
Stress-Minimizing Orthogonal Layout
of Data Flow Diagrams with Ports

Ulf Rüegg1, Steve Kieffer2,
Tim Dwyer2, Kim Marriott2, and Michael Wybrow2

1 Department of Computer Science, Kiel University, Kiel, Germany
uru@informatik.uni-kiel.de

2 Faculty of Information Technology, Monash University, NICTA Victoria, Australia
{Steve.Kieffer,Tim.Dwyer,Kim.Marriott,Michael.Wybrow}@monash.edu

Abstract. We present a fundamentally different approach to orthogonal
layout of data flow diagrams with ports. This is based on extending con-
strained stress majorization to cater for ports and flow layout. Because
we are minimizing stress we are able to better display global structure, as
measured by several criteria such as stress, edge-length variance, and as-
pect ratio. Compared to the layered approach, our layouts tend to exhibit
symmetries, and eliminate inter-layer whitespace, making the diagrams
more compact.

Keywords: actor models, data flow diagrams, orthogonal routing, lay-
ered layout, stress majorization, force-directed layout

1 Introduction

Actor-oriented data flow diagrams are commonly used to model movement of
data between components in complex hardware and software systems [13]. They
are provided in many widely used modelling tools including LabVIEW (National
Instruments Corporation), Simulink (The MathWorks, Inc.), EHANDBOOK
(ETAS), SCADE (Esterel Technologies), and Ptolemy (UC Berkeley). Complex
systems are modelled graphically by composing actors, i. e., reusable block dia-
grams representing well-defined pieces of functionality. Actors can be nested—
i. e., composed of other actors—or atomic. Fig. 1a shows an example of a data
flow diagram with four nested actors. Data flow is shown by directed edges from
the source port where the data is constructed to the target port where the data
is consumed. By convention the edges are drawn orthogonally and the ports are
fixed in position on the actors’ boundaries. Automatic layout of data flow di-
agrams is important: Klauske and Dziobek [12] found that without automatic
layout about 30 % of a modeller’s time is spent manually arranging elements.

Current approaches to automatic layout of data flow diagram are modifica-
tions of the well-known Sugiyama layer-based layout algorithm [17] extended to

A version of this paper has been accepted for publication in Graph Drawing 2014.
The final publication will be available at link.springer.com.

link.springer.com


(a) Layout with layer-based algorithm KLay Layered by Schulze et al.

(b) Layout with the CoDaFlow algorithm presented here.

Fig. 1. Two layouts of the same diagram. The result of our method, shown in (b), has
less stress, lower edge length variance, less area, and better aspect ratio.

handle ports and orthogonal edges. In particular Schulze et al. [15] have spent
many years developing specialised layout algorithms that are used, for instance,
in the EHANDBOOK and Ptolemy tools. However, their approach has a number
of drawbacks. First, it employs a strict layering which may result in layouts with
poor aspect ratio and poor compactness, especially when large nodes are present.
Furthermore, the diagrams often have long edges and the underlying structure
and symmetries may not be revealed. A second problem with the approach of
Schulze et al. is that it uses a recursive bottom-up strategy to compute a layout
for nested actors independent of the context in which they appear.

This paper presents a fundamentally different approach to the layout of actor-
oriented data flow diagrams designed to overcome these problems. A comparison
of our new approach with standard layer-based algorithm KLay Layered is shown
in Fig. 1. Our starting point is constrained stress majorization [3]. Minimizing
stress has been shown to improve readability by giving a better understanding
of important graph structure such as cliques, chains and cut nodes [4]. However,
stress-minimization typically results in a quite “organic” look with nodes placed
freely in the plane that is quite different to the very “schematic” arrangement
involving orthogonal edges, a left-to-right “flow” of directed edges, and precise
alignment of node ports that practitioners prefer.

