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Abstract— A goal of the Dependable Embedded Components
and Systems (DECOS) project, an Integrated Project within
the EU Framework Programme 6, is to explore the integrated
distributed time-triggered architecture paradigm. A high-lift
flap system serves to validate and demonstrate this paradigm in
the aerospace application domain. This paper gives an overview
of the application and the system architecture, and describes
the model-based development process.

I. INTRODUCTION

A. Time-Triggered Architecture

With the growing complexity of distributed systems the in-
tercommunication within and between subsystems is increas-
ing. For receiving fault-tolerance in highly safety-critical
systems much effort must be spent (e.g., in system design
and error containment) if event-triggered communication
buses such as CAN [1] are used, due to the fact that these
buses are mostly developed for (soft) real-time systems
with flexible requirements concerning timing. In contrast,
the time-triggered communication approach in the time-
triggered architecture (TTA) [2] offers deterministic, fault-
tolerant communication services with additional features that
enable the developers to better manage complexity and to
find design flaws earlier in the development process.

As TTA is a general notion, there are different implemen-
tations available. The Time-Triggered Protocol (TTP) [3] is a
communication protocol for the TTA and specifies its com-
munication subsystem. Other approaches are forthcoming,
for example Byteflight [4], FlexRay [5] and TTCAN [6].

The TTP describes the communication scheme of the
system. The set of nodes participating in communication via
TTP is called the TTP cluster. The access to the bus follows
the time division multiple access (TDMA) scheme as it is
depicted in Figure 1. The global communication schedule
is called the Message Descriptor List (MeDL) and has to be
known by every communication controller in the cluster. In a
TTA, not only the communication scheme is time-triggered,
but the task execution at the individual nodes, too, in order to
synchronize task execution with message transfer. The local
task schedules of the nodes are called Task Descriptor Lists
(TaDL).
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Fig. 1. The TDMA scheme of a TTP network.

B. Model-Based System Design

Another advancing key technology is the model-
based system design. Modelling suites such as Mat-
lab/Simulink/Stateflow [7], SCADE [8] or Mission Level
Designer [9] allow to model a system prior to its physical
implementation. This helps to find errors in the development
process in early stages: Design faults in the specification can
be revealed or the whole system can be simulated although
some of the components do not yet exist physically. This
helps to find errors as soon as possible and can save effort,
time and money because in later design phases the costs of
eliminating errors are likely to be much higher.

For best results in the industrial development process the
two technologies, TTA and model-based system develop-
ment, should be combined. Thus the development process
leads to a model-based system design of the TTA.

C. The Dependable Embedded Components and Systems
Project

The DECOS project (Dependable Embedded Compo-
nents and Systems) [10], an Integrated Project within the
EU Framework Programme 6, should deploy a process
of developing embedded systems that are built on COTS
(commercial-of-the-shelf) hardware and software compo-
nents and nevertheless enable us to develop safe systems.

The key to the problem is to develop fundamental and
enabling technologies which are independent of domain
and technology in order to facilitate the paradigm shift
from federated to integrated design of dependable real-time
embedded systems. This shall lead to reduced development,
validation and maintenance costs in both the software and
the hardware domain.

The major objective is to research the compositional sys-
tem framework and to develop a set of generic hardware and
software components. As DECOS is platform independent,
they are usable on various platforms that support the defined
core services deterministic and timely message transport,



Fig. 2. The state-of-the-art high-lift flap system [11]

fault-tolerant clock synchronization, strong fault isolation
and consistent diagnosis of failing nodes.

The TTA was chosen because it offers strong composabil-
ity, effective fault propagation barriers, fault-tolerance by
active replication, strong diagnosability and formal analysis
of critical architecture functions. The particular choice within
the aerospace subproject fell to TTP as it consequently fol-
lows the TTA paradigms and safety issues and is technically
mature.

II. THE AEROSPACE SUBPROJECT

For demonstration of the research and development results,
several test benches will be implemented employing the new
technology. One is to validate the achieved results of DECOS
and demonstrate their practicability in a highly safety-critical
aerospace application environment.

