
Crossing Minimization and Layouts of Directed
Hypergraphs with Port Constraints

Markus Chimani1?, Carsten Gutwenger2, Petra Mutzel2, Miro Spönemann3,
and Hoi-Ming Wong2??

1 Algorithm Engineering Group, Friedrich-Schiller-Universität Jena
markus.chimani@uni-jena.de

2 Chair of Algorithm Engineering, Technische Universität Dortmund
{carsten.gutwenger,petra.mutzel,hoi-ming.wong}@tu-dortmund.de

3 Real-Time and Embedded Systems Group, Christian-Albrechts-Universität zu Kiel
msp@informatik.uni-kiel.de

Abstract. Many practical applications for drawing graphs are modeled
by directed graphs with domain specific constraints. In this paper, we
consider the problem of drawing directed hypergraphs with (and with-
out) port constraints, which cover multiple real-world graph drawing
applications like data flow diagrams and electric schematics.
Most existing algorithms for drawing hypergraphs with port constraints
are adaptions of the framework originally proposed by Sugiyama et al. in
1981 for simple directed graphs. Recently, a practical approach for up-
ward crossing minimization of directed graphs based on the planarization
method was proposed [7]. With respect to the number of arc crossings, it
clearly outperforms prior (mostly layering-based) approaches. We show
how to adopt this idea for hypergraphs with given port constraints, ob-
taining an upward-planar representation (UPR) of the input hypergraph
where crossings are modeled by dummy nodes.
Furthermore, we present the new problem of computing an orthogonal
upward drawing with minimal number of crossings from such an UPR,
and show that it can be solved efficiently by providing a simple method.

1 Introduction

The visualization of directed graphs in an upward fashion is a central research
field in graph drawing. Thereby we ask for a drawing where all arcs are drawn
monotonously increasing in one direction, in order to make it easy to follow the
overall direction in the process that is modeled by the graph. There is a large
number of publications regarding this topic. Most known approaches follow the
layer-based scheme originally proposed by Sugiyama et al. [18]. However, many
important applications such as data flow diagrams or electric schematics require

? Markus Chimani was funded by a Carl-Zeiss-Foundation juniorprofessorship.
?? Hoi-Ming Wong was supported by the German Research Foundation (DFG), priority

project (SPP) 1307 “Algorithm Engineering”, subproject “Planarization Practices
in Automatic Graph Drawing”.

2 Markus Chimani et al.

directed hypergraphs rather than traditional directed graphs; moreover they
often come with further specific drawing constraints. Layer-based methods that
consider these specialties [17] often suffer from too many edge crossings, and thus
planarization-based methods—where minimizing the number of crossings is the
main objective—may be preferable. In order to keep a consistent arc direction,
the technique of upward-planarization is needed. Recent results for traditional
graphs have shown that, by using this approach, the number of edge crossings
can be reduced by 50% compared to layer-based methods [7, 8].

In this paper we consider the problem of drawing directed hypergraphs with
port constraints. Basic definitions on hypergraphs are given in Sect. 1.1, and port
constraints are introduced in Sect. 1.2. We describe how to adapt an existing
upward-planarization method to handle directed hyperarcs as well as prescribed
port positions. Our upward-planarization algorithm produces an upward-planar
representation of the hypergraph and is covered in Sect. 2. Using this represen-
tation, we show how to construct an orthogonal layout that respects the arc
directions using a derived layering in Sect. 3. By exploiting the topological in-
formation of the planarization phase, we can efficiently minimize the number of
crossings with respect to the computed embedding. We conclude with Sect. 4.

1.1 Hypergraphs

A directed graph is a pair G = (V,A), where V is a finite set of nodes and A
is a set of ordered node pairs called directed edges or arcs. A directed acyclic
graph (DAG) with exactly one source node is called an sT -graph. A node u
dominates a node v in G if there exists a directed path from u to v in G. A
directed hypergraph is a pair H = (V,A), where V is a finite set of nodes and
A is a set of pairs (S, T) with non-empty sets S, T ⊆ V . The elements of A are
called directed hyperedges or hyperarcs, S are the source nodes, and T are the
target nodes. While our definition conceptually allows S∩T 6= ∅ (i.e., a hyperarc
may be or contain a self-loop), we will not consider such a case in this paper.

