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ABSTRACT
The concurrent synchronous language Esterel allows pro-
grammers to treat reactive systems in an abstract, concise
manner. An Esterel program is typically first translated into
other, non-synchronous high-level languages, such as VHDL
or C, and then compiled further into hardware or software.
Another approach that has been proposed recently is the di-
rect execution of Esterel-like instructions with a customized
processor, which promises the flexibility of a software solu-
tion with an efficiency close to a hardware implementation.
However, the instruction sets and implementations of the
processor architectures proposed so far still have some lim-
itations regarding their completeness, efficiency, and adher-
ence to the original Esterel semantics. This paper presents
a novel reactive processor architecture, the Kiel Esterel Pro-
cessor, which addresses these shortcomings. In particular, it
provides a complete, semantically accurate implementation
of the Esterel preemption primitives, most of which can be
expressed directly with a single machine instruction.

One advantage of the reactive processors—in addition to
their high execution speed compared to traditional software
implementations—is that control-flow is preserved while com-
piling Esterel into machine code, and that the execution
platform has a very predictable timing behavior. This pa-
per presents a precise and very efficient Worst Case Reac-
tion Time (WCRT) analysis, which is geared towards the
Kiel Esterel Processor, but which could be adapted to other
reactive processors as well.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Other Architecture Styles—
High-level language architectures; D.3.4 [Programming Lan-
guages]: Processors—Code generation; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Program analysis
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1. INTRODUCTION
Many embedded systems belong to the class of reactive

systems, which continuously react to inputs from the en-
vironment by generating corresponding outputs. The pro-
gramming of reactive systems typically requires the use of
non-standard control flow constructs, such as concurrency or
exception handling. Most programming languages, includ-
ing languages such as C and Java that are commonly used in
embedded systems, either do not support these constructs
at all, or their use induces non-deterministic program be-
havior, regarding both functionality and timing. To address
this difficulty, the synchronous language Esterel [5, 4] has
been developed to express the control flow patterns typi-
cally found in reactive systems in a concise manner, with a
clear semantics that imposes deterministic program behav-
ior under all circumstances.

Esterel programs are mostly implemented in one of two
ways. In the software synthesis approach [5, 10], the Es-
terel program is translated by an Esterel compiler into a C
program, which in turn runs on a COTS processor. Esterel
can also be synthesized into hardware directly [2], via some
hardware description language such as VHDL. For a hybrid
approach, Esterel can also be used in hw/sw co-design [1].
Recently, another alternative has emerged, where the Esterel
program is running on a processor that has been developed
specifically for the purpose of executing Esterel. The in-
struction set of these reactive processors closely resembles
the constructs found in Esterel, such as waiting for occur-
rence of a signal or abortion. We distinguish two variants of
this approach. The patched reactive processor implementa-
tion combines a COTS processor core with an external hard-
ware block that implements additional Esterel-style instruc-
tions. A custom reactive processor implementation consists
of a full-custom reactive core, whose instruction set and data
path have been tailored exclusively for the processing of Es-
terel code. So far, there have been only limited and fairly
recent investigations of the reactive processor approach. To
our knowledge, the ReFLIX and RePIC architectures pro-
posed by Dayaratne, Roop, Salcic et al. [17, 18, 9] are the



only ones that fall into this category, and they both fol-
low the patched processor strategy. Their results are fairly
promising, illustrating the potential of this approach. How-
ever, there are also certain limitations of the architectures
proposed so far, for example regarding their support of the
Esterel preemption primitives; see also Section 2.

In this paper, we present an alternative architecture, the
Kiel Esterel Processor (KEP), which is a custom reactive
processor, to our knowledge the first of this kind. The ar-
chitecture presented in this paper is version 2.0 of the Kiel
Esterel Processor, hence we also refer to it as KEP2. No-
table features of the KEP2 include the following:

1. It gives a complete, semantically accurate implemen-
tation of the Esterel preemption primitives, including
weak and strong abortion and suspension.

2. As the instruction set and data path have been de-
veloped specifically for Esterel execution, the individ-
ual machine instructions can be executed fairly fast.
Furthermore, most typical Esterel commands can be
expressed directly with just a single KEP command,
improving speed further and leading to minimal in-
struction and data memory usage.

3. The KEP also includes an interface block for handling
input and output signals, which directly supports test-
ing the presence and values of signals across logical
instants (corresponding to Esterel’s pre operator).

4. A tick manager ensures that logical ticks are executed
at a pre-defined frequency, and indicates timing viola-
tions at run time.

5. Throughout the development of the KEP, scalability
has been a consideration, hence the allowed number
of signals, the nesting depth of preemption primitives,
and other design parameters are fully configurable.

Unlike traditional processors, the reactive processors of-
fer instructions to process most of the reactive constructs
directly. Therefore, the reactive processing approach tends
to be significantly more efficient than the traditional soft-
ware synthesis approach. The reactive processing approach
is particularly suited to implement reactive systems; we en-
vision that the reactive processing approach is suitable for
applications where a custom hardware design is not appro-
priate, for example due to low volume, short development
cycles or the need for configurability or customization, and
where a software design would be too slow or too resource
consuming. However, as we wish to demonstrate in this pa-
per, the reactive processing approach also lends itself very
well to implementing and analyzing systems whose timing
behavior is critical. Such hard real-time systems are char-
acterized by the need to meet certain given deadlines when
performing their computations. Hard real-time systems are
often safety-critical; typical examples include airbag con-
trollers, flight-control software, or medical applications. A
traditional difficulty encountered when developing software
for hard real-time applications is that the execution time
of this software is difficult to predict. (In fact, in the gen-
eral case it is impossible for Turing-complete languages.) To
perform a Worst Case Execution Time (WCET) analysis on
a piece of code typically imposes fairly strong restrictions
on the analyzed code, such as a-priori known upper bounds

on loop iteration counts, and even then control flow anal-
ysis is often overly conservative [15, 6]. Furthermore, even
for a linear sequence of instructions, typical modern archi-
tectures make it difficult to predict exactly how much time
the execution of these instructions consumes, due to pipelin-
ing, out-of-order execution, argument-dependent execution
times (e. g., particularly fast multiply-by-zero), and caching
of instructions and/or data. Finally, if external interrupts
are possible or if an operating system is used, it becomes
even more difficult to predict how long it really takes for
an embedded system to react to its environment. To sum-
marize, performing conservative, yet tight WCET analysis
appears by no means trivial and is still an active body of
research. In fact, despite the advances already made in
the field of WCET analysis, it appears that most practi-
tioners today still resort to extensive testing plus adding a
safety margin to validate timing characteristics. However,
as we want to demonstrate here using the case of the KEP,
timing analysis is practical for reactive processors based on
Esterel, hence making the reactive processing approach par-
ticularly well suited for hard real-time systems. As we here
are investigating the timing behavior for reactive systems,
we are concerned with computing the maximal time it takes
to compute a single reaction, that is the time from given
input events to generated output events. Hence, we call this
analysis a Worst Case Reaction Time (WCRT) analysis.