The demonstrator will implement an electronically syn-
chronized high-lift flap system. This system is motivated by
the current state-of-the-art for such systems [11]. As depicted
in Figure 2, a flap system consists of two flap panels at each
wing.

The flap system can increase the concavity of the wing
if activated and therefore increase the ascending force tem-
porarily. This is used at low speed for landing and take off
purposes only. Hence a flap system is safety-critical. If the
system fails during the flight, it will not be available for
landing, which is obviously a serious problem.

If the left and right flap panel are not perfectly syn-
chronized, the ascending force on the two wings differ.
This compromises the controllability of the plane and might
ultimately lead to a crash.

To avoid the asynchronous state of the flap panels, they
need to be synchronized. In the state-of-the-art flap sys-
tem this is done mechanically: A tight mechanical shaft
physically connects the left wing flap panel with the right
wing flap panel. This shaft lies across the whole aircraft

Fig. 3. The architecture of an electronically synchronized flap system

fuselage. A central power control unit actuates the shaft
with the help of two electrical motors. If one motor fails,
the other side will move the whole shaft with half the
speed by a speed summing differential. This way both sides
are always perfectly synchronized unless a shaft breaks
or blocks, whereupon the shaft brakes freeze the system.
However, this scenario is highly unlikely.

The drawback of this solution is obvious: The shaft across
the fuselage is very inflexible and the development of the tip-
to-tip shaft transmission is very laborious and includes the
internal construction of the fuselage into the development of
the flap system, which makes the system neither modular nor
reusable.

An electronically synchronized flap system could give
more flexibility by introducing modularity and might even
increase safety by exchanging central control with local
controls enabling more sophisticated fault reaction strategies.
An electronic system has not yet been tackled, as safety has
highest priority.

The demonstrator is a test platform for the aerospace
domain to realize the implementation, test and integration
of tools, methods and components (hardware and software)
being developed in the DECOS project and to validate the
achieved results and demonstrate their practicability in this
highly safety-critical application environment.

Figure 3 shows the architecture of the system. Only one
flap panel per wing side is shown.

The left and right side of each flap panel are still connected
via a mechanical shaft. Each shaft side is powered by a
powerful electronic motor. The motor is controlled via the
motor control electronics (MCE) whereas actuator control
electronics (ACE) control the synchronization process and
form an outer control loop. Position pickoff units (PPU)
measure the current angle of the flap shaft and a hydraulic
cross shaft brake (CSB) is able to fix the shaft in case
of faults. The ACEs and PPUs communicate via a time-
triggered bus in order to exchange information for the
synchronization control loop. The ACEs control the CSB and
only if both ACEs on each side indicate correct functionality,
the CSB is released.

A central system control unit (SCU) monitors the be-
haviour of the system and commands the desired flap angles.



Fig. 4. The physical test rig of TUHH. a. front view, b. side view [13]

Fig. 5. The architecture of the flap system developed around the flap test
rig

The SCU is implemented as an application on an IMA
module which has the interface to the TTA bus on the one
hand and the interface to the event triggered communication
bus AFDX (Avionics Full Duplex Switched Ethernet) [12]
on the other hand. Through the AFDX channel other aircraft
systems are able to communicate with the SCU application
and could even communicate directly with the TTA nodes
by the AFDX-TTP-gateway functionality.

A. The test bench

A physical test rig of a flap panel exists at the Technical
University Hamburg-Harburg (TUHH). The available part
is depicted in Figure 4. The test rig represents the right
outboard flap panel and comprises a hydraulic load cylinder
to simulate the aerodynamic forces to the flap.

The rest of the system will be developed around this test
rig. Hence the real system architecture will look as shown
in Figure 5.

The test rig will implement the right flap side. The me-
chanical parts will be augmented by the position-pickoff unit
and the electronic units as described above. The left flap side
will be implemented as a real-time simulation: The ACEs
will be available as electronic units but connect to a computer

unit that simulates the behaviour of the left flap. The SCU
will be implemented on a IMA module as described but
the input commands come from an aircraft simulation and
visualization application at a personal computer that connects
it via AFDX interface to the IMA module.

