
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 0, no. 0, pp. 0–0 (0)
DOI:

Generalized Layerings
for Arbitrary and Fixed Drawing Areas

Ulf Rüegg 1 Thorsten Ehlers 1 Miro Spönemann 2

Reinhard von Hanxleden 1

1Dept. of Computer Science, Kiel University, Kiel, Germany
2TypeFox GmbH, Kiel, Germany

Abstract

The Directed Layering Problem (DLP) solves a step of the widely used
layer-based approach to automatically draw directed acyclic graphs. To
cater for cyclic graphs, usually a preprocessing step is used that solves
the Feedback Arc Set Problem (FASP) to make the graph acyclic before
a layering is determined.

Here we present the Generalized Layering Problem (GLP), which solves
the combination of DLP and FASP simultaneously, allowing general graphs
as input. We present an integer programming model and a heuristic to
solve the NP-complete GLP and perform thorough evaluations on dif-
ferent sets of graphs and with different implementations for the steps of
the layer-based approach. We observe that GLP reduces the number of
dummy nodes significantly, can produce more compact drawings, and im-
proves on graphs where DLP yields poor aspect ratios.

The drawings resulting from GLP also turn out to be more suitable for
making the best possible use of a given drawing area. However, we show
that a specialized variant of GLP can yield considerable improvements
w. r. t. this particular optimization goal.

Keywords: layer-based layout, Sugiyama layout, layer assignment, inte-
ger programming, compactness, aspect ratio

Submitted: Reviewed: Revised: Accepted: Final:

Published:

Article type: Communicated by:

This work was supported by the German Research Foundation under the project

Compact Graph Drawing with Port Constraints (ComDraPor, DFG HA 4407/8-1).

E-mail addresses: uru@informatik.uni-kiel.de (Ulf Rüegg) the@informatik.uni-kiel.de (Thorsten Ehlers)

miro.spoenemann@typefox.io (Miro Spönemann) rvh@informatik.uni-kiel.de (Reinhard von Hanxle-

den)

http://dx.doi.org/
mailto:uru@informatik.uni-kiel.de
mailto:the@informatik.uni-kiel.de
mailto:miro.spoenemann@typefox.io
mailto:rvh@informatik.uni-kiel.de

JGAA, 0(0) 0–0 (0) 1

1 Introduction

The layer-based approach is a well-established and widely used method to au-
tomatically draw directed graphs. It is based on the idea to assign nodes to
consecutive layers that show the inherent direction of the graph, see Figure 1a
for an example. The approach was introduced by Sugiyama et al. [35] and
remains a subject of ongoing research.

Given a directed graph, the layer-based approach was originally defined for
acyclic graphs as a pipeline of three phases. However, two additional phases are
necessary to allow practical usage, which are marked with asterisks:

1. Cycle removal*: Eliminate all cycles by reversing a preferably small subset
of the graph’s edges. This phase adds support for cyclic graphs as input.

2. Layer assignment: Assign all nodes to numbered layers such that edges
point from layers of lower index to layers of higher index. Edges connecting
nodes that are not on consecutive layers are split by so-called dummy
nodes.

3. Crossing reduction: Find an ordering of the nodes within each layer such
that the number of edge crossings is minimized.

4. Coordinate assignment: Determine explicit node coordinates with the goal
to minimize the distance of edge endpoints.

5. Edge routing*: Compute bend points for edges, e. g. with an orthogonal
style.

While state-of-the-art methods produce drawings that are often satisfying,
there are graph instances where the results show bad compactness and unfavor-
able aspect ratio [16]. In particular, the number of layers is bound from below
by the longest path of the graph that results from the first phase. When placing
the layers vertically one above the other, this affects the height of the drawing,
see Figure 1a. Also, decisions made during the first phase may turn out to be
disadvantageous for the second phase.

The layer-based approach is explicitly designed for directed graphs, empha-
sizing inherent directionality. Nevertheless, the approach can be used to lay out
undirected graphs and to lay out graphs where the direction is of minor or no
importance. Drawings of a graph are displayed on some medium, for instance
a computer screen, or are printed on paper. One usually desires a drawing that
uses the available space to its full potential. For this to happen, the layout algo-
rithm must specifically tailor the drawing for the selected medium. A question
immediately following is whether it is required that a user can tell if a sequence
of drawings originates from the same graph. Consider Figure 1. Drawing (a)
lends itself well to be printed on a paper in portrait orientation, (c) lends itself
better for a landscape orientation. However, it is not easy to verify that the
different drawings represent the same graph.

2

(a) 0 reversed edges,
71 dummy nodes

(b) 2 reversed edges,
35 dummy nodes

(c) 6 reversed edges,
16 dummy nodes

Figure 1. Different drawings of the g.39.29 graph from the North graphs collection [8].
(a) is drawn with known methods [14], (b) and (c) are results of the methods presented
here. Reversed edges are drawn bold and dashed.

We conclude from these observations that there are at least two criteria that
must be evaluated in practice when selecting an appropriate layout strategy for
the individual use case: (a) the importance of a uniform edge direction, and
(b) the recognizability of a graph across different drawings of it. The variety
of possible layout objectives arising out of these criteria is too large to address
them fully in one paper. We restrict ourselves therefore as explained next.

Contributions. The focus of this paper is on the first two phases described
above. They determine the initial topology of the drawing and thus directly
impact the compactness and the aspect ratio of the drawing.

We introduce a new layer assignment method that can handle cyclic graphs
and is able to consider compactness properties for selecting an edge reversal set.

JGAA, 0(0) 0–0 (0) 3

(a) 5 reversed edges, 55 dummy nodes (b) 3 reversed edges, 34 dummy nodes

Figure 2. A graph drawn with (a) EaGa (known methods as described in Section 7)
and (b) 1-30-GLP (this work). This example illustrates that our method can perform
better in both metrics: reversed edges (dashed and bold) and number of dummy nodes.

Specifically, 1) it can overcome the previously mentioned lower bound on the
number of layers arising from the longest path of a graph, 2) it can be flexibly
configured to either favor elongated or narrow drawings, thus improving on
aspect ratio, and 3) compared to previous methods it is able to reduce both the
number of dummy nodes and reversed edges for certain graphs simultaneously.
See Figure 1 and Figure 2 for examples.

We discuss how to solve the underlying objective of the new method to opti-
mality using an integer programming model as well as heuristically, and evaluate
both. The evaluations serve as a basis to assess the flexibility of our methods
to target explicit drawing areas, such as a computer screen. Using a specialized
variant of our new method, we find that there is room for improvements w. r. t.
this particular optimization goal and give suggestions for future research direc-
tions. The latter two points (Section 6) were not yet included in the conference
version of this paper [30].

Outline. We introduce problems and definitions in Section 2, and present
methods to solve the newly introduced problems in Sections 3 and 4. Sections 5
and 6 discuss thorough evaluations with regards to an arbitrary and fixed draw-
ing area, respectively. Section 7 discusses the relevant literature as well as open
questions. We conclude in Section 8.

4

2 Definitions and Problem Classification

Let G = (V,E) denote a graph with a set of nodes V and a set of edges E.
We write an edge between nodes u and v as (u, v) if we care about direction,
as {u, v} otherwise. A layering of a directed graph G is a mapping L : V → N.
A layering L is valid if ∀(u, v) ∈ E: L(v)− L(u) ≥ 1.

Problem 1 (Directed Layering (DLP)) Let G = (V,E) be an acyclic di-
rected graph. The problem is to find a minimum k and a valid layering L such
that

∑
(v,w)∈E(L(w)− L(v)) = k.

DLP was originally introduced by Gansner et al. [14]. We extend the idea of a
layering for directed acyclic graphs to general graphs, i. e. graphs that are either
directed or undirected and that can possibly be cyclic. Undirected graphs can
be handled by assigning an arbitrary direction to each edge, thus converting it
into a directed one, and by hardly penalizing reversed edges. We call a layering
L of a general graph G feasible if ∀{u, v} ∈ E : |L(u)− L(v)| ≥ 1.

Problem 2 (Generalized Layering (GLP)) Let G = (V,E) be a possibly
cyclic directed graph and let ωlen, ωrev ∈ N be weighting constants. The problem
is to find a minimum k and a feasible layering L such that

ωlen

 ∑
(v,w)∈E

|L(w)− L(v)|

+ ωrev |{(v, w) ∈ E : L(v) > L(w)}| = k .

Intuitively, the left part of the sum represents the overall edge length (i. e. the
number of dummy nodes) and the right part represents the number of reversed
edges (i. e. the FAS). After reversing all edges in this FAS, the feasible layering
becomes a valid layering. Compared to the standard cycle removal phase com-
bined with DLP, the generalized layering problem allows more flexible decisions
on which edges to reverse. Also note that GLP with ωlen = 1, ωrev = ∞ is
equivalent to DLP for acyclic input graphs and that while DLP is solvable in
polynomial time, both parts of GLP are NP-complete [29].