After a discussion of related work in the following section,
Section 3 gives an introduction into Esterel’s synchronous
execution model and into the KEP, also outlining the trans-
lation scheme we are using to create KEP assembler from
Esterel. Section 4 presents a Worst Case Reaction Time
Analysis scheme for the KEP, followed by experimental re-
sults in Section 5 and conclusions in Section 6.

2. RELATED WORK
As mentioned in the introduction, the only other reactive

processor proposals in the sense of Esterel that we are aware
of are the ReFLIX and RePIC designs [17, 18, 9], of which
RePIC is the more advanced. The RePIC includes an abort
handling block, which is used for handling both strong and
weak aborts; it does not handle suspension. These abort
types are distinguished by the judicious placement of addi-
tional instructions in the assembler code. For every layer
of enclosing abort, a chkabort instruction must be executed
at every instant; for comparison, our approach does not re-
quire such additional instructions, as the abort handling is
performed simultaneous to executing the abort block itself.

Figure 1(a)/(b) shows an example from Dayaratne et al. [9]
for translating the Esterel weak abort statement to the RePIC
assembler. The abort handler is configured with a pair of
instructions; ldaaddr (line 4) specifies the continuation ad-
dress, and abort (line 5) indicates the trigger signal. For
weak abortion, the RePIC inserts a chkabort instruction be-
fore every await instruction within the abort body to deter-
mine whether control stays within the abort body in that
logical instant. For example, after emitting signal Z (line 8),
the chkabort (line 9) determines whether the “await B”, en-
coded in lines 10–12, should be executed next, or whether a
jump to the continuation address should be performed, thus
aborting the body. As presented there, this would respond
correctly to the presence of the abort signal A; however, if
A is absent, execution would reach the await-loop in lines
10–12, and would in the following ticks only be sensitive to



% Esterel

...
weak abort

...
emit Z;
await B;
emit X;
await C;
emit W;

when A;
emit Y;
...

% RePIC

...
4 ldaaddr19
5 abort 0 A

...
8 emit Z
9 chkabort 0
10 await

11 present B
12 goto 10
13 emit X
14 chkabort 0
15 await

16 present C
17 goto 15
18 emit W
19 emit Y

...

% KEP

...
WABORT 1,A,A0
...
EMIT Z
AWAIT B
EMIT X
AWAIT C
EMIT W

A0: EMIT Y
...

(a) (b) (c)

Figure 1: An Esterel code fragment involving a weak

abort statement (a), and the corresponding assembler
code for RePIC (b) and KEP (c).

the awaited signal B, not to the abort trigger signal A. It
seems that this could be remedied by including the chkabort

instruction within the await-loop (i. e., changing the “goto 10”
in line 12 to “goto 9”). However, what we see as the more
significant limitation is that this abort handling mechanism
seems not as efficient as it could be, especially when con-
sidering nests of aborts. For comparison, the KEP handles
aborts directly in hardware, without the need for additional
assembler instructions to check the presence of abort sig-
nals at each control point, thus resulting in more compact
and efficient code. To illustrate, consider the KEP assem-
bler shown in Figure 1(c) for the same Esterel example; a
single WABORT assembler instruction configures the abort
handler, which is then active concurrently with the execu-
tion of the abort body, and which autonomously performs
the necessary preemption of the abort body (correctly dis-
tinguishing between weak and strong aborts) when the abort
signal occurs.

Based on RePIC, Dayaratne et al. [9] propose an extension
to a multi-processor architecture, called EMPEROR, which
allows the handling of Esterel’s concurrency operator. This
is an interesting approach, which could also be applied to the
KEP2 to extend the range of acceptable Esterel programs.

Finally, the KEP2 itself has evolved from earlier designs,
the first of which being KEP version 0.1 [12]. This version
already implemented the preemption primitives correctly,
but did not include the interface block with the support of
the pre-operator, did not support variables, did not allow
local signals, and did not include the Tick Manager.

As mentioned in the introduction, there exist numerous
approaches to classical WCET analysis. Regarding the anal-
ysis of synchronous programs, Logothetis, Schneider and
Metzler [13, 14] have employed model checking to perform a
precise WCET analysis for the synchronous language Quartz,
which is similar to Esterel. However, their problem formula-
tion was different from the WCRT analysis problem we were
addressing. They were interested in computing the number
of ticks required to perform a certain computation, such as
a primality test (which we would actually consider to be a

% Esterel

module ABRT:

input A;
output S, T;

abort

emit S;
halt ;
emit T

when A

end module

% KEP Assembler

% module ABRT

INPUT A;
OUTPUT S, T;

EMIT _TICKLEN, #6
% T0

ABORT 1, A, A0 % N1.2

EMIT S % N1.3

HALT % N1.4, T2

EMIT T
A0: % N3.0

HALT % N3.1, T4

(a) (b)

Figure 2: Illustration of abort/halt in Esterel (a) and
the corresponding KEP assembler (b).

transformational system rather than a reactive system); we
consider here instead how long it may take to compute a
single tick, which can be considered an orthogonal issue.

