
Sequentially Constructive Concurrency
A Conservative Extension of the Synchronous Model of Computation

Reinhard von Hanxleden∗, Michael Mendler†, Joaquin Aguado†, Björn Duderstadt∗,
Insa Fuhrmann∗, Christian Motika∗, Stephen Mercer‡, and Owen O’Brien‡

∗Department of Computer Science, Kiel University, Kiel, Germany, E-mail: {rvh, bdu, ima, cmot}@informatik.uni-kiel.de
†Bamberg University, Bamberg, Germany, E-mail: {michael.mendler, joaquin.aguado}@uni-bamberg.de

‡National Instruments, Austin, TX, USA. E-mail: {stephen.mercer, owen.o’brien}@ni.com

Abstract—Synchronous languages ensure deterministic con-
currency, but at the price of heavy restrictions on what pro-
grams are considered valid, or constructive. Meanwhile, sequential
languages such as C and Java offer an intuitive, familiar pro-
gramming paradigm but provide no guarantees with regard to
deterministic concurrency. The sequentially constructive model of
computation (SC MoC) presented here harnesses the synchronous
execution model to achieve deterministic concurrency while ad-
dressing concerns that synchronous languages are unnecessarily
restrictive and difficult to adopt.

In essence, the SC MoC extends the classical synchronous
MoC by allowing variables to be read and written in any order as
long as sequentiality expressed in the program provides sufficient
scheduling information to rule out race conditions. The SC
MoC is a conservative extension in that programs considered
constructive in the common synchronous MoC are also SC and
retain the same semantics. In this paper, we identify classes of
variable accesses, define sequential constructiveness based on the
concept of SC-admissible scheduling, and present a priority-based
scheduling algorithm for analyzing and compiling SC programs.

I. INTRODUCTION

ONE of the challenges of embedded system design is the
deterministic handling of concurrency. The concurrent

programming paradigm exemplified by languages such as Java
and C with Posix threads essentially adds unordered concurrent
threads to a fundamentally sequential model of computation.
This may generate write/write and write/read race conditions,
which are problematic with regard to ensuring deterministic
behavior [1].

As an alternative to this non-deterministic approach, the
synchronous model of computation (MoC), exemplified by lan-
guages such as Esterel, Lustre, Signal and SyncCharts [2], ap-
proaches the matter from the concurrency side. Simultaneous
threads still share variables, where we use the term “variable”
in a generic sense that also encompasses streams and signals.
However, race conditions are resolved by a deterministic,
statically-determined scheduling regime, which ensures that
within a macro tick, or tick for short, a) reads occur after
writes and b) each variable is written only once. A program
that cannot be scheduled according to these rules is rejected
at compile time as being not causal, or not constructive. This
approach ensures that within each tick, all variables can be
assigned a unique value. This provides a sufficient condition
for a deterministic semantics, though, as we argue here, not

This work has been supported in part by the German Science Foundation, as
part of the PRETSY project (DFG HA 4407/6-1), and by National Instruments.
978-3-9815370-0-0/DATE13/ c©2013 EDAA

a necessary condition. Demanding unique variable values per
tick not only limits expressiveness but also runs against the
intuition of programmers versed in sequential programming,
and makes the task of producing a program free of “causality
errors” more difficult than it needs to be. For example, a
simple programming pattern such as if (!done) { . . . ; done =
true} cannot be expressed in a synchronous tick because done
must first be written to within the cycle before it can be read.
However, in this example, there is no race condition, nor even
any concurrency that calls for a scheduler in the first place.
Thus, there is no reason to reject such a program in the interest
of ensuring deterministic concurrency.

Contributions. We propose the sequentially constructive
model of computation (SC MoC), which permits variables
to have multiple values per tick as long as these values are
either explicitly ordered by sequential statements within the
source code or the compiler can statically determine that
the final value at the end of the tick is insensitive to the
order of operations. This extension still ensures deterministic
concurrency, and is conservative in the sense that programs
that are accepted under the existing synchronous MoC have
the same meaning under the SC MoC.

Outline. The next section discusses related work. Sec. III
presents the SC language (SCL) and the SC graph (SCG),
which are used in Sec. IV to define the SC MoC. Sec. V
presents an approach to analyze whether programs are SC and
to compute a schedule for them. We summarize in Sec. VI
and outline the remaining aspects of SC not covered here but
instead presented in an extended report [3].