The main technical contribution of this paper is to extend constrained stress
majorization to handle the layout conventions of data flow diagrams. In particu-



lar we: (1) augment the P -stress [7] model to handle ports that are constrained
to node boundaries but are either allowed to float subject to ordering constraints
or else are fixed to a given node boundary side, and (2) extend Adaptive Con-
strained Alignment (ACA) [10] for achieving grid-like layout to handle directed
edges, orthogonal routing, ports, and widely varying node dimensions.

An empirical evaluation of the new approach (Sect. 4) shows it produces lay-
outs of comparable quality to the method of Schulze et al. but with a different
trade off between aesthetic criteria. The layouts have more uniform edge length,
better aspect ratio, and are more compact but have slightly more edge crossings
and bends. Furthermore, our method is more flexible and requires far less im-
plementation effort. The Schulze et al. approach took a team of developers and
researchers several years to implement by extensively augmenting the Sugiyama
method. While their infrastructure allows a flexible configuration of the existing
functionality [15], it is very restrictive and brittle when it comes to extensions
that affect multiple phases of the algorithm. The method described in this paper
took about two months to implement and is also more extendible since it is built
on modular components with well-defined work flows and no dependencies on
each other.

Related Work. The most closely related work is the series of papers by Schulze et
al. that show how to extend the layer-based approach to handle the layout re-
quirements of data flow diagrams [15,16]. Their work presents several improve-
ments over previous methods to reduce edge bend points and crossings in the
presence of ports. While the five main phases (classically three) of the layer-based
approach are already complex, they introduce between 10 and 20 intermediate
processes in order to address additional requirements. The authors admit that
their approach faces problems with unnecessary crossings of inter-hierarchy edges
as they layout compound graphs bottom-up, i. e., processing the most nested ac-
tor diagrams first. Related work in the context of the layer-based approach has
been studied thoroughly in [15,16]. Chimani et al. present methods to consider
ports and their constraints during crossing minimization within the upward pla-
narization approach [2]. While the number of crossings is significantly reduced,
the approach eventually induces a layering, suffering from the same issues as
above. There is no evaluation with real-world examples. Techniques from the
area of VLSI design and other approaches that specifically target compound
graphs have been discussed before and found to be insufficient to fulfil the lay-
out requirements for data flow diagrams [16], especially due to lacking support
for different port constraints.

2 CoDaFlow — The Algorithm

Data flow diagrams can be modelled as directed graphs G = (V,E, P, π) where
nodes or vertices v ∈ V are connected by edges e ∈ E ⊆ P × P through ports
p ∈ P—certain positions on a node’s perimeter—and π : P → V maps each port
p to the parent node π(p) to which it belongs. An edge e = (p1, p2) is directed,



(a) After Node Positioning (b) After Node Alignment (c) After Edge Routing

Fig. 2. The results of pipeline stages (1), (2), (3) are shown in (a), (b), (c), respectively.

outgoing from port p1 and incoming to p2. A hyperedge is a set of edges where
every pair of edges shares a common port.

To better show flow it is preferable for sources of edges to be to the left
of their targets and by convention edges are routed in an orthogonal fashion.
Ports can—depending on the application—be restricted by certain constraints,
e. g., all ports with incoming edges should be placed on the left border of the
node. Spönemann et al. define five types of port constraints [16], ranging from
ports being free to float arbitrarily on a node’s perimeter, to ports having well-
defined positions relative to nodes. Nodes that contain nested diagrams, i. e.,
child nodes, are referred to as compound nodes (as opposed to atomic nodes); a
graph that contains compound nodes is a compound graph. We refer to the ports
of a compound node as hierarchical ports. These can be used to connect atomic
nodes inside a compound node to atomic nodes on the outside.

The main additional requirements for layout of data flow diagrams on top
of standard graph drawing conventions are therefore [16]: (R1) clearly visible
flow, (R2) ports and port constraints, (R3) compound nodes, (R4) hierarchical
ports, (R5) orthogonal edge routing, and (R6) orthogonalized node positions to
emphasize R1 using horizontal edges.

