JavaScript (KLayJS)

@ KLayJS is deprecated and has been replaced by elkjs. The documentation below may be outdated.

The KLay JS project provides our Java-based layout algorithms to the JavaScript community. We leverage the Java to JavaScript compiler of the Google
Web Toolkit (GWT) to convert our Java code into a JavaScript library. This allows you to use the full power of our layout algorithms in pure JavaScript.

GitHub
Downloads

* API

® Dedicated KlayJS Options

Example
Example (Web Worker)
See it in Action
Development

® Build Anatomie

GitHub

The library is now available via OpenKieler on GitHub. Please refer to those sides for further information. The documentation below might be incomplete
and outdated.

Downloads

Error rendering macro 'excerpt-include’

No link could be created for 'Downloads - KLayJS'.

Standard Linker

l.e. GWT's IFrameLinker that "loads the GWT module in a separate iframe".

Custom Linker

The linker extends GWT's DirectinstallLinker and enables the library to be used with, for instance, Chrome Packaged Apps. According to the
javadoc the linker "adds a script tag to the iframe rather than downloading the code as a string and then installing it into the iframe". However,
when using this linker a lot of GWT's variables will be added to the global namespace.

®* Web Worker Linker

API

The linker allows to use our library with a Web Worker. It removes GWT generations that are not required for our use case, e.g. loading of
browser specific permutations. A bower component is available on GitHub (Thanks to automata), a specific example further down on this page.

This documentation targets the Default Linker and Custom Linker. The Web Worker Linker has a slightly different API, please refer to the GitHub page for
more information.

$kl ay. | ayout ({ graph, options, success, error });

graph - the graph to be layouted in our JSON Format.

options - a JSON object containing layout options that should be used for every hierarchy level of the graph. The same effect can be achieved by
specifying the properties for every compound node, however, using the options object offers a more convenient way. Further information on
available layout options can be found here.

success(layouted) - a function to be called upon success, the layouted graph is passed as argument.

error(obj) - a function to be called if an error occurs, an object is passed as argument which contains a text field with further information about the
error.

® Field Description

type The type of the error, e.g. an invalid graph format.

http://www.gwtproject.org/
http://www.gwtproject.org/
https://github.com/OpenKieler
http://www.gwtproject.org/javadoc/latest/com/google/gwt/core/linker/IFrameLinker.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/core/linker/DirectInstallLinker.html
http://en.wikipedia.org/wiki/Web_worker
https://github.com/automata
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/JSON+Graph+Format
http://layout.rtsys.informatik.uni-kiel.de:9444/Providedlayout.html?algorithm=de.cau.cs.kieler.klay.layered
https://github.com/kieler/elkjs

text Further description of the problem that occurred.

stacktrace = The strack trace of the Java exception, if any.
Additional Information Invalid Graph Format

value The JSON object that caused the problem.

context The context of the val ue, e.g. if the value is an edge, the context is the containing node.

Dedicated KlayJS Options
We offer some options that have influence of the behavior of the JavaScript interface. These options are listed below.

® intCoordinates - when set to t r ue all calculated layout coordinates (by default doubles) are cast to an integer value.

Example

Below is small example that executes layout on a small graph. Upon success the returned JSON is printed to the console and added to the body of the
document.

@ This example shows the usage of the Default and Custom Linker. For a Web Worker example see next example.

<! doctype htm >
<htm >
<head>
<meta http-equiv="content-type" content="text/htm ; charset=UTF-8">
<title>KIELER Klay JS Layout Test</title>
<script type="text/javascript" src="kl ay.nocache.js"></script>
</ head>
<body>
<h1>KI ELER Kl ay JS Layout Test</hl>
</ body>

<script>
/1 the "klayinit' method is called as soon as GM finished inititalizing
function klayinit() {

/| assenble a graph
var graph = {
"id": "root",
"properties": {
"direction": "DOMW',
"spacing": 40
b
"children": [{
"id": "nl",
"width": 40,
"height": 40
boA
"id": "n2",
"wi dth": 40,
"height": 40
oA
"id": "n3",
"wi dth": 40,
"height": 40
H
"edges": [{
"id": "el",
"source": "nl",
"target": "n2"

"idrs ve2r
"source": "nl1",
"target": "n3"

{
"id": "e3",
"source": "n2",
"target": "n3"

}

]

3

/1 execute the |ayout
$kl ay. | ayout ({
graph: graph,
options: {
spaci ng: 50
H
success: function(layouted) {
consol e. | og(l ayout ed) ;
docunent . body. i nnerHTM. = "<pre>" + JSON.stringify(layouted, null, " ") + "</pre>";
b
error: function(error) {
consol e.log(error);

docunent . body. i nnerHTML = "<pre>" + JSON.stringify(error, null, " ") + "</pre>";
}
IO N
}
</script>
</htm >

Example (Web Worker)

<! doctype htm >
<htm >
<head>
<meta http-equiv="content-type" content="text/htm
<title>KIELER Kl ay JS Layout Test</title>
</ head>
<body>
<h1>KI ELER Kl ay JS Layout Test</hl>
</ body>
<script>
(function () {
/|l assenble a graph
var graph = {

"id": "root",
"properties": {
"direction": "DOM',
"spaci ng": 40
b
"children": [{
"id": "nl",
"wi dth": 40,
"hei ght": 40
boA
"id": "n2",
"wi dt h": 40,
"hei ght": 40
oA
"id": "n3",
"wi dth": 40,
"hei ght": 40
HL
"edges": [{
"id": "el",
"source": "nl",
"target": "n2"
boA
"id": "e2",
"source": "nl",
"target": "n3"
oA
"id": "e3",
"source": "n2",
"target": "n3"
}H

}s

/] Creates a KlayJS Wb Worker
var worker = new Worker (' klayjs_worker.js");

/1 Receives the layouted graph fromthe Wb Wrker
function (e) {

wor ker . addEvent Li st ener (' nessage’
consol e. | og(' Layouted graph:', e.data)
}, false)

/1 Sends the origina
wor ker . post Message({

graph to the Web Worker

"graph": graph,
"options": {
"spaci ng": 50
}
s
HO;
</script>

</htm >

char set =UTF- 8" >

See it in Action

® Proofscape — Visualizing mathematical proofs with graphs.
® NoFlo - Flow-Based Programming in JavaScript. Examples can be found here (Works best on Chrome, use the Magic Stick).

Development

Git branch gwt-export

The GWT plugin that is used for the building proccess resides in the build folder and is called de. cau. cs. ki el er. kl ay. | ayer ed. gwt . If you want to
develop on the classes of the project you want to use ant copySr ¢ to copy all required klay layered classes from the main repository.

Build Anatomie

The following figure illustrates the build process. First the ant script copies the original KIELER source code files into a dedicated GWT project (de. cau.
cs. kieler.klay. | ayered. gw). This project contains further classes that define the JavaScript interface and the conversion from the JSON Graph
format into our internal graph representation. Second, the GWT compiler is used to generate JavaScript code from the Java sources. Finally, we remove
superfluous GWT elements and pack a zip archive containing the generated JavaScript library.

GWT Project and Wrapping Code

de.cau.cs.kieler.klay.layered.gwt

src
KlayGWT
JsonGraphimporter
LayoutOptionResolver

JS Library

Original KIELER Plugins

: *
de.cau.cs.kieler. compile&dist

core
kiml
klay.layered

copySrc

(Thanks to automata)

http://proofscape.org/
http://noflojs.org/
http://app.flowhub.io/
https://github.com/automata

	JavaScript (KLayJS)

