
1.

2.
3.

4.

5.

1.
2.

Using Git
We use to manage our source code. Our installation is the front end we use to manage our different Git repositories.Git Stash

This page will help you get started with Git and getting the KIELER sources. For more detailed information, see . The Git's official documentation SVN
 is probably a good place to start. For more in-depth information, see the or the book. Furthermore, each office Crash Course Git Community Book Pro Git

has a copy of another excellent book about Git, so you might as well go ahead and read it. This will help ease you in to some of the more advanced
concepts of Git, which are a little hard to understand at first. If everything else fails, Miro and Tim will be more than happy to help you with Git and rant
about how excellent of a system it is. For more information on Git Eclipse integration, see the .EGit User's Guide

Content

Checking Out KIELER
Adding an Existing Local Repository to EGit
Importing Plugins to the Eclipse Workspace

Troubleshooting / Resolving Plugin Dependencies
Updating the Repository
Resolving Conflicts
Committing Changes

Committing
Pushing

Getting Earlier Versions of Files
Cleaning Your Working Directory
Branching and Merging

Creating a Branch
Switching to Another Branch
Merging Branches

Working With Multiple Remote Repositories

Checking Out KIELER

KIELER is essentially a large heap of Eclipse plug-ins that aren't easy to find your way through as a new developer. The page has a nice Overview
overview of our sub-projects and what plug-ins belong where. This section will tell you how to get the KIELER sources. As for what plug-ins you will
actually need to checkout, ask your advisor.

Checkout of the Git repository is possible either using the SSH or the HTTP protocol. We strongly recommend using SSH; if you still want to use HTTP,
omit the SSH key creation and upload in the instructions below.

If you don't have an SSH key yet, you have to create one. You can do this by:
Creating one using the command on the command line. Simply type , confirm the default destination file ~/.ssh-keygen ssh-keygen
ssh/id_rsa, and choose whether to give a passphrase. If you have a passphrase, you need to enter it whenever you use your SSH key
for the first time in a session. You can omit the passphrase, but that makes the key less secure. As result, the tool generates a private
key ~/.ssh/id_rsa, which has to be kept secret, and a public key ~/.ssh/id_rsa.pub.
Using Eclipse to generate it. You can find this function under .Preferences - General - Network Connections - SSH2 - Key Management

Register with and upload your public SSH key ().Stash Profile - SSH Keys - Add Key
Copy one of the following repository URIs into the clipboard: ssh://git@git.rtsys.informatik.uni-kiel.de:7999/KIELER

 where is either or (if in doubt, ask your adviser which of these /the_repo_to_clone.git the_repo_to_clone pragmatics semantics
you need). If you for whatever reason insist on using the less efficient HTTP protocol, use the following URI: http://youraccountname@git.

)rtsys.informatik.uni-kiel.de/scm/KIELER/the_repo_to_clone.git
Open the view, right-click it, select , select connection protocol, , select master branch, Git Repositories Paste Repository Path or URI ssh Next Next
, select destination directory (e.g. /home/<username>/shared/kieler), . Wait for the repository to be downloaded to your computer. Note that Finish
the whole history of the repository will be stored in your local filesystem, which is pretty awesome.
Right-click the entry in the repository, select , , select the projects that you want in your workspace, Working directory kieler Import Projects Next Fi
nish.

Checking out on the command line is done with the command . Instead of the URI you can also use a path to a local git clone <URI> <local path>
repository, which then creates a clone of that repository.

Adding an Existing Local Repository to EGit

If you have already cloned the KIELER repository and are only looking for a way to import it into EGit, follow these steps:

Click the button in the view and enter the local path.Add an existing local Git Repository to this view Git Repositories

You shouldn't need to check out anything manually if you have installed Eclipse using our Oomph setup.

Important Hint for Users Behind Firewalls

Repository access via SSH runs on port 7999. For accessing the repositories in read-only mode, HTTP transfer is also possible, but not
recommended.

http://git-scm.com/
http://git.rtsys.informatik.uni-kiel.de/
http://git-scm.com/documentation
http://git-scm.com/course/svn.html
http://git-scm.com/course/svn.html
http://book.git-scm.com/
http://progit.org/book/
http://wiki.eclipse.org/EGit/User_Guide
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
http://git.rtsys.informatik.uni-kiel.de

2.

1.
2.

3.

1.

2.

Import the plugin projects that you need.