The starting point for our approach is constrained stress majorization [3].
This extends the original stress majorization model [9] to support separation
constraints that can be used to declaratively enforce node alignment, non-overlap
of nodes, flow in directed graphs, and to cluster nodes inside non-overlapping
regions. Brandes et al. [1] provide one method to orthogonalise an existing layout
based on the topology-shape-metrics approach, but in order to handle require-
ments R1–6 we instead use the heuristic approach of Kieffer et al. [10] to apply
alignment constraints within the stress-based model.

Our Constrained Data Flow (CoDaFlow) layout algorithm is a pipeline with
three stages:

1. Constrained Stress-Minimizing Node Positioning
2. Grid-Like Node Alignment
3. Orthogonal Edge Routing

The intermediate results of this pipeline are depicted in Fig. 2. Single stages can
be omitted, e. g., when no edge routing is required or initial node positions are
given. In this section we restrict our attention to flat graphs, i. e., those without
compound nodes, while Sect. 3 extends the ideas to compound graphs.



(a) (b)

(c) (d)

Fig. 3. Awareness of ports is important to achieve good node positioning. (a) and (c)
show internal representations of what is passed to the layout algorithm, (b) and (c)
show the resulting drawings. (a) is unaware of ports and yields node positions that
introduce an edge crossing in (b). In (c) ports are considered and the unnecessary
crossing is avoided in (d). Note, however, while the chance is higher that (c) is cross
free, it is not guaranteed.

2.1 Constrained Stress-Minimizing Node Positioning

Traditional stress models for graph layout expect a simple graph without ports,
so a key idea in order to handle data flow diagrams is to create a small node
to represent each port, called a port node or port dummy, as in Fig. 3c. If D is
the set of all these, and δ : P → D maps each port to the dummy node that
represents it, we construct a new graph G′ = (V ′, E′) where V ′ = V ∪D, and

E′ = {(δ(p1), δ(p2)) : (p1, p2) ∈ E} ∪ {(π(p), δ(p)) : p ∈ P}

includes one edge representing each edge of the original graph, and an edge
connecting each port dummy to its parent node. We refer to the v ∈ V as proper
nodes.

Depending on the specified port constraints (R2) we restrict the position of
each port dummy δ(p) relative to its parent node π(p) using separation con-
straints. For instance, for a rigid relative position we use one separation con-
straint in each dimension, whereas we retain only the x-constraint if δ(p) need
only appear on the left or right side of π(p). The use of port nodes allows the
constrained stress-minimizing layout algorithm to untangle the graph while be-
ing aware of relative port positions, resulting in fewer crossings, as illustrated in
Fig. 3.

Our constrained stress-based layout uses the methods of Dwyer et al. [3] to
minimize the P-stress function [7], a variant of stress [9] that does not penalise
unconnected nodes being more than their desired distance apart:∑

u<v∈V ′

wuv

(
(`puv − b(u, v))

+
)2

+
∑

(u,v)∈E′

`−2
(

(b(u, v)− `)+
)2

(1)



where b(u, v) is the Euclidean distance between the boundaries of nodes u and v
along the straight line connecting their centres, puv the number of edges on the
shortest path between nodes u and v, ` an ideal edge length, wuv = (`puv)

−2,
and (z)+ = max(z, 0).

Ideal Edge Lengths. Instead of using a single ideal edge length ` as in (1), which
can result in cluttered areas where multiple nodes are highly connected, we may
assign custom edge lengths `uv, choosing larger values to separate such nodes. In
Fig. 3 the ideal edge lengths of the two outgoing edges of the FrontDropQueue

actor are chosen slightly larger than for the two other edges.
The length of the edge (π(p), δ(p)) connecting a port dummy to its parent

node is set to the exact distance from the node’s center to the port’s center.

Emphasizing Flow. A common requirement for data flow diagrams is that the
majority of edges point in the same direction (here left-to-right). For this we
introduce separation constraints for edges (u, v) of the form xu + g ≤ xv, where
g > 0 is a pre-defined spacing value, ensuring that u is placed left of v. We refer
to these constraints as flow constraints.