Now let H be a self-loop free directed hypergraph and φ = (S, T) a hyperarc
of H. A directed tree T = (Vφ, Aφ) with Vφ = (S ∪ T ∪N) is an underlying tree
of φ if: (i) for each source node s ∈ S there is a node n ∈ N with (s, n) ∈ Aφ;
(ii) for each target node t ∈ T there is a node n′ ∈ N with (n′, t) ∈ Aφ; (iii) the
degree of each v ∈ S ∪ T is exactly 1 within T ; and (iv) each n ∈ N is only
adjacent to vertices of Vφ and has degree at least 2. We call N the hypernodes
of φ. Informally, the source and target nodes are the leaves and the hypernodes
are the inner nodes of T . T is called confluent if each source node dominates
all target nodes. A directed underlying graph H ′ of a directed hypergraph H
is obtained by substituting each hyperarc φ by an underlying tree Tφ, i.e., H ′

consists of the nodes ofH together with the hypernodes and arcs of all underlying
trees. If each underlying tree contains only one hypernode, we call H ′ a star-
based underlying graph of H (cf. tree-based and point-based drawing style of
hyperedges [6]). H ′ is confluent if all underlying trees are confluent.

In this paper we also consider the problem of orthogonal routing of hyper-
edges. Layer-based approaches for orthogonal routing of plain edges were given

Crossing Minimization and Layouts of Directed Hypergraphs with Ports 3

by Sander [15] and Baburin [1]. Eschbach et al. showed that the orthogonal
hyperedge routing problem using at most one horizontal line segment per hy-
peredge is NP-hard by revealing its equivalence to the minimal feedback arc set
problem [10], and proposed a greedy assignment heuristic and a sifting heuristic.
Sander proposed to use standard cycle breaking heuristics [16], still limited to
at most one horizontal line segment for each hyperedge (except for hyperedges
that span multiple layers).

Since our approach is based on planarization, we use the basic ideas for
handling of hyperedges from previous work on hypergraph planarization [6].

1.2 Port Constraints

The ports of a hyperarc φ = (S, T) are the points in the drawing where φ
touches the nodes in S and T . In many applications these ports have a specific
semantic interpretation, such as being inputs or outputs for data tokens in data
flow diagrams, or pins of electric components in circuit schematics. Thus in
such applications the positioning of ports is not arbitrary, but may be subject to
specific constraints [17]. The strictest variant of port constraints is the one where
the exact position of each port, relative to the respective node, is prescribed. This
implies that each port has an associated side of the node where it is drawn, i.e.,
the top, bottom, left, or right side.

Given a node v with incident arcs I, the application’s model of port con-
straints may limit the set of admissible clockwise orders of the arcs I. A generic
approach to model this set of orders for each node is by using embedding con-
straints, which define a tree structure of constraint nodes [12]. This structure
can be considered by an extended planarization algorithm in order to obtain
a planar embedding that respects the pre-defined constraints. The embedding
constraints approach is compatible with the method described in this paper, but
for the sake of brevity we mostly consider only the strict port positions variant
in the following, which admits merely one port order for each node.

First approaches to include ports in layer-based drawings were given by
Gansner et al. [11] and Sander [14]. A more advanced adaption considers differ-
ent types of port constraints as well as hyperarcs [17], as they are required for
the layout of data flow diagrams. That method leads to quite acceptable results
for different types of hypergraphs with port constraints, but is still limited by
the fact that a bad layering can lead to an unnecessarily high number of arc
crossings. As an alternative that is based on planarization, Eiglsperger et al. [9]
proposed a method to include constraints in the orthogonalization phase for the
topology-shape-metrics approach.

