
Lightweight Diagrams (KLighD)

Project Overview

Related Publications:

Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. – Putting Automatic Synthesis of Node-Link-Diagrams into Just Model!
Practice. In , San Jose, CA, USA, 15–Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’13)
19 September 2013. Original publication is available via (/ /).IEEE Xplore® pdf bib poster
Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Transient view generation in Eclipse. In Proceedings of the

, Kgs. Lyngby, Denmark, 2012. Original publication is available in the First Workshop on Academics Modeling with Eclipse (AcME) joint
 on the (proceedings of the co-located events website of the 8th European Conference on Modelling Foundations and Applications (ECMFA'12)

 /).pdf bib

Contents

The Big Picture
Getting Started

Installation
Create first diagrams
Invoking the diagram synthesis
Exemplary diagram syntheses
Advanced diagram synthesis features
Trouble shooting
Incorporated Technologies

The Big Picture
The KIELER Lightweight Diagrams (KLighD) project aims at offering transient lightweight representations of models or parts of them, without incorporating
complex editing facilities like graphical editors.
Instead graphical or textual representations are to be synthesized from a chosen fraction of a model base and dismissed if they are not needed anymore.
This way the Model-View-Controller paradigm (MVC) shall be established at the users' front end of modeling tools. Although KLighD is intended to address
graphical as well as textual transient views, the graphical ones are currently in the focus. The automatic arrangement of those views (macro layout) is
contributed by .KIML

Feel free to watch the following videos illustrating the idea and possibilities of transient views of models:

http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/InstantModelBrowsingAnnotated.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/TextualModeling.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/SCT.mp4 (textual modeling continued)
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/SCG.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/ptolemyViewer/PtolemyViewerHQ.mp4

For details on the objectives of our KLighD framework have a look at the above mentioned publication Just Model! – Putting Automatic Synthesis of Node-
 (Sec. I, III, & V) first.Link-Diagrams into Practice

Getting Started

Installation

In order to build up your own diagrams by means of KLighD we suggest to install some of our provided features from our update site http://rtsys.informatik.
:uni-kiel.de/~kieler/updatesite/

KLighD has been .moved to GitHub

Get the DSL and KLighD diagram synthesis shown at as well as the test model from !demo example XtextCon 2015 here

This page has been updated to KIELER Pragmatics 0.11.0

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6645246
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/vlhcc13.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/cgi-bin/bibcgi.cgi?key=SchneiderSvH13
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/vlhcc13-poster.pdf
http://www2.imm.dtu.dk/conferences/ECMFA-2012/proceedings/PDF/ECMFA-2012-Workshop-Proceedings.pdf
http://www2.imm.dtu.dk/conferences/ECMFA-2012/proceedings/PDF/ECMFA-2012-Workshop-Proceedings.pdf
http://www2.imm.dtu.dk/conferences/ECMFA-2012/proceedings/
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/acme12.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/cgi-bin/bibcgi.cgi?key=SchneiderSvH12a
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=328078
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/InstantModelBrowsingAnnotated.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/TextualModeling.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/SCT.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/klighd/SCG.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/videos/ptolemyViewer/PtolemyViewerHQ.mp4
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/
https://github.com/kieler/KLighD
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/328115/KLighDdemoXtextCon2015.zip?version=3&modificationDate=1432644315000&api=v2
http://xtextcon.org/
https://rtsys.informatik.uni-kiel.de/confluence/download/attachments/328115/KLighDdemoXtextCon2015.zip?version=3&modificationDate=1432644315000&api=v2

KIELER Lightweight Diagrams – Developer Resources & Examples:
This feature includes KLighD's & KIML's runtime as well as a few developer tools (e.g. a convenient project wizard) and a few prepared example
diagram synthesis implementations. Besides, all source bundles will be installed.

: is part of an older release as indicated by the timestamp in the version number. It is Note KIELER Lightweight Diagrams Demo Examples
superseded by Developer Resources & Examples.
KIELER Layout – Graphviz support (optional):
This feature enables the employment of Graphviz' layouters, is very popular for simple graphs with edge labels. Note that employing dot
Graphviz requires to also install the native library, see http://www.graphviz.org/
KIELER Layout – OGDF support (optional):
This feature enables the employment of OGDF' layouters, its is the recommended algorithm for arranging UML Class planarization
Diagrams. The required OGDF Server Binaries will be automatically installed, too!

Create first diagrams

In order to let the framework draw your desired diagrams for representing given data we need to tell KLighD how to obtain nodes, edges, and hierarchy
levels from the provided data. To this end we need to implement a so called . Getting an initial stub of such an implementation is most diagram synthesis
easiest done by means of our KLighD (if the entry is not visible, switch the perspective or close and reopen it, or simply choose Other... project wizard
 KIELER Light-weight diagrams):

http://www.graphviz.org/

Provide the source model type, e.g. via the 'Browse' button. Note that the project containing that class must exist in the workspace or at least any other
workspace project must have this class in its class path, e.g. via a . Otherwise it won't be offered by the list of available classes. Of bundle dependency
course you might alter the project's name, the name of the diagram synthesis implementation and its containing package. Finally choose your favorite
implementation language - we like Xtend very much for this purpose! If you don't like to have a simple popup menu contribution for testing purposes,
uncheck the corresponding checkbox.

