
Using One-Dimensional Compaction
for Smaller Graph Drawings

Ulf Rüegg, Christoph Daniel Schulze,
Daniel Grevismühl, and Reinhard von Hanxleden

Deptartment of Computer Science, Kiel University, Kiel, Germany
{uru,cds,dag,rvh}@informatik.uni-kiel.de

Abstract. We use the technique of one-dimensional compaction as part
of two new methods tackling problems in the context of automatic dia-
gram layout: First, a post-processing of the layer-based layout algorithm,
also known as Sugiyama layout, and second a placement algorithm for
connected components with external extensions.
We apply our methods to dataflow diagrams from practical applications
and find that the first method significantly reduces the width of left-to-
right drawn diagrams. The second method allows to properly arrange
disconnected graphs that have hierarchy-crossing edges.

1 Introduction

Automatically drawing graph-based visual models has gained more and more
acceptance over the past years, with industrial tools starting to incorporate
automatic layout facilities, be it semi-automatic or fully-automatic, to support
model-driven engineering or interactive browsing of models [2]. Example tools
are LabVIEW (National Instruments), EHANDBOOK (ETAS), Simulink (The
MathWorks, Inc.), and Ptolemy (UC Berkeley).

For applications where hierarchical dataflow diagrams are used, the layout
techniques have continuously been improved to handle most of the peculiarities
of this type of diagram [13]. Still, further improvements are required regarding
the compactness of the resulting drawings [6]. In this paper we show how the
simple technique of one-dimensional compaction can be used to significantly im-
prove the compactness of dataflow diagrams drawn with state-of-the-art methods
(see Fig. 1 for a result). While we motivate our contributions from the perspec-
tive of dataflow diagrams, they are not restricted to this type of diagram. The
presented methods are implemented as part of the open-source Eclipse Layout
Kernel (ELK)1.

One-dimensional compaction is a well-known technique to minimize the area
occupied by a set of objects in the plane. As opposed to the NP-hard two-
dimensional compaction problem, it can be solved efficiently in time O(n log n),
n being the number of objects [8]. Given a set of rectangles R, where every
rectangle is of the form r = (rx, ry, rw, rh), one seeks for a set of rectangles

1 http://www.eclipse.org/elk

http://www.eclipse.org/elk

(a) (b)

Fig. 1. Illustration of our first contribution. (a) An automatically drawn dataflow
diagram with the layer-based layout methods by Schulze et al. [13]. Circled nodes are
pushed to the right due to the method’s nature. (b) The same diagram after our post-
processing. The diagram’s width is reduced by about 16% and the average edge length
is reduced by over 50%.

R′ by changing x-coordinates only such that no pair of rectangles overlaps, the
relative positioning is preserved, and the overall width w is minimized, with
w = | maxr′∈R′ (r′x + r′w) − minr′∈R′ r′x |.

In the remainder of this paper we outline our contributions. Further imple-
mentation details, how to address the peculiarities of dataflow diagrams, and
possible strategies for improvement, can be found in an accompanying technical
report [12].

2 Layer-Based Drawings

In 1981, Sugiyama et al. described the structure of a successful methodology
to draw directed graphs in the plane [14]. It is known under various names
such as Sugiyama-style layout, hierarchical layout, and layer-based layout [7].
Essentially, it consists of five consecutive phases: (1) cycle breaking makes cyclic
graphs acyclic by reversing edges, (2) layering assigns nodes to indexed layers
such that edges always connect layers of lower index to higher index, (3) crossing
minimization aims at reducing the number of edge crossings, (4) node coordinate
assignment determines explicit y-coordinates for nodes, and (5) edge routing
determines paths for edges and assigns x-coordinates to nodes. Most literature in
this context assumes that nodes are of the same size. However, this is not the case
with most practical applications, and it has been observed that the compactness
of diagrams suffers in the presence of significant size differences [3,6]. Existing
methods to tackle this issue either result in unpleasant drawings or increase
the complexity of subsequent steps of the approach [9,10,3]. A common idea
is to assign large nodes to multiple layers, for instance, by splitting them into
multiple small chunks. The crossing minimization phase then has to keep edges
from crossing nodes, and the node coordinate assignment has to assert that all
chunks receive the same y-coordinate. Nonetheless, the problem becomes more
and more imminent with diagram exploring approaches where nodes sizes may
differ by factors of 10 or even 100 [2,6].