2 Upward-Planarization

The currently strongest upward-planarization approach for sT -graphs is due
to [7]. The key ingredients of this algorithm can be summarized as follows. Let

4 Markus Chimani et al.

G = (V,A) be the graph to draw. Similar to the traditional undirected pla-
narization approach [2], we start with an upward-planar subgraph U = (V,A′)
of G and then iteratively insert the edges A \ A′ into U with as few crossings
as possible. All arising crossings on an inserted edge are replaced by dummy
nodes (crossing dummies), such that the iteration always considers the problem
of inserting a single arc into an otherwise upward-planar graph.

Yet, unlike for the undirected planarization approach, our upward require-
ment results in two subtle but central difficulties: not every upward-planar sub-
graph can be used as a starting point, and a crossing minimal insertion of some
arc a may leave a graph in which the remaining, not yet inserted arcs cannot be
inserted in an upward fashion anymore, see [7] for details.

In the following, we will investigate how this approach can be extended to
hypergraphs and port constraints.

2.1 Preprocessing

We can assume that the given directed hypergraph H contains no hyperacrs with
self-loops, as they could be easily reinserted as a postprocessing step without
requiring any further crossings. Let H ′ be the star-based directed underlying
graph of hypergraph H. As we require an sT -graph, we may have to insert
dummy edges from an artificial super source node to the source nodes of H ′.
These edges will have weight 0 for the purpose of crossing minimization and can
be removed for the final layout computation (Sect. 3).

It remains to make H ′ acyclic by reversing the direction of the arcs in a
minimal feedback arc set. Although this problem is NP-hard, any heuristic find-
ing a minimal (in contrast to a minimum) arc set suffices for our purpose. Also
note that, under the assumption that an upward drawing is actually a suitable
drawing paradigm for H, this set will typically be small or even empty. In the
final drawing, we re-reverse these arcs again. Yet, for the upward-planarization
approach, we still have to take special care of such reversed arcs, as we require
each hypergraph to be drawn in a confluent way. Let Rev be the arcs that were
reversed in the preprocessing step.

Our port constraints may require arcs a = (u, v), with u being properly drawn
below v, (a) to leave u downwards, or (b) to enter v from above. This clearly
invalidates the pure upward drawing style. Nevertheless we want to allow such
constructs, but have to ensure that such “misdirected” pieces of the arcs are only
drawn close to u or v, respectively (see below). Hence any such arc requiring (a)
and (b) is substituted by a chain of subarcs (d1a, u), (d1a, d

2
a), (v, d2a), where d1a, d

2
a

are two new dummy nodes. Arcs only requiring either (a) or (b) are analogously
replaced by simpler chains of only two subarcs and a single dummy node. For
notational simplicity, we will continue to store the original unmodified arcs in
the graph, denoted by the set Chn. Whenever we consider an arc a ∈ Chn, we
in fact use the complete chain corresponding to a.

So after preprocessing we have a simple sT -graph G = (V,A), with Rev ⊂ A
and Chn ⊂ A. Note that these two subsets may not be disjoint.

Crossing Minimization and Layouts of Directed Hypergraphs with Ports 5

2.2 Feasible Upward-Planar Subgraph

Besides ensuring upward-feasibility of the initial upward-planar subgraph (i.e.,
ensuring that all temporarily removed arcs are re-insertable), our subgraph has
to additionally be feasible with respect to the port constraints. As described in
Sect. 1.2, embedding constraints can be seen as a specific model of admissible
arc orders for planarization. We can handle such constraints by replacing each
constrained node by its constraint-tree [12], thus in the following we only consider
nodes with no constraints or strict port constraints.

We first compute a spanning tree U ′ = (V,A′′) of G, with A′′ ∩ Rev = ∅,
which clearly exists due to the minimality of Rev .