3 The IP Approach

In the following, we describe how to solve GLP using integer programming. The
rough idea of this model is to assign an integer value to each node of the given
graph that represents the layer in which that node is to be placed.

Input and parameters. Let G = (V,E) be a graph with node set V = {1, . . . , n}.
Let e be the adjacency matrix, i. e. e(u, v) = 1 if (u, v) ∈ E and e(u, v) = 0
otherwise. ωlen and ωrev are weighting constants.

Integer decision variables. l(v) takes a value in {1, . . . , n} indicating that node
v is placed in layer l(v), for all v ∈ V .

JGAA, 0(0) 0–0 (0) 5

Boolean decision variables. r(u, v) = 1 if and only if edge e = (u, v) ∈ E and e
is reversed, i. e. l(u) > l(v), for all u, v ∈ V . Otherwise, r(u, v) = 0.

Minimize ωlen

∑
(u,v)∈E

|l(u)− l(v)|+ ωrev

∑
(u,v)∈E

r(u, v).

The sums represent the edge lengths, i. e. the number of dummy nodes, and
the number of reversed edges, respectively. Constraints are defined as follows:

1 ≤ l(v) ≤ n ∀v ∈ V (A)

|l(u)− l(v)| ≥ 1 ∀(u, v) ∈ E (B)

n · r(u, v) + l(v) ≥ l(u) + 1 ∀(u, v) ∈ E (C)

Constraint (A) restricts the range of possible layers. (B) ensures that the result-
ing layering is feasible. (C) binds the decision variables in r to the layering, i. e.
because r is part of the objective, and ωrev > 0, r(u, v) gets assigned 0 unless
l(v) < l(u), for all (u, v) ∈ E.

Variations. The model can easily be extended to restrict the number of layers
by replacing the n in constraint (1) by a desired bound b ≤ n. The edge matrix
can be extended to contain a weight wu,v for each edge (u, v) ∈ E. This can
be helpful if further semantic information is available, i. e. about feedback edges
that lend themselves well to be reversed.

Jabrayilov et al. present two MIP models for slight variations of GLP [21].
The first one, called CGL, considers the contribution of dummy nodes to a
layer’s width and adds the width of the layering to the objective function. Con-
sequently, a reasonable bound on the height must be set which is part of the
input. The second one, called MML, neglects the contribution of dummy nodes
to a layer’s width and maximizes the length of reversed edges, significantly
improving on execution time. For certain use cases the reversed edge length
maximization may be desired.

4 The Heuristic Approach

Interactive modeling tools providing automatic layout facilities require execution
times significantly shorter than one second. As the IP formulation discussed in
the previous section rarely meets this requirement, we present a heuristic to
solve GLP. It proceeds as follows. 1) Leaf nodes are removed iteratively, since
it is trivial to place them with minimum edge length and desired edge direction.
Note that therefore the heuristic is not able to improve on trees that yield a
poor compactness. For reasons we explain in Section 7 we leave this for future
research. 2) For the (possibly cyclic) input graph an initial feasible layering is
constructed which is used to deduce edge directions yielding an acyclic graph.
3) Using the network simplex method presented by Gansner et al. [14], a solution
with minimal edge length is created. 4) We execute a greedy improvement
procedure after which we again deduce edge directions and re-attach the leaves.

6

Algorithm 1. constructLayering
Input: directed graph G = (V,E)
Data: Sets U , C. For all v ∈ V score[v], incAs[v], outAs[v]
lIndex← −1, rIndex← 0
Output: index[v]: feasible layering of G

1 for v ∈ V do
2 score[v]← |{w | {v, w} ∈ E}|
3 incAs[v]← 0
4 outAs[v]← 0
5 add v to U

6 remove random v from U
7 c← v
8 add c to C
9 while U not empty do

10 if incAs[c] < outAs[c] then
11 index[c]← lIndex−−

12 else
13 index[c]← rIndex++

14 remove c from U and C
15 cScore←∞
16 for v ∈ {w | {c, w} ∈ E ∧ w ∈ U} do
17 add v to C
18 score[v]−−

19 if (c, v) ∈ E then incAs[v]++ else outAs[v]++

20 for v ∈ C do
21 if score[v] < cScore then cScore← score[v]
22 c← v

5) We apply the network simplex algorithm a second time to get a valid layering
with minimal edge lengths for the next steps of the layer-based approach. In
the following we will discuss steps 2 and 4 in further detail.

Step 2: Layering Construction. To construct an initial feasible solution
we follow an idea that was first presented by McAllister as part of a greedy
heuristic for the Linear Arrangement Problem (LAP) [23] and later extended
by Pantrigo et al. [28].

Nodes are assigned to distinct indexes, where as a start, a node is selected
randomly, assigned to the first index, and added to a list of assigned nodes.
Based on the list of assigned nodes a candidate list is formed, and the most
promising node is assigned to the next index. As decision criterion we use the
difference between the number of edges incident to unassigned nodes and the
number of edges incident to assigned nodes. This procedure is repeated until
all nodes are assigned to distinct indexes (see Algorithm 1).

In contrast to McAllister, for GLP we allow nodes to be added to either side
of the list of assigned nodes, and decide the side based on the number of reversed
edges that would emerge from placing a certain node on that side. For this we
use a decreasing left index variable and an increasing right index variable.

Step 4: Layering Improvement. At this point a feasible layering with a
minimum number of dummy nodes w. r. t. the chosen FAS is given since we
execute the network simplex method of Gansner et al. beforehand. Thus we can

JGAA, 0(0) 0–0 (0) 7

Figure 3. Illustrating the regions used by the heuristic.

only improve on the number of reversed edges. We determine possible moves
and decide whether to take the move based on a profit value. Let a graph
G = (V,E) and a feasible layering L be given. For ease of presentation, we
define the following notions, which are illustrated in Figure 3. An example: For
a node v, topSuc are the nodes connected to v via an outgoing edge of v and
are currently assigned to a layer with lower index than v’s index. Intuitively,
topSuc (just as botPre) are nodes connected by an edge pointing into the “wrong”
direction.

v.topSuc = {w : (v, w) ∈ E ∧ L(v) > L(w)} v.botSuc = {w : (v, w) ∈ E ∧ L(v) < L(w)}
v.topPre = {w : (w, v) ∈ E ∧ L(w) < L(v)} v.botPre = {w : (w, v) ∈ E ∧ L(w) > L(v)}
v.topAdj = v.topSuc ∪ v.topPre v.botAdj = v.botSuc ∪ v.botPre

For all these functions we define suffixes that allow to query for a certain set
of nodes before or after a certain index. For instance, for all top successors of v
before index i we write v.topSucBefore(i) = {w : w ∈ v.topSuc ∧ L(w) < i}.

Let move : V → N denote a function assigning to each node a natural value.
The function describes whether it is possible to move a node without violating
the layering’s feasibility as well as how far the node should be moved. For
instance, let topPre be empty for a node v, and topSuc be non-empty. Thus, we
can move v to an arbitrary layer with lower index than L(v). A good choice
would be one layer before any w ∈ v.topSuc since this would alter the incident
edges to point downwards.

move(v) =

0 if v.topSuc = ∅,
L(v)−min({L(w) : w ∈ v.topSuc}) + 1 if v.topPre = ∅,
L(v)−max({L(w) : w ∈ v.topPre \ v.topSuc})− 1 otherwise,1

where max(∅) = L(v)− 1.

Let profit : V × N × N → Z denote a function assigning a quality score to
a node v that decides if it is worth to move v and increase the length of some
edges for a subset of the edges to point downwards. For this the natural m
is computed by the move function defined above and x represents the layer v
would be moved to. Note that we reuse ωlen and ωrev here but do not expect

1 During the evaluations L(v) −max({L(w) : w ∈ v.topPre}) − 1 was used as third case.
This did not necessarily preserve the layering’s feasibility but was turned into a valid layering
by the subsequent network simplex execution in either case.

8

Algorithm 2. improveLayering
Input: feasible layering of G = (V,E) in index[v]
Data: priority queue PQ
For all v ∈ V move[v], profit[v]
Output: index[v]: feasible layering of G

1 for v ∈ V do
2 move[v]← move(v)
3 profit[v]← profit(v, move[v], index[v]−move[v])
4 if profit[v] > 0 then enqueue v to PQ

5 while PQ not empty do
6 v ← dequeue PQ
7 index[v] −= move[v]
8 for w ∈ {w | {v, w} ∈ E} do
9 update move[w] and profit[w]

10 if profit[w] > 0 then
11 enqueue/update w to/in PQ
12 else
13 possibly dequeue w from PQ

them to have an impact as strong as for the IP. For the rest of the paper we fix
them to 1 and 5.

profit(v,m, x) =

0 if m ≤ 1,
ωlen(m|v.topAdjBefore(x)| −m|v.botAdj|)
+ ωrev|v.topSucAfter(x)| otherwise.

