
A versatile demonstrator for distributed real-time
systems: Using a model-railway in education

Stephan Höhrmann Hauke Fuhrmann Steffen Prochnow Reinhard von Hanxleden
Christian-Albrechts University of Kiel, Department of Computer Science, Kiel, Germany

E-mail: {sho,haf,spr,rvh}@informatik.uni-kiel.de

Abstract— Teaching computer science in the domain of safety
critical systems needs to address multiple topics: embedded and
distributed systems, real-time behavior and model-based system
design. We present a model railway demonstrator that employs
these paradigms in one application. The distributed railway
controller nodes are connected using industry standard networks
(CAN, Ethernet or TTP). The corresponding application software
can be implemented manually in C/C++ or by using model-based
development tools. This flexibility enables users to compare ad-
vantages and drawbacks of various design patterns. Following an
overview of the railway and its control system, experiences from
educational courses as part of the DECOS training activities are
discussed. In these courses university students were to implement
controlling applications and simulations for the demonstrator
using Matlab Simulink, Stateflow, and hardware specific add-
ons.

I. INTRODUCTION

Developers of safety-critical computer systems have to deal
with multiple different topics:

Embedded systems are rapidly growing in complexity: With
the decrease of hardware costs more multi purpose processors
are employed and customized by software implementation for
specific applications. Additionally the increase of hardware
performance leads to a trend of integrating multiple functions
into single electronic control units (ECU) for cost reductions
(e. g., in automotive and aerospace domain). This approach
makes high demands to software middleware for keeping
application programming manageable and nevertheless result
in safe systems.

Real-time systems have special demands on the response
time behavior. The claim to control a dynamic physical system
requires reactions at special points in time and not only
correctly calculated values. Operating systems and application
programs need to consider timing behavior in order to achieve
determinism in the temporal domain.

Distributed systems are employed to cope with redundancy
and wiring complexity. Introduction of “brainpower” for so-far
simple system entities as for example smart-sensors and new
strategies for safety driven redundancy employment increases
communication needs between ECUs. Shared communication
bus systems replace point to point connections. For differ-
ent applications and safety requirements, different methods
for shared media access control have been employed. For
“normal”-criticality applications event-driven communication
like Ethernet or CAN have long been established. Safety-
critical applications demand deterministic fault-tolerant com-

munication schemes and therefore sophisticated communi-
cation protocols, for example based on the time-triggered
paradigm like the Time-Triggered Protocol (TTP) [1], [2]
enable the use of bus-communication with COTS products.

To cope with the growth of complexity in all of these areas,
model-based system design is proposed for development.
Graphical representations augment or replace textual imple-
mentations for illustrating and documenting parts of a system.
Models display information usually in a way optimized for
human perception; nevertheless the information can be stored
and processed with machine readable interfaces. Hence the
content of high abstraction models can be used by appropriate
tool-chains to further process the data and relieve the developer
of work in lower abstraction levels. For example models can
describe configuration of systems (e. g., describing distribution
of the system onto multiple ECUs and the communication
behavior between them). Post-processing tool-chains use the
model information to automatically configure the operating
systems and communication controllers (e. g., building com-
munication schedules in time-triggered communication). Other
model types describe the functional behavior of a system.
Model suites such as Matlab Simulink [3] or SCADE of Esterel
Technologies [4] allow to specify data flow of the application
in a way well suited for closed control loop design. The
Statechart [5] formalism and dialects like Stateflow [6] and
the synchronous SyncCharts [7] (with minor modifications
known as Safe State Machines (SSM) [8]) are used to model
control flow of reactive applications. Usually models inherit
such precise semantics that they can be executed. On the one
hand simulation is used to validate system behavior in a very
early stage of the development process, especially prior to
physical integration, and on the other hand generators can
synthesize code for the target platform in order to directly
derive the target implementation from models.

