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ABSTRACT

Accurate estimation of the tick length of a synchronous pro-
gram is essential for efficient and predictable implementa-
tions that are devoid of timing faults. The techniques to de-
termine the tick length statically are classified as worst case
reaction time (WCRT) analysis. While a plethora of tech-
niques exist for worst case execution time (WCET) anal-
ysis of procedural programs, there are only a handful of
techniques for determining the WCRT value of synchronous
programs. Most of these techniques produce overestimates
and hence are unsuitable for the design of systems that are
predictable while being also efficient. In this paper, we
present an approach for the accurate estimation of the ex-
act WCRT value of a synchronous program, called its tight
WCRT wvalue, using model checking. For our input speci-
fications we have selected a synchronous C based language
called PRET-C that is designed for programming Precision
Timed (PRET) architectures. We then present an approach
for static WCRT analysis of these programs via an interme-
diate format called TCCFG. This intermediate representa-
tion is then compiled to produce the input for the model
checker. Experimental results that compare our approach
to existing approaches demonstrate the benefits of the pro-
posed approach. The proposed approach, while presented
for PRET-C is also applicable for WCRT analysis of Esterel
using simple adjustments to the generated model. The pro-
posed approach thus paves the way for a generic approach
for determining the tight WCRT value of synchronous pro-
grams at compile time.
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1. Introduction

Ubiquitous embedded systems have caught the attention
of researchers over the past decade. Typical embedded ap-
plications ranging from complex aircraft flight controllers to
simple digital cameras require worst case guarantees on their
timing performance and hence are called real-time systems.
The standard approach to real-time system design relies on
determining the execution time of code statically, a process
known as worst case execution time (WCET) analysis [22].
WCET analysis is used to determine task periods and dead-
lines. Then an RTOS is employed to emulate the concur-
rency of tasks and also to achieve task synchronization using
mechanisms such as mutexes and monitors. There are sev-
eral limitations to such an approach including the problem
of determining tight WCET bounds. We start this section
by first differentiating WCET and WCRT analysis.

WCET analysis is a process of determining the worst delay
path in a given program executing on a conventional proces-
sor. Estimation of WCET of a given program through static
analysis is a very complex process as the tools have to ex-
plore all execution paths of a program statically. Speculative
processors add to this complexity and hence tools have to
also take the underlying architecture into account. Wilhelm
et al. [22] give a detailed survey of approaches for such anal-
ysis. It is obvious that such analysis is non-trivial and tools
often rely on abstraction leading to overestimates.

For a synchronous program which executes in discrete in-
stants, the analysis is a lot simpler. A synchronous program
executes using ticks of a global clock. During each instant,
inputs from the environments are sampled and latched. Then
the reaction function is called to do the desired computation
for the instant. Finally, the outputs generated by the func-
tion are emitted to the environment. Hence, the length of an
instant is determined by the length of the longest reaction
during any execution of the program. This task is known as
WCRT or worst case reaction time analysis [5].

The KEP series of reactive processors [13] execute Esterel
programs with predictable timing. They achieve this by fix-
ing the tick length on the processor to the WCRT value
obtained by static analysis. Alternatively, in “free running
mode” each tick would complete as fast as possible, which
can reduce average case reaction times at the expense of
predictability. Boldt at al. [5] developed a WCRT analysis



approach of single threaded Esterel programs using struc-
tural induction over different types of nodes of the KEP
Assembler Graph (KAG). Subsequently, they extended this
approach to multithreaded Esterel programs executing on
the KEP3a processor [5]. This algorithm analyzes the worst
tick length by depth first search over the intermediate graph
format called CKAG (Concurrent KEP Assembler Graph).
The algorithm computes the maximum tick lengths for ev-
ery thread and the overall tick length is then just the sum
of these maximum tick lengths (we call this value as the
WCRT 4z for the program). This approach will thus lead to
an overestimation of the WCRT and they establish through
experimentation over Estbench [8] programs. The estimated
WCRT is on the average about 40% overestimated [5]. An
approach to arrive at more accurate values is recently pro-
posed in [10]. Here, Esterel programs are first mapped to
C using the CEC compiler, and then, an ILP formulation
is developed to eliminate redundant paths in the code, thus
yielding more accurate results. Similarly, the approach of [5]
has been extended in [16] using an algebraic framework for
more accurate WCRT analysis that also eliminates redun-
dant paths.

A synchronous program may be executed using the con-
cept of variable ticks [19] to facilitate good average case per-
formance at the expense of predictable execution. However,
for real-time systems, we must execute a synchronous pro-
gram with a fixed tick length such that no timing faults
are possible. We term a precise value of this tick length as
WOCRT ¢ign: to indicate the fact that any value less than this
may have a possibility of timing faults during the execution
of the program. Computing an optimal or tight value for
WCRT will pave the way for the design of precision timed
machines (PRET) [9] that have been recently proposed as al-
ternative architectures for real-time computing. PRET ma-
chines demand that the architecture should guarantee pre-
cise timing without sacrificing throughput. Another implicit
objective of PRET machines is to facilitate predictable exe-
cution of concurrent C code. To this end, we propose a syn-
chronous extension to C, called PRET-C and then develop
an approach for tight WCRT analysis of PRET-C programs
executing on general purpose processors with minimal cus-
tomization.

