipedia.org/wiki/Whitespace_%28programming_language%29
http://www.eclipse.org/xtend/documentation.html
http://rtsys.informatik.uni-kiel.de/confluence/download/attachments/3604633/presentation.pdf?version=1&modificationDate=1353946388000&api=v2
http://rtsys.informatik.uni-kiel.de/confluence/download/attachments/3604633/presentation.pdf?version=1&modificationDate=1353946388000&api=v2
http://rtsys.informatik.uni-kiel.de/confluence/download/attachments/3604633/imperative.zip?version=1&modificationDate=1353319543000&api=v2

| **

* Transforms a given Turing Machine into an inperative program nodel .
*

* @aram nachine the Turing Machine to transforminto an inperative

* program
* @eturn a program nodel that inplements the Turing Machine.
*/

def Program transforniuri ngTol nperati ve(Turi ngMachi ne nmachi ne) {
/| Create the programwe will transformthe Turing Machine into
val program = | nperativeFactory:: el NSTANCE. cr eat eProgran()

/] TODO Generate and initialize global variables
/1 TODO Cenerate the program | ogic

/1 Return the transfornmed program
program

There's a few points to note here:

Lines in Xtend code don't have to and with a semicolon.

We have been explicit about the method's return type, but we could have easily omitted it, letting Xtend infer the return type.

The keyword val declares a constant, while var declares a variable. Try to make do with constants where possible.

The methods you call should be declared as def pri vat e since they are implementation details and shouldn't be called by other
classes.

® You may be tempted to add a few global variables that hold things like a global input variable or a pointer to the current state. While you
could to that, def cr eat emethods might offer a better alternative...

5. Add code to transform the Turing Machine to an imperative program model. The imperative program metamodel contains enough stuff to

6.

implement Turing Machines.
Open the Plug-In Manifest Editor and switch to the Runtime tab. Add the package containing your transformation to the list of exported packages.
(You may have to check the Show non-Java packages option in the Exported Packages dialog to see the package.)

What Should the Imperative Program Do?

The imperative program model should not describe a completely working program, complete with command-line parsing for input
arguments and printing out the program's output. Instead, think of the program to magically receive those variables marked as input
variables, and to magically output whatever it is the program returns (using the Ret ur n statement). In the next tutorial, you will use
Xtend's code generation features to generate working source code in your favourite programming language. The code you generate will
contain a wrapper around your actual programming, including code that actually initializes the input variables and outputs the returned

expression.

Testing the Transformation

You will need a way to test the transformation, so we will have to make it available through the Ul. Eclipse plug-ins often come with a separate Ul plug-in
that contains the Ul contributions, with the base plug-in only offering the functionality itself. In our case, our base plug-in contains the transformation code,
and the Ul plug-in we will be creating next contains a menu contribution to make the transformation available.

1.

2.

3.

Add a new plug-in project de. cau. cs. rt prak. <l ogi n>. conpi | er. ui to your workspace. This time, leave the option This plug-in will make
contributions to the Ul checked. Add dependencies to the two projects containing the Turing Machine metamodel and the programming language
metamodel. Also add a dependency to our base plug-in that contains the transformation.

Add a menu contribution that is visible if a file containing a Turing Machine model is selected in the project explorer. (this can be both, a regular
Turing Machine model file or a textual representation of a Turing Machine) The previous tutorial taught you how to add menu contributions.
Create a command handler that loads the turing machine model from the selected file, calls the transformation on the model, and saves the
imperative program to a file with the same name, but different extension. You can use the following code as a template: (The code requires a
dependency to com googl e. i nj ect to work.)

@verride
public Cbject execute(Executi onEvent event) throws Executi onException {
| Sel ection selection = Handl erUtil.getCurrentSel ection(event);
if (selection instanceof |StructuredSelection) {
oj ect element = ((IStructuredSel ection) selection).getFirstE enent();
if (elenent instanceof IFile) {
IFile machineFile = (IFile) elenent;

/1 Load Turing Machine
Turi ngMachi ne machi ne = | oadTuri ngMachi ne(machi neFil e);

/1 Call the transfornation

Injector injector = Quice.createlnjector();

Turi ngTol nperati veTransformation transfornation =
injector.getlnstance(TuringTol nperativeTransfornmation. cl ass);

Program program = transformati on. transformruringTol nperati ve(machi ne);

/] Save inperative program
IFile progranfile = machi neFile.getParent().getFile(

new Pat h(machi neFil e. get Nane() + ".inperative"));
savel nperati veProgran(progranfile, progranm;

/'l Refresh the parent folder to have the new file show up in the U
try {
machi neFi | e. get Parent (). refreshLocal (1 Resource. DEPTH_ONE, null);
} catch (CoreException e) {
/1 lgnore
}
}
}

return null;

}

/*-k

* Load the turing machi ne nodel fromthe given file.

* @aramturingFile the file to load the turing machine nodel from

* @eturn the turing nmachi ne nodel .

* @hrows ExecutionException if the file couldn't be opened.

*/

private TuringMachi ne | oadTuringMachine(lFile turingFile) throws ExecutionException {
/1 TODO | npl enent .

}

/**

* Saves the given inperative programin the given file.

*

* @aramprogranfFile the file to save the programto.

* @aram programthe programto save.

* @hrows ExecutionException if there was an error saving the file.

*/

private void savel nperativeProgran(|File progranfile, Program program throws ExecutionException {

/] TODO | npl enent
}

Note that replacing the ".imperative" file extension by ".pseudo”, this code will generate a textual representation of the transformation's results.
Even if saving the model in the ".imperative" format works, saving it in the textual format may still fail if the model is not correct. This includes
things like forgetting to add a condition to awhi | eSt at ement , or forgetting to add a statementto an | f St at enent's f al seSt at enent . Thus,
generating the textual output is a good way to find problems with your transformation. You may even want to add a second menu contribution to
have both output formats available at the same time without always having to change the source code. Note, however, that no errors when
generating the textual output does not mean that your transformation is correct — it merely means that your model can be expressed by the
grammar.

@ This tutorial was originally created by Christoph Daniel Schulze and Miro Spénemann for the Eclipse Project WT 12/13.

	Xtend 1a - Model Transformations