II. RELATED WORK

Edwards [4] and Potop-Butucaru et al. [5] provide good
overviews of compilation challenges and approaches for con-
current languages, including synchronous languages and clas-
sical work such as Ferrante et al.’s Program Dependence Graph
(PDG) [6]. The SC Graph introduced here can be viewed as a
traditional control flow graph enriched with data dependence
information akin to the PDG for analysis and scheduling
purposes.

Esterel [7] provides deterministic concurrency with shared
signals. Causal Esterel programs on pure signals satisfy
a strong scheduling invariant: they can be translated into
constructive circuits which are delay-insensitive under the
non-inertial delay model [8]. The algebraic transformations
proposed by Schneider et al. [9] increase the class of pro-
grams considered constructive, but do not permit sequential
writes within a tick. The notion of sequential constructiveness

Statement type Program Assignment Sequence Conditional Label / Goto Parallel Pause
SCL statement s x = ex s1 ; s2 if (ex) s1 else s2 goto l . . . l : s fork s1 par s2 join pause

SCG statement
nodes

entry

s

exit

x = ex

s1

s2

if ex

s1

true

s2

goto

s

fork

entry entry

join

s1 s2

exit exit

surf

depth

Fig. 1. The mapping between SCL statements and SCG subgraphs. Double circles are place holders for SCG subgraphs. Solid arrows depict seq (sequential)
edges, the dotted line indicates a tick edge.

introduced here is weaker regarding schedule insensitivity, but
more adequate for the sequential memory models available for
imperative languages.

Caspi et al. [10] have extended Lustre with a shared
memory model. Similar to the admissibility concept used in
this paper, they defined a soundness criterion for scheduling
policies that rules out race conditions. However, they adhere to
the current synchronous model of execution in that they forbid
multiple writes even when they are sequentially ordered.

Synchronous C, a.k.a. SyncCharts in C [11], augments C
with synchronous, deterministic concurrency and preemption.
It provides a coroutine-like thread scheduling mechanism,
with thread priorities that have to be explicitly set by the
programmer. The algorithm presented in Sec. V-B can be
used to automatically synthesize priorities for Synchronous C.
PRET-C [12] also provides deterministic reactive control flow,
with static thread priorities.

SHIM [13] provides concurrent Kahn process networks
with CSP-like rendezvous communication [14] and exception
handling. SHIM has also been inspired by synchronous lan-
guages, but it does not use the synchronous programming
model, instead relying on communication channels for syn-
chronization.

Various other approaches with their own admissible
scheduling schemes have been considered for Statecharts.
The three most prominent approaches are due to Pnueli and
Shalev [15], Boussinot [16] and Berry and Shiple [17]. None
of them considers sequential control flow as SC does.

III. THE SC LANGUAGE AND THE SC GRAPH

To illustrate the SC MoC, we introduce a minimal SC Lan-
guage (SCL), adopted from C/Java and Esterel. The concurrent
and sequential control flow of an SCL program is given by
an SC Graph (SCG), which acts as an internal representation
for elaboration, analysis and code generation. Fig. 1 presents
an overview of the SCL and SCG elements and the mapping
between them.

A. The Control Example

Fig. 2 shows the Control example, which is inspired by
Programmable Logic Controller software used in the railway
domain. It processes requests (as indicated by the input flag
req) to a resource, which may be free or not. As indicated
in the dataflow/actor view in Fig. 2a, there are two separate
functional units, corresponding to the Request and Dispatch

threads. The output variables indicate whether the resource
has been granted or is still pending.

The execution of Control is broken into discrete reactions,
the aforementioned (macro) ticks. During each tick, the fol-
lowing sequence is performed:

1) read input variables from the environment,
2) execute all active (currently instantiated) threads until

they either terminate or reach a pause statement,
3) write output variables to the environment.

Only the output values emitted at the end of each macro tick
are visible to the outside world. The internal progression of
variable values within a tick, i. e., while performing a sequence
of micro ticks (cf. Sec. III-C), is not externally observable.
Hence, when reasoning about deterministic behavior, we only
consider the outputs emitted at the end of each macro tick.

