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Abstract 
With the growing complexity of distributed 

systems, the inter-communication within and 
between subsystems is increasing. The time-
triggered communication approach in the time-
triggered architecture (TTA) offers deterministic, 
fault-tolerant communication services with 
additional features that enable the developers to 
better manage complexity and to find design flaws 
earlier in the development process. However, to 
fully utilize the advantages of TTA, we advocate 
the use of a model-based design process. In this 
paper, we report on experiences with such a model-
based design of an avionics system, realized as a 
TTA using commercial modeling tools and 
extensions that support the Time Triggered Protocol 
(TTP). A goal of the Dependable Embedded 
Components and Systems (DECOS) project, an 
Integrated Project within the European Union 
Framework Programme 6, is to explore the 
integrated distributed time-triggered architecture 
paradigm. A high-lift flap system serves to validate 
and demonstrate this paradigm in the aerospace 
application domain. This paper gives an overview 
of the application and the system architecture, and 
describes the model-based development process. 
However, we also still see room for improvement, 
in particular regarding the integration and 
presentation of information for the designer. 

Introduction 
The aerospace industry has to cope with highly 

safety-critical computer systems and therefore has 
to deal with multiple topics: 

Embedded systems are rapidly growing in 
complexity: With the decrease of hardware costs 
more multi-purpose processors are employed and 
customized by software implementation for specific 
applications. Additionally the increase of hardware 
performance leads to a trend of integrating multiple 
functions into single electronic control units (ECU) 

for cost reductions. This approach imposes high 
demands on software middleware that keeps 
application programming manageable and results in 
safe systems. Real-time systems have special 
demands on the response time behavior. To control 
a dynamic physical system requires reactions at 
special points in time. Operating systems and 
application programs need to consider timing 
behavior in order to achieve determinism in the 
temporal domain. Distributed systems are employed 
to cope with redundancy and wiring complexity. 
Shared communication bus systems replace point to 
point connections. For different applications and 
safety requirements, different methods for shared 
media access control have been employed. 
Sophisticated communication protocols enable us to 
develop fault-tolerant, deterministic communication 
networks, but require a decent know-how and effort 
for setup. 

Model-based system design is proposed for 
development, to cope with the growth of 
complexity in all of these areas. Graphical 
representations augment or replace textual 
implementations for illustrating and documenting 
parts of a system. The content of high abstraction 
models can be used by appropriate tool-chains to 
further process the data and relieve the developer of 
work in lower abstraction levels. For example 
models can describe configuration of systems (e.g., 
describing distribution of the system onto multiple 
ECUs and the communication behavior between 
them). Post-processing tool-chains use the model 
information to automatically configure the 
operating systems and communication controllers 
(e.g., building communication schedules in time-
triggered communication). Other model types 
describe the functional behavior of a system. Model 
suites such as Matlab Simulink [1] or SCADE of 
Esterel Technologies [2] allow to specify data flow 
of the application in a way well suited for closed 
control loop design. The Statechart [3] formalism 
and dialects like Stateflow [4] and the synchronous 
SyncCharts [5] (with minor modifications known as 



Safe State Machines (SSMs) [6]) are used to model 
control flow of reactive applications. Usually 
models inherit such precise semantics that they can 
be executed. On the one hand simulation is used to 
validate system behavior in a very early stage of the 
development process, especially prior to physical 
integration, and on the other hand generators can 
synthesize code for the target platform in order to 
directly derive the target implementation from 
models. 

This paper is divided mainly into two sections, 
of which the first gives an overview about the 
DECOS project in general and the second describes 
our contribution, the model-based system design of 
an aerospace demonstrator within the DECOS 
project. 

Time-Triggered Architecture 
For receiving fault-tolerance in highly safety-

critical distributed systems much effort must be 
spent (e.g. in system design and error containment) 
if event-triggered communication buses such as the 
Controller Area Network (CAN) [7] are used. These 
buses are mostly developed for (soft) real-time 
systems with flexible requirements concerning 
timing. In contrast, the time-triggered 
communication approach in the time-triggered 
architecture (TTA) [8] offers deterministic, fault-
tolerant communication services with additional 
features that enable the developers to better manage 
complexity and to find design flaws earlier in the 
development process. 