As seen in Algorithm 2, the move and profit functions are determined initially
for a given feasible layering. A queue, sorted based on profit values, is then used
to successively perform moves that yield a profit. After a move of node n, both
functions can be updated for all nodes in the adjacency of n.

Time Complexity. Removing leaf nodes requires linear time, O(|V | + |E|).
Algorithm 1 is quadratic in the number of nodes, O(|V |2). The while loop has
to assign an index to every node and the two inner for loops are, for a complete

graph, iterated |V |
2 times on average. Determining the next candidate (lines

15–16) could be accelerated using dedicated data structures. The improvement
step strongly depends on the input graph. The network simplex method runs
reportedly fast in practice [14], although it has not been proven to be polynomial.
Our evaluations showed that the heuristic’s overall execution time is clearly
dominated by the network simplex method (cf. Section 5).

5 Evaluation

In this section we evaluate three points: 1) the general feasibility of GLP to
improve the compactness of drawings, 2) the quality of metric estimations for
area and aspect ratio, and 3) the performance of the presented IP and heuristic.
Our main metrics of interest here are height, area, and aspect ratio, as defined
in an earlier paper [16]. Remember that the layer-based approach is defined
as a pipeline of several independent steps. Regarding the result of the layering

JGAA, 0(0) 0–0 (0) 9

phase, which is the focus of our research here, area and aspect ratio can only
be estimated using the number of dummy nodes, the number of layers, and the
maximal number of nodes in a layer. Results can be seen in Table 1 and Table 2,
which we will discuss in more detail in the remainder of this section.

Obtaining a Final Drawing. In order to collect all metrics we desire, we
have to create a final drawing of a graph. Over time numerous strategies have
been presented for each step of the layer-based approach, we thus present several
alternatives. To break cycles we use a popular heuristic by Eades et al. [11].
To determine a layering we use our newly presented approach GLP (both the
IP method and heuristic, denoted by GLP-IP and GLP-H) and alternatively
the network simplex method presented by Gansner et al. [14]. We denote the
combination of the cycle removal of Eades et al. and the layering of Gansner
et al. as EaGa and consider it to be an alternative to GLP. Crossings between
pairs of layers are minimized using a layer sweep method in conjunction with
the barycenter heuristic, as originally proposed by Sugiyama et al. [35]. We
employ two different strategies to determine fixed coordinates for nodes within
the layers. First, we consider a method introduced by Buchheim et al. that was
extended by Brandes and Köpf [4, 2], which we denote as BK. Second, we use a
method inspired by Sander [32] that we call LS. Edges are routed either using
polylines (Poly) or orthogonal segments (Orth). The orthogonal router is based
on the methods presented by Sander [33]. Overall, this gives twelve setups of
the algorithm: three layering methods, two coordinate assignment algorithms,
and two edge routing procedures. In the following, let ωlen-ωrev-GLP denote
the used weights. If we do not further qualify GLP, we refer to the IP model.

Test Graphs. Our new approach is intended to improve the drawings of
graphs with a large height and relatively small width, hence unfavorable as-
pect ratio. Nevertheless, we also evaluate the generality of the approach using
a set of 160 randomly generated graphs with 17 to 60 nodes and an average of
1.5 edges per node. The graphs were generated by creating a number of nodes,
assigning out-degrees to each node such that the sum of outgoing edges is 1.5
times the nodes, and finally creating the outgoing edges with a randomly chosen
target node. Unconnected nodes were removed. Second, we filtered the graph
set provided by North2 [8] based on the aspect ratio and selected 146 graphs
that have at least 20 nodes and a drawing (created using BK and Poly) with an
aspect ratio below 0.5, i. e. are at least twice as high as wide. We also removed
plain paths, that is, pairs of nodes connected by exactly one edge, and trees.
For these special cases GLP in its current form would not change the resulting
number of reversed edges as all edges can be drawn with length 1. This is also
true for any bipartite graph. Note however that GLP can easily incorporate
a bound on the number of layers which can straightforwardly be used to force
more edges to be reversed, resulting in a drawing with better aspect ratio.

2http://www.graphdrawing.org/data/

http://www.graphdrawing.org/data/

10

Table 1. Average values for different layering strategies employed to the test graphs.
Different weights are used for GLP-IP as specified in the column head and final draw-
ings were created using BK and Poly. For GLP-H∗ no improvement was performed.
A detailed version of these results is included in the appendix (cf. A.2).

(a) Random graphs

1-10 1-20 1-30 1-40 1-50 EaGa GLP-H GLP-H∗

Reversed edges 3.71 2.89 2.64 2.54 2.44 2.93 8.67 10.36
Dummy nodes 34.45 46.73 52.79 56.14 60.53 72.64 48.48 58.21
Edge crossings 2.41 2.18 2.10 2.04 2.02 1.98 1.93 1.84

Height 843 943 980 1,004 1,025 1,084 930 1,027
Area 631,737 672,717 691,216 700,385 708,361 737,159 656,070 720,798
Aspect ratio 0.77 0.65 0.63 0.61 0.59 0.55 0.67 0.60

(b) North graphs

1-10 1-20 1-30 1-40 1-50 EaGa GLP-H GLP-H∗

Reversed edges 2.74 1.47 1.02 0.72 0.56 0 7.07 8.55
Dummy nodes 39.91 55.47 65.73 75.66 82.47 141.30 53.53 68.91
Edge crossings 1.46 1.23 1.13 1.06 0.99 0.86 1.19 1.12

Height 1,068 1,224 1,334 1,409 1,469 1,727 1,137 1,216
Area 587,727 622,838 641,581 660,842 695,494 874,374 629,778 691,372
Aspect ratio 0.34 0.28 0.24 0.23 0.22 0.20 0.33 0.32

General Feasibility of GLP. An exemplary result of the GLP approach
compared to EaGa can be seen in Figure 2. For that specific drawing, GLP pro-
duces fewer reversed edges, fewer dummy nodes, and less area (both in width
and height). For all tested setups the average effective height and area (normal-
ized by the number of nodes) of GLP and the heuristic are smaller than EaGa’s,
see Table 2. The average aspect ratios come closer to 1.0. For simplicity, in this
paper we desire aspect ratios closer to 1.0. For a more detailed discussion on
this topic see Gutwenger et al. [16].

Furthermore, we found that by altering the weights ωrev and ωlen a trade-off
between reversed edges and resulting dummy nodes (and thus area and aspect
ratio) can be achieved, which can be seen in Table 1a for the random graphs.

The results for the North graphs are similar. Since the North graphs are
acyclic, the cycle removal phase is not required and current layering algorithms
cannot improve the height. The GLP approach, however, can freely reverse
edges and hereby change the height and aspect ratio. Results can be seen
in Table 1b. Clearly, EaGa has no reversed edges as all graphs are acyclic.
1-10-GLP starts with an average of 2.7 reversed edges and the value constantly
decreases with an increased weight on reversed edges. The number of dummy
nodes on the other hand constantly decreases from 141.3 for EaGa to 39.9 for
1-10-GLP. For both sets of graphs the average number of edge crossings per
edge slightly increases when a lower weight is set for ωrev. This makes sense
since more edges have to be routed between a lower number of layers. The
average height and average area of the final drawings decrease with an increasing
number of reversed edges. For 1-10-GLP the average height and area are 38.2 %

JGAA, 0(0) 0–0 (0) 11

Table 2. Results for final drawings of the set of random graphs, when applying
different layout strategies. For GLP-IP ωlen = 1 and ωrev = 30 were used. Area
is normalized by a graph’s node count. The most interesting comparisons are be-
tween columns where EaGa and GLP use the same strategies for the remaining steps.
Detailed results can be found in the appendix (cf. A.2).

Edge routing Poly Orth

Node coord. BK LS BK LS

Layering EaGa GLP-IP GLP-H EaGa GLP-IP GLP-H EaGa GLP-IP GLP-H EaGa GLP-IP GLP-H

Height 1,165 1,043 898 943 824 732 790 711 652 817 746 678
Area 20,194 18,683 15,575 12,383 11,035 10,075 13,582 12,642 11,272 10,666 9,917 9,295
Aspect ratio 0.59 0.67 0.67 0.55 0.64 0.64 0.84 0.96 0.90 0.63 0.70 0.68

and 33.8 % smaller than EaGa. The aspect ratio changes from an average of
0.20 for EaGa to 0.34 for 1-10-GLP.

