
HW/SW Co-Design for a
Reactive Processor
Sascha Gädtke, Xin Li, Marian Boldt,
Reinhard von Hanxleden 1

Department of Computer Science, Christian-Albrechts-Universität Kiel,
Christian-Albrechts-Platz 4, D-24118 Kiel, Germany

ABSTRACT

This paper presents an approach to accelerate reactive processing via an external logic block that handles
complex signal expressions. A reactive program, programmed in the synchronous language Esterel, is syn-
thesized into a software component, running on the Kiel Esterel Processor, and a hardware component, con-
sisting of simple combinational logic. The transformation process involves a two-step procedure, which first
partitions the program at the source level and subsequently performs the synthesis. An intermediate logic
minimization, at the source code level, facilitates the synthesis of compact logic blocks.

KEYWORDS: Reactive Processing, Hardware/Software Co-Design, Synchronous Languages, Esterel

1 Introduction

The concurrent synchronous language Esterel [Berr92] is typically translated into other, non-synchro-
nous languages such as VHDL for hardware synthesis or C for software synthesis, in the latter case
using traditional microprocessors as execution platform. There have also been proposals to combine a
classical processor with synthesized hardware, as in the POLIS co-design system [Bala97], which uses
the Extended Finite State Machine (EFSM) model of computation. Another simulation-based scheme,
also using the EFSM model, employs sophisticated logic minimization for optimization [Jian02].

Another approach that has emerged recently is reactive processing, exemplified by the EMPEROR
[Daya05] or the Kiel Esterel Processor (KEP) [Li06]. In particular reactive control flow constructs, such
as preemption and concurrency, can be processed very efficiently. However, it turns out that the pro-
cessing of complex Esterel signal expressions is still relatively inefficient compared to hardware. As in
the traditional software-based approach, the computation of such expressions must be sequentialized
into a series of instructions. As an example, consider the Esterel module EXAMPLE shown in Fig-
ure 1(a). This program first tests whether the signal expression (A and C) or (B and C) is present; if so,
it emits signal O. Then the program tests whether A or B are present; if so, it emits signal P. The cor-
responding KEP assembler code is shown in Figure 1(b). The first actual instruction is the PRESENT
statement in line 7. This statement tests signal A; if it is present, control moves on to the next state-
ment; if it is absent, control is transferred to label A0 (line 10). With a series of such conditional jumps
in lines 7–11 and an interspersed GOTO statement the first signal expression (A and C) or (B and C)
is evaluated, and the EMIT O statement is executed accordingly. Similarly, lines 13–15 compute the
second signal expression. All told, a total of eight instructions are used to compute an expression for
which a hardware realization would use just a couple of logic gates.

This example is certainly an extreme case, as it is dominated by the computation of signal ex-
pressions. For such an application a realization completely in hardware would probably be desirable.

1E-mail: {sga,xli,mabo,rvh}@informatik.uni-kiel.de

1 module EXAMPLE:
2 input A, B, C;
3 output O, P;
4

5 present (A and C) or (B and C) then
6 emit O
7 end;
8 present A or B then
9 emit P

10 end
11 end module

1 % module EXAMPLE
2 INPUT A
3 INPUT B
4 INPUT C
5 OUTPUT O
6 OUTPUT P
7 PRESENT A,A0
8 PRESENT C,A0
9 GOTO A1

10 A0: PRESENT B,A2
11 PRESENT C,A2
12 A1: EMIT O
13 A2: PRESENT A,A3
14 GOTO A4
15 A3: PRESENT B,A5
16 A4: EMIT P
17 A5: HALT

(a) (b)

Figure 1: An Esterel example and the resulting KEP assembler code.

However, a more common case is a combination of involved reactive control flow, for which the re-
active processing approach is advantageous, and the computation of signal expressions, for which a
hardware solution would be desirable. Thus motivated, this paper proposes an approach that extends
reactive software processing with an automatically synthesized hardware component that handles the
computation of signal expressions.