(a) Input

(b) Naive

(c) Desired

Fig. 2. Example of applying
one-dimensional compaction
to an input graph (a) with
different objectives of minimal
width and minimal edge
length in (b) and (c).

Recently, Schulze et al. presented several ex-
tensions to the layer-based approach to handle
dataflow diagrams with ports (explicit attachment
point of edges on a node’s perimeter) and or-
thogonally routed edges [13], see Fig. 1. Working
with these kinds of diagrams, we observed that
scenarios where wide nodes (shaded background)
prevent more compact placements are quite com-
mon. The problem illustrated in Fig. 1a is that the
layer-based approach assigns nodes rigidly to lay-
ers and no pair of connected nodes may be placed
in the same layer, thus pushing the set of small
nodes in the lower right to the right. Here, one-
dimensional compaction allows to reduce the dia-
gram’s overall width by breaking the rigid layering
and pushing everything as far as possible to the
left. During the process, vertical segments of or-
thogonally routed edges may be regarded as rect-
angles with either zero or very small width. Since
the compaction procedure can be applied to the
final drawing, after the traditional layer-based ap-
proach has finished completely, no additional com-
plexity is added to any of the layer-based phases.

Diagrams as the one seen in Fig. 1 can be for-
malized as directed hypergraphs, which are pairs
HG = (V,H). V is a set of nodes and H ⊆
(P (V) × P (V)) a set of hyperedges that are
connected to nodes via one of the nodes’ ports.
Schulze et al. represent each hyperedge h =
(S, T) ∈ H by a set of edges, i. e. for every pair
s ∈ S and t ∈ T a directed edge e = (s, t) is introduced. This allows to use known
layer-based methods without the requirement to specifically address hyperedges.
Both nodes and edges can carry labels that contribute to their bounding boxes.
Additionally, a drawing must adhere to certain spacings between nodes and
edges. After applying standard layer-based techniques, one-dimensional com-
paction can be applied to HG by transforming it into a set of rectangles R: 1)
the bounding box of every node v ∈ V is added as a rectangle to R. 2) For every
vertical segment of an edge e ∈ H, we add a rectangle with corresponding height
and unit width to R. To guarantee enough room for edge labels they can be
added to the set of rectangles as well. Still, to get satisfying results in practice,
several subtleties have to be addressed. First, prescribed spacing values between
diagram elements have to be maintained. This can be done by either enlarging
the rectangles in R or by adding minimum separation constraints to the edges
of the constraint graph. Second, with the extensions by Schulze et al. [13], edges
are allowed to connect to the northern and southern border of a node. Consider

Table 1. Results of applying one-dimensional compaction to layer-based drawings of
dataflow diagrams. LR stands for left compaction followed by right compaction, and
EL stands for compaction aiming for short edges. n̄ and ē denote the average number
of nodes and edges. w̄ denotes the average width after compaction in percent of the
original width, ēl the average edge length. Standard deviations are given in brackets.

n̄ ē w̄(%) ēl(%)

EHANDBOOK 25.4 [15.0] 30.8 [18.3]
LR 83.7 [11.9] 78.2 [15.4]

EL 85.3 [11.2] 76.6 [16.2]

Ptolemy 15.7 [7.4] 19.6 [11.5]
LR 93.6 [8.2] 88.3 [13.8]

EL 94.3 [7.4] 87.1 [13.3]

the edge e = (n5, n6) in Fig. 2. Such vertical segments are grouped with the
corresponding node during compaction, which prevents them from detaching.
Third, edge lengths are not considered: compare the position of n2 in Fig. 2b
and c). While this problem has been discussed in the literature [8], we suggest
two simple solutions specifically tailored for graph layout: a) Having compacted
to the left, fix the positions of nodes that have no outgoing edge in the original
graph, and execute another compaction pass to the right. This preserves mini-
mum width with some edge length reduction. b) Add the edges of HG to the
constraint graph and use the adapted network simplex algorithm presented by
Gansner et al. [4] to find a placement with minimum edge length. More details
on all three points can be found in the accompanying technical report [12].