The execution of Control begins with a fork that spawns
off Request and Dispatch. These two threads then progress
on their own. Were they Java threads, a scheduler of some
run time system could now switch back and forth between
them arbitrarily, until both of them had finished. Under the
SC MoC, their progression and the context switches between
them are disciplined by a scheduling regime that prohibits race
conditions. Determinism in Control is achieved by demanding
that in any pair of concurrent write/read accesses to a shared
variable, the write must be scheduled before the read. For
example, the write to checkReq in node L13 of the SCG
(Fig. 2c), corresponding to line 13 of the SCL program
(Fig. 2d), is in a different concurrent thread, relative to the read
of checkReq (L23). Hence thread Request must be scheduled
such that it executes L13 before Dispatch executes L23.

A common means to visualize program traces in syn-
chronous languages is a tick time line, as shown in Fig. 2b.
As can be seen there, in the first tick, the inputs free = true,
req = false produce the outputs grant = pend = false, under the
concurrent write-before-read scheduling sketched above.

An interesting characteristic of Control is that the concur-
rent threads not only share variables, but also modify them
sequentially. E. g., Dispatch first initializes grant with false,
and then, in the same tick, might set it to true. Similarly,
Request might assign to pend the sequence false/true/false.
Due to the prescribed sequential ordering of these assignments,
this does not induce any non-determinism. However, this
would not be permitted under the strict synchronous model of
computation, which requires unique variable values per tick.
Similarly, pend is read (L14) and subsequently written to (L15);
this (sequential) write-after-read is again harmless, although

Request

checkReqreq

pend
freeDispatch

grant
Dispatch

Control

(a) The dataflow view

-

free = true
req = false

grant = false
pend = false

free = true
req = true

grant = true
pend = false

(b) A tick time line, illustrating the first
two ticks of an example trace

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

(c) The SC Graph (SCG)

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6

7 fork {
8 // Thread ”Request”
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }
19 par {
20 // Thread ”Dispatch”
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join ;
29 }

(d) The SCL program

Macro tick a 1 1 2 2
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13

Input free t t t t
vars req f f t t
Output grant ⊥ f f f f t t
vars pend ⊥ f f f f t f f
Local var checkReq ⊥ f f f t t

CRoot L0 L7 [L28] [L28] [L28] [L28]
Continuations CRequest ⊥ L8 L10 L11 L13 L14 L14 L14 L14 L14 L16s (L16s) L16d L10 L11 L12 L13 L14 L14 L14 L14 L14 L14 L15 L16s (L16s)

CDispatch ⊥ L20 L20 L20 L20 L20 L22 L23 L25s (L25s) (L25s) (L25s) L25d L25d L25d L25d L25d L25d L22 L23 L24 L25s (L25s) (L25s) (L25s) (L25s)
Scheduled nodes Ra

i L0 L7 L8 L10 L11 L13 L20 L22 L23 L25s L14 L16s L16d L10 L11 L12 L13 L25d L22 L23 L24 L25s L14 L15 L16s

(e) An admissible sequence of macro ticks. The values true and false are abbreviated as t and f . At tick granularity, this run corresponds to the
example trace shown in (b). We see for each micro tick the current variable values, where ⊥ denotes “uninitialized”. The input values provided by
the environment and the output values visible to the environment are shown in bold. To avoid cluttering the table, values that do not change from
one micro tick to the next are omitted, except at the end of a macro tick.

Fig. 2. The Control example. The SCG indicates sequential flow (continuous arrows), data dependencies (dashed, red arrows), and the tick delimiter edges
(dotted lines). The data dependency edges are labeled with their type (here wr only) and their weight (1); other edges have weight 0. The SCG nodes are labeled
with node identifiers, which here correspond to line numbers of the SCL program, and priorities as computed by the algorithm presented in Sec. V-B.

forbidden under the existing synchronous MoC. However, be-
cause it is possible to schedule Control such that all concurrent
write-before-read requirements are met and all such schedules
lead to the same result, we consider Control sequentially
constructive. The rest of this paper consists of making this
notion precise, and describing a practical strategy to analyze
sequential constructiveness and to implement schedules that
adhere to the SC model of computation.

B. Thread Terminology

We distinguish the concept of a static thread, which relates
to the structure of a program, from a dynamic thread instance
(see Sec. III-D), which relates to a program in execution. We
here define our notion of (static) threads, building on the SCG
program representation G = (N,E) with statement nodes N
and control flow edges E.

The set of threads of G is denoted T . Each thread t ∈ T ,
including the top-level Root thread, is associated with unique
entry and exit nodes t.en , t.ex ∈ N .