The results show that for the selected graphs, for which current methods
cannot improve on height, the weights of the new approach allow to find a
satisfying trade-off between reversed edges and dummy nodes. Furthermore,
the improvements in compactness stem solely from the selection of weights, not
from an upper bound on the number of layers. Naturally, such a bound can
further improve the aspect ratio and height.

Metric Estimations. Table 2 presents results that were measured on the
final drawing of a graph. As mentioned earlier, these values are not available
when analyzing the result of the layering step and estimations are commonly
used to deduce the quality of a result. That is, the height is estimated using
the number of layers and the width is estimated using the maximum number of
nodes in any layer. For our example graphs, the estimated area reduced from
222.9 (EaGa) to 187.4 (1-30-GLP) on average. The estimated aspect ratios in-
crease on average from 0.74 to 0.84. Both tendencies conform to the averaged
effective values in Table 2, i. e. GLP-IP and the GLP-H perform better. How-
ever, we observed that for 64 % of the graphs the tendency of the estimated area
contradicts the tendency of the effective area (using BK and Poly), and 54 %

when not considering dummy nodes. That is, for a specific graph the estimated
area might be decreased for GLP compared to EaGa but the effective area is
increased for GLP (or vice versa). This clearly indicates that an estimation
can be misleading. Besides, coordinate assignment and edge routing can have a
non-negligible impact on the aspect ratio and compactness of the final drawing.

Performance of the Heuristic. Results for final drawings using the pre-
sented heuristic are included in Table 2 and are comparable to 1-30-GLP, i. e.
the heuristic performs better than EaGa w. r. t. the desired metrics. Table 1a
and Table 1b underline this result and show that the improvement step of the
heuristic clearly improves on all measured metrics. More detailed results can
be found in the appendix. Nevertheless, the heuristic yields significantly more
reversed edges. When aiming for compactness, we consider this to be acceptable.

12

Execution Times. To solve the IP model we used CPLEX 12.6 and executed
the evaluations on a server with an Intel Xeon E5540 CPU and 24 GB memory.
The execution times for GLP-IP vary between 476ms for a graph with 19 nodes
and 541s for a graph with 58 nodes and exponentially increase with the graph’s
node count. This is impracticable for interactive from practice that rely on
responsive automatic layout, but is fast enough to collect optimal results of
medium sized graphs for research purposes.

The execution time of the heuristic is compared to EaGa and was measured
on a laptop with an Intel i7-3537U CPU and 8 GB memory. The reported time
includes only the first two steps of the layer-based approach. It turns out that
the execution time of the heuristic is on average 2.3 times longer than EaGa.
This seems reasonable, as it involves two executions of the network simplex lay-
ering method. For the tested graphs, the construction and improvement steps
of the heuristic hardly contribute to its overall execution time. The effective ex-
ecution time ranges between 0.1ms and 10.0ms for EaGa and 0.3ms and 19.7ms
for the heuristic. The heuristic is fast enough to be used in interactive tools.

We also ran the algorithm five times for five randomly generated graphs with
1000 nodes and 1500 edges. EaGa required an average of 374ms, the heuristic
666ms with about 4ms for construction and 2ms for improvement. This shows
that the time contribution of the latter two is negligible even for larger graphs.

6 Targeting a Specific Drawing Area

The previous section showed that the GLP allows to reduce the number of
dummy nodes by increasing the number of reversed edges. Adjusting the weights
ωrev and ωlen, the aspect ratio of the resulting drawing can be influenced to a
certain extent. This section addresses the question whether GLP is able to
create drawings that are particularly suited for a certain drawing area, e. g. a
specific computer screen. The measures used before are not sufficient for this.
When seen in isolation, none of the metrics height, width, and area gives any
insight on how good a drawing leverages the available drawing area. A perfectly
matching aspect ratio can be achieved by enlarging one of the two dimensions of
the drawing, for instance by simply increasing the spacing between the elements
in that dimension. However, this introduces unnecessary whitespace and does
not improve readability.

We propose the following solution. For a given drawing area, we say the
“best” drawing is the drawing which can be displayed within the given drawing
area with maximum scaling factor. In other words, the elements of the drawing,
which may include labels that must be legible by users, should be displayed as
large as possible.3 We call this max scale measure and define it as follows:

Let R = (rw, rh) denote the width and height of a reference drawing area
and aR = rw

rh
its aspect ratio. For instance, an A4 paper sheet (portrait) has

RA4 = (210mm, 297mm) and aRA4
= 1/

√
2. When only the relation of the two

3 Informally, we called this the “pencil metric” because we used to compare the sizes of
labels and nodes on a screen with pencil and thumb.

JGAA, 0(0) 0–0 (0) 13

dimensions to each other is of interest, RA4 can be simplified to (1,
√

2). The
max scale value s of a drawing D with width w and height h in relation to a
reference frame R then is:

s = min
{rw
w

,
rh
h

}
.

Where convenient, e. g. when used as part of a minimization problem, it can

alternatively be defined as the inverse of s: q = max
{

w
rw

, h
rh

}
. We use this in

the next section.

Additionally, given two drawings D and D′ with their max scale values s
and s′, the max scale ratio r = s

s′ of the two drawings indicates which of the
two drawings can be displayed with a larger scale factor within the given frame.
In other words, if r > 1, the drawing D can be displayed larger than D′. Thus,
from this measure’s perspective, D is preferable. To illustrate, a max scale ratio
of 2 indicates that the elements of the better drawing can be displayed twice as
large as the elements of the inferior one.

Max Scale Values of GLP. We calculated the max scale values of the draw-
ings created for the North graphs as discussed in Section 5 for four different
reference frames with aspect ratios of 0.25, 0.5, 1, and 2. The results can be
seen in Figure 4 in the form of boxplots; the horizontal bar within a box denotes
the median, the dot within a box denotes the average. Note that no comparison
can be made across target aspect ratios but only between the results of different
methods for the same aspect ratio.

For a target aspect ratio of 0.25 EaGa shows the best max scale values, which
is not surprising, since the set of test graphs was selected based on EaGa pro-
ducing a drawing with an aspect ratio below 0.5. Also, the GLP configurations
aim at producing wider drawings. For aspect ratios larger than 0.25, all variants
of GLP produce better max scale values than EaGa. Also, the selected weights
gradually change the max scale value, which is coherent with the observations
for height, area, and aspect ratio in Section 5. However, the configuration with
the smallest weight on reversed edges, 1-10-GLP, gives the best max scale values
for almost every reference frame. While this is not immediately surprising since
1-10-GLP’s drawings are the ones with the smallest area, it prevents a static
mapping of weights to reference frames. Additionally, it leads to the question
whether significantly larger max scale values are possible, and if so, what trade-
offs have to be made for these. We seek to answer the following questions in the
remainder of this section:

1. How do GLP’s drawings relate to drawings with optimal max scale values?
How much better are the optimal ones?

2. How many edges have to be reversed to achieve optimal max scale values?

14

0.25 0.5 1 2

0
1

2
3

4
5

6
1-10 1-20 1-30 1-40 1-50 EaGa GLP-H

Figure 4. Computed max scale values (y axis) for four different target aspect ra-
tios (x axis), using the results for the tested North graphs and the GLP variants as
discussed in Section 5.

6.1 GLP-MS

To answer the previously stated questions we extend GLP and incorporate the
max scale measure into its objective:

Minimize ωlen

∑
(v,w)∈E

|L(w)− L(v)|

+ ωrev |{(v, w) ∈ E : L(v) > L(w)}|

+ ωms max

{
w(L)

rw
,
h(L)

rh

}
,

where R = (rw, rh) denotes the reference frame, w(L) = max`∈L
∑

v∈` w(v)
the estimated width of the layering, and h(L) =

∑
`∈L maxv∈` h(v) the es-

timated height of the layering. w(v) and h(v) denote the width and height of
node v. For the evaluations hereafter both are 1.

To solve this modified version, which we call GLP-MS, the IP formulation
presented in Section 3 is not particularly suited. The max scale measure requires
reasonable estimations of the width and height of the drawing. This is only
possible if the contributions of dummy nodes to the layer widths are considered.
Thus, as a basis we use a more sophisticated MIP model (CGL) for a variation
of GLP as presented by Jabrayilov et al. [21]. The difference is that they set
a fixed bound H on the height and add the overall width W of the layering to
the objective. The contribution of dummy nodes is considered. They make use
of three types of binary variables. First, yv,k equals 1 if and only if L(v) < k
for all v ∈ V and 1 ≤ k ≤ H. The reverse variables yk,v are part of the model
for ease of understanding but can be eliminated when implementing the model.
Second, ru,v equals 1 if and only if the edge (u, v) is reversed. Third, zuv,k
equals 1 if and only if the edge (u, v) produces a dummy node in layer k for all
2 ≤ k ≤ H − 1.