As TTA is a general notion, there are different 
implementations available. The Time-Triggered 
Protocol (TTP) [9] is a communication protocol for 
the TTA and specifies its communication 
subsystem. Other approaches are, for example 
FlexRay [10] and TTCAN [11]. 

The TTP describes the communication scheme 
of the system. The set of nodes participating in 
communication via TTP is called the TTP cluster. 
The access to the bus follows the time division 
multiple access (TDMA) scheme as it is depicted in 
Figure 1. The global communication schedule has 
to be known by every communication controller in 
the cluster. In a TTA, not only the communication 
scheme is time-triggered, but the task execution at 

the individual nodes as well, in order to synchronize 
task execution with message transfer.  

 

 

Figure 1 The TDMA scheme of a TTP network 

The Dependable Embedded 
Components and Systems Project 

The DECOS project (Dependable Embedded 
Components and Systems) [12] should deploy a 
process of developing embedded systems that are 
built on COTS (commercial-of-the-shelf) hardware 
and software components and nevertheless enable 
us to develop safe systems. 

The key to the problem is to develop 
fundamental and enabling technologies which are 
independent of domain and technology in order to 
facilitate the paradigm shift from federated to 
integrated design of dependable real-time 
embedded systems. This shall lead to reduced 
development, validation and maintenance costs in 
both the software and the hardware domain.  

The major objective is to investigate the 
compositional system framework and to develop a 
set of generic hardware and software components. 
As DECOS is platform independent, they are usable 
on various platforms that support the defined core 
services deterministic and timely message 
transport, fault-tolerant clock synchronization, 
strong fault isolation and consistent diagnosis of 
failing nodes. 

The TTA was chosen because it offers strong 
composability, effective fault propagation barriers, 
fault-tolerance by active replication, strong 
diagnosability and formal analysis of critical 
architecture functions. The particular choice within 
the aerospace subproject fell to TTP as it 
consequently follows the paradigms and safety 
issues of the TTA and is technically mature. 



The DECOS project works at two sides: The 
technical implementation and the model-based 
development process.  

Technical Implementation 
Technical issues are solved in order to enable 

the shift from federated to integrated systems. The 
goal is to eradicate the one-function-one-ECU 
paradigm. Instead integrate multiple functions onto 
single ECUs and multiple independent 
communication channels onto single physical 
communication busses. Safety requirements make 
this goal a challenging one, because natural fault-
containment-regions given by the bounds of 
hardware in federated systems need to be replaced 
by appropriate software and hardware mechanisms 
within the integrated ECU. These mechanisms are 
designed that safety-critical applications can run 
next to non-safety-critical applications at the same 
ECU without affecting each other.  

The main idea is to build upon the core 
services of a time-triggered architecture. Therefore 
DECOS focuses on developing a consistent 
framework of middleware on top of any appropriate 
TTA in order to be technology independent and to 
increase reusability of applications. This is depicted 
in Figure 2. The technical TTA implementation (as 
long as it offers the required core services) can be 
replaced, while keeping all programming interfaces 
and the tool-environment for the developer.  

The basic entity that enables the concurrent 
execution of different criticality applications is the 
Encapsulated Execution Environment (EEE). It is 
developed in an operating system and offers 
separation of applications in both temporal and 
spatial domain into so-called partitions: The 
utilization of hardware memory protection 
guarantees the interaction of different partitions 
only at the explicit interfaces. The employment of a 
time-triggered operating system with task schedules 
fixed at design time lead to deterministic temporal 
behavior at run-time. 

