
Kieler Compiler

Deprecated since 0.13

This article is deprecated. The described features are no longer available in current releases.

Project Overview

Responsible:

Christian Motika, Steven Smyth

Related Theses:

none yet

To see the KielerCompiler in action, we provide an Online SCCharts Compiler .here

Kieler Compiler (KiCo)
In order to integrate and be able to evaluate our compiler chain from SCCharts to C or VHDL code we use the KiCo project as a generic framework that
allows to register setp-by-step transformations on EObjects. These can then be handled by the generic KIEM KiCo DataComponent. To see the
KielerCompiler in action, we provide an Online SCCharts Compiler .here

Kieler Compiler (KiCo)
General
Extension Point

Example
Compilation

Examples
Requirement Completion

Help / Problems / FAQs

General

The KIELER Compiler (KiCo) project allows to register step-by-step model transformations on EObjects that could be written in Xtend or Java. These
transformations are registered using an extension point provided (see below). After registering transformations these can be used by simply call the
KielerCompiler compilation method as also explained further below.

http://www.informatik.uni-kiel.de/rtsys/kontakt/cmot/
http://www.informatik.uni-kiel.de/rtsys/kontakt/ssm/
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Online+Compiler
http://www.sccharts.com/

1.

2.

3.

Extension Point

In order to add a transformation to KiCo you must follow these steps:

Add dependency to

de.cau.cs.kieler.kico

Add the extension

de.cau.cs.kieler.kico.transformation

Add one of the following extension element

Extension
Element

Description

transformatio
nClass

The defined class must extend "de.cau.cs.kieler.kico.Transformation" and must implement the methods defined in "de.cau.cs.kieler.kico.
ITransformation". These are

getId(): Returns a unique String ID for this transformation. This is the ID the transformation will be referenced throughout KiCo.
getName(): Optionally return a String name for this transformation. If null is returned here the ID will be used as a name.
getDependencies(): Optionally return a List<String> of other transformation IDs that must run BEFORE this transformation. If null is
returned then this means there are no dependencies.
transform(EObject): Returns an EObject and does the central transformation.

transformatio
nMethod

The defined class can be freely chosen and does not need to extend or implement any other class or interface. Although you have to
give more information in the extension element now:

class: The class where the transform method is implemented in
method: The name of the transformation method. Its signature must ensure that it returns an EObject an only take an EObject
argument. Otherwise it cannot be found by KiCo.
id: The unique String ID for this transformation. This is the ID the transformation will be referenced throughout KiCo.
name: An optional String name for this transformation. If nothing is entered here the ID will be used as a name.
dependencies: An optional String as comma separated list of other transformation IDs that must run AFTER this transformation
down the compile-chain. This means if the current transformation is selected to run, all transformations that have dependencies on
this will be run BEFORE. If nothing is entered here then this means there are no dependencies.

transformatio
nGroup

Sometimes you may want to group other transformations and give this group a specific transformation ID as a kind of shortcut. You can
do this by using the transformationGroup element giving the following information:

id: The unique String ID for this transformation group. This is the ID the transformation group will be referenced throughout KiCo. It
may also again be referenced by other transformation groups!
transformations: Groups must specify their transformations. Use a String as comma separated list of other transformation IDs or
transformation group IDs that should represent this group. Note that the order will be implied by the referenced transformations
itself although if there is a free degree of order it can be influenced by the order specified here in the group.
name: An optional String name for this transformation. If nothing is entered here the ID will be used as a name.
alternatives: When selected this group specifies alternatives only. When this group is referenced, the first transformation is selected
if not any other transformation from this group is already in the list of selected transformations. This is an advanced feature.

Example

plugin.xml

 <extension
 point="de.cau.cs.kieler.kico.transformation">
 <transformationGroup
 id="NORMALIZE"
 dependencies="TRIGGEREFFECT, SURFACEDEPTH"
 name="Transform All Normalize">
 </transformationGroup>

 <transformationMethod
 class="de.cau.cs.kieler.sccharts.extensions.SCChartsCoreTransformation"
 id="TRIGGEREFFECT"
 method="transformTriggerEffect"
 name="Transform Trigger and Effect">
 </transformationMethod>

 <transformationMethod
 class="de.cau.cs.kieler.sccharts.extensions.SCChartsCoreTransformation"
 id="SURFACEDEPTH"
 method="transformSurfaceDepth"
 name="Transform Surface Depth">
 </transformationMethod>

 <transformationGroup
 id="ALL"
 dependencies="CORE NORMALIZE"
 name="Transform All">
 </transformationGroup>
 </extension>