We then insert the arcs a = (x, y) ∈ A\ (A′′∪Rev) one by one into U ′. After
each insertion step we perform an upward-planarity test, obtaining some feasible
embedding, and check whether the graph still allows the insertion of all remaining
arcs within this embedding, using the merge-graph paradigm introduced in [7].
By the implicit transformation of the arcs Chn we thereby also ensure that the
port constraints can be satisfied. If any of the above two tests fails, we remove
the arc again, and store it in a set B instead.

After that, we fix the current embedding of the graph, and try to re-insert the
arcs in B a second time, as the previously considered embedding might just have
been a bad choice. In the end we have a maximal port-feasible upward-planar
subgraph U = (V,A′) with a feasible embedding Γ , and the set B = A \ A′ of
arcs not yet in U .

Remark. The runtime of the arc-wise test for insertion-feasibility is still domi-
nated by the acyclicity test in the merge-graph, and we can hence obtain U in
O(|A|2) time.

2.3 Arc Insertion

Again, we will start our investigation by outlining how arc insertion works for
traditional arcs without port constraints, cf. [7] for details. We will then use
this algorithm as a building block when considering hypergraphs and port con-
straints. Sometimes we thereby require seemingly minor internal modifications
to this algorithm, which in fact require intricate modifications in the proofs of
the algorithm’s validity. Due to space constraints, we will only touch upon these
issues and focus on the overall idea.

Considering a fixed embedding, the non-upward edge insertion problem can
be solved by considering the dual graph of the embedding, and finding a shortest
path in this dual graph between two faces adjacent to the edge’s start and end
node. When considering inserting an arc a = (u, v) in an upward fashion, this
dual graph has to be substituted by a somewhat similar routing network that
ensures that the identified insertion path is monotonously going upward and is
non-self-intersecting.

Furthermore, not every such found insertion path is feasible with respect
to the remaining, not yet inserted arcs. Therefore, during the shortest path

6 Markus Chimani et al.

computation within the routing network, we additionally have to check feasibility
of the intermediate merge-graph (simply put, the merge graph is the current
graph, augmented with the not-yet inserted arcs in such a way that the remaining
arcs are insertable if and only if the merge graph is acyclic).

Hyperarc Insertion. Starting from the subgraph U , we will now iteratively insert
full hyperarcs, until we obtain a upward-planarization of G and hence of H. Note
that hyperedge insertion in the tree-based paradigm is already NP-hard in the
undirected, non-upward setting [6]. We therefore introduce a novel piecewise
insertion strategy which realizes a low-crossing number hyperarc insertion, still
ensuring confluency of the hyperarc drawing.

For any original hyperarc φ ∈ A in H, G contains a set of arcs Aφ ⊂ A
and a set of hypernodes Vφ. Initially, |Vφ| = 1 since we started with the star-
based underlying graph of H. We will see that both sets will grow during the
subsequent insertion steps. Also note that, in general, some arcs of Aφ may be
in A′ and some in B.

Let U◦ = (V,A◦) be a port-feasible upward-planar planarization (i.e., cross-
ings are modeled via dummy nodes) of some subgraph of G during the insertion
process, B◦ the not yet inserted arcs, and φ ∈ A the hyperarc to insert. The
edge set A◦φ := Aφ ∩A◦ forms a tree, corresponding to the partially tree-based-
drawn hyperarc. Our induction hypothesis states that this tree is confluent: In
the initial subgraph U , this tree is at most a star (and at least a single edge) and
therefore clearly confluent. The arcs Bφ := Aφ ∩ B◦ are the arcs corresponding
to φ that have yet to be inserted in our current iteration step, extending the tree
A◦φ in a confluent way.

We will insert these arcs one by one. Let a = (x, y) ∈ Bφ and assume for now
that a 6∈ Rev ∪ Chn. We first compute the minimal subtrees Ts, Tt of A◦φ that
contain all source and target nodes, respectively, that are already connected by
A◦φ. By the induction hypothesis on confluency, Ts and Tt are disjoint except for
at most one hypernode. Let hs (ht) be the hypernode of Ts (Tt) closest to Tt
(Ts, respectively) on the tree A◦φ.