III. MODEL-BASED SYSTEM DESIGN

The complexity of the systems obviously rises by in-
troducing more and more electronic systems which inter-
communicate. The system developer must address topics of
safety, reliability, maintainability, availability, security and
reusability.

One can try to cope with the complexity by using models
in the development process. In general a model is a dedicated
abstraction of the real world. It can help to explain certain
real-world phenomena. Graphical representations of infor-
mation play an important role in software engineering. They
help to display the underlying data in a user-friendly way.
Graphical modelling languages show the system on a very
high level of abstraction. They can hide irrelevant data and
clarify hierarchy in order to design the development process
in such a way that it fits human understanding best. Good
modelling suites join together capabilities of abstraction of
human developers with the detailed implementation of ma-
chines. So they offer an intuitive model language to support
human understanding and lead to an automated system code
synthesis to support the target machines directly.

A. Purpose of the model

There are many reasons that justify to use modelling and
to make a system model to a central part in the development
process of the system:

1) System specification: Specifications are often written
in natural language and are therefore of informal nature.
Models typically have a precise semantics (depending on
the modelling language used), hence transferring the textual
descriptions into a model formalizes a specification. As
models can be structured hierarchically, one would probably
understand the essence of a system more quickly by studying
a model than by reading a textual specification.

2) Computing the communication schedule: Before the
different components of the TTA can finally be implemented,
the communication schedule—in our case the TTP-specific
Message Descriptor List (MeDL)—must be defined, because
the component schedules are built according to the MeDL.
Modelling tools, such as Matlab/Simulink and SCADE, offer
interfaces to the TTA cluster compiling tools of TTTech.
So the MeDL can be synthesized directly from the model.
Modelling the TTA in an appropriate tool is much more
intuitive and better to read than working with TTP-Plan
directly.

3) Specifying logical behaviour: As an electronically syn-
chronized high-lift flap system is a new concept, there are
no synchronization algorithms and fault reaction strategies
available from the shelf. So the development of the logical
functionality of the different components must be done
from scratch. Building a model and simulating its behaviour



can help to find possible failure modes and assist at the
development of this logical behaviour.

4) Test, verification: Many modelling languages bestow
models with such precise semantics that the model can
be simulated. Hence the developers can test the system
before any physical implementation is available. Therefore
elimination of design faults might be done in early stages of
the development process, which saves development costs. In
addition, with SCADE and the Design Verifier the developer
can prove predefined properties of the operators and Model
Coverage Analysis might verify that every element of the
model (which represents a software requirement) has been
dynamically activated when the system requirements are
exercised.

5) Code generation: Modelling suites like SCADE and
Matlab are equipped with code generators that transform the
models into a programming language, such as C. This code
can be compiled with specific target platform compilers and
loaded to the system components directly or with little hand
coded additions. Having a model in such detail that it allows
the synthesis of the program code of the components would
be a great benefit of the modelling effort.

B. Esterel Technologies: The SCADE Suite

The SCADE Suite is the modelling environment of Es-
terel Technologies [8]. The semantics of the models are
given by synchronous languages: A very common model in
software process control is cycle-based reaction. The im-
plementation cyclically repeats a sequence of three actions:
reading the inputs, computing the reaction and producing
the corresponding outputs. Input events occurring during a
reaction are queued for the next reaction, which makes the
reaction atomic and deterministic. There are two different
synchronous programming styles: The data-flow style and
the imperative style. These lead to the graphical modelling
techniques of the SCADE Suite. An informal introduction to
these synchronous languages gives [14].

1) Data flow models: Lustre [15] is the synchronous
language with data-flow style which is well-adapted to steady
process-control applications and to signal processing. A
SCADE model is a graphical representation of such a Lustre
program.

2) Safe State Machines (SSMs): State machines can be
embedded into a SCADE model. Esterel Technologies uses
its Safe State Machines (SSM) which were formerly known
as SyncCharts. They were conceived in the nineties [16] as a
graphical notation for the synchronous Esterel language [17].
Hence SSMs inherit their semantics through the mapping
to Esterel. This mathematical semantics is explained in a
technical report [18] and an informal presentation of the
model and its semantics is given in [19], [20].