JGAA, 0(0) 0–0 (0) 15

To use CGL for GLP-MS, we set H to |V |, thus removing H from the input,
but introduce two new input variables to denote the reference frame, rw and
rh. Following the notation of Jabrayilov et al., we replace the width term of the
objective, ωwid ·W , by ωms ·MS, where MS represents the inverse max scale value
to be minimized, and ωwid and ωms are weighting constants. Further we remove
the constraints that are connected to W , but extend the model to properly
incorporate MS. Two dummy nodes s and e are added to the graph’s nodes,
which are used to mark the very first layer and the very last layer. A dummy
edge (s, e) is added to the graph’s edges. With this, the following constraints
are added to bound MS (the full model can be found in Appendix A.3):

yk,s = 0 for all 1 ≤ k ≤ H (D)

yk,v ≤ yk,e for all 1 ≤ k < H, v ∈ V \ {e} (E)

w(k)− 1

rw
≤ MS for all 1 ≤ k ≤ H (F)

1 +
∑

1≤k≤H yk,e

rh
≤ MS, (G)

where w(k) is the width of layer k and can be computed as shown in Ap-
pendix A.3.

Constraints (D) and (E) assure that no original node is placed before and
after the s node and e node, respectively. Consequently a dummy node is
introduced in every intermediate layer. Since the number of dummy nodes is
subject to minimization, s is placed in the first layer and e is placed in the last
layer. Constraints (F) restrict MS by the width of the layers. The dummy nodes
originating from (s, e) are discarded by the −1. Finally, (G) restricts MS by the
layering’s height, i. e. it counts the number of layers that are smaller than e’s
layer and adds the layer itself. The overall width and height of the layering can
be modeled as above, since we assume every node and every dummy node to be
of unit size.

Results. We executed the model using Gurobi 74 on a server with an Intel
Xeon E5540 CPU and 24 GB memory. Within the set time limit of 30 minutes,
354 of 438 executions of the North graphs finished. That is, for each of the 146
graphs we ran the model for three different aspect ratios. For 112 of the graphs
all three executions finished. Divided by target aspect ratio 2.0, 1.0, and 0.5,
executing the model took on average 710, 1.938, and 4.926 seconds, respectively.
The results discussed in the following are for the subset of the 112 graphs. The
nodes of the North graphs have no specified width and height. We set both to
20 when measuring pixels and assume a unit width and height for GLP-MS. A
dummy node contributes the same width to a layer as a regular node.

4http://www.gurobi.com/

http://www.gurobi.com/

16

0.5 1 2

0
1

2
3

4
5

6
7

1-10 1-50 EaGa GLP-H GLP-MS

(a) Max scale

0.5 1 2

0
10

20
30

40
50

1-10 1-50 EaGa GLP-H GLP-MS

(b) Reversed edges

Figure 5. Results of applying GLP-MS with three different target aspect ratios
(x axis) to 112 of the North graphs. The number of reversed edges in (b) is in percent.

The weights ωlen, ωrev, and ωms are selected such that the max scale measure
is prioritized over both other terms and a reversed edge is penalized stronger
than long edges:

ωlen = 1, ωrev = ωlen |E| |V |, and ωms = ωrev(1 + |E|) max{rw, rh}.

Note that care has to be taken when using large weights like this with MIP
solvers. A solution is often considered optimal by a solver if the relative gap
between the lower and upper bound on the objective is lower than a specified
parameter. Therefore, since the objective value is dominated by the max scale
part, it can happen that the term measuring the edge length is neglected if the
parameter value is too large. Gurobi’s default 10−4 may cause issues with the
graphs we tested, which is why we set it to 10−10.

Remember that the results presented in Figure 4 suggest that while the
differently weighted GLP is able to improve the max scale values when aiming
for a certain drawing area, no significant improvements can be made when only
few edges are reversed. This feels natural, as by reversing a small number of
edges the overall character of the graph is not changed. A very “long” graph
will never be suited for the opposite kind of drawing area.

JGAA, 0(0) 0–0 (0) 17

The results of applying GLP-MS to the North graphs are shown in Figure 5.
They clearly indicate that it is possible to achieve significantly larger max scale
values for notably different drawing areas if enough edges may be reversed. For
all three tested target aspect ratios 0.5, 1.0, and 2.0 the max scale values created
with GLP-MS are on average at least two times larger. Answering Question (1)
(p. 13) this indicates that GLP’s results are still improvable when it comes to
a specific drawing area. Nevertheless, answering Question (2), it must be said
that GLP-MS reverses about a quarter of the edges on average. Interestingly,
there are cases where fewer edges were reversed the wider the drawings got, i. e.
the more the drawing deviated from the original.

We conclude that for use cases where the directionality is not that important,
the compactness of drawings can be improved even further than what GLP
achieves. Apart from that we suggest to use a different approach for use cases
where directionality should be preserved as much as possible. A higher number
of reversed edges seems to be inevitable. They should, however, be clearly
distinguishable from the regular edges and therefore be combined at specific
areas of the drawing. Consider for example Figure 6. While the traditional
drawing (a) is unsuited for a wide screen, drawing (c) better matches the screen’s
aspect ratio and the well-defined sections where edge point upwards allow to
follow the overall flow of the graph easily. This is not true for drawing (b)
on the other hand, which nevertheless is the most compact one. We plan to
investigate this approach in further detail.

Furthermore, we feel it is important that a method does not depend on
input parameters that have to be chosen by users. Weighting factors are only
acceptable as inputs to a method as long as they work for the majority of use
cases.

7 Related Work and Discussion

The underlying idea of this paper is to combine the initial two phases of the
layer-based approach. As explained in the introduction, the cycle removal phase
is not part of the original pipeline as suggested by Sugiyama et al. [35] and is a
means to an end to handle cyclic graphs. The layering phase is an integral part
of the pipeline and significantly affects the appearance of the final drawing.
Before we shift our focus to existing layering methods, some words on cycle
removal.

The cycle removal phase targets the NP-complete Feedback Arc Set Problem
(FASP). In the context of layered graph drawing, several approaches have been
proposed to solve FASP either to optimality or heuristically [19]. The most
popular heuristic was introduced by Eades et al. [11]. It has been noted before
that reversing a minimal number of edges does not necessarily yield the desired
results, and application-inherent information might make certain edges better
candidates to be reversed [14]. Moreover, the decision which edges to reverse in
order to make a graph acyclic has a big impact on the results of the subsequent
layering phase. Nevertheless the two phases are executed separately until today.

18

(a) 0 reversed edges,
max scale 1.23

(b) 9 reversed edges,
max scale 2.66

(c) 5 reversed edges,
max scale 2.4

Figure 6. Different drawings of the g.31.37 graph from the North graphs collection [8].
(a) is drawn with EaGa, (b) with 2-3-GLP. From the three drawings (b) it is the most
compact one, however it is not evident that it is the same graph as (a). (c) is created
by bluntly cutting the drawing (a) at two points, and placing the chunks next to each
other. The stated max scale values are for R = (1920, 1080), an up-to-date resolution
of a wide screen.

Outside the area of graph drawing FASP has been studied extensively and
remains a subject for ongoing research, often concerning approximation algo-
rithms and slight variations of the original problem [1, 13, 7, 36, 20]. To give an
example, a minimum FAS in a tournament graph can help to identify a “fair”
ranking of the tournament’s participants [5]. In our case, FASP is only one part
of the objective function, which implicitly tailors the FAS to allow low num-
bers of dummy nodes. We therefore used an integer programming approach
instead of algorithms specifically designed for FASP as this allows to flexibly
combine different optimization criteria. This is particularly relevant as optimum
solutions to GLP often contain suboptimal solutions for the underlying FASP.
Nevertheless, it would be interesting to see if the desire to have short edges
can be integrated into existing FASP algorithms, and to see how results would
compare.

JGAA, 0(0) 0–0 (0) 19

To solve the second phase, i. e. the layer assignment problem, several ap-
proaches with different optimization goals have emerged over time.

Traditional. Eades and Sugiyama employ a method that is known as longest
path layering. It requires linear time and the resulting number of layers equals
the number of nodes of the graph’s longest path [12]. Gansner et al. solve the
layering phase by minimizing the sum of the edge lengths [14]. They show
that the problem is solvable in polynomial time and present a network simplex
algorithm which in turn is not proven to be polynomial, although it runs fast in
practice. Alternatively, their approach can be formulated and solved as the dual
of a minimum cost flow problem. This approach was found to inherently produce
compact drawings and performed best for the general case in comparison to
other layering approaches [18].