We observe that the overall tight WCRT of a synchronous
program (like Esterel) is not necessarily the sum of the max-
imum over the threads, but the maximum of the sum of the
local instants (we call local ticks) over all possible execu-
tions of the program. A reactive program has infinite exe-
cutions and hence computing this by run-time simulation of
the program is infeasible. However, we observe that any syn-
chronous program is a collection of strongly connected com-
ponents (SCCs) [7] and the behaviour of the global programs
keeps on branching among these SCCs. Hence, the global
behaviour reaches a fixed point. Based on this observation,
we propose that the WCRT analysis of a synchronous pro-
gram is equivalent to the model checking question to com-
pute this fixed point. This is the main hypothesis based on
which the current paper is formulated.

The use of model checking for the analysis of real-time sys-
tems is not new. Metzner illustrates in [17] the effectiveness
of using model checking for WCET analysis using the notion
of a basic block automaton to represent a program. A static
analysis based formal approach is similarly presented in [15]
to compute tight bounds on synchronous programs. Our

approach is significantly different from earlier approaches to
WCRT analysis in the following ways. Earlier approaches to
tighter analysis [10,16] concentrate on the removal of redun-
dant paths but ignore the redundancy present in the overall
state-space of the program. We propose a model checking
based tight analysis that performs redundant path elimi-
nation while also taking the state-based program execution
into account. The approach of [15] takes exponential time
in the worst case to generate the timed Kripke structure and
the timing analysis is done over this model. In contrast, our
model is a composition of several automaton and hence the
model checker can perform many optimizations or perform
compositional reasoning. Most importantly, the complexity
of the proposed WCRT analysis is the normal model check-
ing complexity of CTL [7] multiplied by a constant term (see
Section 3.6). To our knowledge, our approach is the first
model checking based formulation of the tight WCRT anal-
ysis problem of synchronous programs. Though developed
for PRET-C, the proposed approach can also be applied to
other synchronous language like Esterel.

1.1 Motivating Example

(a) TFSM (b) TFSM
thread 1 thread 2

Figure 1: Motivating Example

Unlike earlier approaches [5,10], we propose an approach
to determine the tight WCRT value of a synchronous pro-
gram by mapping the WCRT analysis problem to a fixed
point computation. We motivate the approach using the
following simple example as shown in Figure 1. This exam-
ple captures a synchronous program with two threads rep-
resented as two FSMs. The states of the FSMs correspond
to the end of tick (denoted as EOT in PRET-C or pauses
for Esterel). The transitions are weighted by integers that
represents the length of the computation to move between
the two specified EOTs. This representation is generic to
any synchronous language.

Given some intermediate representation of a synchronous
programs where ticks are marked explicitly in the graph [24]
along with explicit cost values for each node (where the cost
represents the maximum number of processor clock cycles
needed to execute the code corresponding to the node), it is
easy to transform such an intermediate representation into
a set of FSMs, similar to the ones shown in Figure 1. We
call these FSMs as TFSMs (timed FSMs) since transitions
are guarded by the actual time instance (processor clock
cycles). For example, the TFSM corresponding to threadl
takes 5 clock cycles to move from FOTO0 state to EOT1. We
will present the intermediate format for PRET-C and the
translation process to TFSMs in Section 2.2.

Given the mapping of a synchronous program to a set of
TFSMs, it is easy to calculate the WC RTpmqe [5] for this



program. For this example, this value would be the sum of
the maximum tick length in thread 1 and thread 2 i.e, 10 4
8 = 18. However, note that synchronous programs execute
such that the ticks of the two threads synchronize before
moving to the next instant. This execution may be modeled
as a barrier synchronization like the one used in [24]. In
this execution, in the first instance of the program, thread 1
will first complete its local tick after 5 time units. If thread
2 is scheduled next, then it will take further 8 time units.
Hence, the tick length of the first global tick of the program
would be 13 time units. Since both programs execute in
two fixed cycles (EOT0 — EOT1 — EOT2 — EOTO0), the
actual WCRT of the program, WCRTyign: would be then
maz(5+ 8,10 + 5,7 + 6) = 15, if we assume that the two
threads have no data dependencies between them. We will
discuss the issue of data dependencies in Section 3.4.

Note that for this simple example, it is feasible to do this
analysis by hand. However, for general programs with many
branches, it will be impossible to do this analysis in this
manner, as each thread will have many cycles and there will
also be arbitrary branches between these cycles. However,
we make two key observations in order to be able to do this
tight analysis automatically. Firstly, the proposed analysis
is like a run-time simulation of the program. In general,
this problem looks infeasible for complex programs. How-
ever, we observe that any synchronous program is a col-
lection of strongly connected components (SCCs) [7] and
the behaviour of the global programs keeps on branching
among these SCCs. Hence,the global behaviour reaches a
fixed point. A second observation is that TFSMs can be
modelled with automaton that have a single integer variable
to model the cost of transitions. Then a symbolic model
checking technique may be employed to compute the WCRT
value of a set of concurrent automaton. We have selected
the UPPAAL [1] tool since it offers very efficient algorithms
for not only Timed Automata (TA) [2] but also for automata
with integer operations. Using these observations, we now
propose a mapping of TFSMs to TAs that don’t have any
clock variables, and then develop a model checking solution
to the WCRT analysis question.