2 Approach

A possible approach to transform an Esterel program into a HW/SW co-design would be to fold the
extraction of compound signals into a compiler that would transform an Esterel program directly
into reactive processing code plus the hardware logic plus the interface between them. However, this
would limit the re-use of existing synthesis tools, and it would make the validation of our partitioning
unnecessarily difficult. We have therefore opted for a two-step approach, with an optional intermedi-
ate minimization step.

2.1 First Step: Source Code Transformation

In the first step, the source code is transformed into an equivalent Esterel program consisting of a
concurrent software and hardware module, and a main module that runs the hardware module and the
software module in parallel. First, the Esterel program is analyzed for the presence of compound sig-
nal expressions (such as A or B). The aim is to move the computation of such signal expressions from
the software module, which will be executed on the reactive processor, onto the hardware module;
we therefore will refer to the hardware module also as logic block. To make this possible, the reactive
processor must make the individual signals that contribute to this expression (such as A and B) avail-
able to the logic block. From the perspective of the reactive processor, these signals are treated just
like ordinary output signals. Similarly, the logic block makes the result of the compound expressions
available to the reactive processor, as another signal (such as A_or_B). From the perspective of the
reactive processor, this is treated just like an ordinary input signal.

For the EXAMPLE module, the resulting main module is shown in Figure 2(a). The software mod-
ule, shown in Figure 2(b), is a copy of the original program with all compound signal expressions
replaced by unique auxiliary signals. Every auxiliary signal is introduced as a new input to the soft-
ware module, as local signal to the main module, and as output signal to the hardware module. The
hardware module, shown in Figure 2(c), consists of a series of concurrent threads. Each thread is
responsible for the generation of one auxiliary signal AuxSig that is present whenever the signal ex-
pression SigExp is present. To implement this, each thread has the form “every immediate [SigExp] do

1 module EXAMPLE_MAIN:
2 input A, B, C;
3 output O, P;
4

5 signal A_and_C_or_B_and_C,
6 A_or_B in
7 run EXAMPLE_SW
8 ||
9 run EXAMPLE_HW

10 end signal
11 end module

1 module EXAMPLE_SW:
2 input A_and_C_or_B_and_C, A_or_B;
3 output O, P;
4

5 present A_and_C_or_B_and_C then
6 emit O
7 end present;
8 present A_or_B then
9 emit P

10 end present
11 end module

1 module Example_HW:
2 input A, C, B;
3 output A_and_C_or_B_and_C, A_or_B;
4

5 every immediate [A_or_B and C] do
6 emit A_and_C_or_B_and_C
7 end every
8 ||
9 every immediate [B or A] do

10 emit A_or_B
11 end every
12 end module

(a) (b) (c)

Figure 2: The EXAMPLE module from Figure 1, after source-level transformation into a HW/SW-
partitioned program.

emit AuxSig end every”.
To minimize the external logic block, we also perform standard logic minimizations. For that pur-

pose we employ the MVSIS package [Jian02], with the fullsimp transformation, which transforms the
signal expression into two-level logic, and the fxu optimization, which extracts common factors. In the
example, this minimization resulted in the extraction of A or B as common factor.

2.2 Second Step: HW/SW Synthesis

After the first step, we could still synthesize the transformed program into software or hardware.
This allows for example to validate the transformation by comparing the behavior of the all-software
version of the transformed program to the behavior of the original program. To generate a HW/SW co-
design in the second step, the software module is translated to KEP assembler code, and the hardware
module is translated into a VHDL description of a logic block.

For the software synthesis, we can employ the KEP Esterel compiler without further modifica-
tion. The computation sequences for the signal expressions, which were needed in the pure software
solution, are now replaced with single PRESENT instructions that test for the presence of the corre-
sponding auxiliary signal generated by the logic block.

For the synthesis of the logic block, we might also use one of the Esterel compilers that can generate
VHDL, such as Esterel V5/V7 or the CEC [Edwa]. However, it turns out that these compilers, which
were developed to synthesize the full range of Esterel statements, generate too much overhead for the
simple logic synthesis task at hand here. We have therefore developed a simple hardware compiler
from scratch, which is specifically geared towards the synthesis of the combinational logic hardware
modules resulting from our partitioning transformation.

