
MODEL-BASED SYSTEM DESIGN OF TIME-TRIGGERED
ARCHITECTURES – AVIONICS CASE STUDY

Hauke Fuhrmann Reinhard von Hanxleden, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Jörn Rennhack Jens Koch, Airbus Deutschland GmbH, Hamburg, Germany

Abstract
With the growing complexity of distributed

systems, the inter-communication within and
between subsystems is increasing. The time-
triggered communication approach in the time-
triggered architecture (TTA) offers deterministic,
fault-tolerant communication services with
additional features that enable the developers to
better manage complexity and to find design flaws
earlier in the development process. However, to
fully utilize the advantages of TTA, we advocate
the use of a model-based design process. In this
paper, we report on experiences with such a model-
based design of an avionics system, realized as a
TTA using commercial modeling tools and
extensions that support the Time Triggered Protocol
(TTP). A goal of the Dependable Embedded
Components and Systems (DECOS) project, an
Integrated Project within the European Union
Framework Programme 6, is to explore the
integrated distributed time-triggered architecture
paradigm. A high-lift flap system serves to validate
and demonstrate this paradigm in the aerospace
application domain. This paper gives an overview
of the application and the system architecture, and
describes the model-based development process.
However, we also still see room for improvement,
in particular regarding the integration and
presentation of information for the designer.

Introduction
The aerospace industry has to cope with highly

safety-critical computer systems and therefore has
to deal with multiple topics:

Embedded systems are rapidly growing in
complexity: With the decrease of hardware costs
more multi-purpose processors are employed and
customized by software implementation for specific
applications. Additionally the increase of hardware
performance leads to a trend of integrating multiple
functions into single electronic control units (ECU)

for cost reductions. This approach imposes high
demands on software middleware that keeps
application programming manageable and results in
safe systems. Real-time systems have special
demands on the response time behavior. To control
a dynamic physical system requires reactions at
special points in time. Operating systems and
application programs need to consider timing
behavior in order to achieve determinism in the
temporal domain. Distributed systems are employed
to cope with redundancy and wiring complexity.
Shared communication bus systems replace point to
point connections. For different applications and
safety requirements, different methods for shared
media access control have been employed.
Sophisticated communication protocols enable us to
develop fault-tolerant, deterministic communication
networks, but require a decent know-how and effort
for setup.

Model-based system design is proposed for
development, to cope with the growth of
complexity in all of these areas. Graphical
representations augment or replace textual
implementations for illustrating and documenting
parts of a system. The content of high abstraction
models can be used by appropriate tool-chains to
further process the data and relieve the developer of
work in lower abstraction levels. For example
models can describe configuration of systems (e.g.,
describing distribution of the system onto multiple
ECUs and the communication behavior between
them). Post-processing tool-chains use the model
information to automatically configure the
operating systems and communication controllers
(e.g., building communication schedules in time-
triggered communication). Other model types
describe the functional behavior of a system. Model
suites such as Matlab Simulink [1] or SCADE of
Esterel Technologies [2] allow to specify data flow
of the application in a way well suited for closed
control loop design. The Statechart [3] formalism
and dialects like Stateflow [4] and the synchronous
SyncCharts [5] (with minor modifications known as

Safe State Machines (SSMs) [6]) are used to model
control flow of reactive applications. Usually
models inherit such precise semantics that they can
be executed. On the one hand simulation is used to
validate system behavior in a very early stage of the
development process, especially prior to physical
integration, and on the other hand generators can
synthesize code for the target platform in order to
directly derive the target implementation from
models.

This paper is divided mainly into two sections,
of which the first gives an overview about the
DECOS project in general and the second describes
our contribution, the model-based system design of
an aerospace demonstrator within the DECOS
project.

Time-Triggered Architecture
For receiving fault-tolerance in highly safety-

critical distributed systems much effort must be
spent (e.g. in system design and error containment)
if event-triggered communication buses such as the
Controller Area Network (CAN) [7] are used. These
buses are mostly developed for (soft) real-time
systems with flexible requirements concerning
timing. In contrast, the time-triggered
communication approach in the time-triggered
architecture (TTA) [8] offers deterministic, fault-
tolerant communication services with additional
features that enable the developers to better manage
complexity and to find design flaws earlier in the
development process.

As TTA is a general notion, there are different
implementations available. The Time-Triggered
Protocol (TTP) [9] is a communication protocol for
the TTA and specifies its communication
subsystem. Other approaches are, for example
FlexRay [10] and TTCAN [11].