The overall goal of the paper is the development and
programming of precision timed architectures (PRET). The
main contribution are: (1) A novel approach for static tim-
ing analysis of synchronous programs is developed. The pro-
posed approach combines state-dependencies with the elim-
ination of redundant paths to yield tighter results. (2) A
new synchronous C extension, called PRET-C, is developed
for programming PRET machines using a notion of logical
time, that is mapped to physical time using a static timing
analyser. (3) We propose a new approach for the design of
PRET architectures by simple customizations of soft-core
processors, called ARPRET. This is unlike the tailored pro-
cessor approach for PRET proposed in [14].

The organization of the paper is as follows. In Section 2
we present the synchronous C extension for predictable ex-
ecution called PRET-C. We also present the intermediate
format for PRET-C in this section (Section 2.2). In Sec-
tion 3, we present a model checking based formulation for
precise WCRT analysis of PRET-C programs. We illustrate
our approach on a running example from Section 2. The
proposed PRET architecture that is derived through simple
customizations of a general purpose processor (GPP) is pre-
sented in Section 4. In Section 5, we present some bench-

marking results of our WCRT analysis that compares the
proposed approach with existing approaches using some Es-
tbench [8] programs that are written in PRET-C. The final
section makes concluding remarks.

2. PRET-C Overview

PRET-C or Precision Timed C is a synchronous exten-
sion of the C language similar in spirit to ECL [12] and
ReactiveC [6]. However, unlike the earlier synchronous C
extensions, it provides only minimal set of extensions and is
specially designed for predictable execution on a GPP with
simple customizations to achieve PRET. Moreover, unlike
the use of signals [6,12], we used standard shared variables
in C for thread synchronization and programs are thread-
safe by construction. PRET-C extends C using only three
major constructs shown in Table 1. Details of the language
and its semantics are reported in [3].

Statement Meaning
synchronous parallel execu-
PAR(T, U) tion of the two threads with
higher priority of T over U
EOT defines the end of a local tick
[Cweak] abort p when pre preemption construct

Table 1: Extensions to C

PAR() emulates concurrency by calling a set of C func-
tions synchronously. However, unlike the usual || of Esterel
where threads are scheduled in each instant based on their
signal dependencies, threads in PRET-C are always sched-
uled based on a fixed static order based on their textual
order in the PAR statement.

EOT is our extension to provide precise timing to a thread.
A thread completes its instant of time, called its local tick,
when it reaches an EOT statement. A global tick elapses only
when all participating threads of a PAR() reach their re-
spective EOT. In this sense, the EOT is similar to the pause
statement of Esterel. The EOT is used to ensure precise tim-
ing of execution of the program by ensuring that the next
tick is started only when all threads have reached their bar-
riers (EOT) and also the duration of the tick is not less than
the WCRT of the program derived by static analysis (to
be presented in Section 3). Note that an EOT is similar
in spirit to the deadline instruction of [14]. However, un-
like the low-level deadline instruction that manages timing
by associating timers, an EOT is a high-level programming
construct. Unlike [14], the task of ensuring precise timing
of threads is not left to the programmer but is derived by
WCRT analysis and is a compilation task. Moreover, the
deadline instruction is also used for achieving mutual ex-
clusion by time-interleaving the access to shared memory.
This is achieved by setting precise values to the deadlines.
However, this task, if done manually, can be very complex
for even simple programs. This is mainly due to arbitrary
branching constructs and loops. Also, automating this task
is non-trivial and has not been solved in [14]. Our solution
to achieve mutual exclusive access to shared memory, on the
other hand, is ensured by having static thread priorities and
then scheduling threads in this fixed linear order in every
instant.

The abort construct preempts the body immediately when
some condition is true (like immediate aborts in Esterel).



Abortion can be either strong (abort construct) or weak
(when the optional weak keyword is used). In case of a
strong abort, the preemption happens at the beginning of
an instant while the weak abort allows its body to execute
and then the preemption triggers at the end of the instant.
Also note that all preemptions in PRET-C are triggered
based on the pre value of a Boolean condition i.e., based
on the evaluation of the condition in the previous instant.
This is needed since the status of variables change during an
instant. The use of the pre ensures that preemptions are al-
ways taken based on the steady state values of the variables
from the previous instant.

A PRET-C programmer just writes a set of normal C func-
tions and spawns concurrent threads using the PAR() con-
struct. Threads communicate through global shared vari-
ables. The task of ensuring mutually exclusive access is
that of ARPRET (pronounced Our-PRET) that is derived
by some simple customizations to the Microblaze [23] soft-
core processor to create a PRET Machine (as discussed in
Section 4). It achieves this by ensuring that in every in-
stant of time all threads execute in a fixed linear order by
the scheduler. The detailed semantics of PRET-C is avail-
able in a companion report [3]. We illustrate these features
through the example in the next subsection.