Special care has to be taken for cycles, as they would introduce contradicting
constraints. We experimented with different strategies to handle this. 1) We
introduced the constraints even though they were contradicting (and let the
solver choose which one(s) to reject); 2) We did not generate any flow constraints
for edges that are part of a strongly connected component; 3) We employed a
greedy heuristic by Eades et al. [8] (known from the layer-based approach) to
find the minimal feedback arc set, and withheld flow constraints for the edges in
this set. Our experiments showed that the third strategy yields the best results.

Execution. We perform three consecutive layout runs, iteratively adding con-
straints: 1) Only port constraints are applied, allowing the graph to untangle and
expose symmetry; 2) Flow constraints are added, but overlaps are still allowed
so that nodes can float past each other, swapping positions where necessary; 3)
Non-overlap constraints are applied to separate all nodes as desired.

2.2 Grid-like Node Alignment

While yielding a good distribution of nodes overall, stress-minimization tends to
produce an organic layout with paths splayed at all angles, which is inappropriate
for data flow diagrams. The layout needs to be orthogonalized, i. e., connected
nodes brought into alignment with one another so that where possible edges
form straight horizontal lines, visually emphasizing horizontal flow.

For this purpose we apply the Adaptive Constrained Alignment (ACA) algo-
rithm [10]. Since it respects existing flow constraints, it only attempts to align
edges horizontally. However, our replacement of the given graph G by the auxil-
iary graph G′ with port nodes tends to subvert the original intentions of ACA,
so it requires some adaptation. Whereas the original ACA algorithm expected at



(a) Proper nodes con-
nected via port nodes

(b) Ports aligned by
ACA

Fig. 4. In the new port model, two
proper nodes may be connected to the
same side of another via ports, as in
(a). The systematic use of offset align-
ments between port nodes and their
parents, i. e., constraints of the form
yδ(p) + δ = yπ(p), δ 6= 0 as shown in (b),
creates a risk of node-edge and node-
node overlaps far exceeding what was
anticipated with the original ACA algo-
rithm, as could have occurred here had
node B been as tall as node C, for ex-
ample. We have extended ACA to prop-
erly handle such cases.

most one proper node to be aligned with another in a given compass direction,
in our case (with ports) it will often be desirable to have more. See Fig. 4.

In order to adapt ACA to the new port model we made it possible to ignore
certain edges—namely those connecting port nodes to their parents—and also
generalised its overlap prevention methods significantly. Instead of the simple
procedure for preventing multiple alignments in a single compass direction [10],
we use the VPSC solver [5] for trial satisfaction of existing constraints, the new
potential alignment, as well as non-overlap constraints between all nodes and a
dummy node representing the potentially aligned edge.

Thus, while the ACA process continues to merely centre-align nodes—in this
case port nodes d ∈ D—we have allowed it to in effect align several proper nodes
v1, . . . , vk ∈ V with a single one u ∈ V at port positions as in Fig. 4, meeting
the requirement R6 of data flow diagrams.

2.3 Edge Routing

We now consider node positions to be fixed, and use the methods of Wybrow et
al. [18] to route the edges orthogonally. We return from G′ to G, using the final
positions of the port nodes d ∈ D to set routing pins, fixed port positions on the
nodes v ∈ V where the edges should connect.

3 Handling Compound Graphs

When handling compound graphs, different strategies for dealing with compound
nodes. Schulze et al. employ a bottom-up strategy, treating every compound node
as a separate graph, starting with the inner-most nodes. This allows application
of different layout algorithms to each subgraph which reduces the size of the
layout problem, and possibly the overall execution time. They remark, however,
that the procedure can yield unsatisfying layouts since the surroundings of a
compound node are not known; see Fig. 5a for an example where two unnec-
essary crossings are created inside the TM controllers actor and two separate



(a) Layout with layer-based methods by Schulze et al.

(b) Layout with the CoDaFlow algorithm presented here.