Other topics tackled at the DECOS project lead 
to a consistent full-featured architecture. For 
performance reasons, a fault-tolerance layer is 
implemented in hardware: Redundant message 
transfer via physically separated communication 
links is initiated and re-merged in hardware 

controllers in order to relieve the application 
processor of this periodical task. Additionally 
virtual communication links are established on top 
of physical time-triggered communication busses. 
The whole communication network gets mapped 
into logical communication links between an 
arbitrary set of distributed application subsystem 
(DAS) parts. The physical network gets abstracted 
to achieve transparent distribution: Each logical 
communication link can comprise any connections 
between physical ECUs, spanning even across 
separated physical networks, that get connected via 
special gateways. This stays transparent for the 
application developer. Only at hardware integration 
the actual distribution onto physical hardware and 
their communication links needs to be specified. 
Logical communication links can even be of event-
triggered nature by sending event-triggered 
messages wrapped in physical time-triggered 
communication. This especially helps to integrate 
legacy software that formerly used for example 
CAN communication into this architecture. 
Additionally the architecture is augmented by a 
diagnosis subsystem that continuously checks the 
states of messages to provide diagnosis information 
to the application. 

 

Figure 2 DECOS service hierarchy 

Development Process 
The technical issues outlined above are 

developed to show the feasibility of such an 
architecture. A concurrent task in the DECOS 
project is to build up and increase usability of this 



approach. Major drivers are cost reductions in all 
domains. Depending on the level of criticality, 
certification according to DO-178B [13] increases 
the cost of developing software by 300–500% [14]. 
Modular certification [15] is a certification strategy 
that promises a massive reduction in certification 
cost through modularization and reuse of 
certification arguments. The DECOS architecture 
offers modular certification by separating the 
certification of architectural services from 
applications and by supporting independent safety 
arguments for different DASs. The clear interface 
between DECOS architecture and application 
software allows to prevalidate the DECOS 
architecture items and the safe separation of 
different DASs allows to independently generate 
certification arguments for each DAS. 

In order to enable the employment of the 
DECOS architecture in industrial applications, a 
development process is required that can handle the 
complexity of the architecture. Therefore within the 
DECOS project a complete toolchain is developed 
to lead to a seamless process where as much as 

possible is automated and the tools are integrated. A 
Key paradigm is the model-based system design in 
different steps as outlined in Figure 3.  

Development is separated into two 
“swimlanes”: SW development and HW-SW 
integration.  

HW-SW Integration 
After defining the system requirements, a 

Platform-Independent Model (PIM) has to be 
generated. This UML diagram following the PIM 
metamodel (defined in the DECOS project as a 
stereotyped UML class diagram) defines 
application specific but platform independent 
configuration of the system. 

This includes separation of the systems to jobs, 
system resources like sensors and actuators, 
communication between jobs, assertions to message 
variables (e.g. restrictions or acceptance criteria) for 
diagnosis of the final system and performance (e.g. 
message and task periods) and dependability (e.g. 
redundancy degrees, safety integrity levels) issues. 

 

 

Figure 3 Steps in the DECOS development process 



This model is platform independent, because it 
comprises no hardware specific information. 
Separation to different jobs is done completely 
transparently and only reflects the application 
requirements concerning functional distinction but 
does not necessarily indicate the physical 
distribution of the system. Therefore the used 
hardware is provided by a separate HW resource 
model and the developer has to follow an 
interactive process. The process combines these 
models and defines the system hardware and 
distribution, where one step is the mapping of jobs 
to physical ECUs. The toolchain comprises all 
hardware and software configuration tools, 
including schedulers for both the global 
communication schedules and the local ECU task 
schedules. All information gets merged in the final 
Platform Specific Model (PSM), which stores the 
information for deployment. This approach of 
separating application specific and hardware 
specific information allows defining the application 
prior to committing to specific hardware. Hence for 
the same application, hardware could be replaced 
later on. These changes do not affect the PIM, 
which increases reusability potentials. 