Each n ∈ N belongs to a thread th(n), defined as the
immediately enclosing thread t ∈ T such that there is a control
flow path to n that originates in t.en and that does not traverse
any other entry node t′.en , unless that flow path subsequently
traverses t′.ex also. For each thread t we define sts(t) as the
set of statement nodes n ∈ N such that th(n) = t. For
example, the Control program consists of the threads T =
{Root, Request, Dispatch}, and the Root thread consists of the
statement nodes sts(Root) = {L0, L7, L28, L29}.

We define fork(t) to be the fork node that immediately
precedes t.en . Every t 6= Root has an immediate parent thread
p(t), defined as th(fork(t)). In the example, p(Request) =
p(Dispatch) = Root. We also recursively define the set of

ancestor threads p∗(t) to consist of t, p(t), p(p(t)), . . . , Root.

We are now ready to define (static) thread concurrency:

Definition 1 (Concurrent Threads): Two threads t1, t2 ∈
T are concurrent, denoted t1 || t2, iff there exist t′1 ∈ p∗(t1),
t′2 ∈ p∗(t2), with t′1 6= t′2, which share a common fork node
fork(t′1) = fork(t′2). We then refer to this fork node as the
least common ancestor fork, lcafork(t1, t2).

In Control, it is Request || Dispatch, whereas Root is not
concurrent with any thread. Note that concurrency on threads
can be checked with a simple, syntactic analysis of the program
structure.

C. Macro Ticks and Micro Ticks

Definition 2 (Ticks): For an SCG G = (N,E), a (macro)
tick R, of length len(R) ∈ N, is a mapping from micro tick
indices 1 ≤ j ≤ len(R), to nodes R(j) ∈ N . A run of G is a
sequence of macro ticks Ra, indexed by a ∈ N≥1.

One possible run of the Control example is illustrated in
Fig. 2e. The continuations denote the current state of each
thread, i. e., the node (statement) that should be executed
next, similar to a program counter. In addition, a continuation
denotes whether a thread is currently active, i. e., eligible for
execution, or inactive. Parenthesized node labels indicate that
a thread is inactive because it has finished its current tick,
whereas bracketed node labels indicate that a thread is inactive
because it waits for its child threads to terminate. A ⊥ denotes
that there currently is no continuation associated with a thread,
as it has either not been started yet or has terminated since the
last start; we then also say that a thread is disabled, as opposed
to enabled.

D. Concurrency of Node Instances

For a tick R, an index 1 ≤ i ≤ len(R), and a node n ∈ N ,
last(n, i) = max{j | j ≤ i, R(j) = n} retrieves the last
occurrence of n in R at or before index i. If it does not exist,
last(n, i) = 0. A node instance is a pair ni = (n, i) consisting
of a statement node n ∈ N and a micro tick count i ∈ N.

Definition 3 (Concurrent Node Instances): Two node in-
stances ni1 = (n1, i1) and ni2 = (n2, i2) are concurrent in a
macro tick R, denoted ni1 |R ni2, iff

1) they appear in the micro ticks of R, i.e., i1, i2 ≤
len(R) and n1 = R(i1), n2 = R(i2),

2) they belong to statically concurrent threads, i.e.,
th(n1) || th(n2), and

3) their threads have been instantiated by the same
fork, i.e., last(n, i1) = last(n, i2) where n =
lcafork(n1, n2).

IV. SEQUENTIAL CONSTRUCTIVENESS

A. Types of writes

In general, concurrent writes to the same variable constitute
a race condition that must be avoided. However, there are
exceptions to this that we want to permit, again with the goal
of not needlessly rejecting sensible, deterministic programs.

Definition 4 (Confluent/identical/effective writes): Two
assignments x = ex1 and x = ex2 to the same variable x are
confluent if the order in which they are executed does not
matter (otherwise non-confluent). We call these assignments
identical if ex1 and ex2 evaluate to the same value (otherwise
non-identical). An assignment is effective if it changes the
value of a variable (otherwise ineffective).1

Given two identical writes, the second write is ineffective.
Obviously, identical writes are confluent. However, they are
not the only type of confluent writes.

Definition 5 (Combination function): A function f(x, y)
is a combination function on x if, for all x and all y1, y2,
f(f(x, y1), y2) = f(f(x, y2), y1).

This is a generalized variant of Esterel’s combination
function that allows to merge concurrent emissions of valued
signals, for example via addition; this also permits to emulate
Esterel-style signals [3].