3. ESTEREL AND THE KIEL ESTEREL
PROCESSOR

The execution of an Esterel program is divided into (log-
ical) instants, or (logical) ticks, which are conceptually ex-
ecuted infinitely fast. An Esterel program interacts with
its environment through signals, which are either present
throughout a logical instant or absent. Input signals are
sampled at each tick, and each tick may generate output
signals. It would be possible to have the system just com-
pute one logical instant after the other, to start with the next
reaction as soon as the previous one has finished; however,
typically the ticks are executed at some fixed frequency, re-
sulting in an interval T between each tick, where T is deter-
mined by the real-time requirements of the system. The con-
ceptually infinitely fast computation of the reaction within
a logical tick, plus in the case of Esterel the unique signal
presence/absence status throughout a logical tick, together
constitute the synchrony hypothesis. In practice, the results
of a logical instant of course cannot be computed infinitely
fast; however, to maintain the abstraction of the synchrony
hypothesis, a logical instant must be computed within some
desired reaction time T .

As a short example, consider the Esterel module ABRT

presented in Figure 2(a). In the initial tick, the first logical
instant, the output signal S is emitted, and the tick is fin-
ished when control reaches the halt statement. The seman-
tics of halt is that control never goes past it, which would
mean that the program stays there throughout all subse-
quent ticks. However, there is also the enclosing abort state-
ment, which states that any enclosed statements—which we
call the abort body—are aborted when the input signal A—
which in this case is the abort signal—is present. An ex-
ception is the first tick when the abort body is entered, in
which case the abort signal is not considered yet; otherwise
this would be an immediate abort. In the ABRT module, it is
a strong abort, which means that in case of an abort, control
does not reach the abort body. However, in this case the
behavior is not different from that of a weak abort (which
would be denoted by weak abort), where in case of an abort,
the abort body can complete the execution of its logical in-



stant before control is transferred past the abort body. To
summarize, ABRT emits an S in the initial tick, and then
terminates in the first following tick where A is present; T is
never emitted.

3.1 The KEP Instruction Set
The KEP2 employs a 32-bit wide instruction word with

a separate 16-bit wide inner data bus. The KEP assembler
language contains thirty instructions. The most common
Esterel statements, including a majority of the reactive ker-
nel statements, can be represented directly. Other Esterel
statements can be implemented by standard Esterel syntax
translation.

As discussed further in Section 3.3, the KEP implements
the behavior of (weak or strong) aborts with Watcher compo-
nents, which just need to be configured once at the entrance
of an abort body1. Once an abort body is entered, it can be
executed without the need for extra instructions that mon-
itor whether an abort is triggered or not. The KEP assem-
bler code for the ABRT example is shown in Figure 2(b). The
“abort . . . when A” statement of the Esterel version has been
turned into an “ABORT 1, A, A0” KEP assembler instruction,
which states that the following statements until the label A0

constitute an abort body that should be strongly aborted
when the signal A has occurred once. At the end of the
program, an additional HALT statement is inserted to pro-
vide deterministic behavior when the program terminates.
The other KEP assembler statements correspond directly to
the Esterel source. An exception is the first statement af-
ter the interface declaration; this statement emits the signal
_TICKLEN with a value of six. This purpose of this signal is
to initialize the Tick Manager with a maximal tick length, as
discussed in Section 3.4.

As the KEP instruction set has been designed specifically
for Esterel, the task of building a compiler that translates
Esterel to KEP assembler is fairly straightforward. We have
implemented such a compiler based on the Columbia Es-
terel Compiler (CEC) [7]. The CEC reads the Esterel input
file and builds an abstract syntax tree (AST). All further
transformations are based on that tree structure.

Our compiler includes a WCRT analyzer, which computes
the maximal instruction count per logical instant and au-
tomatically generates the corresponding “emit _TICKLEN”
statement. The WCRT analyzer is based on the techniques
presented in Section 4, and also employs the Esterel AST.
Hence it works at the level of Esterel itself, while taking
into consideration how KEP assembler is generated. The
WCRT analyzer also annotates the code with comments
(“T0 ”, “N1.2 ”, etc.) that provide detailed timing information
for each statement, as explained further in Section 4.1.1.

3.2 The KEP Architecture
The top-level I/O signals of the KEP2 are illustrated in

Figure 3. The environment can reset the processor via the
Reset pin. An external clock must be connected to the OscClk

pin. ROMData and ROMAddr are data and address buses for
the instruction memory. There are nin pins Sin to signal

1KEP even allows one to move the abort initializations up
to the beginning of the program, which is an optimization
when abort bodies are re-entered, and our response time
analysis can handle this case as well. However, to keep the
presentation simple, we here do not consider this optimiza-
tion further.

Figure 3: The KEP interface.
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Figure 4: The KEP architecture overview.

the presence of input signals, and Valued data buses SDatain

of width nrange to provide values for input signals. There
are similar pins and buses for output signals. The InstrClk

indicates the instruction clock; each instruction cycle lasts
three OscClk cycles. The Tick pin indicates the logical tick of
Esterel, see also Section 4.3, and the TickWarn pin is set high
when a timing violation is detected, see also Section 3.4.

The architecture of the KEP2, shown in Figure 4, is in-
spired by the three layers that constitute a reactive pro-
gram [5], i. e., the interface layer, the reactive kernel, and
the data handling layer. The Interface Block handles input
reception and output production. The Reactive Core, consist-
ing of the Decoder & Controller and the Reactive Block, decides
what computations and what outputs must be generated
when it reacts to inputs. The Data Handling Block performs
the classical computations.

3.3 The Reactive Core
In the Reactive Core, the Reactive Block includes the AWAIT

Element, implementing a blocking wait for a single signal,
the CAWAIT Element, implementing concurrent waiting, and
the PRESENT Element, implementing signal testing. These
elements are described in detail in a separate technical re-
port [11]; in the following, we will describe the Preemption

Element, which contains a configurable number of Watcher

modules that are responsible for implementing the preemp-
tion operations. Figure 5 shows a configuration with three
Watcher modules. According to the Esterel semantics, a pre-
emption (abortion or suspension) is enabled when control is
in its body, and disabled when control is outside of its body.
When a preemption is enabled, the corresponding trigger sig-
nal is watched and the module can react to the presence of
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Figure 5: Architecture of a Reactive Block with three
Watchers.
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Figure 6: The structure of the Watcher.

it (is active). Otherwise, the signal does not cause preemp-
tion. We call this scheme Inside/Outside Preemption Range
Watching (IOPRW ). A Watcher, shown in Figure 6, contains
two functions to implement the IOPRW, the Enable Watcher

and the Trigger Watcher.
The Enable Watcher watches the program counter PC and

compares it with the corresponding preemption’s start and
end addresses. Based on that, it decides whether this pre-
emption should be in the enabled state or in the disabled
state. If the watched signal is present on the Tick rising edge
and the Watcher is in the enabled state, the Watcher triggers
a corresponding action, unless it is overridden by another
Watcher with higher priority, e. g., an enclosing nesting acti-
vates a suspension and freezes the state of its body.