Software Development 
The other “swimlane” tackles functional SW 

development. UML State Machines lack formal 
semantics and therefore inherit many unclarities 
that deem them questionable for modeling of safety 
critical systems [16]. Therefore common practice to 
model functional behavior is to use special 
modeling suites dedicated for modeling (data flow 
and control flow (Statecharts) style), simulation and 
code generation. The DECOS project employs the 
SCADE tool suite from Esterel Technologies. It 
offers data flow modeling for discrete time systems 
and control flow modeling with its Safe State 
Machines. Semantics are inherited by the 
underlying synchronous Languages Lustre [17] and 
Esterel [18]. The formal semantics enable formal 
analysis on the one hand, e.g. formal verification 
with model-checking [19], and on the other hand 
such clear code generators, that they were qualified 
to aerospace and automotive requirements (e.g. DO-
178B). 

Next to SCADE the multi purpose tool suite 
Matlab/Simulink/Stateflow is established in 
industrial functional modeling. A main difference is 
that it supports also continuous time modelling that 

is necessary to correctly reflect and simulate many 
physical phenomena. Hence Simulink can be 
employed to model a non-linear mechanical 
environment. Simulink is widely used in industry 
and therefore many prototypes get modeled in 
Simulink first to get quick results. Therefore a 
Simulink import utility has been developed further 
within DECOS. This Simulink-SCADE Gateway 
transforms discrete time models from Simulink to 
SCADE and this way Simulink models can be 
utilized in the DECOS development process. 

The Aerospace Subproject 
The DECOS project is partitioned in different 

subprojects, of which one part develops the 
architecture, hardware, tools and processes and the 
other part builds industrial demonstrators. For 
demonstration of the research and development 
results of DECOS, several test benches get 
implemented employing the new technology. The 
authors contribute to the aerospace demonstrator 
subproject and therefore build up a test-rig that 
validates the achieved results of DECOS and 
demonstrates their practicability in a highly safety-
critical aerospace application environment. For 
actual tool-development and improvement (also 
outlined in this paper) we are cooperating with and 
advising the other subprojects. 

The demonstrator implements an electronically 
synchronized high-lift flap system. This system is 
motivated by the current state-of-the-art for such 
systems at Airbus [20]. 

As depicted in Figure 4, a flap system consists 
of two flap panels at each wing. The flap system 
can increase the concavity of the wing if activated 
and therefore increase the high-lift temporarily. 
This is used at low speed for landing and take off 
purposes only. Hence a flap system is safety-
critical. If the system fails during the flight, it will 
not be available for landing, which is obviously a 
serious problem. If the left and right flap panel are 
not perfectly synchronized, the ascending force on 
the two wings differ. This compromises the 
controllability of the plane and might ultimately 
lead to a crash. 

To avoid the asynchronous state of the flap 
panels, they need to be synchronized. In the state-
of-the-art flap system this is done mechanically: A 



tight mechanical shaft physically connects the left 
wing flap panel with the right wing flap panel. This 
shaft lies across the whole aircraft fuselage. A 
central power control unit actuates the shaft with 
the help of two electrical motors. If one motor fails, 
the other side will move the whole shaft with half 
the speed by a speed summing differential. This 
way both sides are always perfectly synchronized 
unless a shaft breaks or blocks, whereupon the shaft 
brakes freeze the system. However, this scenario is 
highly unlikely. The drawback of this solution is 
obvious: The shaft across the fuselage is very 
inflexible and the development of the tip-to-tip shaft 
transmission is very laborious and includes the 
internal construction of the fuselage into the 
development of the flap system, which makes the 
system neither modular nor reusable. 

 

Figure 4 State-of-the-art flap system [20] 

An electronically synchronized flap system 
could give more flexibility by introducing 
modularity and therefore increase both 
maintainability and availability, reduce installation 
costs and enhance agility by using flaps for 
emergency maneuvers. 

The demonstrator is a test platform for the 
aerospace domain to realize the implementation, 
test and integration of tools, methods and 
components (hardware and software) being 
developed in the DECOS project and to validate the 
achieved results and demonstrate their practicability 
in this highly safety-critical application 
environment. 

The Test Bench 
The demonstrator uses two of the flap panels: 

One gets implemented by a physical test rig of a 
flap panel, which exists at the Technical University 
Hamburg-Harburg (TUHH). The other panel is 
implemented as a real-time simulation modeled in 
Matlab/Simulink and executed on computers with 
the same communication interfaces than the 
physical panel. 