The TTP describes the communication scheme
of the system. The set of nodes participating in
communication via TTP is called the TTP cluster.
The access to the bus follows the time division
multiple access (TDMA) scheme as it is depicted in
Figure 1. The global communication schedule has
to be known by every communication controller in
the cluster. In a TTA, not only the communication
scheme is time-triggered, but the task execution at

the individual nodes as well, in order to synchronize
task execution with message transfer.

Figure 1 The TDMA scheme of a TTP network

The Dependable Embedded
Components and Systems Project

The DECOS project (Dependable Embedded
Components and Systems) [12] should deploy a
process of developing embedded systems that are
built on COTS (commercial-of-the-shelf) hardware
and software components and nevertheless enable
us to develop safe systems.

The key to the problem is to develop
fundamental and enabling technologies which are
independent of domain and technology in order to
facilitate the paradigm shift from federated to
integrated design of dependable real-time
embedded systems. This shall lead to reduced
development, validation and maintenance costs in
both the software and the hardware domain.

The major objective is to investigate the
compositional system framework and to develop a
set of generic hardware and software components.
As DECOS is platform independent, they are usable
on various platforms that support the defined core
services deterministic and timely message
transport, fault-tolerant clock synchronization,
strong fault isolation and consistent diagnosis of
failing nodes.

The TTA was chosen because it offers strong
composability, effective fault propagation barriers,
fault-tolerance by active replication, strong
diagnosability and formal analysis of critical
architecture functions. The particular choice within
the aerospace subproject fell to TTP as it
consequently follows the paradigms and safety
issues of the TTA and is technically mature.

The DECOS project works at two sides: The
technical implementation and the model-based
development process.

Technical Implementation
Technical issues are solved in order to enable

the shift from federated to integrated systems. The
goal is to eradicate the one-function-one-ECU
paradigm. Instead integrate multiple functions onto
single ECUs and multiple independent
communication channels onto single physical
communication busses. Safety requirements make
this goal a challenging one, because natural fault-
containment-regions given by the bounds of
hardware in federated systems need to be replaced
by appropriate software and hardware mechanisms
within the integrated ECU. These mechanisms are
designed that safety-critical applications can run
next to non-safety-critical applications at the same
ECU without affecting each other.

The main idea is to build upon the core
services of a time-triggered architecture. Therefore
DECOS focuses on developing a consistent
framework of middleware on top of any appropriate
TTA in order to be technology independent and to
increase reusability of applications. This is depicted
in Figure 2. The technical TTA implementation (as
long as it offers the required core services) can be
replaced, while keeping all programming interfaces
and the tool-environment for the developer.

The basic entity that enables the concurrent
execution of different criticality applications is the
Encapsulated Execution Environment (EEE). It is
developed in an operating system and offers
separation of applications in both temporal and
spatial domain into so-called partitions: The
utilization of hardware memory protection
guarantees the interaction of different partitions
only at the explicit interfaces. The employment of a
time-triggered operating system with task schedules
fixed at design time lead to deterministic temporal
behavior at run-time.

Other topics tackled at the DECOS project lead
to a consistent full-featured architecture. For
performance reasons, a fault-tolerance layer is
implemented in hardware: Redundant message
transfer via physically separated communication
links is initiated and re-merged in hardware

controllers in order to relieve the application
processor of this periodical task. Additionally
virtual communication links are established on top
of physical time-triggered communication busses.
The whole communication network gets mapped
into logical communication links between an
arbitrary set of distributed application subsystem
(DAS) parts. The physical network gets abstracted
to achieve transparent distribution: Each logical
communication link can comprise any connections
between physical ECUs, spanning even across
separated physical networks, that get connected via
special gateways. This stays transparent for the
application developer. Only at hardware integration
the actual distribution onto physical hardware and
their communication links needs to be specified.
Logical communication links can even be of event-
triggered nature by sending event-triggered
messages wrapped in physical time-triggered
communication. This especially helps to integrate
legacy software that formerly used for example
CAN communication into this architecture.
Additionally the architecture is augmented by a
diagnosis subsystem that continuously checks the
states of messages to provide diagnosis information
to the application.