3) Code generation: SCADE provides Ada, standard C
and qualified C code generators.

The SCADE Editor exports a textual description of the
SCADE model which is fed into a SCADE-to-Lustre filter
that transforms the model into Lustre code. There are three
different Lustre-to-Code transformators, that accept Lustre

code as an input and produce code in the corresponding target
language, i.e., Ada, ANSI C or C qualified with respect to
DO-178B level A [21]. That is the most constraining level of
one of the most constraining development processes, which
is mandatory for safety critical systems in the aerospace
industry.

C. TTP-Coupling

The Time-Triggered Protocol, TTP, has been developed
during the past 25 years by Vienna University of Technology
(TU Wien) [22]. In 1998 TTTech emerged as a company
from the TU Wien and EU-funded research projects such
as TTA and X-By-Wire. From then on it has commercially
been using the results by developing tools for the TTA system
design.

The target group are mainly the aerospace and automotive
industry and comparable industries, which show a strong
distribution of the development process into two parties: The
system integrator and the subsystem suppliers, which often
differ from the system integrator.

Therefore the TTTech tools build a two-level design
framework taking this relationship into account: TTP-Plan
is an overall cluster design tool, which specifies global
cluster properties and generates a global communication
schedule—the Message Descriptor List (MeDL). Whereas
TTP-Build is a node and task design tool. It specifies local
node properties, generates the local task schedule—the Task
Descriptor List (TaDL), configures the operating system and
generates middle ware code. There are some other tools
available used here, such as TTP-Load, TTP-View, TTP-
Matlink and TTP-SCADElink.

The TTA-modelling interface to SCADE is called TTPlink.
It provides a SCADE node library with nodes for TTP
messages. There are nodes for modelling the sending of
messages, the receiving of messages and the passing of local
messages between tasks within one subsystem. Annotations
to the message nodes add the message properties, such as
the message names and the sending period. TTA subsystems
and tasks are modelled by normal SCADE nodes which get
enriched by annotations that include the subsystem resp. task
properties. Forms allow the input of these properties into
the annotations. One standard SCADE node represents the
TTA cluster. It only comprises TTA subsystem nodes and the
message nodes that specify the communication between the
subsystems. Each subsystem node only includes TTA task
nodes that may be connected with local message nodes. The
TTA task nodes may contain other SCADE nodes that model
the functional behaviour of the task.

An additional view is for specifying the hardware units, the
TTP nodes, and the mapping of these nodes to subsystems.

The TTP-coupling for SCADE adds user interfaces to au-
tomatically generating the MeDL with TTP-Plan, the TaDLs
for every node with TTP-Build, the wrapper code for the
tasks and the code for the applications. The compilation of
application binaries and the upload of these to the TTP nodes
can be controlled by the user interface as well. Finally the



calibration of values through the monitoring node can be
enabled by this user interface.

IV. THE AEROSPACE VIRTUAL TEST-BENCH

The Virtual Test-Bench that is to be developed will
be an abstract simulation model representing the physical
Aerospace Test-Bench. It permits to simulate the overall test-
bench behaviour, integrate and test the functional compo-
nents (HW/SW) of all project partners in this model and
enables to validate the design at a high level of abstraction.
The architecture design tools and validation methods devel-
oped in DECOS will be applied, if applicable. With aid of
the simulation model a concept validation of the physical
test-bench will be done before developing the individual
components. Finally, the physical test-bench will be validated
and tested against the virtual simulation model.

A. The Virtual Test-Bench

1) Scope of the model: The main scope of the modelling
is the time-triggered communication. So all components that
have access to the TTA bus are modelled at first. These are

• The four Actuator Control Units (ACE) which control
the motor control electronics and therefore directly
influence the motor motion which moves the flap panel.

• The four Position Pickoff Units (PPU) that detect the
current position of the flap panel and provide the values
on the TTA bus.

• The System Control Unit (SCU) that gets positioning
commands from the cockpit resp. the aircraft simulation
via the AFDX bus.

