Comfortable Modeling of Complex Reactive Systems

Steffen Prochnow and Reinhard von Hanxleden
Real-Time and Embedded Systems Group, Dept. of Computer Science and Applied Mathematics
Christian-Albrechts-Universitit of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
{spr, rvh} @informatik.uni-kiel.de

Abstract

Modeling systems based on semi-formal graphical for-
malisms, such as Statecharts, has become standard prac-
tice in the design of reactive embedded devices. However,
the modeling of realistic applications often results in very
large and unmanageable graphics, severely compromising
their readability and practical use. To overcome this, we
present a methodology to support the easy development and
understanding of complex Statecharts. Central to our ap-
proach is the definition of a Statechart Normal Form (SNF),
which provides a standardized layout that is compact and
makes systematic use of secondary notations to aid read-
ability. This concept is extended to dynamic Statecharts.

1. Introduction

Statecharts [4] provide an effective graphical notation,
not only for the specification and design of reactive sys-
tems, but also for the simulation of the modeled system be-
havior. However in realistic systems, one is confronted with
large and unmanageable graphics due to a high number of
components or from interaction and interdependencies. A
problem is that existing modeling tools do not offer good
mechanisms for abstracting or condensing Statechart repre-
sentations. The problem becomes even more dramatic when
starting to simulate the system, as modular designs typically
instantiate Statecharts several times, and each instance may
have its own simulation status.

2. A Statechart Normal Form (SNF)

When coding in textual programming languages, it is
common practice to structure the text according to some
formatting conventions, for example regarding indentation.
However, as has already been observed for example by Pe-
tre [6], the use of secondary notations in graphical model-
ing is still underdeveloped. Regarding Statecharts, existing

style guidestend to focus on rather basic aspects such as the
maximal number of states per chart.

Based on aesthetic criteria [2]] and on the meaning un-
derlying the graphical Statechart elements, we have devised
rules for the layout of these elements, thus enforcing a stan-
dardized use of secondary notations. These rules effectively
define a SNF. As an example, consider the Statechart for
a simple traffic light controller presented in Figures [Ta] and
[Ib] The SNF variant is more compact and lets the viewer fo-
cus on the functionality of the Statechart.

3. Dynamic Statecharts

Statechart modeling tools generally support Statechart
simulation, where the system under development (SUD) is
subjected to some input stimuli, and the Statechart model
is animated according to the current configuration of the
SUD. The paradigm generally offered is that the Statechart
is shown as drawn by the user, and active states and transi-
tions are marked in a specific color. This is fine if the model
is small enough to be visible on the screen in its entirety; it
becomes problematic for realistic, larger models.

We here present an alternative paradigm for visualiz-
ing Statecharts during simulation. The basic idea is to dy-
namically construct a view of the system model that in-
cludes all active states (the focus) and their parent states
(the context); all other states are hidden. This constitutes
a dynamic variant of the semantic focus-and-context repre-
sentation [3]]. Compared to the SNF introduced in Section@
this is a normal form that not only considers the static struc-
ture of a Statechart, but also a specific configuration that
the system is in. We call this a Dynamic Statechart Normal
Form (DSNF), which lead to dynamic Statecharts. An ex-
ample sequence of dynamic Statecharts is shown in the Fig-

ures[Id [Td} and

4. The KIEL Modeling Environment

The Kiel Integrated Environment for Layout (KIEL)
employs a generic concept of Statecharts, which can be

(a) Original, manual layout (imported from Esterel Studio).

traffic_light

(b) Layout conforming to the SNF.

traffic_light

normal

(c) Entering the initial state—all lights red.

traffic_light

(d) Cars get a red/yellow light.

(traffic_light

(e) Entering the error state.

Figure 1: A traffic light example, illustrating the Statechart
Normal Form (SNF) and the dynamic simulation (DSNF).

adapted to specific notations and semantics, and it can read
in Statecharts that were created using other modeling tools.
The currently supported dialects are those from Esterel Stu-
dio and from Simulink/Stateflow. KIEL also provides an
editor to create Statecharts from scratch or to modify im-
ported Statecharts, and it provides a simulator.

Automated Layout of Statecharts: We chose to adopt
the layout framework GraphViz [3l], which is a collection
of tools implementing several graph layout algorithms. Ef-
ficiency was a high priority as even for large models the
on-the-fly layout of dynamic Statecharts should not notice-
ably slow down simulations.

Simulation in KIEL: KIEL can simulate Statecharts, ac-
cording to the semantics of the Safe State Machines (SSMs)
used in Esterel Studio or alternatively according the seman-
tics of Stateflow. In addition to the usual animation of static
model views, with highlighting active states and transitions,
KIEL also provides the dynamic Statechart mechanism out-
lined in Section[3

5. Future work

Preliminary feedback regarding the concept of SNFs and
dynamic Statecharts has been quite positive. However, we
would like to perform more systematic studies on this, also
employing expertise from cognitive psychology. We are ex-
perimenting with a transformation mechanism that converts
Esterel [1]] programs into equivalent SSMs; we also work on
an alternative textual Statechart description language that
is inspired by the dot format employed by GraphViz. This
then might result in the best of the textual and the graphi-
cal worlds—the efficiency and maintainability of textual en-
try and the clarity and beauty of visual display.

References

[1] G.Berry and G. Gonthier. The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation. Science
of Computer Programming, 19(2):87-152, 1992.

[2] R. Castello, R. Mili, and I. G. Tollis. A Framework for the
Static and Interactive Visualization for Statecharts. Journal of
Graph Algorithms and Applications, 6(3):313-351, 2002.

[3] E. R. Gansner and S. C. North. An open graph visu-
alization system and its applications to software engineer-
ing. Software—Practice and Experience, 30(11):1203-1234,
2000.

[4] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231-274, June
1987.

[5] O.Koth and M. Minas. Structure, Abstraction and Direct Ma-
nipulation in Diagram Editors. In M. H. et. al., editor, LNAI
2317. Springer Verlag, 2001.

[6] M. Petre. Why looking isn’t always seeing: readership skills
and graphical programming. Communications of the ACM,
38(6):33—44, June 1995.