2.1 A Producer Consumer Example

Listing 1: A Producer Consumer in PRET-C
#include <pretc.h>
#define N 1000
void sampler (void);
void display (void);
extern sensor; int cnt = 0; float buffer [N];
int main() {
PAR(sampler ,display );
return 0;

0 N U AW N

10 void sampler () {

11 int i = 0; float sample;
12 while (1) {

13 sample = read(sensor);
14 EOT;

15 while (cnt==N) EOT;

16 buffer[i] = sample;

17 EOT;

18 i=(i+1) %N

19 cnt = cnt 4+ 1;

20 }

22 void display () {

23 int i = 0; float out;
24 while (1) {

25 while (cnt==0) EOT;
26 out = buffer[i];

27 EOT;

28 i=(i+ 1) %N;

29 cnt = cnt — 1;

30 EOT;

31 WriteLCD (out );

32 }

We present a simple producer-consumer adapted from [21]
to motivate PRET-C which is shown in Listing 1. The main
thread spawns two threads, namely a sampler thread that
reads data from a sensor and deposits the data on a global
circular buffer and a display thread that reads the deposited
data from the buffer and displays this data. Note that the
sampler thread and the display thread communicate using
shared variables cnt and buffer. Also, the programmer has
assigned a higher priority to the sampler compared to the

display thread due to the textual order specified in the call
to PARQ).

In this program, the sampler thread starts by reading the
sensor data in its first local instance of time (local tick). In
the next instant, it checks if the data buffer is full, and in this
event it just ends its local tick. As long as the buffer is full,
it keeps on waiting until the display thread has read some
data so that there is empty space. If it successfully comes
out of the while loop, then it writes to the next available
location of the buffer and ends another local tick. In the
next instant of time the index to the buffer and the total
number of data in the buffer are incremented (note that this
is a circular buffer). Then the sampling loop is restarted.

The display thread starts by first checking if there is any
data available to be read (cnt # 0). If there is no data
available, then the thread ends its local tick and keeps on
waiting until some data is deposited by the producer. When
this happens, it reads the next data from the buffer and
ends its local tick. In the next instance, the value of cnt is
decremented and in the final instance the data read is sent
to a display device.

During 7*" tick both ent = cnt+1 and ent = ent—1 will be
executed. However, due to the priority of the sampler, cnt
will be first incremented by 1 and once the sampler reaches
its EOT, the scheduler will (see Section 4) select the display
thread that will decrements cnt by 1. This repeats every six
ticks and the value of ent will always be consistent without
the need for enforcing mutual exclusion.

It is easy to see that the execution of this code on any pro-
cessor and an RT'OS to emulate concurrency will lead to race
conditions, due to the non-exclusive access to the shared cnt
variable. It is the responsibility of the programmer to ensure
that critical sections are properly implemented using oper-
ating system primitives such as semaphores. However, on
ARPRET, the execution will always be deterministic. The
architecture effectively maps the synchronous parallel into a
fixed sequence, data coherency will always be guaranteed [3].

Given a PRET-C program, the next question is how to
obtain the tight WCRT analysis of this program. As stated
in Section 1, we have mapped this problem to a model check-
ing question. Model checkers require a model of the program
to perform analysis. To facilitate the creation of a suitable
model for model checking we introduce an intermediate for-
mat for PRET-C in the next section.

2.2 Intermediate Format

We propose a new intermediate format for PRET-C pro-
grams called Timed Concurrent Control Flow Graph (TC-
CFG). We generate the intermediate format from the assem-
bler level (rather than the source level) so as to get precise
values for each instant in terms of ARPRET clock cycles.
Moreover, by working on the assembler level, compiler opti-
mizations need not be turned off.

Since all the PRET-C extensions in Table 1 are standard
C macros, using the Microblaze C compiler (gcc) we generate
the optimized assembly code. The analysis of this assembly
is performed to extract the TCCFG. TCCFG encodes the
explicit control-flow of the threads and also has information
regarding forking and joining of the threads. The TCCFG
corresponding to our example is shown in Figure 2.

TCCFG has the following types of nodes:

e Start/end node: Every TCCFG has a unique start
node where the control begins and may have an end
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Figure 2: TCCFG of the Producer-Consumer

node, if the program can terminate. These are drawn
as concentric circles.

e Fork/join nodes: These are needed to clearly mark
concurrent threads of control and where these threads
start and end. These are drawn as triangles.

e Action nodes: These are used for any C function call or
data computation. We use rectangles to denote these.

e EOT nodes: These nodes indicate a local end of tick
and are denoted as filled rectangles.

e Control flow nodes: We have two types of control flow

nodes: conditional nodes to implement conditional branch-

ing (denoted by a rhombus) and jump nodes for map-
ping unconditional branches (which are needed to em-
ulate infinite loops).

e Node weights: Beside each node the cost of the node
is specified within brackets. This value represents the
exact number of clock cycles needed to execute the
assembler instructions for that node.

To deal with preemption (abort) we also need additional
abort nodes and nodes for checking preemption at tick bound-
aries called ckhabort. These are described in detail in [3]

along with the semantics of PRET-C. It is quite easy to
spot that the TCCFG is a faithful model of the control flow
of the original source and is a one-to-one mapping of the
source code into a graph code format. For example, like the
program, we start in the TCCFG with the fork node that
starts the two threads of control. The first thread then ini-
tializes its local variables followed by the sampling of data.
It then ends its local instant and hence there is an EOT
node and so on.