For simulation traces that provide significant results, the
model has to be enriched by more detailed information. As
the main purpose of the system is to synchronize the left
and right flap panel, it appears reasonable to model the flap
panels, too. Although the mechanical functionality is not
the main scope of this model, it would be very helpful to
have such information about the panels. This includes the
functionality of the Motor Control Electronics (MCE) and the
mechanical, electric and hydraulic parts of the flaps, i.e., the
main shaft, beds, the cross shaft brake (CSB), the electric
motors and the mechanical connection of the PPUs.

The cockpit commands coming via the AFDX bus to the
SCU will be implemented by textual flight scenario traces
that can be fed into the simulation directly to the SCU. The
virtual test-bench uses the same flight scenario traces for the
simulation of the model as for the simulation of the real test
bench.

Figure 6 shows the scope of the model.
2) Contents of the model: The virtual test-bench com-

prises three levels with different kinds of information:
1.) The first level contains the global cluster information.

That is the specification of the different subsystems and
the TTP messages, incoming and outgoing. A TTP message
may be produced by exactly one but consumed by multiple
subsystems. Additionally the hardware nodes of the cluster
are specified. In our case each subsystem gets implemented
by exactly one hardware node (called host in SCADE to

Fig. 6. Scope of the model

Fig. 7. The mechanical subsystem as a black box

avoid the name clash between SCADE node and TTP node).
This level of information is enough to generate the Message
Descriptor List (MeDL). The interface to the scheduling
tools of TTTech allows to generate the MeDL with this
information automatically.

2.) The second level contains the task information. Each
subsystem only includes tasks and local messages between
tasks. Task properties such as task name and time budget are
specified here. SCADE can export this information to the
task scheduler of TTTech which merges it with the global
cluster information (e.g., MeDL) in order to form the fault-
tolerant communication level (which is not used here) and
the task schedules of the nodes (TaDL).

3.) The third level comprises the functional behaviour of
the tasks. The implementation is not as simple as in a purely
functional model. The tasks have to be completely separated.
No other data transfer between tasks is provided by SCADE
apart from the TTP messages. Therefore modelling of the
environment beyond task borders is hardly possible. Our so-
lution will be to model the environment with the mechanical
properties of the flaps in Matlab Simulink (done by TU
Hamburg-Harburg) and import this model to SCADE as a
binary C library in order to protect the intellectual property
of the Simulink model. The architecture of the virtual test-
bench is depicted in Figure 7.



V. RESULTS AND OUTLOOK
For the aerospace industry as well as for other industrial

sectors, the results of the DECOS project are needed to
provide a fundamental and comprehensive basis for future
innovations within utility systems, communication archi-
tectures and appropriate avionics applications for the next
generation of aircraft and re-designs.

Smart and distributed components, gateways to connect
asynchronous and synchronous communication architectures,
and high-speed communication combined with the strong
fault-tolerance, reliability and deterministic behavior of the
time-triggered architecture (TTA), are the necessary basis for
the development of complex systems in highly safety-critical
environments.

In order to reduce the effort during qualification, mod-
ification and customization, appropriate methodologies and
tools are required, which also support diagnostic and system
configuration to reduce maintenance and operating costs for
safety-critical utility systems.

The deterministic, fault-tolerant philosophy of the time-
triggered architecture fits the deterministic philosophy of
synchronous languages. The synchronous languages that
underlay SCADE and SSMs give precise mathematical se-
mantics to the graphical models and therefore mathematical
analysis of such models is possible and the behaviour is fully
deterministic, which is essential for safety-critical applica-
tions.

In DECOS appropriate architectures, methodologies, as-
sociated COTS hard- and software components and com-
prehensive tool chains will be developed which fulfil the
requirements of the aerospace industry. These components
and tools will cover: cluster design, middleware and code
generators, validation and certification as well as systems-
on-a-chip (SoCs) for high dependability applications. Fur-
thermore technology invariant software interfaces and en-
capsulated virtual networks with predictable temporal prop-
erties such that application software can be transferred to a
new hardware and communication base with minimal effort
(legacy reuse) will be developed.
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