Definition 6 (Absolute/relative writes): For a combination
function f , an assignment x = f(x, ex) where ex does not
reference x is a relative write, of type f . Other assignments
are absolute writes.

Relative writes of the same type are also confluent.

B. SC-Admissible Scheduling

We are now ready to define what variable accesses we
allow in the SC MoC, and what scheduling requirements the
accesses induce. In a nutshell, the order to be imposed by
any valid run is, within all ticks t, for all variables v that are
accessed concurrently within t, “any identical absolute writes
on v before any confluent relative writes on v before any reads
on v.”

Definition 7 (SC-Admissibility, Constructiveness): A run
for an SCG is SC admissible if, for all ticks R in this run,
and for all concurrent node instances ni1,2 = (R(i1,2), i1,2),
with 1 ≤ i1 < i2 ≤ len(R) and ni1 |R ni2, none of the
following SC scheduling violations occurs:

V1 R(i1) and R(i2) perform non-confluent writes on the
same variable;

V2 R(i1) reads a variable, on which R(i2) then performs
an effective write;

V3 R(i1) performs a relative write to a variable, on which
R(i2) then performs an absolute write.

A program is sequentially constructive (SC) if (i) there exists
an SC-admissible run for it, and moreover (ii) every SC-
admissible run generates the same, deterministic trace of macro
ticks.

Note that an SC-admissible order cannot be found if there
are concurrent, non-confluent writes.

The mere existence of an SC-admissible run does not yet
guarantee determinism. A counter example is the program

1To be exact, these definitions imply a reference to all reachable memory
configurations of all possible runs, which come into play when formally
defining the semantics of SCL/SCG [3].

1 module NonDet
2 output bool x = false, y = false;
3 {
4 fork // Thread ”CheckX”
5 if (! x) y = true;
6 par // Thread ”CheckY”
7 if (! y) x = true;
8 join ;
9 }

(a) The SCL program

CheckX CheckY

entry

x = false; y = false

exit

if !x

y = true

true

if !y
1

wr
x = true

true1wr

(b) The SC Graph

Fig. 3. The NonDet example, illustrating multiple admissible runs and non-
deterministic outcome.

NonDet presented in Fig. 3, which has two sequentially ad-
missible runs. Depending on which conditional is scheduled
first, we end up with the memory [x = true, y = false] or
[x = false, y = true]. These SC-admissible runs are non-
deterministic and thus NonDet is not SC.

V. ANALYZING SEQUENTIAL CONSTRUCTIVENESS

A. Concurrent variable accesses

Definition 8 (Concurrent Nodes): Two nodes n1, n2 ∈ N
are concurrent, denoted n1 | n2, iff they may both execute
in concurrent node instances within the same tick, i.e., there
is a reachable macro tick R and i1, i2 ≤ len(R) such that
n1 = R(i1), n2 = R(i2) and (n1, i1) |R (n2, i2).

We introduce the following relations on nodes in N :

• n1 →seq n2 if there is a sequential control flow edge
from n1 to n2.

• n1 ↔ww n2 iff n1 | n2 and there exists a variable on
which n1 and n2 perform non-confluent writes.

• n1 →wr n2 iff n1 | n2 and n1 performs an absolute
write to a variable that is read by n2.

• n1 →wi n2 iff n1 | n2 and n1 performs an absolute
write to a variable on which n2 performs a relative
write (the subscript i stands for “increment”).

• n1 →ir n2 iff n1 | n2 and n1 performs a relative write
to a variable that is read by n2.

• n1 →wir n2 iff n1 →wr n2 or n1 →wi n2 or
n1 →ir n2. This summarizes the constraints induced
by concurrent write/increment/read accesses.

• n1 → n2 iff n1 →seq n2 or n1 →wir n2, that is, if
there is any ordering constraint.

Definition 9: A program is acyclic SC (ASC) schedulable
if in its SCG (i) there are no nodes n1, n2 with n1 ↔ww n2,
and (ii) there is no → cycle containing →wir edges.

Theorem 10 (Sequential Constructiveness): Every ASC
schedulable program is sequentially constructive.

Proof sketch: This follows directly from examining the
constraints required by ASC schedulability and the SC-
admissibility rules underlying the definition of SC, plus the
observation that under ASC scheduling, all potential writes
are scheduled before any reads, thus ensuring determinism.

The Control example is ASC schedulable; NonDet, however,
contains a cycle that involves wr edges, and therefore is not
ASC schedulable.