Our main goal is to improve on diagrams that occur in practice. Our evalu-
ation set consists of 69 diagrams from the commercial interactive model brows-
ing solution EHANDBOOK2 and a subset of 529 diagrams shipping with the
academic Ptolemy project [11]. Both diagram types are hierarchical: nodes can
contain further nodes, i. e. sub-diagrams. We extracted such sub-diagrams and
evaluate them separately, which is feasible since the layout algorithm considers
every sub-diagram separately anyway. The results of applying our method can
be seen in Tab. 1. We measured values for both compaction strategies previously
mentioned: subsequent left-right compaction with node locking (LR) and mini-
mizing edge length (EL). The average width of the EHANDBOOK and Ptolemy
drawings decreased by about 16% and 6%, the edge lengths decreased by 22%
and 12%. No significant difference can be observed between the two compaction
strategies. Still, since edges that can obviously be shortened are immediately
noticed by users (cf. Fig. 2), we suggest to use compaction with edge length
minimization. Executed on an Intel i7 2GHz CPU and 8GB memory laptop,
both methods finish in well under 10ms for up to 100 nodes. For up to 1000
nodes EL’s execution time increases significantly, which is expected since the
network simplex algorithm is used. Still, it finishes in under 0.6s. Therefore all
setups are fast enough for applications that involve user interaction.

2 http://www.etas.com/de/products/ehandbook.php

http://www.etas.com/de/products/ehandbook.php

3 Connected Components With External Extensions

(a) Before compaction

(b) After compaction

Fig. 3. Placing a diagram’s sub-
graphs must assert that no exter-
nal edge crosses a subgraph.

When a diagram consists of multiple sub-
graphs that are not connected among each
other, see Fig. 3 for a simple example, the
problem arises to place the sub-graphs in the
plane such that little space is used. Each sub-
graph can be approximated by its bound-
ing box and the problem can be formu-
lated as a rectangle packing problem. How-
ever, such problems are often NP-complete [8]
and rectangles may be poor approximations.
Freivalds et al. and Goehlsdorf et al. discuss
relevant related work and present heuristics
for the problem based on a polyomino rep-
resentation, which approximates every sub-
graph using squares on a grid [1,5]. The ap-
proaches work well for flat diagrams. With
dataflow diagrams, a node can contain a sub-
graph and nodes of the sub-graph can be
connected to nodes on other hierarchy levels
via so-called external ports on the hierarchi-
cal node’s perimeter. When placing the sub-
graphs in the plane these edges have to be
considered. They are not allowed to cross other sub-graphs. This cannot be pre-
vented using the previously mentioned methods. Furthermore, sub-graphs should
be placed such that the overall length of external edges is as small as possible.

To better approximate a sub-graph, we construct its rectilinear convex hull
and split it into a set of rectangles. Both can be done in O(n log n) time us-
ing a scanline method, where n is the number of points used to represent the
area covered by a sub-graph in the first case, and the number of corners of the
rectilinear convex hull in the second case.

Let C be a set of components, see also Fig. 4. Each component ci ∈ C is a
tuple ci = (Ri,Ei), where Ri is a non-empty set of rectangles and Ei is a (possibly
empty) set of external extensions. Rectangles are 4-tuples (see Sec. 1). The k-
th rectangle of ci is rki . We assume that all rectangles of the same component
somewhere touch alongside their border. An external extension eli = (dli, δ

l
i, ε

l
i)

of a component ci is a triple of a direction dli ∈ {n, e, s, w}, an offset δli relative
to r0i , and a width εli. The offset and the width describe an extension clockwise,
i. e. for a south extension, the offset is its right-most point and the width points
to the left. Intuitively it represents a line or a strip attached to the border of a
rectangle which extends infinitely into the specified direction. See Fig. 4 for an
illustration. We say an extension (d, δ, ε) is horizontal if d ∈ {w, e} and vertical if
d ∈ {n, s}. A set of components C is considered proper if no pair of components
overlaps and no external extension overlaps a component.

Fig. 4. The diagram shows two components c0 and c1. c0
consists of three rectangles and two external extensions
and c1 consists of a single rectangle and two extensions.
The external extensions e01 and e10 are allowed to over-
lap since one is vertical and the other one is horizontal.
They are not, however, allowed to overlap with any of
the rectangles.

Using compaction to
minimize the area of a set
of components requires a
proper set of components
to start with. We use
the cell packing algorithm
[12] that turns a (possibly
improper) set of compo-
nents into a proper one by
calculating sensible x and
y-coordinates for all rect-
angles.