The function of the Trigger Watcher depends on the con-
figuration of the Watcher. For an abortion, it watches the
trigger signal; if the signal occurs, the watcher goes into the
triggered state and counts down the signal count; then, de-
pending on whether the trigger signal count specified by the
abortion statement has already been reached, the watcher
decides whether it should go into the terminated state, which
would kill the abort body, or not. For a suspension, the
watcher watches the trigger signal and decides whether the
suspension body ought to go into the suspended state or not.

Once an abortion is terminated or a suspension is activated,
a TW event will be emitted.

3.4 The KEP Tick Manager
One of the distinguishing features of the Kiel Esterel Pro-

cessor is the Tick Manager, which autonomously ensures that
logical ticks are computed at a fixed frequency. Further-
more, the Tick Manager internally monitors timing violations.
The Tick Manager is activated by setting the pre-defined val-
ued signal _TICKLEN to a certain value, typically at the
beginning of the program. In the ABRT example shown in
Figure 2(b), the statement “EMIT _TICKLEN, #6” defines the
length of a logical tick to be six instruction cycles. Hence,
if a tick is finished in less than _TICKLEN instruction cy-
cles, KEP idles for the remaining cycles before starting the
next tick. If, on the other hand, a tick is not finished within
_TICKLEN cycles, this is considered a tick length timing vi-
olation. Such timing violations are signaled to the environ-
ment via a special signal, TickWarn, with a dedicated output
pin; this signal remains present until the next reset of the
processor. As the KEP instruction cycles require a fixed
number of clock cycles, providing a value for _TICKLEN al-
leviates the need for the environment to provide a timer that
starts the ticks in regular intervals. Furthermore, the self-
monitoring makes it easy for the environment to detect any
timing violations.

Figure 7 illustrates the KEP timing behavior for another
example, this time for an incorrect setting of _TICKLEN.
For the module OVERRUN in Figure 7(a) and some given
input scenario (input signal D always absent), the KEP pro-
duces the timing shown in Figure 7(b). In this example, the
program is running on a KEP2 implemented on a Memec
V2MB1000 Development Board at a rate of Tosc = 41.67ns
(24 MHz), the waveform was recorded by an Agilent 1683A
Logic Analyzer. In OVERRUN, the first EMIT statement
sets _TICKLEN to three; in other words, the module claims
that Vticklen, the maximal number of instructions executed
within a tick, is at most three. If _TICKLEN is larger than
Vticklen, it means that the ticks last longer than is neces-
sary to finish tick computations before the next tick starts;
if _TICKLEN is smaller than Vticklen, this means that we run
the risk of timing violations. In the example, the first logical
tick lasts three instruction cycles. In the second tick, the
controller has to execute five instructions until the AWAIT

statement is executed. Hence, the TickWarn signal will be set
high when the fourth instruction cycle arrives to indicate the
tick length timing violation. The goal of the WCRT analysis
presented in the next section is to automatically deduce a
value for _TICKLEN that is just large enough to never induce
a timing violation; ideally, we achieve _TICKLEN = Vticklen.

4. WORST CASE REACTION TIME
ANALYSIS

The execution of translated and assembled Esterel pro-
grams on the KEP processor is done sequentially for each
currently active statement. Most statements need one pro-
cessor clock cycle to execute, just abort statements need an
additional clock cycle. For the KEP, just as in Esterel,
we distinguish statements as to whether they consume log-
ical time or not. Most statements are considered instanta-
neous, that is, they complete within one tick and do not
consume logical time; these statements include for exam-



% KEP Assembler

% module OVERRUN

INPUT D
OUTPUT A,B,C

EMIT _TICKLEN, #3
EMIT A
EMIT B
PAUSE

EMIT A
EMIT B
EMIT C
AWAIT D

(a) (b)

Figure 7: Example KEP2 assembler code illustrating the Tick Manager (a), and resulting timing diagram (b).

ple EMIT, PRESENT, or GOTO. However, there are also non-
instantaneous statements, which do not complete within a
tick, but are resumed in the next tick; these statements in-
clude PAUSE, AWAIT, and HALT. As the non-instantaneous
statements constitute the boundaries of the ticks, we also
call these statements tick delimiting statements.

To compute the WCRT, we need to find the longest pos-
sible instruction sequence without any tick-delimiting state-
ments in a given KEP program. As mentioned in the in-
troduction, this is related to the static computation of the
worst case execution time (WCET) for general purpose pro-
cessors and compilers. However, the analysis of the maxi-
mum tick length on the KEP processor is much simpler by
comparison. The architecture has been designed with ex-
ecution speed in mind, but there are no features such as
pipelining, caches, or out-of-order execution that break the
fixed relationship between the processor clock and the in-
struction clock. Of at least equal importance is, however,
that Esterel itself imposes tight constraints on possible con-
trol flows, thus simplifying the analysis if this control flow
is preserved on the execution platform, as is the case with
the reactive processing approach.

4.1 Constructing the KEP Assembler Graph
The AST is converted iteratively into a graph structure

representing the control flow of the Esterel program. We
call this graph the KEP Assembler Graph (KAG). We de-
fine the transformation of the Esterel program into the KAG
as a structural induction on the AST of the Esterel program.
A selection of transformation rules is given in Figure 8. We
distinguish two types of KAG nodes: Non-terminal nodes
(squares) denote an instruction (or sequence thereof) exe-
cuted within a tick. In the graphical KAG representation,
non-terminal nodes are inscribed with the cost of that node,
which is the number of instruction cycles required to exe-
cute the instruction (sequence). Terminal nodes (small dou-
ble circles) indicate the beginning/end of a tick. Terminal
nodes are considered to have a cost of zero. Furthermore, we
define a class of non-KAG nodes, the working nodes (boxes
with rounded edges), that are generated as an intermediate
result while transforming the AST into the KAG.

