Scheduling Directives

Kiel University

for Practical Causality Handling
in Synchronous Languages

Faculty of Engineering

Department of Computer Science

scchart CounterReset {

output int counter = @ To reconcile concurrency and determinism, synchronous languages follow

strictly defined models of computation (MoC). For example, the prominent
write-before-read principle demands that a write to some variable x must be
scheduled before a concurrent read of x. This clearly guarantees determinism,
but like other scheduling rules comes at the price that a compiler may reject
a program because it cannot find a viable schedule. We then say that the
program is not causal, and it is the programmers job to fix the program.

Counter Reset

region Increment:
initial state Wait
do counter++
go to Increment

output int counter =0
Increment

state Increment
immediate go to Wait

) i N
@ Increment
~—/ coun{er++ —7

Curing causality issues, in practice, is often easier said than done, due to

region Reset: i
Reset 8 different reasons.

, . initial state Wait
‘ """""""" , 72 ”'{:"“""“"‘~~\
@ AT G TS Reset
~—coufiter >=10 —@-----/ counter-=0 -7

if counter >= 10 go to Do
1) Some synchronous MoCs are restrictive in ways that the average

programmer may not expect;

2) the compiler’s analysis and scheduling abilities may be limited and
conservatively reject programs that would indeed be schedulable; and

3) the feedback provided by the compiler may be too limited to be helpful to
the programmer.

connector state Do
immediate do counter = ©
go to Reset

Counter Reset Example in SCCharts [2]
Not schedulable due to cyclic dependencies

state Reset
immediate go to Wait

}
! Counter Reset Counter Reset Counter Reset
counter =0 ’ output intcounter =0 output int counter =0 Output intcounter =0
_/_k(fork Increment Reset Reset Increment Increment Reset
REEE- De'ayeli -->acounter counters-->»scounter counters--, (Wait)
Increment - Delayed JE— : ¢ R 4 \ % 4 \ i 7 R4 i I 7
W entry :I 7 I,’ 7 i i cou|>er >= 10 E / cohter++ i i Causal loop! :' COUTPGI' >=10
T T 1Y amiintard L d__ — . == " H I I -
: [counggr++-——-{-counter >= 10 | | - | | : ' |/ counter++ ! -
_;_g)unter >= 1OF R A N : ' i ! ‘\\ / i ! :
E 1 > / xxxxxxx i i i ' Int;rement | /A E |
_ LN 1 !] i | I
= counter=0 | Increment S i | | ! | Increment | I
g T N : i : | counter =0 i : 1 Causal loop!
Cexit i [counter=0 i l\ ; i | i | counter =0
:\ / i \\\ ‘// : :\ :
S &7 i ‘ . &
! Reset i p”
Reset i 5 Reset

Classically dependency analyses is done
on the program dependency graph. It is
sometimes hard to map the original
model to its control-flow graph
representation. Nonetheless, the model
is generated during compilation and,
hence, available for inspection if
necessary.

The data dependency visualization is used
to identify individual conflicting data
dependencies. The view augments the
diagram with data dependencies that
originate from variables accesses in the
model. The modeler directly interacts
with the diagram to add scheduling
directives in a user-friendly way.

The induced dataflow view [4] shows communication
between concurrent regions. It visualizes the dataflow of
the program; even if the underlying model uses the control
flow paradigm. The variant thereof depicted here, the
causality dataflow view, focusses on identifying data
dependency cycles. It highlights relationships similar to the
dependency visualization, but on a different granularity.
Causal cycles are depicted in red.

A common method of error reporting in tools are
simple messages. These messages usually contain
additional information about the location of the
error to guide the user. In graphical languages,
such a message can be embedded directly into
the (original) model by annotating it. The KIELER
framework [3] allows to create annotated models
during compilation to hint at potential problems.

scchart CounterReset {
output int counter = 0
schedule _auto

If a conflict, induced by the underlying MoC, has been found, the modeler
can alter the schedule interactively, either by editing the program or by
simply clicking on the appropriate dependency edge.

Counter Reset

output intcounter =0

schedule auto region Increment:

initial state Wait A scheduling directive (SD) associates a scheduling unit with a named

Increment do counter++

T schedule auto 0 schedule and an index. The schedul.ing unit may be for example a single

@ Increment go to Increment statement, or a coarser unit of execution, such as a thread.
“auoo— 1 counter++ —7
state Increment . A flexible schedule is a schedule that takes all SDs of the model into account.
Reset immediate go to Wait If there exists an SD for two statements, the SD order is used. Otherwise, the
‘ """""""") j:«"’: """""""""""""""""" :*{:\ """""""""" Reset region Reset: MoC determines the order.
~—coufiter>=10 ' —>@ - | counteir=0 - initial state Wait

" auto 1 if counter >= 10 go to Do For a model that contains scheduling conflicts, we propose to not consider it
causally wrong per se, but merely incomplete. When a conflict occurs that
leads to an incomplete model, the modeler can complete it with SDs. They
can be used directly on different levels of detail and indirectly via model-to-

model transformations

connector state Do
immediate do counter = ©
schedule auto 1
go to Reset

Counter Reset Example in SCCharts
Schedulable due to resolved cyclic dependencies
The name and the index of the scheduling directive is shown as
teal transition tail label.

state Reset

The exampe on the right uses a single SD to solve the scheduling conflict.
immediate go to Wait

The additional code is depicted in red.

[1] S. Smyth, A. Schulz-Rosengarten, R. v. Hanxleden. Practical Causality Handling for Synchronous Languages.

In Proc. of Design, Automation and Test in Europe (DATE '19), Florence, Italy, Mar. 2019.

Contact Persons The KIELER SCCharts Editor is part of

% KIELER

The Key to Efficient Modeling

[2] R.v. Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mercer, O. O'Brien.
SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications.

In Proc. of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI '14),
Edinburgh, UK, June 2014.

Steven Smyth,
Alexander Schulz-Rosengarten,
Prof. Dr. Reinhard von Hanxleden

S. Smyth, A. Schulz-Rosengarten, R. v. Hanxleden. Towards Interactive Compilation Models.
In Proc. of the 8th International Symposium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA'18), Limassol, Cyprus, Oct. 2018.

Department of Computer Science,

Kiel University, Germany

Phone: +49 (0) 431 880-7290
ssm@/als@/rvh@informatik.uni-kiel.de
http://rtsys.informatik.uni-kiel.de

On the web:
http://www.informatik.uni-kiel.de/rtsys/kieler
http://www.sccharts.com

[4] N. Wechselberg, A. Schulz-Rosengarten, S. Smyth, R. v. Hanxleden. Augmenting State Models with Data Flow
In Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday,
Springer International Publishing, 2018

Poster presented at the 22th International Conference on Design, Automation and Test in Europe (DATE 2019), Florence, Italy, 2019 © Steven Smyth, Alexander Schulz-Rosengarten, Reinhard von Hanxleden