Importing Plugins to the Eclipse Workspace

In the Git Repository View, perform on the or folder. Hit . In the following dialog you can Right-click > Import Projects... Working directory Plugins Next De
 and afterwards select the plugins that you need for your developing task.select all

For example, if you want to start you need to importKIELER with SCCharts

all core plugins (core.*) from the semantics and pragmatics repositories
all SCCharts plugins (sccharts.*) from the semantics repository, , , unless sccharts.prio.dependencies sccharts.prio.dependencies.klighd sc

,charts.prio.s sccharts.prio.sim.s
all required plugins for the already imported ones

As a result you will have the following plugin projects in your workspace:

From the : core, core.kgraph, core.kgraph.text, core.kgraph.text.ui, core.kivi, core.krendering, core.krendering.extensions, core.pragmatics repo
ui, kiml, kiml.formats, kiml.graphviz.dot, kiml.graphviz.layouter, kiml.service, kiml.ui, klay.layered, klighd, klighd.piccolo, klighd.ui, edu.umd.cs.
piccolo
From the : core.annotations, core.annotations.edit, core.annotations.text, core.annotations.text.ui, core.kexpressions, core.semantics repo
kexpressions.edit, core.kexpressions.keffects, core.kexpressions.keffects.edit, core.kexpressions.keffects.ui, core.kexpressions.text, core.
kexpressions.text.ui, core.kexpressions.ui, core.model, core.perspectives, core.product, kex, kex.ui, kico, kico.klighd, kico.ui, kitt, kitt.klighd, prom,
s, s.sc, s.sim, s.sim.kivi, s.sim.sc, s.sim.sj, s.sj, s.ui, sc, sccharts, sccharts.edit, sccharts.editor, sccharts.eso, sccharts.kivi, sccharts.klighd,
sccharts.prom, sccharts.s, sccharts.scg, sccharts.sim.c, sccharts.sim.s, sccharts.text, sccharts.text.ui, scg, scg.s, scl, sim.benchmark, sim.
instructions, sim.kiem, sim.kiem.config, sim.kiem.ui, sim.kiem.ui.datacomponent, sim.kivi, sim.signals, sim.signals.ui, sim.syncsignalreset, sim.
table, sjl, org.freemarker, org.json

Troubleshooting / Resolving Plugin Dependencies

If there are errors in your workspace, they are most likely the result of missing plugins. To solve this, check if the MANIFEST.MF file of the project has
error markers. if required.Import missing plugin dependencies

After all dependencies are solved and there are still errors, you should clean your workspace via .Project > Clean > All projects

If there are errors in an xtend-gen folder you can delete this folder so that the contents are re-compiled. (It sometimes happens that this folder is not
deleted as part of the clean.)

There should not be any errors after all required plugins are imported and compiled correctly.

Updating the Repository
Your working copy must be clean before you can merge any updates into it. Therefore, always commit your changes locally before you pull. If you don't
want to commit them into the master branch, commit them into a new branch. Note that pulling is the same as fetching remote changes and merging them
into your local branch. Since a normal merge operation is involved, this can lead to conflicts, which need to be resolved as described below. Note that
pulling always merges the remote changes into your current branch. If that's not what you want, checkout the correct branch first or just do a .fetch

Do one of the following three things:

Right-click one of the KIELER projects, then from the submenu choose .Team Pull
Right-click the KIELER repository in the view and click .Git Repositories Pull

1.
2.

1.
2.

Enter on the command line and refresh your workspace.git pull

Resolving Conflicts
Whenever branches are merged or rebased, conflicts can occur. They can be resolved by adjusting the state of your working copy, marking it as clean,
and committing the changes. Conflicted files are modified so they contain both your version and the remote version. Edit them until all conflict areas are
clean. In Eclipse this can be done by right-clicking the conflicted files - .Team - Merge Tool

Taking your version of conflicted files: git checkout --ours <path>

Taking the remote version of conflicted files: git checkout --theirs <path>

Committing Changes
Git manages changes in two separate steps:

Commit changes to your local repository.
Push the commit to the remote repository.

The first step can be done offline, which is very useful in situations where you don't have an internet connection, but would like to save intermediate
development snapshots in the history. You can push multiple commits to the remote repository, which for example means that if you are performing
changes that would create broken intermediate states, you can commit any number of snapshots locally and only push the whole bundle of commits after
you have reached a state that works again.