A certain difficulty when creating the KAG lies in the ex-
ceptional control flow edges introduced by abort and trap/exit

statements. Those edges cannot be immediately added to
the graph while analyzing a particular abort or trap state-
ment, because those edges connect to nodes (possibly deeply)
within the body of the statement, which at that moment is
not yet transformed. To handle this, the edges stemming
from an exceptional control flow are represented by a tuple
(A, W, e) associated with each working node. A and W are
the sets of nodes that are sinks of edges out of the body of
enclosing abort and weak abort statements, respectively, and
e is a function mapping “exit T ” nodes to the corresponding
enclosing “trap T ” body.

The (initial) rule, top-left in Figure 8, defines the start of
the transformation of an Esterel program p. Two terminal
nodes are created, indicating the beginning and the end of
the program. The program p is placed in a working node,
where A, W , and e are initialized as empty sets. The work-
ing node is followed by a non-terminal node of cost 1, which
represents the halt statement that is added to the end of the
program in the compilation from Esterel to KEP assembler.
Rule (emit) contains the transformation rule for a simple
emit statement. That statement is translated into a node
with cost 1 and unchanged incoming and outgoing nodes.
In general, a working node has one successor, denoted by
o, and an arbitrary number of predecessors, denoted by the
set I. Hence, the edge from I to the working node in the
emit rule represents an arbitrary number of edges; to indi-
cate this, this edge is drawn as a double edge. Code blocks
joined by a sequence operator (;) are transformed into two
distinct blocks by the (sequence) rule. Those two blocks are
not yet final and must be transformed further. The (halt)
rule is a simplified version of (await) (see below), except
that the block continuing in the next instant is missing as
execution stops at the halt instruction.

Rule (abort) reflects the initialization costs of two clock
cycles for the abort watchers, and adds an entry to edge list
A for the evaluation of the abort bodies. Rule (trap) just
adds a relation from the trap signal to the termination node
to the list of e edges. Those entries are connected to nodes
added for exit statements by the (exit) rule.

Rules (await) and (pause) generate three sequentially con-
nected nodes. The await and pause statements end the execu-
tion of the current instant, hence a terminal node to indicate
a tick boundary. In case of a weak abort, the abort body is
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Figure 8: Transformation Rules to generate the KEP Assembler Graph.

still executed for the current instant, that is, until a terminal
node is reached, before the body is aborted; therefore, the
W edges are connected to the node just before the terminal
node. On the other hand, a strong abort specifies that the
enclosed body must be aborted immediately, from the cur-
rent terminal node; hence the A edges are connected to the
terminal node created in this rule. The rule also generates
two non-terminal nodes of cost 1, indicating that await and
pause consume one instruction cycle at the beginning as well
as at the end of an instant. The transformation of loop into
KEP assembler produces a GOTO statement at the end of
the enclosed statement body. Hence, in rule (loop), a node
with cost 1 connects back to the start of the loop body. The
(present) rule is a little bit more involved. The evaluation of
the branch condition is represented as an initial block with
cost 1. Both the then and else branches are transformed in
separate branches of the control flow graph. A trailing node
with cost 1 is added to the then branch, corresponding to
the GOTO statement skipping the else branch. The cost of
skipping the then branch to reach the else branch is already
included in the evaluation of the branch condition. There
are special cases for missing then or else branches, which are
omitted here—as well as several other transformation rules,
for example for handling await case statements, which are a
little more involved but follow the same principles as the
rules presented here.

Figure 9 shows the complete transformation of the Esterel
module ABRT from Figure 2 into a KAG. The initial graph
produced by the (initial) rule is shown in Figure 9(a). For
each step, the applied transformation rule is specified; for
example, the (abort) rule transforms the initial graph into
the graph shown in Figure 9(b). The iterative application
of the transformation rules finally results in the KAG shown
in Figure 9(g), which could serve as a basis for computing
maximal instant lengths.

4.1.1 Optimizing and Labeling the KAG
Again considering the KAG shown in Figure 9(g), we note

that there are some straightforward reduction rules that re-
sult in a for our purposes equivalent, but smaller KAG. First,
combining adjoining nodes results in the KAG shown in Fig-
ure 9(h). Then, eliminating dead code results in the KAG
shown in Figure 9(i). In this final KAG, which is the graph
computed by our implementation, nodes are also annotated
with a 〈type〉〈index 〉 label, where 〈type〉 indicates whether a
node is a terminal node (“T ”) or a non-terminal node (“N”),
and 〈index 〉 is a unique index for each node. The KAG gen-
erator also uses these labels to annotate the KEP assembler
code with detailed timing information for each statement, as
shown in Figure 2(b). For each KAG terminal node, the cor-
responding non-instantaneous KEP assembler instructions
that lead to this node are indicated in a comment; for ex-
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Figure 9: Transformation of Esterel module ABRT (see Figure 2) into a KEP Assembler Graph.

ample, the terminal node T2 corresponds to the first HALT

instruction. For each non-terminal node, the correspond-
ing KEP assembler statements accumulated into this node
are annotated with a 〈type〉〈index 〉.〈count〉 comment, where
〈count〉 indicates the accumulated instruction count for that
node; for example, the first HALT statement brings the ac-
cumulated instruction count of N1 to four.

4.1.2 The ATM Example
As a slightly more involved example, consider the Esterel

program in Figure 10(a) (see Roop et al. [18]), which im-
plements the basic control structure for an automatic teller
machine (ATM). The program waits for the card being in-
serted, the PIN number entered, and the action selected.
The procedure is aborted and restarted when an error con-
dition occurs, such as an unreadable card or the wrong PIN.