Figure 5 shows the architecture of the 
demonstrator. The physical test rig comprises all 
relevant elements of the flap panel. The left and 
right side of each flap panel are still connected via a 
mechanical shaft, while the shaft across the fuselage 
gets removed. Each shaft side is powered by a 
powerful electronic motor. The motor is controlled 
via the motor control electronics (MCE) whereas 
actuator control electronics (ACE) control the 
synchronization process and form an outer control 
loop. Position pick-off units (PPU) measure the 
current angle of the flap shaft and a hydraulic cross 
shaft brake (CSB) is able to fix the shaft in case of 
faults. The ACEs and PPUs communicate via a 
time-triggered bus in order to exchange information 
for the synchronization control loop. The ACEs 
control the CSB and only if both ACEs on each side 
indicate correct functionality, the CSB is released. 

 

Figure 5 The architecture of the high-lift flap 
system demonstrator 

A central system control unit (SCU) monitors 
the behavior of the system and commands the 
desired flap angles. The SCU is implemented as an 
application on an IMA (integrated modular 
avionics) module which has the interface to the 
TTA bus on the one hand and the interface to the 
event triggered communication bus AFDX 
(Avionics Full Duplex Switched Ethernet) [21] on 



the other hand. Through the AFDX channel other 
aircraft systems are able to communicate with the 
SCU application and could even communicate 
directly with the TTA nodes by the AFDX-TTP-
gateway functionality. In our demonstrator, a 
rudimentary aircraft simulation running on a 
standard PC with AFDX interface communicates 
with the SCU. 

Model-Based System Design 
The aerospace flap system demonstrator gets 

developed using the DECOS development process 
outlined above. This employs model-based system 
design. The so-called Virtual Test-Bench is an 
abstract simulation model representing the physical 
aerospace test-bench. It permits to simulate the 
overall test-bench behavior, integrate and test the 
functional components (HW/SW) of all project 
partners in this model and enables to validate the 
design at a high level of abstraction. The 
architecture design tools and validation methods 
developed in DECOS are applied wherever 
applicable. With aid of the simulation model we 
performed a concept validation of the physical test-
bench before developing the individual 
components. Finally, the physical test-bench will be 
validated and tested against the virtual simulation 
model. 

Within the DECOS process both 
Matlab/Simulink and SCADE are employed, 
because they are used for different purposes: the 
first for the design of continuous models, the latter 
for the design of discrete models for qualified code 
generation and formal analysis. Hence both tools 
were used at our Virtual Test-Bench, too. In order 
to get a seamless integrated development process, 
SCADE offers methods for interaction with 
Simulink. These features were employed for our 
Virtual Test-Bench and the resulting process will be 
explained in the following, illustrated by Figure 6. 

The final goal was the overall simulation 
model, a functional model that comprises mainly 
three elements: (1) The application controller model 
that is the actual system-under-development (SUD) 
and that will be used for code generation for the 
HW-SW-integration of the physical components. 
For validation of the controller concepts, simulation 
of the model is required prior to testing of the 
generated code at physical hardware. (2) For 

realistic and significant simulation results, the 
application controller part needs to be fed with 
inputs corresponding to reactions of the mechanical 
environment of the system. Therefore an extra 
model was developed by TUHH in a former project 
that represents the whole mechanical subsystem of 
the flap panel and considers all relevant dynamic 
effects: main natural frequencies, damping, friction 
and backlash of the mechanics. This model is 
integrated in an mechanical environment model, 
which is interfaced with the controller model and 
hence consumes the controller commands and 
produces feedback of the sensors. (3) To control the 
simulation itself either interactively or in a batch 
mode, a custom graphical user interface was 
required. This is the third part of the overall 
simulation model and connected to both, the 
controller model and the environment model. The 
three model parts including the development 
process will be explained in more detail in the 
following sections. 