3. WCRT Analysis using Model Check-
ing

3.1 Preliminaries

A synchronous program executes in discrete instants called
ticks. A compiler for a synchronous program, usually com-
piles away the logical concurrency to obtain a purely sequen-
tial function, which is termed as a reaction function. During
every instant of execution of the program, inputs from the
environment are first read and latched. Then the reaction
function is called with these inputs as argument and the
generated outputs from the function are finally emitted to
the environment. This behaviour is then repeated for each
tick. To respect the synchrony hypothesis, any implemen-
tation must ensure that the minimum inter-arrival time of
external events must be greater than the maximum time of
the reaction function. WCRT analysis refers to the process
of determining the worst case length of the tick of a syn-
chronous program by determining the maximum value for
the reaction function such that this tick length will always
ensure safe execution of the program (without any possibil-
ity of timing faults). We start by defining three different
aspects of the WCRT of a program, namely the tight value,
the maximum value and the minimum value.

Definition 1. The WCRT value of a synchronous program
is equal to the the maximum execution time of the reaction
function obtained over all possible execution paths of a pro-
gram. We will also term this as the tight WCRT value of
the program, called WC RT}ignt, to indicate the fact that
any value less than this value may cause a timing fault dur-
ing the execution of the program.

Definition 2. The maximum WCRT value of a synchronous
program, termed WCRT s, is defined as the sum of the
maximum local tick lengths for the participating threads of
the program.

Definition 3. The minimum WCRT value of a synchronous
program, termed WCRT,in, is defined as the sum of min-
imum local tick lengths for the participating threads of the
program.

W CRTyighe lies between these two values, i.e, WCRTyighe
lies in the interval [WC RTin,W CRT nqz]. For example, in
the producer consumer case, the WCRTin = 31 + 29 and
WCRTmar = 54+ 64 (the numbers can be seen in Figure 3).
Hence, WCRT}ignt has a value in the interval [60, 118].

The overview of the proposed approach is as follows. We
convert a TCCFG into an equivalent automata with a single
integer variable to capture the cost of transitions. For illus-
tration purposes, we first map TCCFG to TFSMs, which are
then mapped to an equivalent TA that has no clocks but a
single integer variable. We use a well known model checker
for timed automata called UPPAAL [1] to do this mapping.
We then model the WC RT};gn: computation problem to the



checking of a CTL property in UPPAAL over automata with
integer variables but no clocks.

3.2 Mapping to Timed Automata without any Clocks
For illustration, we first map TCCFG to an equivalent

TFSM. The TFSM corresponding to the two threads of the
producer consumer TCCFG of Figure 2 is shown in the Fig-
ure 3. This mapping is done automatically by a depth first
search from every EOT node to all EOT nodes that are
reachable from this node. During the traversal, the cost of
every node is simply added to obtain the total cost between
these two EOTs. For example, in Figure 2 the cost of the
edge between EOT1 and EOT?2 in thread one is 31 clock cy-
cles, which is obtained by adding the costs of all the nodes
between these two ticks. The cost of an individual node is
obtained by first obtaining the assembly program from the C
source and then generating the TCCFG from this assembly
program. In our case, this program corresponds to Microb-
laze assembly and we automatically calculate the processor
clock cycles needed for each node by looking at the assem-
bly code corresponding to the node. Note that we generate
these costs based on the ARPRET architecture (detailed in
Section 4). On ARPRET we have no speculative features
enabled. Hence, computing the costs are simple. For exam-
ple, since we don’t use branch prediction, every conditional
node’s false branch has an extra cost of five clock cycles to
account for pipeline flushing (see Figure 2 where we have
2345 to indicate the cost of pipeline flush).

(a) Sampler thread

(b) Display thread

Figure 3: TFSMs for the Producer Consumer Ex-
ample

The next step is the mapping of the TFSM to a timed
automata. Note that the composition between TFSMs is
strictly synchronous while TA compositions are asynchronous
[18]. Hence, the mapping has to be done carefully to preserve
synchrony. We illustrate the mapping using the same pro-
ducer consumer example as shown in Figure 4. The overall
mapping is achieved by mapping each TFSM to an equiv-
alent TA. An additional TA, called a barrier, is also intro-
duced to realize the synchronous semantics of PRET-C ex-
ecution.

3.3 Illustration

The proposed solution for the producer consumer exam-
ple is shown in Figure 4. We start by describing the con-
ventions used in this figure. We have two kinds of states
in the mapped TAs, namely EOT states and barrier states
(labelled as EOT; and b;; respectively). Each transition
has two parts. The first part of the transitions represent
the transition guard which is the enabling condition of the

transition. These appear at the top part of each transi-
tion. The bottom part of the transition are actions that are
executed when the transition is taken (in UPPAAL this is
known as the update part of the transition). For example,
the transition from EOTO0 to EOT1 in Figure 4 has lgtick
(syntax in UPPAAL to capture —gtick) as its guard and
x = x + 54,[t1 = true as its update parts respectively.

For the proposed mapping a single integer x is used to
capture the cost of a global tick. We also use a Boolean
variables It to capture if a given thread has completed its
local tick. We use a Boolean variable called gtick that is true
when the global tick has happened. These five variables are
defined as global.