Figure 2 DECOS service hierarchy

Development Process
The technical issues outlined above are

developed to show the feasibility of such an
architecture. A concurrent task in the DECOS
project is to build up and increase usability of this

approach. Major drivers are cost reductions in all
domains. Depending on the level of criticality,
certification according to DO-178B [13] increases
the cost of developing software by 300–500% [14].
Modular certification [15] is a certification strategy
that promises a massive reduction in certification
cost through modularization and reuse of
certification arguments. The DECOS architecture
offers modular certification by separating the
certification of architectural services from
applications and by supporting independent safety
arguments for different DASs. The clear interface
between DECOS architecture and application
software allows to prevalidate the DECOS
architecture items and the safe separation of
different DASs allows to independently generate
certification arguments for each DAS.

In order to enable the employment of the
DECOS architecture in industrial applications, a
development process is required that can handle the
complexity of the architecture. Therefore within the
DECOS project a complete toolchain is developed
to lead to a seamless process where as much as

possible is automated and the tools are integrated. A
Key paradigm is the model-based system design in
different steps as outlined in Figure 3.

Development is separated into two
“swimlanes”: SW development and HW-SW
integration.

HW-SW Integration
After defining the system requirements, a

Platform-Independent Model (PIM) has to be
generated. This UML diagram following the PIM
metamodel (defined in the DECOS project as a
stereotyped UML class diagram) defines
application specific but platform independent
configuration of the system.

This includes separation of the systems to jobs,
system resources like sensors and actuators,
communication between jobs, assertions to message
variables (e.g. restrictions or acceptance criteria) for
diagnosis of the final system and performance (e.g.
message and task periods) and dependability (e.g.
redundancy degrees, safety integrity levels) issues.

Figure 3 Steps in the DECOS development process

This model is platform independent, because it
comprises no hardware specific information.
Separation to different jobs is done completely
transparently and only reflects the application
requirements concerning functional distinction but
does not necessarily indicate the physical
distribution of the system. Therefore the used
hardware is provided by a separate HW resource
model and the developer has to follow an
interactive process. The process combines these
models and defines the system hardware and
distribution, where one step is the mapping of jobs
to physical ECUs. The toolchain comprises all
hardware and software configuration tools,
including schedulers for both the global
communication schedules and the local ECU task
schedules. All information gets merged in the final
Platform Specific Model (PSM), which stores the
information for deployment. This approach of
separating application specific and hardware
specific information allows defining the application
prior to committing to specific hardware. Hence for
the same application, hardware could be replaced
later on. These changes do not affect the PIM,
which increases reusability potentials.

Software Development
The other “swimlane” tackles functional SW

development. UML State Machines lack formal
semantics and therefore inherit many unclarities
that deem them questionable for modeling of safety
critical systems [16]. Therefore common practice to
model functional behavior is to use special
modeling suites dedicated for modeling (data flow
and control flow (Statecharts) style), simulation and
code generation. The DECOS project employs the
SCADE tool suite from Esterel Technologies. It
offers data flow modeling for discrete time systems
and control flow modeling with its Safe State
Machines. Semantics are inherited by the
underlying synchronous Languages Lustre [17] and
Esterel [18]. The formal semantics enable formal
analysis on the one hand, e.g. formal verification
with model-checking [19], and on the other hand
such clear code generators, that they were qualified
to aerospace and automotive requirements (e.g. DO-
178B).

Next to SCADE the multi purpose tool suite
Matlab/Simulink/Stateflow is established in
industrial functional modeling. A main difference is
that it supports also continuous time modelling that

is necessary to correctly reflect and simulate many
physical phenomena. Hence Simulink can be
employed to model a non-linear mechanical
environment. Simulink is widely used in industry
and therefore many prototypes get modeled in
Simulink first to get quick results. Therefore a
Simulink import utility has been developed further
within DECOS. This Simulink-SCADE Gateway
transforms discrete time models from Simulink to
SCADE and this way Simulink models can be
utilized in the DECOS development process.

The Aerospace Subproject
The DECOS project is partitioned in different

subprojects, of which one part develops the
architecture, hardware, tools and processes and the
other part builds industrial demonstrators. For
demonstration of the research and development
results of DECOS, several test benches get
implemented employing the new technology. The
authors contribute to the aerospace demonstrator
subproject and therefore build up a test-rig that
validates the achieved results of DECOS and
demonstrates their practicability in a highly safety-
critical aerospace application environment. For
actual tool-development and improvement (also
outlined in this paper) we are cooperating with and
advising the other subprojects.

The demonstrator implements an electronically
synchronized high-lift flap system. This system is
motivated by the current state-of-the-art for such
systems at Airbus [20].