B. Determining SC schedules

For a sequentially constructive program, a valid schedule is
one which executes concurrent statements in the order induced
by →. Such a schedule may be implemented by associating a
priority n.pr with each statement node n.

Definition 11 (Priorities): The priority n.pr of a statement
n is the maximal number of→wir edges traversed by any path
originating in n in the SCG.

A scheduler that always gives control to the thread with
highest priority, chosen from the set of threads that are still
active in the current tick, never allows a statement with higher
priority to wait on one with lower priority. Such a scheduler
implements a valid schedule, as can be verified from the SCG
construction. For example n1 →wi n2 implies n1 →wir n2,
which implies, by definition of priorities, n1.pr > n2.pr,
which in turn implies that n1 gets scheduled before n2.

The priority concept can also serve to determine sequential
constructiveness, based on Thm. 10 and the following theorem:

Theorem 12 (Finite Priorities): A program is ASC
schedulable iff (i) there are no statements n1, n2 with
n1 ↔ww n2, and (ii) all statement priorities are finite.

Proof sketch: This follows from the observation that whenever
ASC schedulability requires that n1 must be scheduled before
n2, then n1 gets assigned a higher priority than n2.

C. Computing priorities

The calculation of priorities (Def. 11) can be formulated
as a longest weighted path problem. We assign to each edge
e ∈ E a weight e.w, with e.w = 0 iff e.src →seq e.tgt , and
e.w = 1 iff e.src →wir e.tgt . Note that the relations→wir and
→seq exclude each other, as statements cannot be sequential
and concurrent to each other, so the weight of each edge is
uniquely determined. With this assignment of weights, n.pr
becomes the maximal weight of any path originating in n.

A non-trivial aspect in calculating priorities is that we want
to handle (sequential) loops, i. e., cyclic SCGs. In the usual
synchronous MoC, loops are prohibited when they can occur
within a tick; this simplifies the scheduling problem, but is
again more restrictive than necessary to ensure determinism.
For arbitrary (i. e., possibly cyclic) weighted graphs, the com-
putation of the longest weighted path is an NP-hard problem,
as it can be reduced to the Hamiltonian path problem. However,
we can exclude all graphs with a positive weight cycle, as these
cycles would contain a →wir edge, which would mean that
the program is not ASC schedulable. Thus we can compute
priorities efficiently as follows:

1) Detect whether any positive weight cycles exist. We
can do so by computing the Strongly Connected
Components (SCCs), e.g., by Tarjan’s algorithm [18],
and checking if any SCC contains a node that is
connected to another node within the same SCC by
a →wir edge.

2) If a positive weight cycle exists, the program is
not ASC schedulable; we then reject the program.
Otherwise, we accept the program, and continue.
Now nodes in the same SCC can reach each other,
but only through paths with weight 0, and therefore
must have the same priority.

3) From the SCCs, construct the directed acyclic graph
GSCC = (NSCC , ESCC), where NSCC ⊂ N con-
tains a representative node from each SCC of G
(using e. g. the SCC roots computed by Tarjan’s
algorithm), and ESCC contains an edge from one
SCC representative to another iff the corresponding
SCCs are connected in G. Here we assign an edge
in ESCC the maximum weight of the corresponding
edges in E.

4) Compute for each nSCC ∈ NSCC the maximum
weighted length (priority) nSCC .pr of any path orig-
inating in nSCC . This can be done with a depth-first
recursive traversal of all edges in the acyclic GSCC .

5) Assign each statement n ∈ N the priority computed
for its SCC.

Note that we can perform all these steps in time linear to
the number of nodes and edges of the graph. For the Control
example, the resulting priorities are indicated in Fig. 2c.

VI. SUMMARY AND OUTLOOK

Relying on a scheduler that is blind to shared variable
accesses, such as a Java thread scheduler, makes concurrent
programming a difficult endeavor with generally unpredictable
outcome. The SC MoC presented in this paper harnesses the
synchronous MoC where it truly matters, namely to ensure
determinism when shared variables are accessed concurrently,
and combines this with the flexibility and familiarity of se-
quential programming.