If x is a hypernode, then y is a target vertex of φ, and we search for a shortest
feasible upward-insertion path from hs to y. Otherwise, y is a hypernode, x is
a source node of φ, and we search for a shortest feasible upward-insertion path
from x to ht. Thereby we modify the routing network in three ways:

Port Constraints. If our port constraints require us to leave x or enter y at
some special positions with respect to already inserted arcs, we can easily
restrict the routing network to use only applicable start or end faces for the
routing. Yet, there are additional augmentations necessary, if a ∈ Chn, see
below.

Arc Reuse. We want to reuse already drawn (sub)arcs corresponding to φ,
in order to generate hyperarc drawings with low total number of crossings.
Therefore, our routing allows 0-cost crossings over A◦φ and next to crossing
dummies in A◦φ. In other words, the new path may reuse already established
paths of φ, cf. Fig. 1.

Crossing Minimization and Layouts of Directed Hypergraphs with Ports 7

t1

t2

s2

s1

s3

s4

t4

h

h

h

t3y

ht p

hs

Fig. 1. Arc Reuse for the case when the source node x is one of the red colored hyper-
nodes. The insertion path p for a = (x, y) starts at node hs.

Splitting other Hyperarcs/-nodes. The knowledge of the properties of hy-
pernodes allows a further improvement, lifted from [6] where it was used in
the context of undirected edge insertion for the so-called minor-monotone
crossing number [3]. We can cross “through” a hypernode h of another hy-
peredge ψ, as long as we thereby do not separate both source and target
nodes from each other, cf. Fig. 2: By our induction hypothesis on conflu-
ency, crossing through h means that we split h into two hypernodes h and h′

and add the arc (h, h′). Then we change the source (or target) vertex of at
least two arcs from h to h′. Let Ain and Aout be the arcs formerly entering
and leaving h, respectively. To ensure confluency, we only allow a split where
(a) all Ain remain incident to h, (b) all Aout become incident to h′, or (c)
neither of both, but either Ain or Aout is an empty set. After this split, our
routing path can cross over the arc (h, h′). Note that, since we consider a
fixed embedding, all valid hypernode-crossings can be modeled via arcs in
the routing network directly connecting two faces (e.g., f6, f3 in Fig. 2). Such
arcs have cost 1, as they induce a hypernode split such that a single crossing
suffices.

Inserting chain-transformed arcs, i.e., a ∈ Chn. If a = (x, y) has to leave x
downwards or enter y upwards, we have to extend our routing network further.
Assume that a only requires the second property (the first one is independent
of the second and can be solved analogously). Usually, all arcs dominated by y
will be statically locked, i.e., we may not cross through them. Now, we unlock
the arcs that directly leave y, and search for a path entering y from there;
depending on the exact port constraint, only a single face above y might be
a valid entrance point into y. We now place the dummy node of the chain-
transformation, where (x, y) was split into (x, d), (y, d), into the face from which y
is entered. Then all crossings are still drawn only between upward arcs. The small
subarc (y, d), which will be reversed in the final drawing, is even drawn without
any crossings. By forbidding crossings to happen over (y, d) in the subsequent

8 Markus Chimani et al.

h

f1 f2

f3

f4f5

f6
p

1

6

2
3

4

5

(a) The insertion path p cross a hypernode h.

h´

f1 f2

f3

f4f5

f6

h

p

1
6 5

42 3

(b) A realization of p.

Fig. 2. Splitting a hypernode by introducing an additional arc can reduce the crossings.

steps, we therefore guarantee that the overall drawing is still upward, and the
small downward pieces of arcs, due to port constraints, are restricted to the
direct neighborhood of the corresponding node.

Note that, after the full upward-planarization approach is completed, we can
merge multiple such dummy nodes that correspond to the same hyperarc, when
they lie in a common face.