An international research project tries to focus not only
on one of the issues, but tries to improve and combine
them in order to establish a seamless process and a whole
architecture for the development of embedded systems: The
DECOS project (Dependable Embedded Components and Sys-
tems) [9], an Integrated Project within the EU Framework
Programme 6, develops fundamental and enabling technolo-
gies that are independent of domain and technology in order
to facilitate the paradigm shift from federated to integrated
design of dependable real-time embedded systems. This shall
lead to reduced development, validation and maintenance costs



(a) Top View. (b) Bottom View.

Fig. 1: Overview of the Model Railway.

in both software and hardware domain. The project tackles
all aforementioned topics, especially integration of multiple
functions of different criticality into single ECUs and multiple
virtual communication links into single physical communi-
cation channels based on the time-triggered communication
approach. Additionally model based system design is used to
specify configuration (in UML models) and functionality (in
SCADE models) and a tool-chain for a seamless process from
requirements capturing upto code generation and software
deployment is developed.

As outlined above, a developer of embedded systems has to
consider many topics and therefore needs a certain amount of
know-how to participate or manage application development.
The quality of the development results highly depends on the
qualification of the development team even with massive tool
support. This fact accentuates the need for a specialized quali-
fication. The group of embedded and real-time systems of the
Christian-Albrechts Universität Kiel offers a balanced combi-
nation by providing both theoretic knowledge and hands-on
seminars. Imparting an extensive understanding of fundamen-
tal paradigms with a detailed theoretical background is the pri-
mary objective of university education. Advanced laboratory
courses are employed to deepen the subject and accumulate
some practical experience. The largest demonstrator currently
in use by the embedded systems group is a model railway
installation that originated about ten years ago and was used
intensely since then [10], [11], [12]. Its controlling electronics
has recently been replaced by a framework supporting multiple
distributed architectures and bus systems [13]. This results in
a multi-purpose demonstrator for different platforms, different
bus systems and different programming paradigms, including
model based system design, so the system tackles many of the
topics of the embedded system domain.

As a part of the DECOS training activities, this demonstrator
was used in an advanced laboratory course. The distributed
application was requested to be implemented by the students

using a time-triggered architecture at a high abstraction level
employing model-based system design.

II. THE MODEL RAILWAY

The model railway1 was inspired by the Kicking Horse Pass
in Canada, from which it also derives its name. Currently, the
layout covers an area of 18 square meters, in which up to eight
trains can pass along three interconnected major circles (inner
circle, outer circle and the Kicking Horse Pass itself) that form
a total track length of 127 meters. Figure 1 provides a general
view of the model railway. The schematic track layout is given
in Figure 2.

The railway hardware is a composition of relatively dumb
analog peripherals operated by custom made controller boards
under the supervision of networked computers. Using a digital
system was not an option. This would have eliminated the need
for distributed communication and would thus have made the
system pointless for embedded system education.

Any applications that intend to move trains have to utilize
the communication networks in order to address the controller
boards with their attached sensors and actuators. The most
prominent actuators are 48 isolated track sections (or blocks)
to which traction current for the train engines can be applied.
A task central to all of the control programs is that of
keeping track of the train positions and switching power for
the individual blocks. This is designed to ensure seamless
transitions of the trains through the various blocks. A group
of 80 reed contact sensors, which detect trains as they enter
and leave individual blocks, feeds basic information into this
process (Figure 3a). The lane selection is done by 28 switching
points; 58 semaphores and 24 lanterns (Figure 3c) can be
used to mimic realistic railway behavior and to visualize
the current system state. Including devices like the railroad

1The hardware technical basics for the model railway project emanates from
the diploma thesis of Höhrmann [13]. Further details concerning the model
railways technical realization as well its functionality can be found on the
model railway web page [14].