This seemingly simple idea has turned out to be a fairly
rich topic, of which only the fundamentals could be covered
in the limited space available. More on how the SC MoC
relates to other MoCs can be found in the full version of this
paper [3]. There we also cover related work in more depth,
formally define the mapping from SCL to SCG, present a
formal semantics for SCL/SCG, discuss conservative approxi-
mations of SC-admissibility, examine how ASC schedulability
is conservative wrt. SC, explain how Esterel/SyncChart-style
pure and valued signals can be emulated with shared variables
in the SC MoC, illustrate how hierarchical abortions can be
mapped to SCL/SCG, discuss further synchronous language
issues such as statement reincarnation and instantaneous loops,
and present further examples including the combined use of
absolute and relative writes.

Current and future work entails gathering practical experi-
ence with full-scale applications, as well as a further theoretical
investigation as how the SC MoC compares to other concurrent
MoCs.

ACKNOWLEDGMENT

The material presented here has benefited greatly in sub-
stance and presentation from discussions with Hugo Andrade,
Stephen Edwards—who rightfully pointed to relationships with
static single assignment techniques—, Jeff Jensen, Murali
Parthasarathy, Marc Pouzet, and Partha Roop, who helped to
improve an earlier draft of this manuscript.

REFERENCES

[1] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5,
pp. 33–42, 2006.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone, “The Synchronous Languages Twelve Years Later,”
in Proceedings of the IEEE, Special Issue on Embedded Systems,
vol. 91, Jan. 2003, pp. 64–83.

[3] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, O. O’Brien, and P. Roop, “Sequentially Construc-
tive Concurrency—A conservative extension of the synchronous model
of computation,” Christian-Albrechts-Universität zu Kiel, Department
of Computer Science, Technical Report, ISSN 2192-6247, to appear.

[4] S. A. Edwards, “Tutorial: Compiling concurrent languages for sequen-
tial processors,” ACM Transactions on Design Automation of Electronic
Systems, vol. 8, no. 2, pp. 141–187, Apr. 2003.

[5] D. Potop-Butucaru, S. A. Edwards, and G. Berry, Compiling Esterel.
Springer, May 2007.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[7] G. Berry, “The foundations of Esterel,” Proof, Language and Interac-
tion: Essays in Honour of Robin Milner., 2000, editors: G. Plotkin, C.
Stirling and M. Tofte.

[8] M. Mendler, T. Shiple, and G. Berry, “Constructive boolean circuits and
the exactness of timed ternary simulation.” Formal Methods in System
Design, vol. 40, no. 3, pp. 283–329, 2012.

[9] K. Schneider, J. Brandt, T. Schüle, and T. Türk, “Improving construc-
tiveness in code generators,” in International Workshop on Synchronous
Languages, Applications, and Programming (SLAP’05), Edinburgh,
Scotland, UK, 2005.

[10] P. Caspi, J.-L. Colaço, L. Gérard, M. Pouzet, and P. Raymond, “Syn-
chronous Objects with Scheduling Policies: Introducing safe shared
memory in Lustre,” in ACM International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), Dublin, June
2009.

[11] R. von Hanxleden, “SyncCharts in C—A Proposal for Light-Weight,
Deterministic Concurrency,” in Proceedings of the International Confer-
ence on Embedded Software (EMSOFT’09). Grenoble, France: ACM,
Oct. 2009, pp. 225–234.

[12] S. Andalam, P. Roop, A. Girault, and C. Traulsen, “PRET-C: A new
language for programming precision timed architectures,” in Prooced-
ings of the Workshop on Reconciling Performace with Predictability
(RePP), Embedded Systems Week, Grenoble, France, Oct. 2009.

[13] O. Tardieu and S. A. Edwards, “Scheduling-independent threads and
exceptions in SHIM,” in Proceedings of the Proceedings of the In-
ternational Conference on Embedded Software (EMSOFT’06), Seoul,
Korea, Oct. 2006.

[14] C. A. R. Hoare, Communicating Sequential Processes. Upper Saddle
River, NJ: Prentice Hall, 1985.

[15] A. Pnueli and M. Shalev, “What is in a step: On the semantics of
Statecharts,” in Proc. Int. Conf. on Theoretical Aspects of Computer
Software (TACS’91). London, UK: Springer, 1991, pp. 244–264.

[16] F. Boussinot, “SugarCubes implementation of causality,” INRIA, Re-
search Report RR-3487, Sep. 1998.

[17] T. R. Shiple, G. Berry, and H. Touati, “Constructive Analysis of Cyclic
Circuits,” in Proc. Int. Design and Test Conference (ITDC’96), Paris,
France, Mar. 1996.

[18] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal of Computing, vol. 1, no. 2, pp. 146–160, 1972.