As depicted in Figure 4, a flap system consists
of two flap panels at each wing. The flap system
can increase the concavity of the wing if activated
and therefore increase the high-lift temporarily.
This is used at low speed for landing and take off
purposes only. Hence a flap system is safety-
critical. If the system fails during the flight, it will
not be available for landing, which is obviously a
serious problem. If the left and right flap panel are
not perfectly synchronized, the ascending force on
the two wings differ. This compromises the
controllability of the plane and might ultimately
lead to a crash.

To avoid the asynchronous state of the flap
panels, they need to be synchronized. In the state-
of-the-art flap system this is done mechanically: A

tight mechanical shaft physically connects the left
wing flap panel with the right wing flap panel. This
shaft lies across the whole aircraft fuselage. A
central power control unit actuates the shaft with
the help of two electrical motors. If one motor fails,
the other side will move the whole shaft with half
the speed by a speed summing differential. This
way both sides are always perfectly synchronized
unless a shaft breaks or blocks, whereupon the shaft
brakes freeze the system. However, this scenario is
highly unlikely. The drawback of this solution is
obvious: The shaft across the fuselage is very
inflexible and the development of the tip-to-tip shaft
transmission is very laborious and includes the
internal construction of the fuselage into the
development of the flap system, which makes the
system neither modular nor reusable.

Figure 4 State-of-the-art flap system [20]

An electronically synchronized flap system
could give more flexibility by introducing
modularity and therefore increase both
maintainability and availability, reduce installation
costs and enhance agility by using flaps for
emergency maneuvers.

The demonstrator is a test platform for the
aerospace domain to realize the implementation,
test and integration of tools, methods and
components (hardware and software) being
developed in the DECOS project and to validate the
achieved results and demonstrate their practicability
in this highly safety-critical application
environment.

The Test Bench
The demonstrator uses two of the flap panels:

One gets implemented by a physical test rig of a
flap panel, which exists at the Technical University
Hamburg-Harburg (TUHH). The other panel is
implemented as a real-time simulation modeled in
Matlab/Simulink and executed on computers with
the same communication interfaces than the
physical panel.

Figure 5 shows the architecture of the
demonstrator. The physical test rig comprises all
relevant elements of the flap panel. The left and
right side of each flap panel are still connected via a
mechanical shaft, while the shaft across the fuselage
gets removed. Each shaft side is powered by a
powerful electronic motor. The motor is controlled
via the motor control electronics (MCE) whereas
actuator control electronics (ACE) control the
synchronization process and form an outer control
loop. Position pick-off units (PPU) measure the
current angle of the flap shaft and a hydraulic cross
shaft brake (CSB) is able to fix the shaft in case of
faults. The ACEs and PPUs communicate via a
time-triggered bus in order to exchange information
for the synchronization control loop. The ACEs
control the CSB and only if both ACEs on each side
indicate correct functionality, the CSB is released.

Figure 5 The architecture of the high-lift flap
system demonstrator

A central system control unit (SCU) monitors
the behavior of the system and commands the
desired flap angles. The SCU is implemented as an
application on an IMA (integrated modular
avionics) module which has the interface to the
TTA bus on the one hand and the interface to the
event triggered communication bus AFDX
(Avionics Full Duplex Switched Ethernet) [21] on

the other hand. Through the AFDX channel other
aircraft systems are able to communicate with the
SCU application and could even communicate
directly with the TTA nodes by the AFDX-TTP-
gateway functionality. In our demonstrator, a
rudimentary aircraft simulation running on a
standard PC with AFDX interface communicates
with the SCU.

Model-Based System Design
The aerospace flap system demonstrator gets

developed using the DECOS development process
outlined above. This employs model-based system
design. The so-called Virtual Test-Bench is an
abstract simulation model representing the physical
aerospace test-bench. It permits to simulate the
overall test-bench behavior, integrate and test the
functional components (HW/SW) of all project
partners in this model and enables to validate the
design at a high level of abstraction. The
architecture design tools and validation methods
developed in DECOS are applied wherever
applicable. With aid of the simulation model we
performed a concept validation of the physical test-
bench before developing the individual
components. Finally, the physical test-bench will be
validated and tested against the virtual simulation
model.

Within the DECOS process both
Matlab/Simulink and SCADE are employed,
because they are used for different purposes: the
first for the design of continuous models, the latter
for the design of discrete models for qualified code
generation and formal analysis. Hence both tools
were used at our Virtual Test-Bench, too. In order
to get a seamless integrated development process,
SCADE offers methods for interaction with
Simulink. These features were employed for our
Virtual Test-Bench and the resulting process will be
explained in the following, illustrated by Figure 6.