Compilation

Once a bunch of model transformations are registered, these can simply be called using the KiCo central "KielerCompiler" class with its method compile().
This will be given a List<String> of transformation IDs or a comma separated String of transformation IDs as the first parameter. The second parameter is
the EObject that is being transformed. It should meet the signature of the first model transformation called. Note that the actual model transformations that
are done may vary because KiCo will automatically inspect the dependencies of each transformation requested (deep-recursively). If you do not like this to
happen as an advanced user you can use a third parameter that will skip this autocompletion. Note that if you switch this off also NO transformation groups
can be processed. Here is an overview and examples how to use the compile() method:

Method Description

EObject
KielerCompiler.
compile(List<String>
transformationIDs,

EObject eObject)

transformationIDs: List of Strings representing the transformation IDs and a pre-ordering. Note that KiCo may
automatically modify the order to meet the dependencies of the referenced transformation IDs or transformation
group IDs.
eObject: The EObject that is the input to the compilation process.
Returns: The EObject returned from the last model transformation called by KiCo.

EObject
KielerCompiler.
compile(String
transformationIDs,

EObject eObject)

This is a convenient method only which can be used to give transformation IDs or transformation group IDs as a comma
separated String. For eObject and the return value see above.

EObject
KielerCompiler.
compile(List<String>
transformationIDs,

EObject eObject,

boolean autoexpand)

This is an advanced compile method which can turn of auto-expansion with the last parameter. Use this with care! Note
that if switching autoexpand off you cannot use transformation group IDs any more. Also no dependencies will be
considered. The transformations will be applied straight forward in the order defined by the transformationIDs list.

Examples

Java Code

import de.cau.cs.kieler.kico.KielerCompiler;
...
private MyEObjectClass myMethod(EObject eObject) {
 ...
 transformed = (MyEObjectClass) KielerCompiler.compile("ABORT, SIGNAL", eObject);
 ...
 return transformed
}

Xtend Code

import de.cau.cs.kieler.kico.KielerCompiler
...
def dispatch MyEObjectClass myMethod(EObject eObject) {
 transformed = KielerCompiler.compile("ABORT, SIGNAL", eObject) as MyEObjectClass
 ...
 transformed
}

Requirement Completion

Original

Original Dependency
Graph

Two alternative
transformation

implementations
for Abort

Example 1

Selected for
transformation

Auto selected
requirements

Example 2

Selected for
transformation

Auto selected
requirements

using DEFAULT
of alternative

group

Example 3

Selected for
transformation

Auto selected
requirements

using selected
alternative

Help / Problems / FAQs

Maybe you get into problems when using KiCo. The following list should give you hints to solve these. If you have a problem not considered here please
write us an e-mail (see above for contact information of the persons in charge of KiCo).

Symptom Reason Solution

You get the following run time error:

ENTRY de.cau.cs.kieler.klighd 4 0 2014-03-17 11:08:46.009
!MESSAGE
!STACK 0
java.lang.RuntimeException: Cannot find a transformation
with the ID 'ABORT2'. Make sure
that the transformation with this ID is registered and its
declaring plugin is loaded.
Make sure that the ID does exactly match (case sensitive).
Maybe you forgot to separate
multiple ID's by a comma.
 at de.cau.cs.kieler.kico.KielerCompiler.
getTransformation(KielerCompiler.java:61)
 at de.cau.cs.kieler.kico.KielerCompiler.getDependencies
(KielerCompiler.java:82)
 at de.cau.cs.kieler.kico.KielerCompiler.isDependingOn
(KielerCompiler.)java:102
 at de.cau.cs.kieler.kico.KielerCompiler.
insertTransformationID(KielerCompiler.)java:136
 at de.cau.cs.kieler.kico.KielerCompiler.
expandDependencies(KielerCompiler.)java:164
...

There is a transformation with ID
"ABORT2" referenced
either by the initial call to
KielerCompiler.compile() or
by some of the dependent
transformations /
transformation group.

But KiCo could not find any
registered transformation
with ID "ABORT2".

Maybe the plugin declaring
"ABORT2" was not loaded
or the ID is misspelled.

Check why "ABORT2" may
not be found
by KiCo, more specifically,
check if the
declaring can be loaded
(sometimes
compiler error prevent it from
being loaded
or it has unsatisfied
dependencies).
Also check the spelling of the
ID, maybe
the declaring plugin defines
the transformation
with the ID "abort2".

http://java:102
http://java:136
http://java:164

You get the following error:

!ENTRY de.cau.cs.kieler.kico 2 2 2014-03-17 11:26:13.818

!MESSAGE Extension 'TERMINATION' from component: de.cau.cs.
kieler.sccharts cannot be
loaded becaus this ID is already taken. (de.cau.cs.kieler.
kico)

The trasformation with ID
"TERMINATION" is already
registered and this ID cannot be
used a second time.
The component "de.cau...sccharts"
tries to register
a transformation with this ID while
this ID is already
taken.

Rename one of the IDs or
form a group of
transformations.

	Kieler Compiler