Environment Model 
The environment model is of continuous time 

character, because it represents a non-linear 
dynamical physical system. The overall simulation 
model integrates especially this continuous time 
model and therefore needs to be able to execute 
continuous time simulations. Hence the overall 
simulation model itself is a Simulink Model. 

As the electronic synchronization is a new 
feature of the flap system, the model of the 
mechanical subsystem needed to be adapted to this 
new approach. Especially the smart sensors, the 
PPUs, were created in Simulink (including a 
standalone mechanics and controller part). 

Application Controller Software 
The model for the application controller part 

was required to be implemented in SCADE, due to 
the possible qualified code generation and formal 
analysis. Modeling started in following the DECOS 
process outlined in Figure 3 and the corresponding 
section above. Hence we built a Platform 
Independent Model (PIM) for the flap system that 
specifies the distribution and communication 
scheme of the system. The functionality was 
separated into distinct jobs and interfaces, ports and 
messages were created with all required attributes to 
define the communication behavior and access to 
hardware resources like sensors and actuators. 



 

Figure 6 Overview of the Virtual Test-Bench with the SCADE and Simulink interaction 

Although the complexity of the application 
seems to be not very high (9 ECUs participate in the 
TTA, with only three different types), the PIM 
consists of many hundreds of objects and more than 
2000 relations between them. This was hardly 
manageable within a multi-purpose UML editor and 
therefore a domain specific PIM editor was created 
within DECOS to facilitate this task.  

A UML-SCADE gateway can be employed to 
automatically create a SCADE skeleton model from 
the UML system description. Jobs in the PIM 

become empty SCADE nodes, which need to be 
filled with the functional model content in SCADE 
itself. The SCADE model shall be employed in the 
simulation and therefore the jobs needs to be 
connected. The UML-gateway automatically creates 
a SCADE base model that integrates all job nodes 
and interconnects them corresponding to the 
communication scheme of the PIM. Access to 
system resources (sensors/actuators) in the PIM 
become inputs and outputs of this SCADE base 
model and form the interface to the environment 



during simulation and the interface to hardware 
device drivers at code generation. 

The jobs of the system control unit (SCU) and 
the actuator control electronics (ACE) were 
modeled directly in SCADE. The SCADE language 
notation was used for describing data flow, 
especially for modeling the control loops of ACE 
and PPU. Safe State Machines were mainly 
employed in the SCU to model the complex 
monitoring and fault reaction strategies of the 
system. Nevertheless it is not always an obvious 
decision between data flow and control flow 
characteristics of a system part. Especially the 
monitoring subsystem shows properties of both 
worlds and therefore it was sometimes difficult to 
decide which part to model in the SCADE language 
notation and which part in a Safe State Machine. 
The upcoming fusion of data flow and control flow 
models [22] in future SCADE releases is therefore 
much appreciated. 

Only the position pick-off units (PPU) are 
created in Simulink. A Simulink-SCADE gateway 
is able to semi-automatically transform the 
Simulink model into a SCADE model. Although 
such gateway was already available, it gets 
augmented and adopted within the DECOS project 
to fit to the needs of this process. Especially the 
import of multiple Simulink models into one 
SCADE model is a new feature and requires 
automatic namespace creation to prevent label 
overlapping from different models. 

The final integrated SCADE model comprises 
all functional behavior of the controller ECUs and 
represents the distribution of the system. In the final 
version it might even represent the time-triggered 
communication by connecting the different jobs 
within SCADE not only with direct links but with 
delay and job-trigger operators (so-called condact). 
That yields to a model representing the 
communication exactly as specified in the 
configuration (PIM) and the schedules (PSM). 
Therefore formal analysis could be employed to 
proof system properties even across communication 
borders and even for the response time domain. 

To the SCADE model formal verification 
methods can be applied to increase the confidence 
in the system implementation. The SCADE suite 
supports both, model-checking and model-test 
coverage (MTC) [23]. 