Fig. 5. Two layouts of the same Ptolemy diagram. While two distinct networks are
interleaved in (a), they are clearly separated and the two crossings are avoided in (b).

networks are interleaved. A global approach would solve this issue, positioning
all compound nodes along with their children at the same time.

Even though we focus our attention on a global approach in what follows, our
methods are flexible in that we may choose between a bottom-up and a global
strategy in each stage of our pipeline.

A compound graph G is transformed into G′ as above, which is used to
construct a flat graph G′′ = (A,E′′) where A ⊆ V ′ is the set of atomic nodes
and their port nodes, and E′′ = U ∪H with

U ={(δ(p1), δ(pn)) : π(p1), π(pn) ∈ A}
H ={(δ(p1), δ(pn)) : ∃(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ E :

π(p1), π(pn) ∈ A ∧ π(p2), . . . , π(pn−1) ∈ V \A}

Intuitively, compound nodes are neglected along with their ports and only
atomic nodes are retained. Sequences of edges that span hierarchy boundaries,
e. g., the three edges between Sampler2 and Controller2 in Fig. 5b, are replaced
by a single edge that directly connects the two atomic nodes. Note that for
hyperedges multiple edges have to be created. Cluster constraints guarantee that
children of compound nodes are kept close together and are not interleaved with
any other nodes. For instance, the CompositeActor in Fig. 5b yields a cluster
containing Controller1 and Controller2.



Table 1. Evaluations of 110 flat diagrams with 10–23 nodes (9–30 edges) and 10
compound diagrams with 12–38 nodes (12–52 edges). Figures for stress, average edge
length, variance in edge length, and area are given as the ratio of CoDaFlow divided by
KLay. Values below 1 indicate a better performance of CoDaFlow. An average value
shows the general tendency while minimal and maximal values show the best and worst
performance.

Stress EL Variance EL Average Area
Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Comp. 0.27 0.75 0.97 0.11 0.29 0.61 0.39 0.57 0.79 0.50 0.88 1.28

Flat 0.34 0.77 1.13 0.03 0.60 1.92 0.34 0.84 1.10 0.62 1.11 2.01

To return to G, the clusters’ dimensions, i. e., their rectangular bounding
boxes, are applied to the compound nodes in V \A. The edges in H are split into
segments s1, . . . , sn based on the crossing points ci with clusters. The route of
si is applied to the corresponding edge e ∈ E and the ci determine the positions
of the hierarchical ports.

4 Evaluation and Discussion

We evaluate our approach on a set of data flow diagrams that ship with the
Ptolemy project1, comparing with the KLay layered algorithm of Schulze et al.
Diagrams were chosen to be roughly the size Klauske found to be typical for
real-world Simulink models from the automotive industry [11] (about 20 nodes
and 30 edges per hierarchy level).

Metrics. Well established metrics to assess the quality of a drawing are edge
crossings and edge bends [14], two metrics directly optimized by the layer-based
approach. More recently, stress and edge length variance were found to have a
significant impact on the readability of a drawing [4]. Additionally, we regard
compactness in terms of aspect ratio and area.

So that comparisons of edge length and of layout area can be meaningful,
we set the same value for KLay Layered’s inter-layer distance and CoDaFlow’s
ideal separation between nodes.

The P -stress of a given (already layouted) diagram depends on the choice
of the ideal edge length ` in (1), and the canonical choice ¯̀ is that where the
function takes its global minimum. If L is a list of all the individual ideal lengths
`uv = b(u, v)/puv, then ¯̀ is equal to the contraharmonic mean C(Lj) (i. e., the
weighted arithmetic mean in which the weights equal the values) over a certain
sublist Lj ⊆ L. Namely, if LE = 〈`uv : (u, v) ∈ E〉 and L\LE = 〈`1 ≤ `2 ≤ · · · ≤
`ν〉, then Lj = LE ∪ 〈`1, `2, . . . , `j〉 for some 0 ≤ j ≤ ν. Since ν is finite, we can
compute each C(Lj) and take ¯̀ to be that at which the P -stress is minimized.
See Appendix B.