Inserting reversed arcs, i.e., a ∈ Rev. To ensure confluency in the hyperarcs, we
have to take special care for the arcs that where reversed in the preprocessing
step to remove cycles. After the drawing is computed, we will have to reset their
original direction. To avoid notational complexity, we will add such arcs only
after all other arcs of the hyperarc are already inserted.

Assume the arc a = (x, y) originally connected a source vertex to the hypern-
ode of the star-based underlying graph, but got reversed and hence connects the
hypernode to a target vertex. Nonetheless we have to ensure that it connects to
the aforementioned subtree Ts, instead of Tt. Let S be the set of original sources
in Ts before inserting a. Then a confluency-feasible upward insertion path for
a can be found by selecting the minimal insertion path from any node in S to
y. Thereby it may cross over A◦φ \ Tt and next to crossing dummies of A◦φ \ Tt
at no cost. The analogous holds, if a originally connected a target vertex to the
star-based hypernode.

Putting it together. So overall, after first computing a special feasible upward
subgraph, our upward-planarization approach inserts one hyperarc after another.
Each hyperarc is inserted by incrementally inserting the arcs of the star-based
underlying graph, reusing the already established tree-based sub-drawing of the
hyperarc as far as possible. By specially considering original arc directions, we
thereby guarantee that all hyperarcs are drawn as confluent trees. The final
result of the planarization is an upward-planar representation (planar, upward-
feasible sT -graph) R of G, and hence of H, together with an embedding Γ of
R. Within R, hyperarcs of H are represented as confluent trees, and crossings
are represented as dummy nodes.

Crossing Minimization and Layouts of Directed Hypergraphs with Ports 9

1 20

6 8 975

3 4

h2

h4

h3

h1

c2

c1

(a)

1 20

6 8 975

3 4

h2

h4

h3

h1

c2

c1c’1 c’’1

c’2 c’’2

(b)

Fig. 3. Steps towards a final layout: (a) the subgraph between consecutive layers of
an UPR R, (b) fine-layering of the subgraph with included dummy nodes to split long
arcs

3 Layout

Using the embedding Γ of the upward-planar planarization (UPR) R computed
in the previous step, our layout procedure works in three steps:

1. A layering L of R is computed.
2. An initial orthogonal drawing of R is computed.
3. Optional step: Orthogonal compaction is applied to remove unnecessary bend

points and improve layout quality.

We finally obtain an upward drawing of R, which induces a drawing of H in a
straight-forward way. The number of hyperarc crossings in this drawing equals
the number of crossing dummies in R, thus it is minimal with respect to the
computed embedding. Our initial method for orthogonal upward drawing may
produce an unnecessarily high number of bend points, but it reveals that such
a drawing can be computed efficiently. We discuss the individual steps in more
detail.

Layering. We compute a layering ofR in two phases using the layering algorithm
by Chimani et al. [8], which also induces a node ordering for each layer. In the
first phase we compute a layering L′ of the nodes of H, and in the second
phase a layering L′′ of the subgraph between each two consecutive layers of L′.
Notice that the nodes of L′′ are either crossing dummies or hypernodes. For each
crossing dummy c of L′′, we split c by adding new dummy nodes c′ and c′′ such
that c′ is the immediate left and c′′ is the immediate right neighbor of c. These
two nodes will be bend points in the later drawing and ensure the orthogonality
of the arcs incident to c. We redirect the left incoming and the right outgoing arc
of c such that c′ is its new target and c′′ is its new source node, respectively. We
then merge L′ and L′′ into a complete layering L of R and create dummy nodes
to split long edges that span multiple layers. An example is shown in Fig. 3.