IC_ST_0 IC_ST_1

IC_ST_2

IC_ST_3

IC_ST_4

IC
_L

N
_0

IC_LN_1

IC
_L

N
_2

IC_LN_3

IC_LN_4

IC
_L

N
_5

IC_JCT_0

OC_ST_0

OC_ST_2

OC_ST_3OC_ST_4

O
C

_L
N

_0

OC_JCT_0

OC_LN_1

OC_LN_2

O
C

_L
N

_3

OC_LN_4

O
C

_L
N

_5

OC_ST_1

IO_LN_0

IO
_L

N
_1

IO_LN_2 OI_LN_0

OI_LN_1

OI_LN_2

K
IO

_L
N

_0

K
IO

_L
N

_1

KH_ST_0

KH_ST_1

KH_ST_2

KH_ST_3

KH_ST_4

KH_ST_5

K
H

_L
N

_0

KH_LN_1

KH_LN_7

K
H

_L
N

_8

KH_LN_4

KH_LN_3

K
H

_L
N

_2

KH_ST_6

KH_LN_6

KH_LN_5

Symbols

Inner Circle

Outer Circle

Kicking Horse Pass

Interconnections

Track segments

Bridge

Track specialties

Railroad crossing

Point or crossing

Directions

Unidirectional block

Bidirectional block with
forward direction

Preferred direction

Point operating unit

Lighting

Block signal

Block isolation

Electronics

Reed contact

0 1 0

0

1

0

1 105432 9876

16 15 14 1321 1920 18 17 12

22

23

0

11

23

7

6

5

8

12

13

17

19

20

21

22

23

26

25

24

29

27

9

14

0

3

2

1

10

11

18

16

28

4

15

42

42

Fig. 2: The Track Layout. The picture illustrates the track organization including all block names, sensors and actuators.

(a) Reed Contact Sensors. (b) Railroad Crossing. (c) A Railway Station with Switches, Semaphores,
and Lanterns.

Fig. 3: Railway Sensors and Actuators.

crossing (Figure 3b), a total of 245 sensors and actuators can
individually be addressed and programmed. All peripherals
are wired to a total of 24 hardware controller nodes (see
Figure 4a). These embedded devices are operated by a PIC
16F871 microcontroller and comprise all features required to
drive the connected peripherals.

As well as basic actions, like enabling semaphore LEDs and
toggling switching points, the microcontroller executes several
advanced control tasks. Back electromagnetic field (EMF)
measurement on the track power supply lines is used to detect
occupied blocks, the corresponding circuit is able to acquire
the actual speed of driving engines. This information can be
used in a closed control loop to adjust the output Pulse-width
modulation (PWM) duty cycle to maintain a given speed e. g.,
in case of a train traversing an incline. Sensor readings from

the reed contacts are processed to determine the direction in
which the train has passed. Hardware malfunctions like short
circuits or sensor failures are logged in non-volatile memory
for later examination.

The full functionality of the board is available through
RS232 compatible control inputs (cf. Figure 5a). Up to four
computers can connect mutually exclusively to a node by
executing a simple request/reply protocol. The microcontroller
attaches itself to the first input where it observes valid com-
munication activities. It stays locked until either the host sends
a termination command or stops sending valid packets. This
enables the system to rotate through different hosts without
modifications to the hardware.

Following the initial setup procedure, control commands
can be sent to operate peripherals and to query the attached



(a) PC Node. (b) TTP-Powernode with Portextender.

Fig. 4: Hardware Control Nodes.

Contacts TrackSwitch points Bell

PC104 TTP

Ethernet

TTP

C
on

tr
ol

le
r

RS232

B
us

se
s

CAN2

CAN1

Lanterns Semaphores Boom

P
er

ip
he

ra
ls

Hardware controller

0

23

42

(a) Schematic Representation. (b) Wiring of Control Nodes.

Fig. 5: Control System Interconnections.

sensors. This is the task of the computers installed in the
system. The first cluster consists of 24 PCs using the PC104
form factor. These machines boot Linux via network on
a dedicated server, thus they are implicitly connected via
Ethernet. Additional CAN controllers provide an independent
communication layer. Each of these computers is mounted on
a wooden panel inside the railway under-structure together
with its power supply and a hardware controller board (see
Figure. 5b). The PC104 hosts can execute cross-compiled
programs previously copied to the server.