1 http://ptolemy.eecs.berkeley.edu/

http://ptolemy.eecs.berkeley.edu/


Table 2. Results for the metrics aspect ratio, crossings, and average bends per edge.
As opposed to Table 1, figures are absolute values.

Aspect Ratio Crossings Bends/Edge
Min Avg Max Min Avg Max Min Avg Max

Comp.
CoDaFlow 1.27 1.83 2.51 0.00 3.40 10.0 0.92 1.25 1.56
KLay 1.51 2.76 4.94 0.00 1.20 6.00 0.68 0.97 1.22

Flat
CoDaFlow 0.32 2.47 5.96 0.00 1.25 11.0 0.42 1.16 2.31
KLay 0.37 2.77 9.00 0.00 1.02 7.00 0.22 1.04 1.73

Results. Table 1 and 2 show detailed results for layouts created by CoDaFlow
and KLay Layered. We used two variations of the Ptolemy diagrams: small flat
diagrams and compound diagrams (cf. examples in the appendix).

For flat diagrams CoDaFlow shows a better performance on stress, average
edge length, and variance in edge length. CoDaFlow produced slightly more
crossings, bends per edge and slightly increased area.

More interesting are the results for the compound diagrams, which show
more significant improvements. On average, CoDaFlow’s diagram area was 88%
that of KLay Layered, and edge length variance was only 29%. Also, the average
aspect ratio shifts closer to that of monitors and paper. However, there is an
increase in crossings. Currently our approach does not consider crossings at
all, thus the increased average. As can be seen in Fig. 1, the small number of
additional crossings are not ruinous to diagram readability, and they could be
easily avoided by introducing further constraints, as discussed in Sect. 5.

Execution Times. As seen in Fig. 6, the current CoDaFlow implementation
performs significantly slower than KLay Layered, but it still finishes in about
half a second even on a large diagram of 60 nodes. There is room for speedups, for
instance, by avoiding re-initialization of internal data structures between pipeline
stages. In addition, we plan to improve the incrementality of constraint solving
in the ACA stage, as well as performing faster satisfiability checks wherever full
projections are not required.

Implementation and Flexibility. Compared to KLay Layered our approach is
both easier to understand and implement, and more flexible in its application.

In addition to the five main phases of KLay Layered, about 10 to 20 inter-
mediate processes of low to medium complexity are used during each layout run.
Dependencies between these units have to be carefully managed and the phases
have to be executed in strict order, e. g., the edge routing phase requires all
previous phases.

CoDaFlow optimizes only one goal function and addresses the requirements
of data flow diagrams by successively adding constraints to the optimization
process. While we divide the algorithm into multiple stages, each stage merely
introduces the required constraints. CoDaFlow’s stages can be used indepen-
dently of each other, e. g., to improve existing layouts. Also, users can fine-tune
generated drawings using interactive layout [6] methods.



1

20

400

10 23 35 47 60

Ex
ec

u
ti

o
n

 T
im

e 
[m

s]

(a) Overall

0

150

300

10 23 35 47 60

Ex
ec

u
ti

o
n

 T
im

e 
[m

s]

(b) Pipeline Stages

Fig. 6. Execution time plotted against the number of nodes n. For each n 10 graphs
were generated randomly with an average of 1.5 outgoing edges per node. (a) Overall
execution time of KLay Layered (solid line) and CoDaFlow (dashed line). (b) Execution
time of the pipeline steps: Untangling (solid line), Alignment (dashed line), and Edge
Routing (dotted line). Timings were conducted on an Intel i7 2.0 GHz with 8 GB RAM.