10 Markus Chimani et al.

Initial orthogonal drawing. Using the layering L, we apply an arbitrary coordi-
nate assignment algorithm known for the third step of Sugiyama’s framework
(e.g., [4, 5, 11, 15]) to compute horizontal node coordinates. The orthogonal
routing of the edges between each pair of consecutive layers can then be calcu-
lated using an existing method for layer-based routing, such as the one proposed
by Sander [15]. Since the embedding of R is planar, such a routing can be con-
structed without introducing additional arc crossings. As a result, all incoming
and outgoing arcs of hypernodes and dummy nodes end in the same point, where
incoming arcs reach the nodes from below and outgoing arcs leave the nodes up-
wards. If there are multiple incoming or multiple outgoing arcs of a node u,
the corresponding vertical line segments that touch u overlap each other. These
overlapping line segments need to be merged to single line segments.

For the computation of the orthogonal layout, port constraints essentially
need to be considered only in the routing algorithm, since they determine where
the arcs shall touch the connected nodes. In case of ports that are situated on
the left or right side of a node, we can artificially broaden the node prior to
the horizontal coordinate calculation and add one bend point per arc such that
incoming and outgoing arcs are redirected downwards and upwards, respectively
(see [14], Sect. 7).

Applying orthogonal compaction. The resulting initial drawing may contain var-
ious unnecessary bends; many such bends can be removed using orthogonal
compaction techniques (see [13] for an overview). First, we connect the nodes of
each pair of consecutive layers Ltop and Lbottom of L′ by horizontal edges and
connect the first nodes and the last nodes on these layers by edges with two bend
points, such that all these additional edges form a surrounding rectangular frame
(cf. Figure 4). We assign fixed edge lengths to the edges on this frame, so that
the nodes on Ltop and Lbottom will remain on their horizontal positions. Then,
we compute the orthogonal representation induced by this drawing and apply
orthogonal flow-based compaction. This allows us to assign costs to segments.
Let S0 denote the set of line segments adjacent to two bend points with a 90 and
a 270 degree angle in a face. The segments in S0 are assigned maximal cost and
zero minimal length. The minimum length of the remaining segments is set to
the minimum of their lengths in the initial drawing and a desired spacing, mak-
ing sure that the initial drawing is a feasible solution for the compaction. Each
segment in S0 for which the compaction achieves zero length is then removed
from the orthogonal representation by merging its adjacent segments.

Final layout. The so constructed drawing is an orthogonal drawing and its arc
crossings are exactly the crossings modeled by R. In order to obtain a valid
drawing of the original hypergraph H, we perform the following post-processing
steps:

a) Replace each crossing dummy c and its corresponding neighboring nodes c′

and c′′ by a horizontal line segment from c′ to c′′.
b) Eliminate all remaining dummy nodes and hypernodes by directly connecting

the line segments of the incoming and outgoing arcs.

Crossing Minimization and Layouts of Directed Hypergraphs with Ports 11

1 20

6 8 975

3 4

h2

h4

h3

h1

c2

c1

Ltop

Lbottom

(a)

1 20

6 8 975

3 4

h2

h4

h3

h1 c2

c1

(b)

Fig. 4. Orthogonal compaction: (a) An initial drawing of Figure 3(a) with unnecessary
bend points. Before starting the compaction, the drawing is framed by a rectangle (red
edges) and the new edges are assigned fixed lengths. (b) The final drawing.

c) Reverse all arcs of Rev , which were previously reversed to break cycles.

We can add an additional compaction step on the whole layout—similar as
before—to further improve the layout. Notice that when considering the whole
layout, we do not need to fix the x-coordinates; we only have to ensure that the
horizontal distance between ports is fixed.

4 Conclusion

We presented the first planarization approach for hypergraphs in the context
of upward drawings. To this ends, we combined the known ideas of upward arc
insertion and insertion of a single edge in the undirected minor crossing number
setting with a novel heuristic method to assemble multiple adequately chosen
insertion paths to a confluently drawn hyperarc. Furthermore, we dealt with
the problem of laying out the so obtained upward-planar representation in an
orthogonal upward drawing style. As our hyperarcs offer more freedom than
prior approaches within the Sugiyama framework, their orthogonalization step
is inapplicable for our needs, even after layering. We therefore introduced a new
global scheme based on orthogonal compaction.