The second control cluster consists of eight TTP-
Powernodes. A custom built extension board (see Figure. 4b)
multiplexes all of the node’s single RS232 ports, allowing
each one to handle three hardware controllers. The TTP-nodes
rely mainly on TTP communication. Additionally they are
equipped with an independent CAN bus interface.

The two remaining inputs of the hardware controller nodes
are available for future extensions, but the two already existing
control systems and four independent networks offer a wide

range of applications. Several design strategies can be realized
and evaluated in this complex environment.

III. MODEL DRIVEN PROGRAMMING

Implementing application software for embedded systems
in C or C++ is quite common, so appropriate compilers exist
for most processors. Next to textual programming with the
imperative languages themselves, any system design paradigm
is suitable for development that produces standard C code.
Actual modeling suites for functional models, e. g., in dataflow
style or a Statechart derivate, usually provide C code genera-
tors. For one architecture of the model railway this has been
utilized: Dataflow models and Statecharts were used to model
functional behavior of individual ECUs, namely controllers
equipped with a Motorola Power PC processor and a TTP
communication interface.

In order to keep the abstraction level as high as possible,
manual integration of the functional software parts onto the
distributed ECUs can be avoided: Distribution and configu-



ration of the communication behavior of the whole system
is modeled, too. This includes a mapping of functional parts
modeled in data flow models/Statecharts to certain hardware
units. A tool-chain automatically generates the needed mid-
dleware and operating system configurations for each node,
merges configuration and functional code, invokes the com-
piler and finally deploys the binaries to the nodes through the
bus system automatically.

Some different modeling suites and tool-chains would be
applicable, but since neither the DECOS tool-chain nor the
SCADE specific tool-chain SCADElink were available at the
beginning of the planning, Matlab Simulink and Stateflow
were employed. The Simulink add-on Matlink from TTTech
was used to configure the distribution and time-triggered sys-
tem behavior directly in the familiar surroundings of Simulink.

IV. PRACTICAL USE IN EDUCATION

In the winter term 2005/2006 an advanced laboratory course
was offered that employed the model railway demonstrator for
the first time in teaching after finalization of the hardware
[15]. According to the goals of the DECOS project, the
main focus of the course was model-based system design
of a time-triggered architecture. For this first approach one
architecture and one tool-chain were employed in order to gain
experience with the demonstrator in education. The platform
chosen for the implementation was the Time-Triggered Archi-
tecture (TTA) with the Matlab/Simulink tool-chain introduced
above.

Imparting knowledge usually requires finding a tradeoff
between specific technical details and deeper insight about the
general paradigms. The former is necessary to accomplish the
specific task, but the latter is more fruitful for the long term.
Using the modeling suite with its high abstraction level covers
technical details of both model railway hardware drivers and
the time-triggered protocol.

Hardware drivers that communicate directly with the hard-
ware controller nodes were prepared beforehand the course,
they can be accessed conveniently via Simulink blocks directly
from within Simulink.

A. Background
The laboratory was attended by eight students that formed

four teams. Most of them previously attended the class model-
based system design and distributed real-time systems [16].
This class established a foundation for model-based system
design with a special focus on Statecharts and their semantics
as well as on distributed systems. With the time-triggered
architecture being only one part, the basic ideas and algorithms
were presented, but technical insights and practical experience
with any tool-chain could not be expected.

Simulink as one of several possible tools was not yet
explicitly addressed and therefore the model railway course
was the first occasion where the students could gather ex-
perience with the technical pitfalls of the general purpose
suite Simulink. Excessive experience in C programming could
not be expected, because other programming languages (e. g.,
Java) are often preferred in education.

B. Requirements and Process

The course started with independent one-week exercises:
• A small Simulink model had to be analyzed and adapted

in order to get familiar with the Simulink development
environment.

• A toy example (LED blinking) of time triggered com-
munication had to be modeled in Simulink/Matlink and
tested on the hardware in order to get familiar with the
Matlink tool.