5 Conclusions

We present a novel approach to layout of data flow diagrams based on stress-
minimization. We show that it is superior to previous approaches with respect
to several diagram aesthetics. Also, it is more flexible and easier to implement.2

The approach can easily be extended to further diagram types with similar
drawing requirements, such as the Systems Biology Graphical Notation (SBGN).
To allow interactive browsing of larger diagram instances, however, execution
time has to be reduced, e. g., by removing overhead from both the implemen-
tation and the pipeline steps. Avoiding the crossing in Fig. 3 is currently not
guaranteed. We plan to detect such obvious cases via ordering constraints. In
addition to ACA, the use of topological improvement strategies [7] could help to
reduce the number of edge bends further where edges are almost straight.

Acknowledgements. Ulf Rüegg was funded by a doctoral scholarship (FIT-
weltweit) of the German Academic Exchange Service. Michael Wybrow was
supported by the Australian Research Council (ARC) Discovery Project grant
DP110101390.

References

1. Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthogonal
graph drawing. In: Kobourov, S.G., Goodrich, M.T. (eds.) Proceedings of the 10th
International Symposium on Graph Drawing (GD’02). LNCS, vol. 2528, pp. 1–11.
Springer (2002)

2 Author Ulf Rüegg has worked on both KLay Layered and CoDaFlow.



2. Chimani, M., Gutwenger, C., Mutzel, P., Spönemann, M., Wong, H.M.: Crossing
minimization and layouts of directed hypergraphs with port constraints. In: Pro-
ceedings of the 18th International Symposium on Graph Drawing (GD’10). LNCS,
vol. 6502, pp. 141–152. Springer (2011)

3. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for
separation constraint layout of graphs. IEEE Transactions on Visualization and
Computer Graphics 12(5), 821–828 (Sept 2006)

4. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.:
A comparison of user-generated and automatic graph layouts. IEEE transactions
on visualization and computer graphics 15(6), 961–8 (2009)

5. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P.,
Nikolov, N.S. (eds.) Proceedings of the 13th International Symposium on Graph
Drawing (GD’05). LNCS, vol. 3843, pp. 153–164. Springer (2006)

6. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network dia-
gram authoring tool. In: Revised Papers of the 16th International Symposium on
Graph Drawing (GD’08). LNCS, vol. 5417, pp. 420–431. Springer (2009)

7. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph
layout. In: Revised Papers of the 16th International Symposium on Graph Drawing
(GD’08). LNCS, vol. 5417, pp. 230–241. Springer (2009)

8. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters 47(6), 319–323 (1993)

9. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In:
Pach, J. (ed.) Graph Drawing. LNCS, vol. 3383. Springer Berlin Heidelberg (2005)

10. Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Incremental grid-like layout
using soft and hard constraints. In: Wismath, S., Wolff, A. (eds.) Graph Drawing.
LNCS, vol. 8242, pp. 448–459. Springer (2013)

11. Klauske, L.K.: Effizientes Bearbeiten von Simulink Modellen mit Hilfe eines spez-
ifisch angepassten Layoutalgorithmus. Ph.D. thesis, Technische Universität Berlin
(2012)

12. Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout gen-
eration for Simulink. In: Proceedings of the MathWorks Automotive Conference
(MAC’10) (2010)

13. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers
(JCSC) 12(3), 231–260 (2003)

14. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding?
In: Proceedings of the 5th International Symposium on Graph Drawing (GD’97).
LNCS, vol. 1353, pp. 248–261. Springer (1997)

15. Schulze, C.D., Spönemann, M., von Hanxleden, R.: Drawing layered graphs with
port constraints. Journal of Visual Languages and Computing, Special Issue on
Diagram Aesthetics and Layout 25(2), 89–106 (2014)

16. Spönemann, M., Fuhrmann, H., von Hanxleden, R., Mutzel, P.: Port constraints in
hierarchical layout of data flow diagrams. In: Proceedings of the 17th International
Symposium on Graph Drawing (GD’09). LNCS, vol. 5849, pp. 135–146. Springer
(2010)

17. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics
11(2), 109–125 (Feb 1981)

18. Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal connector routing. In: Pro-
ceedings of the 17th International Symposium on Graph Drawing (GD’09). LNCS,
vol. 5849, pp. 219–231. Springer (2010)



A Appendix

A.1 Flat Graphs

(a) CoDaFlow
(b) KLay Layered

Fig. 7. Comparison of the generated layouts of CoDaFlow and KLay Layered for flat
graphs. Diagrams are taken from the Ptolemy example library: Huffman, AFDX, and
Datagram (from top to bottom).