TAs are composed using an asynchronous parallel oper-
ator similar to CCS [18]. To map a given TFSM to an
equivalent TA (without clocks) so as to realize synchronous
execution semantics, we do the following. For every state
EOT; in the TFSM, we also have an identical state FOT;

in the TA. For every transition from [EOT;] -, [EOT;]
in the TFSM, we introduce two transitions by adding an
extra state, called a barrier state b;;, in between the two.
The barrier state is needed to implement synchronous exe-
cution of the TAs in UPPAAL. We then introduce two tran-

sitions in the TA of the form [EOT;] [bi;] and

—gtick
z=x+d,lt=true
-
gtick
] lt=false [
_—

[bij EOT;]. The transition to the barrier node
from FOT; is taken when the global tick hasn’t happened
(this is the transition guard — gtick). While taking this tran-
sition, the variable x is incremented by the cost of the transi-
tion d and the local tick corresponding to the thread (either
It1 or It2) is set to true (this is the update part of the transi-
tion). Then the automaton reaches a barrier node and stays
there until the global tick happens. See, for example, the
transition from EOTp to b1 in the TA corresponding to the
sampler thread. This transition happens when gtick is false.
During the transition, [t1 is set to true, indicating that the
local tick for sampler is over and x is incremented by 54 to
capture the cost of the transition. The generated TAs for
the producer consumer example are shown in the Figure 4.

The task of ensuring that the barrier has been reached is
handled by introducing a third automaton called the barrier
as shown in the Figure 4(c). The barrier has just two states
called WaitLT and GTReached. The barrier remains in the
WaitLT state until both It1,[t2 have been set to true by the
two threads. In this case, both TAs would have taken their
respective transition from an FOT state to their respective
barrier states. The barrier, in response to both local tick
variables being true, will set the global tick variable gtick
to true and will wait in the state GTReached. The barrier
resets back to the initial state only when both automata have
completed their respective barrier transitions, in response to
gtick becoming true. When this happens, they reset their
respective local ticks to false again. Note that when this
transition to the initial state is taken by the barrier, the
value of the counter x is reset. Thus, when the barrier is
reached (the barrier is in the state GTReached) the value of
x captures the cost of a global tick of the program.

3.4 Taking Data Dependencies into Account
Synchronous programs such as Esterel have signal depen-
dencies. WCRT analysis techniques must take these into
consideration to eliminate redundant paths for tighter anal-
ysis [10,16]. Such dependencies are quite easy to model in
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Figure 4: Timed Automata (TA) model for the producer consumer example

our approach by just augmenting the transition of the au-
tomaton with additional guards (to capture signal test) and
assignments (to capture signal emission). Once this is done,
model checker will automatically remove redundant paths
during the fixed point computation. While PRET-C has no
signal dependencies, due to full C, PRET-C programs have
data dependencies (variable test and set respectively). The
same idea for dealing with signal dependencies is employed
by to eliminate redundant paths during model checking.

3.5 WCRT as a CTL Property

We can compute the WCRT of the program by model
checking a property of the form AG(gtick = z < wal),
where the value of val is determined as follows. We already
know the WC RT 4z of the program by summing up the
maximum local tick value for every thread. Similarly, the
minimum WCRT value, WCRT,,;», may be obtained by
adding the minimum local tick lengths for each thread. The
tight WCRT value, WC RT}ign: lies between these two values
i.e, WCRT}ighy lies in the interval [WC RTmin, WCRT maq].
For example, in the producer consumer case, the WC RTin
= 31+ 29 and WCRTmae = 54 + 64. Hence, WCRT}igne
has a value in the interval [60, 118]. Thus, the value of val is
also exactly the same interval. We can use standard binary
search to minimize the number of queries. For example, to
obtain the tight value for the producer consumer case, we
have to write at most 6 queries (log2(58)). In the producer
consumer case, the tight value obtained by the above anal-
ysis is 101 in comparison to the maximum value of 118.

3.6 Complexity
The complexity of model checking TCTL properties over
timed automata has been shown to be PSPACE-Complete.

The same complexity also holds for TA with one or two
clocks [11]. In our setting clocks are not at all needed, and
the cost estimation of the global tick is done by simple incre-
ments to an integer variable called x. Hence, the complexity
of model checking a single query (AG(gtick = = < wal)) is
O(|val| x | M| x |¢]) i.e, is the standard model checking com-
plexity of CTL multiplied by number of possible valuations
of the integer xz. Note that the value of x ranges between
[WCRT min, WCRTmas)]. Hence, the complexity of the pro-
posed WCRT analysis is O(WCRTmaz — WCRTmin) X
|M| % |¢]) for checking a single query. Since, we will have
log2(WCRTmaz — WC RTmin) queries in the worst case, the
overall complexity is O(log2 (W CRT mas —W CRT min ) X

Note that UPPAAL was used by us to rapidly prototype a
solution to the WCRT analysis problem for synchronous pro-
grams for two reasons. Firstly, it employs aggressive state-
space reduction and symbolic analysis techniques, which will
be very useful to make the WCRT analysis technique scale
(we present experimental evidence in Section 5). The sec-
ond reason was that UPPAAL accepts XML based input lan-
guage and allows both simulation and static deadlock check-
ing that are useful validation aids. However, it may be noted
that the WCRT analysis problem developed here is essen-
tially a safety checking problem over synchronous automata
with bounded integers. Hence, this analysis may be done
using a custom tool in the future to make the analysis both
optimal and also to prove that the proposed analysis indeed
results in tight WCRT similar in spirit to a recent model
checking work on bounded integers for SoC data-exchange
protocols [20].