The final goal was the overall simulation
model, a functional model that comprises mainly
three elements: (1) The application controller model
that is the actual system-under-development (SUD)
and that will be used for code generation for the
HW-SW-integration of the physical components.
For validation of the controller concepts, simulation
of the model is required prior to testing of the
generated code at physical hardware. (2) For

realistic and significant simulation results, the
application controller part needs to be fed with
inputs corresponding to reactions of the mechanical
environment of the system. Therefore an extra
model was developed by TUHH in a former project
that represents the whole mechanical subsystem of
the flap panel and considers all relevant dynamic
effects: main natural frequencies, damping, friction
and backlash of the mechanics. This model is
integrated in an mechanical environment model,
which is interfaced with the controller model and
hence consumes the controller commands and
produces feedback of the sensors. (3) To control the
simulation itself either interactively or in a batch
mode, a custom graphical user interface was
required. This is the third part of the overall
simulation model and connected to both, the
controller model and the environment model. The
three model parts including the development
process will be explained in more detail in the
following sections.

Environment Model
The environment model is of continuous time

character, because it represents a non-linear
dynamical physical system. The overall simulation
model integrates especially this continuous time
model and therefore needs to be able to execute
continuous time simulations. Hence the overall
simulation model itself is a Simulink Model.

As the electronic synchronization is a new
feature of the flap system, the model of the
mechanical subsystem needed to be adapted to this
new approach. Especially the smart sensors, the
PPUs, were created in Simulink (including a
standalone mechanics and controller part).

Application Controller Software
The model for the application controller part

was required to be implemented in SCADE, due to
the possible qualified code generation and formal
analysis. Modeling started in following the DECOS
process outlined in Figure 3 and the corresponding
section above. Hence we built a Platform
Independent Model (PIM) for the flap system that
specifies the distribution and communication
scheme of the system. The functionality was
separated into distinct jobs and interfaces, ports and
messages were created with all required attributes to
define the communication behavior and access to
hardware resources like sensors and actuators.

Figure 6 Overview of the Virtual Test-Bench with the SCADE and Simulink interaction

Although the complexity of the application
seems to be not very high (9 ECUs participate in the
TTA, with only three different types), the PIM
consists of many hundreds of objects and more than
2000 relations between them. This was hardly
manageable within a multi-purpose UML editor and
therefore a domain specific PIM editor was created
within DECOS to facilitate this task.

A UML-SCADE gateway can be employed to
automatically create a SCADE skeleton model from
the UML system description. Jobs in the PIM

become empty SCADE nodes, which need to be
filled with the functional model content in SCADE
itself. The SCADE model shall be employed in the
simulation and therefore the jobs needs to be
connected. The UML-gateway automatically creates
a SCADE base model that integrates all job nodes
and interconnects them corresponding to the
communication scheme of the PIM. Access to
system resources (sensors/actuators) in the PIM
become inputs and outputs of this SCADE base
model and form the interface to the environment

during simulation and the interface to hardware
device drivers at code generation.

The jobs of the system control unit (SCU) and
the actuator control electronics (ACE) were
modeled directly in SCADE. The SCADE language
notation was used for describing data flow,
especially for modeling the control loops of ACE
and PPU. Safe State Machines were mainly
employed in the SCU to model the complex
monitoring and fault reaction strategies of the
system. Nevertheless it is not always an obvious
decision between data flow and control flow
characteristics of a system part. Especially the
monitoring subsystem shows properties of both
worlds and therefore it was sometimes difficult to
decide which part to model in the SCADE language
notation and which part in a Safe State Machine.
The upcoming fusion of data flow and control flow
models [22] in future SCADE releases is therefore
much appreciated.

Only the position pick-off units (PPU) are
created in Simulink. A Simulink-SCADE gateway
is able to semi-automatically transform the
Simulink model into a SCADE model. Although
such gateway was already available, it gets
augmented and adopted within the DECOS project
to fit to the needs of this process. Especially the
import of multiple Simulink models into one
SCADE model is a new feature and requires
automatic namespace creation to prevent label
overlapping from different models.