Graphical User Interface 
In order to fully customize a graphical user 

interface (GUI) of the overall simulation model, we 
implemented it in the Java programming language. 
In Simulink so-called SFunctions are used to 
implement custom functions. Those SFunctions can 
be implemented in C, C++ and the Matlab 
programming language. The Matlab language itself 
allows to call methods in Java objects. This feature 
is used here to generate an interface between 
Simulink and the custom Java application: A 
Simulink wrapper SFunction stores all input values 
from environment and controller, calls the Java 
application and passes the values each major 
simulation step and vice versa. The application 
itself consists of four parts and because the GUI is 
only one part of it, it is called the Java Simulation 
Interface (JSI). The graphical user interface can be 
used to interactively control the simulation by a 
user. For example pilot commands or different 
airspeeds can be applied. The environment model 
can simulate many different faults of the 
mechanical subsystem, such as motor 
disconnection, powered runaway, shaft blockade or 
brake freeze. These faults can be manually injected 
by the user via the GUI. Graphical plots display the 
history of relevant system variables for analysis of 
simulation runs. A scenario player can load 
predefined flight scenarios and execute the 
simulation independently without user interaction. 
Finally log files of simulation values can be 
recorded and replayed in order to display a 
simulation run without performing the computation 
prone simulation itself again. 

Code Generation 
For deployment, C code of multiple different 

sources needs to be integrated as shown in Figure 3. 
This comprises the configuration of the distributed 
time-triggered architecture in the PSM, functional 
code from the SCADE models, wrapper code 
integrating this functional code and code from 
libraries for middleware (e.g. redundancy 
management) and architectural services coming 
from the operating system. In Figure 6 this is 
summarized to functional code directly generated 
from the SCADE models and code for configuration 
and wrapping generated from libraries and the HW-
SW-integration toolchain of DECOS. These files 
become combined and compiled into the individual 
binaries for the distributed ECUs. 



Simulation 
As mentioned above, the different model parts 

finally are integrated in the overall simulation 
model in Simulink. In order to execute the whole 
simulation in Simulink, one need some possibility 
to execute a simulation of the application controller 
model that is modeled in SCADE. Fortunately such 
feature is provided directly by the SCADE suite. 
Analogical to the GUI SFunction, SCADE creates 
an SFunction, as well, that is embedded into the 
overall simulation model. This SFunction is 
implemented in C/C++ and therefore able to call 
other C/C++ procedures or library functions. Two 
different kinds of simulation modes are available: 
(1) Whitebox simulation uses TCP/IP to connect to 
the SCADE simulation tool itself and let Simulink 
and SCADE exchange data on-the-fly during the 
simulation run. While the Simulink model part is 
executed in Simulink, the SCADE part is 
automatically opened in SCADE and simulated 
using the SCADE simulation engine. At each 
simulation step, Simulink calculates its block’s 
outputs, passes them to SCADE, which in turn 
consumes these as inputs, calculates its own outputs 
and passes them back to Simulink for the next step. 
This way, the SCADE simulation viewer can be 
used to display all details of the SCADE model 
during simulation for debugging. Internal variables 
of the data flow part can be viewed as well as the 
internal states of the statecharts. (2) Blackbox 
simulation can be used to do simulation without 
SCADE and to speed up simulation time. Therefore 
prior to simulation the SCADE code generators are 
employed to generate the functional C code of the 
model. This code automatically gets compiled into a 
binary C-library, which represents the functional 
behavior of the SCADE model. During simulation, 
the SFunction within Simulink interacts only with 
this binary C-library: At every simulation step, the 
Simulink outputs are passed to the library, a step 
function is called that executes one step of the 
internally represented SCADE model and the 
outputs are returned to Simulink. This is much 
faster than the whitebox simulation and the 
simulation can be done without concurrent 
execution of SCADE. 

Development Results 
The high-lift flap system of the aerospace 

demonstrator of DECOS was successfully modeled 
using the process outlined above. We were using 

both SCADE and Simulink, the first for formal 
analysis and code generation and the second for 
simulations with a complex continuous time 
environment model. This enabled us to validate the 
concepts for the physical high-lift flap system on a 
very high level of abstraction and an early stage of 
the development process, especially prior to 
physical testing of physical hardware. 