For compacting layer-
based drawings as de-
scribed in Sec. 2, it is suf-
ficient to compact along
the x-dimension only. This time, however, it is necessary to compact in both
dimensions, which is possible by continuously applying one-dimensional com-
paction in alternating dimensions and directions until no further, or little,
progress is made. For a given set of components C we construct a grouped con-
straint graph (cf. [12]). Each component is represented by a group and the com-
ponent’s rectangles are added to it. The external extensions are converted into
finite rectangles: each external extension is cut at the point where it intersects
with the bounding box surrounding all components of C. After each compaction
pass these lengths have to be adjusted to prevent components from permuting.

Obviously, horizontal and vertical extensions that represent rectangles can-
not be present at the same time during one-dimensional compaction since the
set of rectangles may not be valid. Remember that external extensions are al-
lowed to overlap with each other but the representing rectangles are not al-
lowed to overlap. Still, it is important that the horizontal extensions are con-
sidered during vertical compaction, to prevent nodes from overlapping with
external extensions; the same is true for vertical extensions during horizontal
compaction. The independent application of horizontal and vertical compaction
allows to use two different sets of rectangles depending on the compaction di-
rection: H = R ∪ {(d, δ, ε) ∈ E : d ∈ {n, s}} for horizontal compaction and
V = R ∪ {(d, δ, ε) ∈ E : d ∈ {e, w}} for vertical compaction.

4 Final Remarks

In this paper we show how one-dimensional compaction can be applied to two
problems from the field of automatic diagram layout, more specifically, layer-
based drawings and placement of disconnected graphs. We tested our methods
with dataflow diagrams from practice and found that the width of layer-based
drawings can significantly be reduced and that they allow disconnected graphs
with hierarchy-crossing edges that are part of hierarchical graphs to be placed.

Acknowledgements. This work was supported by the German Research Foun-
dation under the project Compact Graph Drawing with Port Constraints
(ComDraPor, DFG HA 4407/8-1).

References

1. K. Freivalds, U. Dogrusoz, and P. Kikusts. Disconnected graph layout and the
polyomino packing approach. In P. Mutzel, M. Jünger, and S. Leipert, editors,
Graph Drawing, volume 2265 of Lecture Notes in Computer Science, pages 378–
391. Springer Berlin Heidelberg, 2002.

2. P. Frey, R. von Hanxleden, C. Krüger, U. Rüegg, C. Schneider, and M. Spönemann.
Efficient exploration of complex data flow models. In Proceedings of Modellierung
2014, Vienna, Austria, Mar. 2014.

3. C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings with nodes
of arbitrary size. In Proceedings of the 27th Australasian Conference on Computer
Science (ACSC’04), pages 369–376. Australian Computer Society, Inc., 2004.

4. E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing
directed graphs. Software Engineering, 19(3):214–230, 1993.

5. D. Goehlsdorf, M. Kaufmann, and M. Siebenhaller. Placing connected compo-
nents of disconnected graphs. In 6th International Asia-Pacific Symposium on
Visualization, 2007, pages 101–108, Feb 2007.

6. C. Gutwenger, R. von Hanxleden, P. Mutzel, U. Rüegg, and M. Spönemann. Ex-
amining the compactness of automatic layout algorithms for practical diagrams. In
Proceedings of the Workshop on Graph Visualization in Practice (GraphViP’14),
Melbourne, Australia, July 2014.

7. P. Healy and N. S. Nikolov. Hierarchical drawing algorithms. In R. Tamassia,
editor, Handbook of Graph Drawing and Visualization, pages 409–453. CRC Press,
2013.

8. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
& Sons, Inc., New York, NY, USA, 1990.

9. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. Journal of Visual Languages & Computing, 6(2):183–210, June 1995.

10. S. C. North and G. Woodhull. Online hierarchical graph drawing. In Revised
Papers of the 9th International Symposium on Graph Drawing, volume 2265 of
LNCS, pages 232–246. Springer, 2002.

11. C. Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014.

12. U. Rüegg, C. D. Schulze, D. Grevismühl, and R. von Hanxleden. Using one-
dimensional compaction for smaller graph drawings. Technical Report 1601, Kiel
University, Department of Computer Science, Apr. 2016. ISSN 2192-6247.

13. C. D. Schulze, M. Spönemann, and R. von Hanxleden. Drawing layered graphs
with port constraints. Journal of Visual Languages and Computing, Special Issue
on Diagram Aesthetics and Layout, 25(2):89–106, 2014.

14. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics,
11(2):109–125, Feb. 1981.

	Using One-Dimensional Compactionfor Smaller Graph Drawings