Figure 10(b) contains the ATM program translated into
KEP assembler code. The WCRT analyzer has inserted a
statement after the INPUT/OUTPUT definitions that emits
_TICKLEN with a value of eight, meaning that the maxi-
mum instant length has been determined to be eight clock
cycles long. The timing analyzer has also annotated the code
with low-level timing information, relating to the generated
KAG, which is shown in Figure 10(c). Straight edges in the
graph from node to node denote the sequential control flow,

arcs result from weak abort, abort, await or goto statements.
The path 〈T4, N5, N18, N1〉 is decorated with dashed lines be-
cause it is a longest path. Longest paths are not necessarily
unique; here, the path 〈T4, N5, N17, N18, N1〉 is also a path of
maximal cost.

4.2 Finding Longest Paths in the KAG
We define the length of a path within a KAG to be the

sum of the costs of all nodes on that path. To compute the
maximal number of instruction cycles consumed within an
instant, we must compute the maximal length of all paths
between any pair of instant-end nodes (which we also called
terminal nodes, see Section 4.1) in the KAG. Given a KAG,
let N be the set of all nodes, let T ⊆ N be the set of terminal
nodes, and let E be the set of edges. One could apply Di-
jkstra’s algorithm for longest paths on every terminal node,
and would obtain the maximum cost for every pair of nodes
(t, n) ∈ T × N . However, this is clearly overhead, as it
would consider all paths irrespective of whether they cross
tick boundaries or not. Instead, a KAG may be partitioned
into subgraphs G1, . . . , G|T |, where each Gi has a unique
source node from the set of terminal nodes T . Furthermore,
valid Esterel programs must not contain cycles within an in-
stant; in fact, our algorithm can also be used to detect such
cycles, as in that case it sets the maximum path length to



module ATM:

input

cardInserted, pinEntered,
sumEntered, transactionOK,
incorrectPin, invalidCard,
withdraw, checkBalance;

output

insertCard, enterPin,
selectOption, processTransaction,
releaseSum, printReceipt,
ejectCard;

loop

emit insertCard;
await cardInserted;
weak abort

weak abort

emit enterPin;
await pinEntered;
emit selectOption;
await

case withdraw do

await sumEntered;
emit processTransaction;
await transactionOK;
emit releaseSum;
emit printReceipt;

case checkBalance do

emit processTransaction;
await transactionOK;
emit printReceipt;

end await

when incorrectPin
when invalidCard;
emit ejectCard

end loop

end module

INPUT

cardInserted, pinEntered, sumEntered,
transactionOK, incorrectPin, invalidCard,
withdraw, checkBalance;

OUTPUT

insertCard, enterPin, selectOption,
processTransaction, releaseSum,
printReceipt, ejectCard;

EMIT _TICKLEN, #8

A0: % T0

EMIT insertCard % N1.1

AWAIT cardInserted % N1.2, T2, N3.1

WABORT 1, invalidCard, A1 % N3.3

WABORT 1, incorrectPin, A2 % N3.5

EMIT enterPin % N3.6

AWAIT pinEntered % N3.7, T4, N5.1

EMIT selectOption % N5.2

CAWAIT withdraw, A3 % N5.3

CAWAITE checkBalance, A4 % N5.4, T6, N7.1

A4: % N8.0

EMIT processTransaction % N8.1

AWAIT transactionOK % N8.2, T9, N10.1

EMIT printReceipt % N10.2

GOTO A31 % N10.3

A3: % N12.0

AWAIT sumEntered % N12.1, T13, N14.1

EMIT processTransaction % N14.2

AWAIT transactionOK % N14.3, T15, N16.1

EMIT releaseSum % N16.2

EMIT printReceipt % N16.3

A31: % N11.0

A2: % N17.0

A1: % N18.0

EMIT ejectCard % N18.1

GOTO A0 % N18.2

T0 ����������������

��
N1 2

��
T2 ����������������

��
N3 7

��
T4 ����������������

��
N5 4

��

��

;
:

8
6

2

.

*

'

#

�

��

�

�

�

�

�

�

�
�

�
�

T6 ����������������

��
N7 1

��

__

N8 2

��

��

��

T9 ����������������

��
N10 3

��
N11 0

��

N12 1

��

��

��

T13 ����������������

��
N14 3

��

��

��

T15 ����������������

��
N16 3

::

N17 0
��

N18 2

2
1

0
/

-
,

+
)

(
'

%
$

#
"

 
�

EE

� �
�

�
�

�
�

�
�

�
�

�
�

�


�

(a) (b) (c)

Figure 10: Automatic Teller Machine: Esterel program (a), KEP assembler (b), KEP Assembler Graph (c).

∞. To summarize, finding the longest path in the KAG can
be reduced to the problem of detecting cycles in a graph and
finding the longest path in a set of directed acyclic graphs.

The resulting algorithm is given in Figure 11. Each node
n has several attributes. The terminal flag indicates whether
n is a terminal node. The cost is the number of clock cycles
the node n needs to execute; for terminal nodes it is cost = 0.
The set succs contains the departing edges connecting n to
other KAG nodes. The visited flag is set if n has already been
visited in the algorithm. The integer len is the maximum
instant length counted from n on; that is, the longest path
originating from n that does not contain any terminal nodes
(except n, if n is a terminal node).

Given a set of nodes N of a KAG, the function
max_instant_len computes the longest path in the KAG.
After some initializations, the maximum of all paths origi-
nating from n that do not contain any other terminal nodes
is computed for each terminal node n, using the helper func-
tion get_len. Then, the maximum of these maxima is built
and returned by max_instant_len.

The function get_len explores the subgraph originating at
n. It first checks whether len has already been computed.
If so, len is returned and we are done. Otherwise, it checks
whether n has already been visited. If this is the case, we

have encountered an instantaneous loop, which is forbidden
in Esterel; we set len to infinity and are done. Otherwise, we
perform a depth-first traversal of the subgraph originating
in n, recursively calling get_len for all successors of n, and
setting n.len to the sum of the cost of n plus the maximum of
the lengths of the paths originating in the successors of n. As
it turns out, the complexity of the algorithm is O(|N |+|E|),
which is the best one can hope for. The proof of this, which
is overall fairly straightforward, involves showing that there
are O(|E|) calls to get_len and that there is an amortized
constant cost to each such call.