Restricted Width. The width of a layering is the maximum number of nodes
in any layer. Coffman and Graham’s scheduling algorithm with precedence
constraints can be used to find a layering with a prescribed bound on the number
of original nodes per layer [6]. The algorithm cannot consider the contribution of
dummy nodes to a layer’s width. Healy and Nikolov tackle the problem of finding
a layering subject to bounds on the number of layers and the maximum number
of nodes in any layer with consideration of dummy nodes using an integer linear
programming approach [18]. The problem is NP-hard, even without considering
dummy nodes. In a subsequent paper they present a branch-and-cut algorithm
to solve the problem faster and for larger graph instances [17]. Later, Nikolov et
al. propose and evaluate several heuristics to find a layering with smaller number
of nodes in each layer [26].

Aspect Ratio. Nachmanson et al. present an iterative algorithm to produce
drawings with an aspect ratio close to a previously specified value [25]. The
idea is to execute all phases of the layer-based approach for a given graph,
measure the aspect ratio of the final drawing, and start over if the measured
aspect ratio is too far from the desired aspect ratio. Internally they use a slight
variation of the Coffman-Graham algorithm to compute a layering, where the
input parameter is a real number w. The sum of node widths of any layer must
not exceed w. The authors use a binary search to find the best w for the desired
aspect ratio. Consequently, their algorithm is not able to advance towards the
desired aspect ratio if the unconstrained Coffman-Graham (w = ∞) is closest
of all possible input parameters. The new methods of this paper can improve
the layout in this case. Additionally, here we are interested in a self-contained
layering method that does not require an iterative execution of the whole layer-
based layout pipeline.

Restricted Height. All of the previously mentioned layering methods have
two major drawbacks. 1) They require the input graph to be acyclic upfront,
and 2) they are bound to a minimum number of layers equal to the longest path

20

(a) Gansner et al. [14] (b) Coffman-Graham [6]

(c) Nikolov et al.; MinWidth heuristic [26] (d) Alternative drawing, half of the edges
point upwards

Figure 7. Different drawings of the same tree. The example illustrates the challenges
faced when the width of a tree’s drawing should be kept small. (a)–(c) are created
with existing layering methods, (d) demonstrates what would be possible if a subset
of the graph’s edges were allowed to point upwards.

of the graph. In particular this means that the bound on the number of layers
in the aforementioned integer program of Healy and Nikolov cannot be smaller
than the longest path. We are not aware of any approach apart from the the
integer program that aims at reducing the layering’s height.

Trees. In this paper we refrain from specifically handling sub-trees of the
graph and leave this important task to future work. In the following we shortly
explain our motives. At first glance, the task to lay out a tree seems to be easy.
Nevertheless, a significant amount of work has been devoted to forging layout
algorithms for trees and to identifying criteria that make up a good drawing of a
tree. A class of such algorithms is called level-based. The idea is to assign nodes
with the same distance to the graph’s root to the same level. Naturally, such
drawings look similar to those of the layer-based approach. A drawback of the
level-based algorithms is that the drawings become rather wide. An up-to-date
summary of tree layout algorithms is given by Rusu [31].

A general directed graph can contain several sub-trees. Computing a layer-
ing for the whole graph with one of the layering methods discussed above thus
computes layerings for the individual sub-trees as well. How well do the tradi-
tional layering methods perform for trees? The longest path algorithm would
place all leaves of each sub-tree in the bottom-most layer, possibly elongating
edges unnecessarily, and thus resulting in unfortunate drawings. The approach
of Gansner et al. on the other hand assigns the layers in the same way level-based

JGAA, 0(0) 0–0 (0) 21

tree algorithms would do, resulting in natural drawings of the sub-trees.

This being said, it is not immediately clear what a good way to re-arrange
the nodes of a leveled drawing of a tree is to create a drawing with less width.
Dedicated tree layout algorithms solve this problem, for instance, by placing the
nodes on concentric circles (radial layout) or by alternating the layout direction
for sub-trees (horizontal-vertical layout). Here, we are not able to move away
from assigning nodes to layers since we do not want to alter the philosophy of
the layer-based approach.

Nachmanson et al. explicitly mention the desire to reduce the fan-out of large
trees in their paper but note that additional heuristics are required to produce
acceptable layouts. Consider Figure 7. Drawings (b) and (c) are created with
layering methods that specifically aim at smaller widths. While being slightly
narrower, the overall drawing loses quality. In drawing (d) half of the graph’s
edges point upwards. As a result, a drawing of half of (a)’s width is possible.
Still, the aforementioned problems are just the same for the “upward pointing”
subgraph and the “downward pointing” subgraph.

From a theoretical point of view, the width of a tree’s layering cannot be
altered when dummy nodes contribute just as much to the width of a layer as
original nodes. The width can be halved when edges are allowed to point into
the “wrong” direction.

In practice it is hardly the case that dummy nodes contribute the same
width as original nodes; dummy nodes represent edges, and edges are usually
significantly narrower than nodes. Nevertheless, many coordinate assignment
algorithms (phase 4) aim at placing consecutive dummy nodes at the same
x coordinate, which is synonymous with the desire to have straight edges. As a
consequence, they often space the dummy nodes further apart than theoretically
necessary.

Another point to consider is that sub-trees at different places in the graph
likely demand individual treatment based on the immediate neighborhood.

Force-directed. In the context of force-directed layout, Dwyer and Koren
presented a method that can incorporate constraints enforcing all directed edges
to point into the same direction [9]. It is also denoted as constrained stress-
minimizing layout. They explored the possibility to relax some of the con-
straints, i. e. let some of the edges point backwards, and found that this im-
proves the readability of the drawing. In particular, it reduced the number of
edge crossings.

Building on constrained stress-minimization, Kieffer et al. present a layout
method they call human-like orthogonal layout (HOLA) [22]. A central idea is
to remove sub-trees from the input graph during a pre-processing step, lay them
out separately using dedicated tree layout algorithms, and integrate them into
the final drawing later on. We believe this is a promising strategy that should
be explored when handling the subtrees during layering.

22

Disruptiveness. The idea behind seeking a minimum number of edges to
reverse during cycle removal is to disturb the hierarchy represented by the graph
as little as possible. The number of reversed edges therefore is a quality measure
for the disruptive effect of the layout algorithm. However, it is not clear, and
likely depends on the diagram type at hand, if the reversal of certain edges
has less of a disruptive effect than the reversal of other edges. For instance, a
graph may contain a central path that should not be interrupted. Likewise, it
is not clear to what extend users accept a more compact drawing at the cost of
a disturbed hierarchy. Both points are not easy to answer and require extensive
research. Ideas from other areas may help here, e. g. Gupte et al. seek hierarchy
in social networks [15] based on the term social agony.

A different question is whether or not two different drawings of the same
graph, with different compactness for instance, look alike. Several terms are used
within the graph drawing community to denote algorithms that build on existing
drawings or exiting layout information to compute a new drawing, for instance:
layout adjustment [24], incremental layout [27], and interactive layout [34]. All
aim at layout stability and at preserving a user’s mental map [10]. Consequently,
metrics have been proposed to measure stability and mental map preservation,
see Brake [3] for an initial overview. It remains to be evaluated which metrics
are relevant and applicable when creating layerings.

In this paper we are first and foremost interested in a new layering method
that is able to overcome current limitations. The higher the cost of reversed
edges in GLP, the more the hierarchy of the graph is preserved in the drawing.
However, GLP does not yet take subjective user perception or layout stability
into account.

8 Conclusions

In this paper we address problems with current methods for the first two phases
of the layer-based layout approach. We argue that separately performing cycle
removal and layering is disadvantageous when aiming for compactness or specific
drawing areas.

We present a configurable method for the layering phase that, compared
to other state-of-the-art methods, shows on average improved performance on
compactness. That is, the number of dummy nodes is reduced significantly for
most graphs and can never increase. While the number of dummy nodes only
allows for an estimation of the area, the effective area of the final drawing,
measures in pixels, is reduced as well. Furthermore, graph instances for which
current methods yield unfavorable aspect ratios can easily be improved. The
performance of the presented heuristic is largely comparable to the optimal
solutions delivered by the IP approach.

Building on these findings, we conduct experiments where we explicitly tar-
get a drawing area of certain aspect ratio, and find that our methods leave
room for improvements when more edges may be reversed. We therefore sug-
gest to address use cases where directionality is very important, and use cases

JGAA, 0(0) 0–0 (0) 23

for which the direction is less important and an increased number of reversed
edges is acceptable, with fundamentally different approaches.