A.2 Compound Graphs

(a) CoDaFlow

(b) KLay Layered

Fig. 8. Comparison of the generated layouts for the Router diagram with 19 nodes, 24
edges, and 4 compound nodes.



(a) CoDaFlow

(b) KLay Layered

Fig. 9. Comparison of the generated layouts for the dropqueuetest diagram with 16
nodes, 21 edges, and 2 compound nodes.

B Computing ideal edge length to minimize P -stress

Let a graph G = (V,E) be given, along with some linear ordering on V . We
assume a layout of G is already given, and regard its P -stress PG as a function
of `:

PG(`) =
∑

u<v∈V
wuv

(
(`puv − b(u, v))

+
)2

+
∑

(u,v)∈E

`−2
(

(b(u, v)− `)+
)2

where b(u, v) is the Euclidean distance between the boundaries of nodes u and v
along the straight line connecting their centres, puv the number of edges on the
shortest path between nodes u and v, wuv = (`puv)

−2, and (z)+ = max(z, 0).
We wish to compute the value of ` that minimises PG.

We begin by rewriting the P -stress as:

PG(`) =
∑

(u,v)∈D

wuv

(
(`puv − b(u, v))

+
)2

+
∑

(u,v)∈E

`−2 (`− b(u, v))
2
,

where D = {(u, v) : u < v∧ (u, v) 6∈ E ∧ (v, u) 6∈ E}. In other words, D is simply
the set of all ordered pairs written in ascending order, in which the nodes are
not connected by an edge.



For each (u, v) ∈ D, define `uv = b(u, v)/puv, and

huv(`) =

{(
1− `uv

`

)2
` ∈ [`uv,+∞)

0 ` ∈ (0, `uv].

Then huv is in fact differentiable over (0,+∞), with

h′uv(`) =

{
2`uv

`2

(
1− `uv

`

)
` ∈ [`uv,+∞)

0 ` ∈ (0, `uv],

and we have

PG(`) =
∑

(u,v)∈D

huv(`) +
∑

(u,v)∈E

(
1− b(u, v)

`

)2

and

P ′G(`) =
∑

(u,v)∈D

h′uv(`) +
∑

(u,v)∈E

2b(u, v)

`2

(
1− b(u, v)

`

)
.

Now let 〈`1, `2, . . . , `ν〉 be the list of all `uv for (u, v) ∈ D, written in non-
decreasing order (some values may appear more than once). Since there may
be repeated values among the `i, let 〈m1,m2, . . . ,mµ〉 be the list of all distinct
values of the `i, written in strictly ascending order. For each 1 ≤ j ≤ µ, let
Aj = {i : `i <= mj}, and let Ij = [mj ,mj+1]. Restricting to the interval Ij and
substituting a new variable λj , we have

P ′G(λj)|Ij =
∑
i∈Aj

2`i
λ2j

(
1− `i

λj

)
+

∑
(u,v)∈E

2b(u, v)

λ2j

(
1− b(u, v)

λj

)
,

and setting this derivative equal to zero and solving for λj , we find

λj =

∑
(u,v)∈E b(u, v)2 +

∑
i∈Aj

`2i∑
(u,v)∈E b(u, v) +

∑
i∈Aj

`i
.

This is simply the contraharmonic mean over B ∪ Aj , where B = 〈b(u, v) :
(u, v) ∈ E〉; that is, the weighted mean in which the weights equal the values.
For λj to be an actual critical point of the function PG however, it must satisfy
the assumption that it lies in the restricted interval Ij . Thus the ideal edge length
¯̀ is found to be

¯̀= arg min
{λj :λj∈Ij}

PG(λj).


	Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