• On a small testing track oval, one ECU was connected
to a few model railway peripherals in order to access the
hardware drivers and the railway itself. A trivial controller
had to be implemented using Stateflow. Additionally a
closed-loop controller had to be realized in Simulink to
keep the train speed at a defined level. Knowledge about
PID-controllers had to be acquired autonomously.

One major aim of this course was to work on a non-toy-size
project while acting on one’s own initiative. Therefore, after
these tutorials, the general task for all students was to control
the model railway in some way. All groups had to specify
an application for the model railway that demonstrates the
model-based system design and fits to their individual time-
frame (some students attended four hours, others eight hours
a week). Explicit interaction among the groups was allowed
in order to get experience in inter-group communication and
in defining interfaces and standards within all groups.

The time until end-of-term was divided to four interme-
diate and a final milestone. Each group had to do the time
planning itself, including to define sub-ordinate goals for each
milestone for their application. A full documentation of the
results was requested to the end of the course, whereas an
explicit reviewing process between the groups should improve
documentation styles. At each milestone a short presentation
should demonstrate the achieved results so far and a final
presentation was used to present the final work to a larger
audience. The presentations and documentations are available
as a project report [15].

C. Technical Results

1) Simulation: One aim of model-based system design is
to find design flaws in an early design phase. Therefore many
modeling suites offer the possibility to execute the model
prior to testing the code on physical hardware. Controllers
usually interact with actuators and sensors to form any kind
of control loops. Therefore in such a dry-run some appropriate
sensor values must be provided for the controller and its
actuator commands need to be consumed. Therfore an envi-
ronment simulation must be implemented. In our case another
Simulink model represents the physical railway hardware
itself. It takes commands from a controller containing the
whole actuator state, e. g., speed commands for each railway
block, track switch positions, semaphores, LEDs, lanterns, etc..
The simulation should behave in the same manner as the real
model railway does and return corresponding sensor values
corresponding to state changes at the railway tracks. The



simulation primarily needs to keep track of the train positions
and trigger contact passing events and pass them back to
the controller. With a simulation model being application
compatible, the test of the application is easily possible prior
to testing on the physical installation. Debugging the controller
is greatly simplified this way, because the internal states of the
controllers can always be observed and test cases can be run
much faster (returning physical trains to the initial positions
is unnecessary) and faults cannot cause any harm.

Because of all these advantages and the high complexity of
this model railway installation, the development of a controller
required a simulation model. One student group planned to
build such a simulation model for the whole track layout and
some graphical user interface to present the railway behavior
to the developer. The model should be modular and as general
as possible.

2) Controllers: All other groups decided to implement
railway controllers (e. g., see Figure 6) for different purposes,
varying in the number of concurrently controlled trains and the
degree of independence of the physical track layout. One group
implemented a switching application in which one engine
independently searches the shortest path to a trailer and pulls it
to some destination place. Another group planned to control up
to four trains concurrently and were exposed to requirements
of collision and deadlock avoidance as well as fairness. The
controller groups were supposed to employ the simulation of
the first group for testing. However development of simulation
and controllers was happening in parallel and therefore the
controller groups could not access the simulation from the
beginning. As simulation was a mandatory requirement for
testing before hardware integration, the controller groups had
to implement their own simulations. Nevertheless these were
allowed to be very application specific and simplified as much
as possible.

3) Results: Prior to actual controller logic implementa-
tion, the teams had to model the communication between
the distributed hardware nodes. Although this was already
exercised in a toy example, it became a laborious task for the
whole system. 744 signals from sensors and actuators needed
to be processed, routed and sorted. For wiring simplicity,
the physical sensors and actuators became connected to the
spatially nearest hardware control nodes not considering any
logical order. Hence one ECU could be responsible for two
railway tracks that have little relations to each other, e. g.,
that are not adjacent. Therefore a sorting subsystem, the so-
called dispatcher, was built to access sensors and actuators
in simulation and controller in a somewhat convenient way.
Multiple signals became grouped to arrays of up to about
hundred elements to cope with the mass of information.
Building up a schedulable communication model for the time-
triggered communication lead to many technical and time
consuming pitfalls.