4. The ARPRET Architecture

The overall design philosophy of our PRET design may
be summarized using the following three simple concepts:

1. Concurrency: Notion of concurrency is logical but no-
tion of execution is sequential similar in spirit to [6].
This is used to ensure both synchronous execution and
thread-safe shared memory communication.

2. Time: Notion of time is logical and the mapping of log-
ical time to physical time is achieved by the compiler
and the WCRT analyzer.

3. Design approach: ARPRET achieves PRET by simple
customizations of general purpose processors (GPPs).
The extensions to the C-language are minimal (notion
of concurrency and logical time) and these are realized
through C macros.

This section presents the hardware extension to a GPP
Microblaze [23] in order to achieve temporal predictability.
The basic setup of an ARPRET platform consists of a Mi-
croblaze soft-core processor that is connected to a hardware
extension called Predictable Functional Unit (PFU) using
two unidirectional First In First Out (FIFO) channels. The
role of the PFU is to accelerate the scheduling of PRET-C
threads using a hardware scheduler.

Microblaze [23] is a customizable RISC based soft-core
processor, optimized for implementation on Xilinx FPGA.
To maintain predictability its speculative features such as
instruction and data caches were disabled. None of the fea-
tures from the Memory Management Unit were used and no
parallel shifters or floating point units were employed. We
have opted for a five stage pipeline where the branch delay
slot is disabled.

The PFU is somewhat similar in spirit to the Thread Con-
trol Block in the STARPro [24] processor that is designed
for direct execution of Esterel. For each thread, a thread
table stores the program counter and the thread status. De-
pending on the thread status, the scheduler issues the next
program counter when requested.

Microblaze acts as the master by initiating thread cre-
ation, termination and suspension. The PFU stores the
context of each thread in the thread table and monitors the
progress of threads as they execute on the Microblaze. When
a given thread completes an EOT instruction on the Microb-
laze, it sends appropriate control information to the Thread
Control Block using an unidirectional FIFO. In response to
this, the PFU sets the local tick bit for this thread to 1 and
then invokes the scheduler. The scheduler then selects the
next highest priority thread for execution by retrieving its
program counter value from the thread table and sending it
to Microblaze using FIFO. Moreover, when all participating
threads have completed their local ticks, the PFU waits for
the tick length to expire. Microblaze is blocked whenever it
completes a local tick to wait for the next program counter
value from the PFU. It also waits when all threads have
completed their local ticks but the global tick hasn’t hap-
pened. The tick length is decided by static WCRT analysis
of a PRET-C program as detailed in Section 3.

Communication between Microblaze and any functional
unit such as the PFU is done by using the Fast Simplex
Link interface [23] provided by Xilinx. This communication
is done by the use of hardware FIFOs. It closely couples Mi-
croblaze with the PFU using two FIFOs called FIFO; and

FIFOg respectively to provide deterministic and predictable
communication. Communication with FIFOs requires ex-
change of some common control signals such as the clock,
reset, buffer status, read, write and also data such as the
program counter value. More details of this architecture are
provided in [3].

5. Results

In this section we present a set of experimental evaluation
of the proposed approach. These include the evaluation of
the performance of the model checking based WCRT com-
putation as the number of concurrent processes grow. Fol-
lowing this, we present the results of WCRT analysis over
a set of PRET-C programs where we compare the proposed
static analysis results to the WCRTmar [5] value for the
same program. Finally, we present the results of hardware
synthesis for the ARPRET architecture.

We started our experiments by evaluating the choice of
UPPAAL [1] as a model checker for concurrent automata
with integer constraints but no clocks. We created an UP-
PA AL model consisting of two automata to start with, where
each automaton has six states. We then replicated one of the
automata to create additional processes from two to twenty-
one processes. We wrote a single query for each experiment
(two processes to twenty-one processes) that is the exact
WCRT value for the program. This value was determined
first by using the binary search method described in the pa-
per.

Then, we ran the UPPAAL command called memtime to
measure the execution time and the number of states ex-
plored for each of the experiments separately. During veri-
fication, we use the aggressive state-space reduction option.
The actual state-space of each process is 2 (6"), where N is
any value from 2 to 21. The factor of 2 is due to the size of
the barrier process. The result of this experiment is shown in
Table 2. These results clearly show that both the execution
time (in seconds) and the number of explored states have
a linear growth while the input has an exponential growth.
This may be due to several factors including symbolic model
checking and on the fly generation of the reachable states.