The final integrated SCADE model comprises
all functional behavior of the controller ECUs and
represents the distribution of the system. In the final
version it might even represent the time-triggered
communication by connecting the different jobs
within SCADE not only with direct links but with
delay and job-trigger operators (so-called condact).
That yields to a model representing the
communication exactly as specified in the
configuration (PIM) and the schedules (PSM).
Therefore formal analysis could be employed to
proof system properties even across communication
borders and even for the response time domain.

To the SCADE model formal verification
methods can be applied to increase the confidence
in the system implementation. The SCADE suite
supports both, model-checking and model-test
coverage (MTC) [23].

Graphical User Interface
In order to fully customize a graphical user

interface (GUI) of the overall simulation model, we
implemented it in the Java programming language.
In Simulink so-called SFunctions are used to
implement custom functions. Those SFunctions can
be implemented in C, C++ and the Matlab
programming language. The Matlab language itself
allows to call methods in Java objects. This feature
is used here to generate an interface between
Simulink and the custom Java application: A
Simulink wrapper SFunction stores all input values
from environment and controller, calls the Java
application and passes the values each major
simulation step and vice versa. The application
itself consists of four parts and because the GUI is
only one part of it, it is called the Java Simulation
Interface (JSI). The graphical user interface can be
used to interactively control the simulation by a
user. For example pilot commands or different
airspeeds can be applied. The environment model
can simulate many different faults of the
mechanical subsystem, such as motor
disconnection, powered runaway, shaft blockade or
brake freeze. These faults can be manually injected
by the user via the GUI. Graphical plots display the
history of relevant system variables for analysis of
simulation runs. A scenario player can load
predefined flight scenarios and execute the
simulation independently without user interaction.
Finally log files of simulation values can be
recorded and replayed in order to display a
simulation run without performing the computation
prone simulation itself again.

Code Generation
For deployment, C code of multiple different

sources needs to be integrated as shown in Figure 3.
This comprises the configuration of the distributed
time-triggered architecture in the PSM, functional
code from the SCADE models, wrapper code
integrating this functional code and code from
libraries for middleware (e.g. redundancy
management) and architectural services coming
from the operating system. In Figure 6 this is
summarized to functional code directly generated
from the SCADE models and code for configuration
and wrapping generated from libraries and the HW-
SW-integration toolchain of DECOS. These files
become combined and compiled into the individual
binaries for the distributed ECUs.

Simulation
As mentioned above, the different model parts

finally are integrated in the overall simulation
model in Simulink. In order to execute the whole
simulation in Simulink, one need some possibility
to execute a simulation of the application controller
model that is modeled in SCADE. Fortunately such
feature is provided directly by the SCADE suite.
Analogical to the GUI SFunction, SCADE creates
an SFunction, as well, that is embedded into the
overall simulation model. This SFunction is
implemented in C/C++ and therefore able to call
other C/C++ procedures or library functions. Two
different kinds of simulation modes are available:
(1) Whitebox simulation uses TCP/IP to connect to
the SCADE simulation tool itself and let Simulink
and SCADE exchange data on-the-fly during the
simulation run. While the Simulink model part is
executed in Simulink, the SCADE part is
automatically opened in SCADE and simulated
using the SCADE simulation engine. At each
simulation step, Simulink calculates its block’s
outputs, passes them to SCADE, which in turn
consumes these as inputs, calculates its own outputs
and passes them back to Simulink for the next step.
This way, the SCADE simulation viewer can be
used to display all details of the SCADE model
during simulation for debugging. Internal variables
of the data flow part can be viewed as well as the
internal states of the statecharts. (2) Blackbox
simulation can be used to do simulation without
SCADE and to speed up simulation time. Therefore
prior to simulation the SCADE code generators are
employed to generate the functional C code of the
model. This code automatically gets compiled into a
binary C-library, which represents the functional
behavior of the SCADE model. During simulation,
the SFunction within Simulink interacts only with
this binary C-library: At every simulation step, the
Simulink outputs are passed to the library, a step
function is called that executes one step of the
internally represented SCADE model and the
outputs are returned to Simulink. This is much
faster than the whitebox simulation and the
simulation can be done without concurrent
execution of SCADE.

Development Results
The high-lift flap system of the aerospace

demonstrator of DECOS was successfully modeled
using the process outlined above. We were using

both SCADE and Simulink, the first for formal
analysis and code generation and the second for
simulations with a complex continuous time
environment model. This enabled us to validate the
concepts for the physical high-lift flap system on a
very high level of abstraction and an early stage of
the development process, especially prior to
physical testing of physical hardware.