3 Experimental results

To evaluate the effectiveness of the co-design approach, we compare a pure software implementation
with a software solution combined with an external logic block. Table 1 shows the results for the TCINT
benchmark from the EstBench suite [CEC]. For the original program, the table gives the code sizes and
execution times for the Microblaze, generated by the Esterel V5 and V7 compilers and the CEC, and
the code size for the KEP. On the Microblaze, the V7 compiler produces the most compact and also the
fastest code. The KEP code of the original program is already quite a bit smaller and faster than the
fastest Microblaze code.

Original program (SW) Partitioned program (SW) HW+SW
MicroBlaze KEP MicroBlaze KEP KEP

V5 V7 CEC V5 V7 CEC
Memory (in bytes) 14860 11376 15340 3527 17308 11416 17460 4471 1894

Average 3488 1797 2121 261 4248 1826 2971 720 204
Clock cycles Maximum 3580 1878 2350 729 4336 1907 3311 981 345

Empty input 3476 1807 2101 237 4267 1838 2956 771 204

Table 1: Experimental results for the TCINT benchmark.

For the partitioned program, we first again evaluate the performances of a pure software imple-
mentation. Again the V7 compiler produces the best code for the Microblaze, but slightly worse than
before the transformation. The KEP code has become significantly worse than for the original program,
but is still faster than the Microblaze.

Finally, the table gives the code size and performance for the co-design. Compared to the pure
software solution on the KEP, the code size has been reduced almost by half. The signal delays within
the external logic are negligible and are hidden by other signal delays within the KEP, hence the clock
rate is not affected. Therefore, the significant reductions in the cycle counts translate directly into
performance gains. The maximum execution time (345 cycles) is reduced to less than half of the pure
software solution (729 cycles).

4 Conclusions

This paper has presented a co-design approach to accelerate reactive processing by using external logic
blocks. The separation into a source-level transformation, followed by standard software synthesis and
customized hardware synthesis, facilitates validation and optimization. One issue, not addressed here
for space considerations, is signal reincarnation, which we address with an extended transformation
procedure not presented here.

So far, this transformation considers only pure signal expressions. Another issue, not addressed
yet, is the handling of the pre operator. We are also investigating extensions to valued signals and
variables.

References
[Bala97] F. BALARIN, P. GIUSTO, A. JURECSKA, C. PASSERONE, E. SENTOVICH, B. TABBARA, M. CHIODO, H. HSIEH, L.

LAVAGNO, A. SANGIOVANNI-VINCENTELLI, AND K. SUZUKI. Hardware-Software Co-Design of Embedded Systems,
The POLIS Approach. Kluwer Academic Publishers, April 1997.

[Berr92] G. BERRY AND G. GONTHIER. The Esterel Synchronous Programming Language: Design, Semantics, Implemen-
tation. Science of Computer Programming, 19(2):87–152, 1992.

[CEC] Estbench Esterel Benchmark Suite. http://www1.cs.columbia.edu/~sedwards/software/
estbench-1.0.tar.gz.

[Daya05] M. DAYARATNE, P. ROOP, AND Z. SALCIC. Direct Execution of Esterel Using Reactive Microprocessors. In
Proceedings of Synchronous Languages, Applications, and Programming (SLAP), April 2005.

[Edwa] S. EDWARDS. CEC: The Columbia Esterel Compiler. http://www1.cs.columbia.edu/~sedwards/cec/.

[Jian02] Y. JIANG AND R. BRAYTON. Software synthesis from synchronous specifications using logic simulation tech-
niques. In DAC ’02: Proceedings of the 39th conference on Design automation, pages 319–324, New York, NY, USA,
2002. ACM Press.

[Li06] X. LI AND R. VON HANXLEDEN. A Concurrent Reactive Esterel Processor Based on Multi-Threading. In Pro-
ceedings of the 21st ACM Symposium on Applied Computing (SAC’06), Special Track Embedded Systems: Applications,
Solutions, and Techniques, Dijon, France, April 23–27 2006.

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/cec/

	Introduction
	Approach
	First Step: Source Code Transformation
	Second Step: HW/SW Synthesis

	Experimental results
	Conclusions