Combined with the UML based system 
configuration modeling and the comprehensive 
toolchain of the DECOS project, the development 
becomes an integrated and nearly seamless process. 
This approach allows the developer to stay on a 
very abstract level of the system, because many 
protocol and hardware specific configurations are 
done automatically by the sophisticated tool chains. 
Unfortunately the experience shows that this 
approach, while it eases the development as such, it 
also reduces insights into the time-triggered 
behavior of the system. Although static schedules 
predefine the points in time when messages are sent 
and tasks are triggered, this introduces a fixed delay 
in the flow of information from one task over TTP 
messages to another task. 

An example is given in Figure 7: The upper 
diagram shows the flow of information from an 
event recognized by some sensor until the reaction 
of the system by an actuator. Here the information 
needs to be processed by three distributed tasks, t1, 
t2 and t3, which communicate by sending the 
messages m1 and m2. The lower diagram shows the 
end-to-end latency from event to reaction as to be 
the sum of fixed delays and actual processing times 
in this flow of information. Only one set of task 
schedules and communication bus schedule is 
displayed, but obviously the end-to-end latency 
highly depends on the details of these schedules and 
does not necessarily relate to the message period of 
the tasks. Commercial toolchains like from TTTech 
[24] split up responsibility of the different 
schedules: The global communication schedule is 
done by the system integrator and the local task 
scheduled for the hosts are done by the subsystem 
suppliers in order to be as much independent of the 
integrator and other subsystem suppliers as 
possible. This approach complicates the situation 
for response time analysis, because the end-to-end 
latency is a product of all schedules together and 
therefore it can neither be analyzed by one of the 
partners alone nor a schedule-set with a certain 



latency be found. The only solution is to restrict the 
task-schedulers to very small allowed task intervals. 

 

 

Figure 7 End-to-end-latency in the time-
triggered architecture 

To improve this situation, we would appreciate 
a solution that allows to review how information 
beginning at some event in the real world flows 
through the system, in order to analyze the response 
time until the reaction of some part of the system. 
For example, this would allow the detection of 
excessive overall latencies, for example because a 
system might introduce flows of information that 
pass arbitrary many TDMA-rounds. Another 
scenario that would be detected easily would be an 
over-restricted system, where the required 
information flows are restricted to specified 
TDMA-round-generations that cannot be scheduled 
at all. 

Conclusion 
For the aerospace industry as well as for other 

industrial sectors, the results of the DECOS project 
are needed to provide a fundamental and 
comprehensive basis for future innovations within 
utility systems. 

We demonstrate the practicability of the 
DECOS results by implementing the safety-critical 
high-lift flap system. We have shown the model-
based development process exemplary for this 
application and have outlined how UML modeling 
for system configurations and functional modeling 
on the basis of synchronous languages in SCADE 
get combined. Benefits stem from both worlds: 
Standardized tools and interfaces for UML models 
ease the development of integrated toolchains, 
while the formal semantics of synchronous 
languages enable formal verification and qualified 
code generation and fits the deterministic 
philosophy of the time-triggered architecture. Major 

goals are time and cost reductions in the 
development of safety-critical applications. In 
DECOS appropriate architectures, methodologies, 
associated COTS hard- and software components 
and comprehensive toolchains are developed which 
fulfil the requirements of the aerospace industry. 
These components and tools cover cluster design, 
middleware and code generators, validation and 
certification as well as systems-on-a-chip (SoCs) 
for high dependability applications. Furthermore 
technology-invariant software interfaces and 
encapsulated virtual networks with predictable 
temporal properties will be developed such that 
application software can be transferred to a new 
hardware and communication base with minimal 
effort (legacy reuse). 

To summarize, we consider the synchronous 
modeling paradigm to be a nice complement and 
enhancement to the TTA approach of designing 
distributed real-time systems. The current state of 
this technology, regarding theoretical understanding 
as well as practical tool support, already makes it 
feasible to develop such systems. However, we still 
see room for improvement, in particular regarding 
the integration and presentation of information 
relevant for the designer. 
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