4.3 Bounding Concrete Reaction Times
To understand how a given value for _TICKLEN trans-

lates to concrete reaction times, we now consider the KEP
instruction timing and signal sampling. Let Tosc be the ba-
sic clock rate supplied to the processor (via the Oscclk pin).
The KEP signals the passage of logical ticks to the envi-
ronment via a Tick signal, with a corresponding output pin.
As illustrated in Figure 12, the KEP samples its inputs at
rising edges of Tick. Furthermore, the KEP holds all out-
puts generated during a tick until the end of the tick, so the
falling edges of Tick indicate when the environment should



1 int max_instant_len(Nodes N) {
2

3 forall n ∈ N do {
4 n. visited := false
5 n.len := ⊥
6 }
7 T := {n ∈ N | n.terminal}
8 return maxn∈T get_len(n)
9 }

10

11 int get_len(Node n) {
12 if (n.len = ⊥) {
13 if (n. visited ) {
14 n.len := ∞ // Instantaneous loop
15 }
16 else {
17 n. visited := true
18 n.len := n.cost + maxs∈(n.succs\T ) get_len(s)

19 }}}
20 return n.len
21 }

Figure 11: Finding the maximum instant length.
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Figure 12: A waveform of the Tick signal and derived
values.

sample the outputs generated by the KEP2. After the falling
edge, Tick remains low for a gap of width Tosc before it rises
again. Let Treact be the time from the occurrence of an
input signal (or combination thereof) until the generation
of a corresponding output signal (or combination thereof).
Assuming that the environment may generate inputs at ar-
bitrary times and that the KEP is computing reactions on
its own, regular schedule, Treact may vary within an interval:

Tmin ≤ Treact < Tmax. (1)

Here, the lower bound Tmin is determined by the time it
takes to actually compute a reaction, i. e., the length of a
tick—which is the time from a rising edge of Tick to a falling
edge of Tick. This reflects the case where an input is sampled
immediately when it is generated; i. e., an input happens to
occur just when the KEP starts to compute a reaction. Let
Vticklen be the maximal number of instructions that must
be executed to compute a tick. As each KEP instruction
takes three clock cycles and an additional cycle is introduced
at each tick, the lower bound on the reaction time can be
computed as follows:

Tmin = (3Vticklen + 1) ∗ Tosc. (2)

The upper bound Tmax reflects the case when an input

2Actually, it is a little more complicated; to avoid a race
condition between the sampling of the outputs and the out-
puts becoming low again, the output signals are latched at
each falling edge of InstrClk, and then propagated to the en-
vironment at the falling edge of Tick.

Table 1: Comparison of mca200 CURVE module im-

plementations; code sizes and RAM usages are given

in words/bytes.
KEP2-B Hardware MCS51 Microblaze

(16-bit) (16/32-bit) (8-bit) (32-bit)

Logic Cells 1326 968/1510 - 1906

Code size 185/740 - 1070/1636 436/1744

RAM Usage 9/18 - 31/31 19/76

Table 2: Comparison of the codes sizes, in words.
On the Microblaze, one word equals four bytes.

Module name Esterel Microblaze (words) KEP2
lines V5 V7 CEC (words)

SPEED 11 276 1081 253 11
BELT_CONTROL 14 440 1169 340 18

TIMER 6 368 1160 295 9
CONTROLLER 26 560 1226 487 24
DEBOUNCE 31 392 1198 299 28

ALARM_COMPARE 16 315 1109 265 14
SPEEDOMETER 23 328 1145 293 20

DASHBOARD_TIMER 77 617 1388 541 65
FRC 26 375 1163 313 18

CURVE 190 1307 2017 436 185
BAT_DIAG 45 487 1274 378 63

VER_ACC_DIAG 38 433 1229 303 41
LONG_SPEED_STRAT 60 573 1306 319 56

occurs just after inputs have been sampled, in which case the
sampling of this input is delayed by the length to compute
a tick, given by Tmin, plus the gap Tosc. We denote the
interval from one rising edge of Tick to the next rising edge
by Ttick and obtain:

Ttick = Tmin + Tosc, (3)

Tmax = Tmin + Ttick (= (6Vticklen + 3) ∗ Tosc). (4)

For example, we obtain for a clock rate of Tosc = 50ns and
Vticklen = 8 (as in the ATM example considered earlier) the
following range for the reaction times:

1.3µs ≤ Treact < 2.55µs. (5)

5. EXPERIMENTAL RESULTS
To quantitatively compare the data handling abilities be-

tween the Esterel processor and other implementations, we
used the CURVE module from the mca200 test bench [8] as
an example, since it is a typical module that includes varied
data handling statements. Table 1 compares the resource
usages of the KEP2 with different hard- and software im-
plementations. For the hardware implementations, we syn-
thesize the module to VHDL with the Esterel V7 compiler,
since other hardware compilers cannot support valued sig-
nals. The V7 compiler does not provide a data ranging
function, i. e., an integer type valued input signal will al-
ways occupy a 32-bit bus to represent the carried value.
As an optimization, we manually resized all of the valued
signals and variables to 16-bit width, since that range is suf-
ficient for this Esterel module. Then those VHDL programs
are implemented by the ISE6.3.03i, and the speed (default)
optimization is used. For the software implementation, we
use the CEC V0.3 compiler to synthesize the module to a
C program, which is then compiled onto the MCS51 (us-
ing the Keil C51 compiler V6.12 with the default—level 8—



Table 3: Comparison of sizes and clock rates between the KEP2 series and RePIC.
RePIC KEP2-A -B -C -D -E -F -G -H -I -J

Number of CAWAIT elements 2 2 2 2 4 2 2 2 2 2 4
Number of Watchers 4 2 2 4 4 6 4 4 4 4 6
Counter Value Range 1 1 1 1 1 1 255 1 1 1 255

Inputs/Outputs 12/12 8/8 8/8 12/12 12/12 12/12 12/12 24/24 12/12 12/12 24/24
Valued Inputs/Outputs 1/1 2/2 2/2 1/1 1/1 1/1 1/1 1/1 4/4 1/1 4/4

Datapath Width 8 8 16 8 8 8 8 8 8 16 16
Logic Cells 2068 998 1326 1476 1564 1898 1582 1756 1626 1714 2810

Max Osc Freq (MHz) 40.27 54.80 45.06 42.87 42.87 39.46 43.19 42.59 44.43 43.00 37.85
Instruction Freq (MHz) 10.1 18.27 15.02 14.29 14.29 13.15 14.4 14.2 14.81 14.33 12.62

optimization), a classical widely used 8-bit processor, and
the 32-bit Microblaze soft processor core (compiled by gcc
for Microblaze version 2.95.3-4, using the default—level 2—
optimization). Note that the lengths of MCS51’s instruc-
tions vary; here, a word represents a complete assembler
line. We notice that Logic Cell count of the KEP2 pro-
cessor is significantly smaller than that of the Microblaze,
and is comparable with a hardware implementation of the
CURVE module. We also note that both the code size and
the RAM usage are significantly smaller than those of the
software implementations.