Further, we want to stress that the common practice to determine the quality
of methods developed for certain phases of the layer-based approach based on
metrics that represent estimations of the properties of the final drawing is error-
prone. For instance, estimations of the area and aspect ratio based on the results
of the layering phase can vary significantly from the effective values of the final
drawing and strongly depend on the used strategies for computing node and edge
coordinates. Also, nodes can have significantly different sizes in both width and
height; something we mentioned but not specifically addressed in this work.

We see several directions to proceed from here. For scenarios where di-
rectionality is less important, we plan to improve the presented heuristic, e. g.
by selecting the initial node based on a certain criterion instead of randomly
(see Algorithm 1), and by supporting (sub-)trees. For scenarios where direc-
tionality is important, we plan to further investigate our suggestion to bluntly
cut traditional drawings (see Figure 6). It applies to both scenarios that certain
diagram types demand certain edges to be drawn forwards. For this, methods
must support to prevent, or at least to strongly penalize, the reversal of cer-
tain edges. Also, user studies could help understand which edges are natural
candidates to be reversed from a human’s perspective.

Acknowledgements

We thank Chris Mears and Adalat Jabrayilov for support formulating integer
programs, and we thank Tim Dwyer and Petra Mutzel for valuable discussions.

24

References

[1] B. Berger and P. W. Shor. Approximation algorithms for the maximum
acyclic subgraph problem. In Proceedings of the first annual ACM-SIAM
symposium on Discrete algorithms (SODA’90), pages 236–243. SIAM, 1990.

[2] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assign-
ment. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proceedings of the
9th International Symposium on Graph Drawing (GD’01), volume 2265 of
LNCS, pages 33–36. Springer, 2002. doi:10.1007/3-540-45848-4.

[3] J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner,
editors, Drawing Graphs: Methods and Models, volume 2025 of LNCS.
Springer, 2001.

[4] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. In J. Marks, editor, Proceedings of the 8th International Sympo-
sium on Graph Drawing (GD’00), volume 1984 of LNCS, pages 229–240.
Springer, 2001. doi:10.1007/3-540-44541-2.

[5] P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set prob-
lem is np-hard for tournaments. Combinatorics, Probability & Computing,
16(1):1–4, 2007. doi:10.1017/S0963548306007887.

[6] E. G. Coffman. and R. L. Graham. Optimal scheduling for two-processor
systems. Acta Informatica, 1(3):200–213, 1972. doi:10.1007/BF00288685.

[7] C. Demetrescu and I. Finocchi. Combinatorial algorithms for feedback
problems in directed graphs. Information Processing Letters, 86(3):129–
136, 2003. doi:10.1016/S0020-0190(02)00491-X.

[8] G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassinari,
F. Vargiu, and L. Vismara. Drawing directed acyclic graphs: An exper-
imental study. In S. C. North, editor, Proceedings of the Symposium on
Graph Drawing (GD’96), volume 1190 of LNCS, pages 76–91. Springer,
1997. doi:10.1007/3-540-62495-3_39.

[9] T. Dwyer and Y. Koren. Dig-CoLa: directed graph layout through
constrained energy minimization. In Proceedings of the IEEE Sympo-
sium on Information Visualization (INFOVIS’05), pages 65–72, Oct. 2005.
doi:10.1109/INFVIS.2005.1532130.

[10] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental
map of a diagram. In Proceedings of the First International Conference on
Computational Graphics and Visualization Techniques, pages 34–43, 1991.

[11] P. Eades, X. Lin, and W. F. Smyth. A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters, 47(6):319–323,
1993. doi:10.1016/0020-0190(93)90079-O.

http://dx.doi.org/10.1007/3-540-45848-4
http://dx.doi.org/10.1007/3-540-44541-2
http://dx.doi.org/10.1017/S0963548306007887
http://dx.doi.org/10.1007/BF00288685
http://dx.doi.org/10.1016/S0020-0190(02)00491-X
http://dx.doi.org/10.1007/3-540-62495-3_39
http://dx.doi.org/10.1109/INFVIS.2005.1532130
http://dx.doi.org/10.1016/0020-0190(93)90079-O

JGAA, 0(0) 0–0 (0) 25

[12] P. Eades and K. Sugiyama. How to draw a directed graph. Journal of
Information Processing, 13(4):424–437, 1990.

[13] G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–
174, 1998. doi:10.1007/PL00009191.

[14] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. Software Engineering, 19(3):214–230, 1993.

[15] M. Gupte, P. Shankar, J. Li, S. Muthukrishnan, and L. Iftode. Finding
hierarchy in directed online social networks. In Proceedings of the 20th
International Conference on World Wide Web, pages 557–566, 2011. doi:
10.1145/1963405.1963484.

[16] C. Gutwenger, R. von Hanxleden, P. Mutzel, U. Rüegg, and M. Spönemann.
Examining the compactness of automatic layout algorithms for practical di-
agrams. In Proceedings of the Workshop on Graph Visualization in Practice
(GraphViP ’14), Melbourne, Australia, July 2014.

[17] P. Healy and N. S. Nikolov. A branch-and-cut approach to the di-
rected acyclic graph layering problem. In S. G. Kobourov and M. T.
Goodrich, editors, Proceedings of the 10th International Symposium on
Graph Drawing (GD’02), volume 2528 of LNCS, pages 98–109. Springer,
2002. doi:10.1007/3-540-36151-0.

[18] P. Healy and N. S. Nikolov. How to layer a directed acyclic graph. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Proceedings of the 9th Inter-
national Symposium on Graph Drawing (GD’01), volume 2265 of LNCS,
pages 16–30. Springer, 2002. doi:10.1007/3-540-45848-4_2.

[19] P. Healy and N. S. Nikolov. Hierarchical drawing algorithms. In R. Tamas-
sia, editor, Handbook of Graph Drawing and Visualization, pages 409–453.
CRC Press, 2013.

[20] M. Hecht. Exact localisations of feedback sets. Theory of Computing Sys-
tems, May 2017. doi:10.1007/s00224-017-9777-6.

[21] A. Jabrayilov, S. Mallach, P. Mutzel, U. Rüegg, and R. von Hanxle-
den. Compact layered drawings of general directed graphs. In Proceed-
ings of the 24nd International Symposium on Graph Drawing and Net-
work Visualization (GD ’16), LNCS 9801, pages 209–221, 2016. doi:

10.1007/978-3-319-50106-2.

[22] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: human-like
orthogonal network layout. IEEE Trans. Vis. Comput. Graph., 22(1):349–
358, 2016. doi:10.1109/TVCG.2015.2467451.

[23] A. J. McAllister. A new heuristic algorithm for the linear arrangement
problem. Technical report, University of New Brunswick, 1999.

http://dx.doi.org/10.1007/PL00009191
http://dx.doi.org/10.1145/1963405.1963484
http://dx.doi.org/10.1145/1963405.1963484
http://dx.doi.org/10.1007/3-540-36151-0
http://dx.doi.org/10.1007/3-540-45848-4_2
http://dx.doi.org/10.1007/s00224-017-9777-6
http://dx.doi.org/10.1007/978-3-319-50106-2
http://dx.doi.org/10.1007/978-3-319-50106-2
http://dx.doi.org/10.1109/TVCG.2015.2467451

26

[24] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and
the mental map. Journal of Visual Languages & Computing, 6(2):183–210,
June 1995. doi:10.1006/jvlc.1995.1010.

[25] L. Nachmanson, G. Robertson, and B. Lee. Drawing graphs with GLEE. In
S.-H. Hong, T. Nishizeki, and W. Quan, editors, Graph Drawing, volume
4875 of LNCS, pages 389–394. Springer Berlin Heidelberg, 2008. doi:

10.1007/978-3-540-77537-9_38.

[26] N. S. Nikolov, A. Tarassov, and J. Branke. In search for efficient heuristics
for minimum-width graph layering with consideration of dummy nodes.
Journal of Experimental Algorithmics, 10, 2005. doi:10.1145/1064546.

1180618.

[27] S. C. North. Incremental layout in DynaDAG. In Proceedings of the Sym-
posium on Graph Drawing, volume 1027 of LNCS, pages 409–418. Springer,
1996. doi:10.1007/BFb0021824.

[28] J. Pantrigo, R. Mart́ı, A. Duarte, and E. Pardo. Scatter search for
the cutwidth minimization problem. Annals of Operations Research,
199(1):285–304, 2012. doi:10.1007/s10479-011-0907-2.

[29] U. Rüegg, T. Ehlers, M. Spönemann, and R. von Hanxleden. A generaliza-
tion of the directed graph layering problem. Technical Report 1501, Kiel
University, Department of Computer Science, Feb. 2015. ISSN 2192-6247.