The simulation model came out to be even more complex
than the controller models and therefore all groups spent
most of the time to implement their simulation models. This
includes the controller groups, because nearly all models

Fig. 6: Small part of a controller Stateflow chart keeping track
of the position of one train in one railway block.

required a general simulation model that hardly could be
simplified.

In the end the simulation group came up with a very well
modularized simulation model, consisting of parameterizable
building bricks for tracks and track switches. These could
be employed in order to easily and clearly build up any
track layout. The first connected (but only working for uni-
directional train movement) simulation was available at the
end of the course. This meant that the other groups had to use
their own simulations, that were less modular with usually
very complex and track layout specific connections.

V. LESSONS LEARNED

A. Motivation

The motivation during most of the time of the project was
high. The presence of a physical demonstrator seemed to
positively motivate the students. Hence most of them spent
much more time at the subject than scheduled. Practical
exercise not only on abstract modeling examples but with
intermediate testing of the subordinate results at the physical
installation was positively acknowledged. Nevertheless prepa-
rations before even starting to develop a controller logic were
very laborious (modeling simulation, communication model,
dispatcher, etc.), but having the target of an autonomously
controlled model railway in mind, these tasks were finished
with interest.

B. Time Planning

It seems to be basic constitution in computer science, that
time planning is always too optimistic. All groups underesti-
mated the efforts of their tasks and were hardly able to finish



them in time. Most groups voluntarily invested much more
time than scheduled (e. g., more than sixteen hours a week
instead of eight) and nevertheless some of the goals for the
milestone were postponed or even removed from the plans.

C. Preparation

Most problems derive from technical difficulties with the
tool suites. Missing experience with Simulink resulted in
error-prone and time consuming trial-and-error approaches or
searching the Matlab manuals into wrong directions. The same
was true for Matlink during specification of the time-triggered
communication. Generation of communication and task sched-
ules from the models often resulted in error messages that were
of very technical nature, and finding the cause and especially
a way to fix it was a very effort-prone task.

D. Task Scale

Implementing either a simulation or a controller for the
model railway seems to be manageable within the given
time-frame. However doing both successively obviously over-
strained the groups. Unfortunately the two tasks could hardly
be parallelized: Development of the controller requires a nearly
full featured simulation.

E. Application

Building a simulation model of the model railway fitted very
well to the dataflow model paradigm of Simulink, because it
mostly consists of signal routing and keeping track of positions
by aggregation of train speeds. The controller, however, shows
heterogeneous characteristics: Signal pre- and post-processing
(e. g., dispatcher) is suitable for the dataflow style like used
in Simulink. Managing train movements in respect to collision
and deadlock avoidance and fairness can be covered in control
flow models like Statecharts. An additional task for a controller
can be to autonomously find a path from one point of the track
layout to another one. Such task needs to implement some kind
of graph algorithm for shortest path findings. Such algorithms
neither apply to dataflow nor control flow paradigms and
therefore they need to be implemented in a host language,
e. g., the Matlab language or C for Simulink. Figure 7 presents
concurrently running trains operated by a control application.

F. Simulation

Although implementing a simulation model was very la-
borious, it was worth the effort: After extensive testing of the
controller with the simulation model, migration to the physical
railway installation could be done smoothly and the controllers
worked with nearly no further debugging on the real hardware.
The other way round, at the end of the course one group tried
to fix some buggy behavior by testing the controller directly
with the physical railway in order to avoid the connection to
the simulation model. They spent many hours to find the bug,
because the internal states of the Statecharts could hardly been
analyzed and the behavior was not comprehended.

Fig. 7: Concurrently running trains operated by a control
application.