We also considered port constraints both in the upward-planarization as well
as in the layout step, as they are integral to many hypergraph drawing appli-
cations such as pins in electrical circuits. We want to stress that our algorithm
not only solves the upward drawing problem for hypergraphs with and without
port constraints, but also is the first port-constraint-aware upward-planarization
approach that is suitable for regular DAGs.

Based on the experience with prior upward-planarization methods, we expect
that our methods should work well in practice—the implementation, together
with a thorough experimental investigation comparing this approach to the more
traditional hypergraph drawing algorithms within the Sugiyama framework, re-
mains as our next research step. Furthermore, we would be interested in more

12 Markus Chimani et al.

direct orthogonalization methods, along the lines of, e.g., [15, 10]. These meth-
ods solve the problem locally on a layer-by-layer basis, but extending them to
allow multiple horizontally drawn hypernodes per hyperarc between two layers
is non-trivial.

References

[1] D. E. Baburin. Using graph based representations in reengineering. Proc. CSMR
’02, pages 203–206, 2002.

[2] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity rela-
tionship diagrams. J. Syst. Software, 4:163–173, 1984.

[3] D. Bokal, G. Fijavz, and B. Mohar. The minor crossing number. SIAM J. Discrete
Math., 20:344–356, 2006.

[4] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment. In
Proc. Graph Drawing ’01, pages 31–44, London, UK, 2002. Springer-Verlag.

[5] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. In Proc. Graph Drawing ’00, volume 1984 of LNCS, pages 229–240.
Springer, 1999.

[6] M. Chimani and C. Gutwenger. Algorithms for the hypergraph and the minor
crossing number problems. In Proc. ISAAC’07, volume 4835 of LNCS, pages
184–195. Springer-Verlag, 2007.

[7] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free upward
crossing minimization. ACM Journal of Experimental Algorithmics, 15, 2010.

[8] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Upward planariza-
tion layout. In Proc. Graph Drawing ’09, volume 5849 of LNCS, pages 94–106.
Springer, 2010.

[9] M. Eiglsperger, U. Fößmeier, and M. Kaufmann. Orthogonal graph drawing with
constraints. In Proc. SODA ’00, pages 3–11. SIAM, 2000.

[10] T. Eschbach, W. Guenther, and B. Becker. Orthogonal hypergraph drawing for
improved visibility. J. Graph Algorithms Appl., 10(2):141–157, 2006.

[11] E. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique for drawing
directed graphs. Software Pract. Exper., 19(3):214–229, 1993.

[12] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal edge
insertion with embedding constraints. J. Graph Algorithms Appl., 12(1):73–95,
2008.

[13] G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthogonal
compaction algorithms. In Proc. Graph Drawing ’00, pages 37–51, London, UK,
2001. Springer-Verlag.

[14] G. Sander. Graph layout through the VCG tool. Technical Report A03/94,
Universität des Saarlandes, FB 14 Informatik, 66041 Saarbrücken, Oct. 1994.

[15] G. Sander. A fast heuristic for hierarchical Manhattan layout. In Proc. Graph
Drawing ’95, volume 1027 of LNCS, pages 447–458. Springer-Verlag, 1996.

[16] G. Sander. Layout of directed hypergraphs with orthogonal hyperedges. In Proc.
Graph Drawing ’03, volume 2912 of LNCS, pages 381–386. Springer-Verlag, 2004.

[17] M. Spönemann, H. Fuhrmann, R. von Hanxleden, and P. Mutzel. Port constraints
in hierarchical layout of data flow diagrams. In Proc. Graph Drawing ’09, volume
5849 of LNCS, pages 135–146. Springer, 2010.

[18] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Sys. Man. Cyb., 11(2):109–125, 1981.