To further illustrate the compactness of the KEP2 code,
Table 2 compares executable code sizes between the KEP
implementation and the Microblaze software implementa-
tion for some other benchmarks. Table 1 revealed that the
code for the 32-bit Microblaze is smaller (in words) than
that of the 8-bit MCS51; therefore, we use the Microblaze
as reference point. The programs are standard test cases
from the literature [3, 1, 8], which not only contain reactive
control flow, but also include arithmetic and logical data
handling. The module is first translated into the KEP as-
sembler program and then compiled to the KEP executable
codes. This is then compared with software synthesis results
of the Esterel Compiler V5.92, the Esterel Compiler V7 and
the CEC compiler 0.3 for the Microblaze. We notice that
the optimized data path of the KEP results on average in a
89% reduction of codes size when compared with the best
result of the Microblaze implementation. In fact, the Es-
terel module’s line count is very close to the KEP2’s codes
size (in words). This fact implies that the KEP handles the
Esterel statements on a high level. Practically, the majority
of Esterel statements can be translated into KEP assembler
instructions word by word.

As mentioned in the introduction, the KEP has been de-
signed to be highly configurable. Table 3 compares ten dif-
ferent KEP2 variants which include different elements to
target various applications. The KEP2-C is the configura-
tion closest to the RePIC; however, RePIC uses four clock
cycles to execute an instruction cycle, but the KEP2 uses
only three clock cycles, and the KEP2 typically takes signif-
icantly less instructions to implement the same behavior, as
illustrated earlier.3

3Regarding the logic cell count, one should note that the
KEP2’s implementation is based on a Xilinx’s XC2S100-
6TQ144 FPGA chip, and the RePIC is implemented on
an ALTERA’ EP20K200EFC484-2 FPGA chip. However,
the basic units of those two chips have similar structures,
functions, and speed; for example, an implementation of a
CQPIC [16] soft core (the original processor core of RePIC)
on the ALTERA chip uses 1082 logic cells and runs at 45.83
MHz, whereas on the Xilinx chip it needs 1156 logic cells
and runs at 48.47 MHz.

6. CONCLUSIONS AND OUTLOOK
This paper presented the Kiel Esterel Processor, a semi-

custom, configurable Esterel processor. It consists of a Reac-

tive Core and an optimized data path for the direct execution
of Esterel programs. The KEP supports Esterel preemp-
tion statements in a very precise, direct and efficient way,
and allows their arbitrary combination and nesting. The
maximal nesting depth of these constructs is only limited
by the number of watchers that are provided by the KEP;
however, this number is configurable for a particular KEP.
The KEP supports valued signals and signal counters, lo-
cal signal declarations, and the pre operator. A technical
report [11] describes this in further detail, along with a de-
scription of other architectural features and the complete
instruction set.

The KEP2 already provides true concurrency in that it
can watch several trigger signals simultaneously; for exam-
ple, it does not slow down with increasing abort nesting
depth. However, the KEP2 does not implement Esterel’s
concurrency operator (“||”). To handle this, the KEP2 could
be extended into a multiprocessor architecture [9]; another
alternative that we are currently exploring is interleaved ex-
ecution. Other improvements concern the direct implemen-
tation of further Esterel constructs, such as the immediate
signal triggering, which can already be handled by the cur-
rent architecture, but require multiple instructions to do so.

We have also presented a method to determine the WCRT
of Esterel programs in the context of the KEP reactive pro-
cessor. This analysis is more precise than the timing anal-
ysis of sequential programs running on traditional proces-
sors. To a certain extent this has been made possible by the
absence of advanced architectural features such as caching
and pipelining. However, what we see as even more rel-
evant here is the synchronous execution model of Esterel
and the direct implementation of this execution model on a
reactive processor. To compute longest reaction paths, we
have introduced the KEP Assembler Graph (KAG); based
on this graph, a longest-path search, with complexity lin-
ear in the size of the KAG, determines the maximal number
of instructions within an instant. This is implemented in
a WCRT analyzer embedded in a compiler that translates
Esterel to KEP assembler; the WCRT analyzer adds an as-
sembler statement to initialize the _TICKLEN signal, which is
used by the Tick Manager of the KEP to generate logical ticks
at a constant, maximal rate. The efficiency of the WCRT
analysis would also make it feasible to use it to guide an
optimizing compiler. The analysis presented here should be
useful for devices embedded in an environment with hard
real-time demands, and where one cannot afford generous
reserves of processor performance. We believe that the effi-
ciency of this analysis and the achievable accuracy underline



the value of the synchronous programming paradigm and of
the reactive processing approach.

A natural extension of the WCRT analysis would be to
consider concurrency implemented by interleaving or multi-
processing. Furthermore, the KAG construction algorithm
is still conservative in that all control flows possible in the
Esterel program are represented, but there may exist paths
in the KAG that cannot occur in the program. Hence, a
maximum instant length computed from the KAG could be
pessimistic. For example, it is not considered that in a non-
immediate abort, the body cannot be aborted in the same
instance when it is entered. This reflects the general diffi-
culty that we are performing a structural analysis of the con-
trol flow, and do not consider actually reachable paths. It is
not clear yet how much of a limitation this is in practice, as
we would expect that well-written Esterel programs do not
contain many unfeasible paths within an instance. Never-
theless, a natural extension to the algorithm presented here
would be to consider data dependencies as well, for example
using model checking.
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