N Total No of|No of States | Execution
States Explored Time
2 (72 24 0.1
31432 48 0.104
4 12592 96 0.101
5 (15552 192 0.1
6 (93312 384 0.1
7 [559872 768 0.101
8 (3359232 1536 0.1
9 (20155392 3072 0.1
10120932352 6144 0.1
11725594112 12288 0.1
124353564672 24576 0.201
1326121388032 [49152 0.492
14|1.56728E+11 [98304 1.005
15]9.4037E+11 |196608 2.098
16|5.64222E+12 |393216 4.543
17|3.38533E+13 | 786432 9.812
18 (2.0312E+14 1572864 21.438
19|1.21872E+15 [3145728 45.515
20(7.31232E+15 | 6291456 99.59
21(4.38739E+16 |12582912 217.488

Table 2: The complexity growth of WCRT analysis

For comparing the proposed tight WCRT analysis with




earlier approaches, we have developed a set of experiments
by taking some examples from Estbench [8] and modelling
them in PRET-C. We also have some new examples that we
have created. These include the producer consumer example
from Section 2.1, a standard concurrency example from [4]
and the model for a robot performing obstacle avoidance
through sonar senors. The Robot Sonar example was cre-
ated to develop a real-time system using PRET-C. Table 3
presents the results of these experiments. The first column
shows the name of the example in PRET-C, the remaining
columns provide the number of threads, the WCRT .44, the
WCRTignt values that are obtained through UPPAAL. On
average the gain (%) from the tight analysis is about 10%
greater than the maximum WCRT value.The ABRO example
had the minimum percentage gain while the Robot Sonar
example had the maximum gain. Note that the advantage
of tighter analysis is very much dependent on the program
concerned, the architecture used and which local ticks con-
tribute to this maximum value. Hence, these results will be
benchmark dependent. ABRO example, has WCRT 4 equal
to WCRTign+ since there are very few states in the concur-
rent threads and no data dependency between threads. In
contrast, the Channel Protocol example has four threads
and signal dependencies which facilitates model checking
based optimization. As the weighting of the ticks differ and
the amount of data dependency increases, there is more pos-
sibility of optimization. This will be illustrated through the
experiment below.

Example Threads [WCRT,, .4 UPPAAL ?‘??;n
ABRO 2 89 89 0
Channel Protocol 4 174 152 12.64
Reactor Control 3 121 118 2.47
Producer-Consumer |2 118 101 14.41
Smokers 4 531 449 15.44
Robot Sonar 4 419 346 17.42
Average 10.40

Table 3: Comparing WCRT,,,, and the WCRT;4n:
results obtained from model checking

The relationship between WCRT 0 and WCRTgp: is
illustrated using the experiment as shown in Table 4. We
selected the Smokers program for this experiment. We then
identified two local ticks, one in each thread, such that these
two local ticks never participate in any global tick simultane-
ously. We then increased the computation cost of these two
local ticks by a factor of N. This loading of these ticks en-
sured that they became the most significant contributors to
the WCRT value of the program. Note that the WCRT .42
value was equal to the WCRTyi4n: value when N = 0. As
we kept on increasing IV, both the maximum and the tight
values grew linearly. However, as N increases, the gap be-
tween the two values also increases significantly as shown
in the Figure 5. This happened since the WCRT 02 was
proportional to 2 x N while the tight value is proportional
to N.

This experiment illustrates that by changing the computa-
tion costs of some local ticks, the value of WCRT;gn+ could
be significantly smaller than that of WCRT 4. We intend
to develop an editor where the programmer can dynamically
place EOTs, thus changing the amount of computation be-
tween some local ticks. The effect of these changes could be
observed to determine effective placement of EOTs.

Load (N) [WCRT,,q. | WCRT:ig4: | Gain (%)
0 211 211 0

10 483 346 21.00

20 763 486 36.31

30 1043 626 39.98

40 1325 766 42.19

50 1603 906 43.38

Table 4: Comparing WCRT,,,, and the WCRT;4n:
as the load varies for Smoker example
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Figure 5: The effect of load variance on the WCRT
value of the Smoker example

Finally, the effectiveness of the proposed analysis was de-
termined by comparing the UPPAAL results with experi-
mental results. Using the model checker we first identified
the longest path. Suitable test vectors were developed to
elicit this longest path during execution. Table 5 compares
the actual execution time on the hardware with the WCRT
value obtained from UPPAAL. On an average, the actual
value is approximately 97% of the value obtained from UP-
PAAL.

Example UPPAAL %/Iv‘é’;‘,ifed Tight (%)
ABRO 89 87 97.75
Channel Protocol 152 149 98.03
Reactor Control 118 114 96.61
Producer-Consumer |101 99 98.02
Smokers 449 430 95.77
Robot Sonar 365 339 97.40
Average 97.26

Table 5: Comparing the actual worst case execution
time and the WCRT value from UPPAAL

6. Conclusions and Future Work

Implementation of real-time systems on speculative pro-
cessors relies on WCET analysis. However, WCET analysis
of C programs on such processors remains a complex and
often almost unsolvable task. To alleviate this dilemma, the
Precision Timed Architectures (PRET) [9] have been pro-
posed. The goal of PRET is to guarantee precise timing
of execution while ensuring that overall throughput does
not suffer. Another objective is to make WCET analysis
simpler. In this paper, we have proposed an approach of
designing PRET machines from general purpose processors
(GPP) by simple customizations of the GPP. We have devel-
oped a new processor called ARPRET by customizing the
Xilinx Microblaze soft-core processor. We also propose a set
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