G. Experience at Modeling

Models are easy to read but hard to write. This sentence is
very true especially for beginners. Modeling patterns usually
differ from programming patterns. Having only little knowl-
edge about how to write good models ends up in a mess
of wirings and transitions, where even the developer him-
or herself could loose the overview. By using a quick-and-
dirty approach it is easy to reach a functional state where
even simulation is possible. Impatient students usually do not
take time to rearrange the layout for a better view onto the
model or to group multiple signals into arrays or structures in
order to massively reduce the number of visible connections
and interfaces between model elements. States of control flow
models get abused to reflect data flow instead of representing
an actual system state. The decision of what functionality
requires to what kind of model seems to be very difficult.
The right balance of applying hierarchy is often not found.
Stateflow’s inter-level-transitions make reading the models
much harder.

After discovering the feature of embedding sequential tex-
tual code in the Matlab language in Simulink/Stateflow, some
of the students used it excessively. A lot of functionality was
implemented in Matlab functions in order to elude complicated
graphical constructs in the modeling language itself. Usually
these functionality could be clearly expressed in the modeling
language too, but the students avoided the work of finding out
the correct ways and sticked to the textual programming style
they were familiar with.

The write-things-once demand is one of the most established
paradigms in computer science. Nearly every programming
language provides constructs for implementation of system
parts that can be called from multiple sources, e. g., functions
or procedures. In the dataflow models of SCADE, this idea
is consequently implemented, but in Simulink it is neglected.
Once they are implemented, subsystems usually get multiplied
by copy-and-paste, which results in laborious actions if any
changes in the subsystem have to be done. Using libraries in



Simulink is not as obvious and established as it could be and
sometimes leads to unexpected technical problems. Writing
“beautiful” models is possible, but creating an unreadable
chaos is much simpler. The latter kinds are even produced by
experienced engineers. Writing good models is less a matter
of experience than a matter of the right examples.

H. Interaction with the Tools

Integrated tool-chains help the developers to focus on the
relevant design decisions. Functional modeling, configura-
tion modeling, schedule generation, middleware generation,
functional code generation, code merging, integration and
compilation: each of these tasks could be done by a certain
tool, not necessarily provided by the same vendor. In a perfect
process, the developer stays at the highest level of abstraction.
Obviously changes in a model affect many of the lower levels,
but the idea is that the developer is not bothered with these
details.

Problems arise when changes to the model, that are not
rejected by the modeling tool, result in an error message
from some lower level program. Exactly this has happened
repeatedly during the project and was quite irritating and
time consuming for the novice tool users. This issue can
be observed with many tool-chains and should explicitly be
tackled in order to increase usability to such extend that
professional help for debugging is not necessarily needed. This
should also increase acceptance and motivation in the use of
the tool-chains.

VI. CONCLUSION UND FUTURE WORK

We have proposed a model railway demonstrator that tackles
many topics of the embedded systems domain and supports
multiple paradigms such as different architectures, bus-systems
and software development paradigms.

An advanced laboratory course was performed with this
demonstrator as part of the DECOS training activities. Stu-
dents implemented simulations and controllers for autonomous
operation of the model railway. Model-based system design for
a time-triggered architecture was employed and lead within the
time-frame to acceptable results.

The physical demonstrator increased the motivation of the
students, while underestimation of the effort and unexpected
problems of technical nature were challenging and nearly dou-
bled the expenditure of time. For a demonstrator of this scale
with hundreds inputs and outputs to the physical environment,
running tests with a simulation model is not only helpful, but
mandatory for debugging and validation.

Although graphical modeling looks simple, basic knowledge
of computer science is not enough to generate good and
reusable models, and only such expose the benefit of model-
based system design. As this project has confirmed, the proper

use of complex tool-chains and advanced system architectures
also requires specific education and training in these areas.
This has to include not only the theoretical background,
but also engineering know-how on how to construct robust,
maintainable models and, last but not least, how to take
advantage of team-oriented development processes.

ACKNOWLEDGMENT

The authors would like to thank Werner Kluge, Jürgen Noss,
Jochen Koberstein and Oliver Schmitz for the first generations
of the model railway demonstrator.