If another developer has pushed changes since the last time you have pulled from the server, your attempt to push your commits online may fail. In this
case you need to pull the remote changes before you can push. Never use force pushing! ()git push -f

Committing

To commit changes with EGit, do one of the following and select the files you would like to commit:

Right-click one of the KIELER projects, and from the submenu, choose .Team Commit
Right-click the KIELER repository in the view and choose .Git Repositories Commit

To commit your changes on the command line, do the following:

Use to select () the files you would like to commit (new files as well as modified files).git add stage
Enter to create a commit from the staged files.git commit

Pushing

To push your commits to a remote repository with EGit, do one of the following:

Right-click one of the KIELER projects, and from the submenu, choose .Team Push to Upstream
Right-click the KIELER repository in the view and choose .Git Repositories Push to Upstream

To push your commits on the command line, enter .git push

Getting Earlier Versions of Files
If you want to revert your local changes and get back to the previous repository state, use or the item in the EGit context all git reset --hard Reset
menu. If you only want to revert some specific files, do one of the following:

Right click the files, click , click .Replace With HEAD Revision
Enter on the command line.git checkout <path>

If you try to pull from a remote repository or merge branches although you have local uncommitted changes, and the merge would affect the
same files, Git leaves those files as they are, thus discarding the changes that would be made by the pull or merge operation. As a
consequence, committing such a conflicted state would ignore the changes of the merged branch even if the commit graph looks like a regular
merge has happened. Therefore keep in mind never to pull or merge with uncommitted changes.

Before you commit anything...

Make sure you have set up your name and email address properly, as described on the page.Configuring Eclipse

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Configuring+Eclipse

By giving a branch, tag, or commit number in , you can get to any existing version of the files. If no path is given, git checkout <commit> <path> git
 switches your whole working copy and index to the specified branch, tag, or commit number. If is given a commit checkout <commit> git reset

number, the current branch is modified to point at the given commit.

Cleaning Your Working Directory
In case the working directory is messed up with unstaged files, which are not affected by , a clean up is achieved by means of git reset --hard git

. The additional switch applies this to directories, respectively. Hence, followed by act like .clean -f -d git reset git clean svn revert

git clean -X removes only the files that are ignored by Git, that is mainly the .class files generated by the Java compiler. A full rebuild is required
afterwards.

Branching and Merging
Branches are used to structure your development and are an essential tool for effective work in the KIELER team. Read the Source Code Management
page if you haven't yet understood what branches are good for.

Creating a Branch

Do one of the following:

Right-click the KIELER repository in the view, click , click .Git Repositories Switch To New Branch
On the command line, enter . In this case, the new branch is not active; if you want to activate the new branch while git branch <name>
creating it, enter .git checkout -b <name>

In either case the new branch starts at the current position of your working copy, i.e. it branches from the current branch you are on. In order to branch
from a different position, either check out that other branch first or select it as in the EGit wizard (on the command line simply type git branch source ref
<name> <start_point>).

Switching to Another Branch

Do one of the following:

Navigate to the branch in the KIELER repository in the view, right click it, click .Git Repositories Checkout
On the command-line, enter .git checkout <name>

Note that your local uncommitted changes are transferred when switching the current branch.

Merging Branches

You always merge another branch into the current branch. Therefore you first have to checkout the target branch prior to merging. Then, do one of the
following:

Navigate to the source branch in the view, right-click it, click Git Repositories Merge.
On the command line, enter .git merge <source_name>

This creates a new , i.e. a commit with two source commits, and the target branch (the one you're currently on) contains all changes that merge commit
have been done in the source branch (the one selected for merge). The source branch is not modified. A merge is done implicitly when pulling: assuming
you're on branch master, the command git pull origin master is the same as git fetch origin followed by git merge origin/master, where origin/master is the
remote tracking branch for master.

Working With Multiple Remote Repositories
Stash allows the creation of personal server-side clones of the KIELER repository, which is highly encouraged as described on the Source Code

 page. When working with such clones, it is often necessary to synchronize the different server-side repositories with the local one. Git Management
supports this by allowing to configure multiple in the local repository. On the command line this is done simply by entering git remote add <name> remotes
<url>, where <name> is an arbitrary local identifier for the remote repository. For example, a remote named origin is automatically created when a local
repository clone is created through git clone <url>.

When you push or pull branches, simply select the remote you wish to interfere with. Pulling is done by , and pushing is git pull <remote> <branch>
done by .git push <remote> <branch>

This is a brute force modification, and you probably won't be able to push the new branch

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Source+Code+Management
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Source+Code+Management
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Source+Code+Management

	Using Git