Combined with the UML based system
configuration modeling and the comprehensive
toolchain of the DECOS project, the development
becomes an integrated and nearly seamless process.
This approach allows the developer to stay on a
very abstract level of the system, because many
protocol and hardware specific configurations are
done automatically by the sophisticated tool chains.
Unfortunately the experience shows that this
approach, while it eases the development as such, it
also reduces insights into the time-triggered
behavior of the system. Although static schedules
predefine the points in time when messages are sent
and tasks are triggered, this introduces a fixed delay
in the flow of information from one task over TTP
messages to another task.

An example is given in Figure 7: The upper
diagram shows the flow of information from an
event recognized by some sensor until the reaction
of the system by an actuator. Here the information
needs to be processed by three distributed tasks, t1,
t2 and t3, which communicate by sending the
messages m1 and m2. The lower diagram shows the
end-to-end latency from event to reaction as to be
the sum of fixed delays and actual processing times
in this flow of information. Only one set of task
schedules and communication bus schedule is
displayed, but obviously the end-to-end latency
highly depends on the details of these schedules and
does not necessarily relate to the message period of
the tasks. Commercial toolchains like from TTTech
[24] split up responsibility of the different
schedules: The global communication schedule is
done by the system integrator and the local task
scheduled for the hosts are done by the subsystem
suppliers in order to be as much independent of the
integrator and other subsystem suppliers as
possible. This approach complicates the situation
for response time analysis, because the end-to-end
latency is a product of all schedules together and
therefore it can neither be analyzed by one of the
partners alone nor a schedule-set with a certain

latency be found. The only solution is to restrict the
task-schedulers to very small allowed task intervals.

Figure 7 End-to-end-latency in the time-
triggered architecture

To improve this situation, we would appreciate
a solution that allows to review how information
beginning at some event in the real world flows
through the system, in order to analyze the response
time until the reaction of some part of the system.
For example, this would allow the detection of
excessive overall latencies, for example because a
system might introduce flows of information that
pass arbitrary many TDMA-rounds. Another
scenario that would be detected easily would be an
over-restricted system, where the required
information flows are restricted to specified
TDMA-round-generations that cannot be scheduled
at all.

Conclusion
For the aerospace industry as well as for other

industrial sectors, the results of the DECOS project
are needed to provide a fundamental and
comprehensive basis for future innovations within
utility systems.

We demonstrate the practicability of the
DECOS results by implementing the safety-critical
high-lift flap system. We have shown the model-
based development process exemplary for this
application and have outlined how UML modeling
for system configurations and functional modeling
on the basis of synchronous languages in SCADE
get combined. Benefits stem from both worlds:
Standardized tools and interfaces for UML models
ease the development of integrated toolchains,
while the formal semantics of synchronous
languages enable formal verification and qualified
code generation and fits the deterministic
philosophy of the time-triggered architecture. Major

goals are time and cost reductions in the
development of safety-critical applications. In
DECOS appropriate architectures, methodologies,
associated COTS hard- and software components
and comprehensive toolchains are developed which
fulfil the requirements of the aerospace industry.
These components and tools cover cluster design,
middleware and code generators, validation and
certification as well as systems-on-a-chip (SoCs)
for high dependability applications. Furthermore
technology-invariant software interfaces and
encapsulated virtual networks with predictable
temporal properties will be developed such that
application software can be transferred to a new
hardware and communication base with minimal
effort (legacy reuse).

To summarize, we consider the synchronous
modeling paradigm to be a nice complement and
enhancement to the TTA approach of designing
distributed real-time systems. The current state of
this technology, regarding theoretical understanding
as well as practical tool support, already makes it
feasible to develop such systems. However, we still
see room for improvement, in particular regarding
the integration and presentation of information
relevant for the designer.

References
[1] Mathworks Inc., Simulink - Simulation and
Model-Based Design, Mathworks Inc., 2005,
http://www.mathworks.com/access/helpdesk/help/p
df_doc/simulink/sl_using.pdf

[2] Esterel Technologies, Company homepage,
http://www.esterel-technologies.com.

[3] D. Harel, Statecharts: A visual formalism for
complex systems, Science of Computer
Programming, vol. 8, no. 3, pp. 231-274, June 1987.