You will get the following implementation template, it is already registered via KLighD's dedicated extension point (see the project's plugin.xml).

Before starting with the implementation let us point you at some on using !hints Xtend

Create a (via) for each element comprised by the given instance (usually called the business, domain, or semantic model) KNode createNode() model

of your data type, here Add those nodes to the children of . Create a for each relation or link to be contained in your diagram. EPackage. root KEdge

Similarly to there is for that purpose. Set source and target node of those edges accordingly, this will implicitly add the createNode() createEdge()

edges to the diagram (via EMF's mechanism). You can reveal an already created node representing a certain domain element by calling EOpposite doma
. , or simply . . Have a look at , which is part of our project, on how to inElement getNode() domainElement node UML2UseCaseDiagramSynthesis examples

do that. If you are interested in diagrams with nodes and edges connected via ports (as depicted in Figure 2 in) have a look at Just Model! - ... CircuitDiagra
. For convenience you might also want to import the examples project into your workspace. Simply switch to the view and import mSynthesis Plug-ins de.

 as , see screen shot below.cau.cs.kieler.klighd.examples Source Project

Finally attach figure specifications to the nodes and edges, most conveniently by means of the extension methods provided by the classes ...Extension
- see the use case example on that, too. A documentation of those methods in form of a list of all extension methods sorted by the type they can be used
with can be found . (And yes, there is still some lack of documentation...)here

http://www.eclipse.org/xtend/documentation.html
http://www.xtend-lang.org
http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/src/de/cau/cs/kieler/klighd/examples/uml2/UML2UseCaseDiagramSynthesis.xtend
http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/
http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/src/de/cau/cs/kieler/klighd/examples/circuit/CircuitDiagramSynthesis.xtend
http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/src/de/cau/cs/kieler/klighd/examples/circuit/CircuitDiagramSynthesis.xtend
http://rtsys.informatik.uni-kiel.de/~kieler/doc/extensions/index.html#collapsedefaultaddRectangleKNode

Invoking the diagram synthesis

Testing the diagram synthesis is most easiest done by means of the test menu contribution created by the project wizard. Thus, start a test Eclipse
 via , e.g. via 'Run' in the main menu. Import or create a project with some of your model data. If your model format has been described Application 'Run As'

by means of Ecore, you can open your model with a matching EMF tree editor as shown in the following screenshot (here we used the Ecore format itself,
so we used an "arbitrary" Ecore model).
Open the context menu while an instance of your source model type is selected, and hit the entry. Btw.: The menu entry is enabled as far Open ... diagram
as the selected elements are of your source model type. Hence, there may be other ways (views or editors) to open the diagram beyond those EMF tree
editors.

Alternatively, you might want to create your own menu contribution. Here are some instructions using the Eclipse 3.X API: Register a command with some
arbitrary id and a default handler. In the method of your handler callexecute()

DiagramViewManager.getInstance().createView(<<someId>>, <<someName>>, <<yourConcreteData>>,
KlighdSynthesisProperties.emptyConfig());

This statements will open an eclipse view part showing your desired diagram. is an the Id that can be used to access, update, or close the <<someId>>
view part later on programmatically, and is the name of the view (shown at the view's tab), is an instance of <<someName>> <<yourConcreteData>>
the input type of your diagram synthesis implementation. Via the last parameter some additional instructions can be handed over. For those that are not
yet familiar with Eclipse menu stuff have a look on at a corresponding tutorial, e.g. at .vogella.com

Exemplary diagram syntheses

http://www.vogella.com/articles/EclipseCommands/article.html#firstcommand

Exemplary use case diagrams (created by the) and circuit diagrams (created by the) are shown UML2UseCaseDiagramSynthesis CircuitDiagramSynthesis
in following screenshots, the source UML & Circuit models are part of the examples project, too. In order to obtain those diagrams enable the automatic
diagram creation by activating as shown below.Visualize EMF tree editor content (KLighD)

Then open the models and select one of its elements (open My.circuit with the).Sample Reflective Ecore Model Editor

http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/src/de/cau/cs/kieler/klighd/examples/uml2/UML2UseCaseDiagramSynthesis.xtend
http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/src/de/cau/cs/kieler/klighd/examples/circuit/CircuitDiagramSynthesis.xtend

Advanced diagram synthesis features

Now you might want to use some advanced features of KLighD diagrams, like sophisticated figure styling or diagram synthesis options. Details on that will
follow soon, the , which is in charge of creating appealing class diagrams from Ecore models and which you will also find in EcoreDiagramSynthesis
the examples project, illustrates those features already. The following picture shows such a diagram and a list of options for tailoring such diagrams in the
side bar on the right.

Trouble shooting

Be sure to compile your Eclipse plug-in project with Java 5 or Java 6 compatibility.
Increase the size with the VM argument (tab of your Eclipse run configuration) if you get a perm memory -XX:MaxPermSize=128M Arguments P

 exception.ermGen space

Incorporated Technologies

The KRendering Notation Model
Infrastructure for Meta Layout (KIML)
Piccolo 2D

http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/browse/plugins/de.cau.cs.kieler.klighd.examples/src/de/cau/cs/kieler/klighd/examples/ecore/EcoreDiagramSynthesis.xtend
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/The+KRendering+Notation+Model
https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=328078
http://www.piccolo2d.org

	Lightweight Diagrams (KLighD)