[30] U. Rüegg, T. Ehlers, M. Spönemann, and R. von Hanxleden. A gen-
eralization of the directed graph layering problem. In Proceedings of
the 24th International Symposium on Graph Drawing and Network Vi-
sualization (GD ’16), LNCS 9801, pages 196–208, 2016. doi:10.1007/

978-3-319-50106-2_16.

[31] A. Rusu. Tree drawing algorithms. In R. Tamassia, editor, Handbook of
Graph Drawing and Visualization, pages 155–192. CRC Press, 2013.

[32] G. Sander. A fast heuristic for hierarchical Manhattan layout. In F. J.
Brandenburg, editor, Proceedings of the Symposium on Graph Drawing
(GD’95), volume 1027 of LNCS, pages 447–458. Springer, 1996. doi:

10.1007/BFb0021828.

[33] G. Sander. Layout of directed hypergraphs with orthogonal hyperedges.
In G. Liotta, editor, Proceedings of the 11th International Symposium on
Graph Drawing (GD’03), volume 2912 of LNCS, pages 381–386. Springer,
2004. doi:10.1007/978-3-540-24595-7_35.

[34] M. Spönemann. Graph layout support for model-driven engineering. Num-
ber 2015/2 in Kiel Computer Science Series. Department of Computer
Science, 2015. Dissertation, Faculty of Engineering, Christian-Albrechts-
Universität zu Kiel.

http://dx.doi.org/10.1006/jvlc.1995.1010
http://dx.doi.org/10.1007/978-3-540-77537-9_38
http://dx.doi.org/10.1007/978-3-540-77537-9_38
http://dx.doi.org/10.1145/1064546.1180618
http://dx.doi.org/10.1145/1064546.1180618
http://dx.doi.org/10.1007/BFb0021824
http://dx.doi.org/10.1007/s10479-011-0907-2
http://dx.doi.org/10.1007/978-3-319-50106-2_16
http://dx.doi.org/10.1007/978-3-319-50106-2_16
http://dx.doi.org/10.1007/BFb0021828
http://dx.doi.org/10.1007/BFb0021828
http://dx.doi.org/10.1007/978-3-540-24595-7_35

JGAA, 0(0) 0–0 (0) 27

[35] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, Feb. 1981.

[36] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Mathematics of Operations
Research, 34(3):594–620, 2009. doi:10.1287/moor.1090.0385.

http://dx.doi.org/10.1287/moor.1090.0385

28

A Appendix

A.1 Example Drawings of North Graphs

(a) g.75.1 (b) g.80.5

Figure 8. For each graph the left drawing is produced using EaGa and the right
drawing using the GLP-H as presented here. Graphs are taken from the North graphs
library.

JGAA, 0(0) 0–0 (0) 29

(a) g.99.0 (b) g.86.5

Figure 9. For each graph the left drawing is produced using EaGa and the right
drawing using the GLP-H heuristic as presented here. Graphs are taken from the
North graphs library.

30

A.2 Detailed Results

0
5

1
0

1
5

R
ev

.
E

d
g
es

5
0

1
50

D
u

m
m

y
N

o
d

es

5
00

1
50

0
2
50

0

A
v
g.

H
ei

gh
t

0
1
50

00
0
0

A
re

a

0.
2

0.
6

1.
0

1.
4

A
sp

ec
t

R
at

io

1-10 1-20 1-30 1-40 1-50 EaGa GLP-H GLP-H*

Figure 10. Random graphs: Detailed results in the form of boxplots. A summary
can be seen in Table 1a. The dashed line represents the median of EaGa. Lower values
are better, with the exception of the aspect ratio. It can be seen that the methods
presented here, improve the drawing w. r. t. the relevant metrics. It is noteworthy that
for 1-30-GLP, 1-40-GLP, and 1-50-GLP, both the number of reversed edges and the
number of dummy nodes is smaller compared to EaGa.

JGAA, 0(0) 0–0 (0) 31

0
1
0

2
0

3
0

R
ev

.
E

d
ge

s

0
4
0
0

8
0
0

D
u

m
m

y
N

o
d

es

1
00

0
3
00

0
5
00

0

A
v
g.

H
ei

gh
t

0e
+

0
0

3
e+

06

A
re

a

0.
0

0.
4

0
.8

1
.2

A
sp

ec
t

R
at

io

1-10 1-20 1-30 1-40 1-50 EaGa GLP-H GLP-H*

Figure 11. North graphs: Detailed results in the form of boxplots. A summary can
be seen in Table 1b. The dashed line represents the median of EaGa. Lower values
are better, with the exception of the aspect ratio. It can be seen that the methods
presented here, improve the drawing w. r. t. the relevant metrics. The North graphs
are acyclic which is why EaGa consistently produces zero reversed edges. The aspect
ratio of the majority of the graphs improves significantly with a constant to slightly
improved area.

32

5
00

1
0
00

2
0
00

E
aG

a

G
L

P
-I

P

G
L

P
-H

E
aG

a

G
L

P
-I

P

G
L

P
-H

E
aG

a

G
L

P
-I

P

G
L

P
-H

E
aG

a

G
L

P
-I

P

G
L

P
-H

H
ei

gh
t

10
0
00

3
00

0
0

A
re

a

0.
5

1.
0

1.
5

A
sp

ec
t

R
at

io

Poly-BK Poly-LS Orth-BK Orth-LS

Figure 12. Detailed results for the produced drawings using different strategies for
the layer-based approach’s phases as discussed in Section 5 (cf. Table 2). It can be
seen that for every combination GLP-IP and GLP-H improve w. r. t. the tested metrics
when compared to EaGa. Furthermore, the results emphasize that different strategies
can result in significantly different drawings, especially when it comes to aspect ratio.
For instance, orthogonal-style edges allow for less height and area. Node coordinates
assigned by LS tend to allow for smaller area than BK.

JGAA, 0(0) 0–0 (0) 33

A.3 Full GLP-MS MIP Model

The model is a modification of the CGL formulation as introduced by Jabray-
ilov et al. [21]. Given is a graph G = (V,E), which includes a dummy edge
(s, e) ∈ E, as discussed in Section 6.1. Let H = |V | and let rw and rh denote
the input parameters specifying the drawing area. The following binary vari-
ables are used: yv,k equals 1 if and only if L(v) < k. Note that the reverse
variables yk,v are part of the model for ease of understanding but can be elimi-
nated when implementing the model. ru,v equals 1 if and only if the edge (u, v)
is reversed. zuv,k equals 1 if and only if the edge (u, v) produces a dummy node
in layer k.

Minimize
(
ωrev

∑
(u,v)∈E

ru,v
)

+
(
ωlen

∑
(u,v)∈E

H−1∑
k=2

zuv,k
)

+ ωms MS, s.t.

yv,1 = 0 for all v ∈ V (H)

yH,v = 0 for all v ∈ V (I)

yk,v + yv,k+1 = 1 for all v ∈ V, 1 ≤ k ≤ H − 1 (J)

yk+1,v − yk,v ≤ 0 for all v ∈ V, 1 ≤ k ≤ H − 2 (K)

−yu,k − yk,v − ru,v ≤ −1 for all (u, v) ∈ E, 1 ≤ k ≤ H (L)

−yk,u − yv,k + ru,v ≤ 0 for all (u, v) ∈ E, 1 ≤ k ≤ H (M)

yk,u + yv,k − zuv,k ≤ 1 for all (u, v) ∈ E, 2 ≤ k ≤ H − 1 (N)

yk,v + yu,k − zuv,k ≤ 1 for all (u, v) ∈ E, 2 ≤ k ≤ H − 1 (O)

yk,s = 0 for all 1 ≤ k ≤ H (P)

yk,v ≤ yk,e for all 1 ≤ k < H, v ∈ V \ {e} (Q)(∑
u∈V

(1− yu,k − yk,u)

)
− 1

rw
≤ MS for all k ∈ {1, H} (R)

(∑
u∈V

(1− yu,k − yk,u) +
∑

(u,v)∈E
zuv,k

)
− 1

rw
≤ MS for all 2 ≤ k ≤ H − 1 (S)

1 +
∑

1≤k≤H yk,e

rh
≤ MS (T)

yv,k, yk,v ∈ {0, 1} for all v ∈ V, 1 ≤ k ≤ H

ru,v ∈ [0, 1] for all (u, v) ∈ E

zuv,k ∈ [0, 1] for all (u, v) ∈ E, 2 ≤ k ≤ H − 1

MS ∈ R≥0

	Introduction
	Definitions and Problem Classification
	The IP Approach
	The Heuristic Approach
	Evaluation
	Targeting a Specific Drawing Area
	GLP-MS

	Related Work and Discussion
	Conclusions
	Appendix
	Example Drawings of North Graphs
	Detailed Results
	Full GLP-MS MIP Model