REFERENCES

[1] H. Kopetz and G. Grünsteidl, “TTP - a time-triggered protocol for
fault-tolerant real-time systems,” Institut für Technische Informatik,
Technische Universität Wien, Treilstr. 3/182/1, A-1040 Vienna, Austria,
Tech. Rep., 1992.

[2] H. Kopetz and G. Bauer, “The time-triggered architecture.” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[3] Mathworks Inc., Simulink – Simulation and Model-Based Design,
Mathworks Inc., 2005. [Online]. Available: http://www.mathworks.
com/access/helpdesk/help/pdf doc/simulink/sl using.pdf

[4] Esterel Technologies, “Company homepage,” http://www.
esterel-technologies.com.

[5] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, June
1987.

[6] T. MathWorks, Inc., Stateflow and Stateflow Coder User’s Guide,
Version 6, Natick, MA, September 2005. [Online]. Available: http:
//www.mathworks.com/access/helpdesk/help/pdf doc/stateflow/sf ug.pdf

[7] C. André, “SyncCharts: A Visual Representation of Reactive
Behaviors,” I3S, Sophia-Antipolis, France, Tech. Rep. RR 95–
52, rev. RR (96–56), Rev. April 1996. [Online]. Available: http:
//www.i3s.unice.fr/∼andre/CAPublis/SYNCCHARTS/SyncCharts.pdf

[8] C. André, “Semantics of S.S.M (Safe State Machine),” Esterel Tech-
nologies, Sophia-Antipolis, France, Tech. Rep., Apr. 2003, available at
http://www.esterel-technologies.com, in the download section.

[9] DECOS - Dependable Components and Systems, “Research project
homepage,” https://www.decos.at/.

[10] W. Hielscher, L. Urbszat, C. Reinke, and W. Kluge, “On modelling
train traffic in a model train system,” in Daimi PB-532: Workshop on
Practical Use of Coloured Petri Nets and Design/CPN, K. Jensen, Ed.
Department of Computer Science, University of Aarhus, Denmark, 1998,
pp. 83–102.

[11] W. E. Kluge, “The Kicking Horse Pass Problem,” Petri Net News Letters
No. 54, pp. 3–15, 1998.

[12] J. Koberstein, “Realisierung eines geordneten Mehrzugbetriebs auf einer
Modellbahnanlage,” Diploma thesis, Christian-Albrechts-Universität zu
Kiel, Institut für Informatik und praktische Mathematik, 2001.

[13] S. Höhrmann, “Entwicklung eines modularen Feldbussystems zur
Steuerung einer Modellbahnanlage,” Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Institut für Informatik, Mar. 2006.

[14] The model railway, “Project homepage,” 2006, Group of Real-Time and
Embedded Systems, Department of Computer Science, Kiel, Germany.
[Online]. Available: http://www.informatik.uni-kiel.de/∼railway

[15] H. Fuhrmann, S. Prochnow, and R. von Hanxleden, “Modellbahnprak-
tikum,” http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/
ws05-06/p-bahn/, 2005/2006.

[16] R. von Hanxleden, “Lectures: Model-based design and distributed real-
time systems,” http://www.informatik.uni-kiel.de/inf/von-Hanxleden/
teaching/ss05/v-rt2/skript.html, 2005.

http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using.pdf
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.esterel-technologies.com
https://www.decos.at/
http://www.informatik.uni-kiel.de/~railway
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ws05-06/p-bahn/
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ws05-06/p-bahn/
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ss05/v-rt2/skript.html
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ss05/v-rt2/skript.html

	Introduction
	The Model Railway
	Model Driven Programming
	Practical Use in Education
	Background
	Requirements and Process
	Technical Results
	Simulation
	Controllers
	Results


	Lessons Learned
	Motivation
	Time Planning
	Preparation
	Task Scale
	Application
	Simulation
	Experience at Modeling
	Interaction with the Tools

	Conclusion und Future Work
	References