[4] T. MathWorks, Inc., Stateflow and Stateflow
Coder User’s Guide, Version 6, Natick, MA,
September 2005,
http://www.mathworks.com/access/helpdesk/help/p
df_doc/stateflow/sf_ug.pdf

[5] C. André, SyncCharts: A Visual Representation
of Reactive Behaviors, I3S, Sophia-Antipolis,
France, Tech. Rep. RR 95-52, rev. RR (96-56),Rev.
April 1996,

http://www.i3s.unice.fr/andre/CAPublis/SYNCCH
ARTS/SyncCharts.pdf

[6] C. André, Semantics of S.S.M (Safe State
Machine),Esterel Technologies, Sophia-Antipolis,
France, Tech. Rep., Apr. 2003, http://www.esterel-
technologies.com, in the download section.

[7] ISO 11898. Road Vehicles - Interchange of
digital information – Controller area network
(CAN) for high speed communication, International
Standards Organisation, 1993.

[8] H. Kopetz and G. Bauer, The time-triggered
architecture. Proceedings of the IEEE, vol. 91, no.
1, pp. 112-126, 2003.

[9] H. Kopetz and G. Grünsteidl, TTP - a time-
triggered protocol for fault-tolerant real-time
systems, Institut für Technische Informatik,
Technische Universität Wien, Treilstr. 3/182/1, A-
1040 Vienna, Austria, Tech. Rep., 1992.

[10] R. Belschner, R. Mores, G. Hay, J. Berwanger,
C. Ebner, S. Fluhrer, E. Fuchs, B. Hedenetz, A.
Krüger, P. Lohrmann, D. Millinger, M. Peller, J.
Ruh, A. Schedl, and M. Sprachmann, FlexRay: The
communication system for advanced automotive
control systems, in SAE 2001 World Congress.
Detroit, USA: Society of automotive Engineers,
Mar. 2001.

[11] T. Führer, B. Müller, W. Dieterle, F. Hartwich,
R. Hugel, and M. Walther, Time triggered
communication on CAN, http://www.can-
cia.org/can/ttcan/fuehrer.pdf, 2000.

[12] DECOS - Dependable Components and
Systems, Research project homepage,
https://www.decos.at/.

[13] DO-178B - Software Considerations in
Airborne Systems and Equipment Certification,
RTCA/EUROCAE, Dec. 1992.

[14] R. Atkinson, COTS tools reduce the cost of
embedded software certification, COTS Journal,
2002.

[15] J. Rushby, Modular certification, SRI
Computer Science Laboratory, Tech. Rep., 2001,
http://hdl.handle.net/2002/14483

[16] H. Fecher, J. Schönborn, M. Kyas, and W. P.
de Roever, 29 new unclarities in the semantics of
UML 2.0 state machines. in ICFEM, ser. Lecture

Notes in Computer Science, vol. 3785. Springer,
2005, pp. 52-65.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D.
Pilaud, The synchronous data-flow programming
language LUSTRE, Proceedings of the IEEE, vol.
79, no. 9, pp. 1305-1320, September 1991,
http://citeseer.nj.nec.com/halbwachs91synchronous.
html

[18] G. Berry, The Foundations of Esterel, Proof,
Language and Interaction: Essays in Honour of
Robin Milner, 2000, editors: G. Plotkin, C. Stirling
and M. Tofte

[19] A. Bouali, B. Dion, and K. Konishi, Using
formal verification in real-time embedded software,
in JSAE Annual Congress, 2005.

[20] T. Neuheuser, B. Holert, and U. B. Carl,
Elektrische Antriebssysteme für ein zentrales
Landeklappenelement, in Deutscher Luft- und
Raumfahrtkongress, vol. DGLR-JT 2002-192,
Stuttgart, 2002.

[21] ARINC 664, Aircraft Data Networks, Part 7
Deterministic Networks, ARINC, Annapolis,
Maryland, USA, http://www.arinc.com

[22] J.-L. Colaço, B. Pagano, and M. Pouzet, A
Conservative Extension of Synchronous Data-flow
with State Machines, in ACM International
Conference on Embedded Software (EMSOFT’05),
Jersey city, New Jersey, USA, September 2005.

[23] P. Amay and B. Dion, Combining model-
driven design with diverse formal verification, in
ERTS 2006 - Embedded Real Time Software, Jan.
2006.

[24] TTTech, Company homepage,
http://www.tttech.com.

Email Addresses
haf@informatik.uni-kiel.de

rvh@informatik.uni-kiel.de

joern.rennhack@airbus.com

jens.koch@airbus.com

25th Digital Avionics Systems Conference

October 15, 2006

