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Abstract—The synchronous language Esterel pro-
vides determinate concurrency for reactive systems.
Determinacy is ensured by the “signal coherence rule,”
which demands that signals have a stable value through-
out one reaction cycle. This is natural for the original
application domains of Esterel, such as controller design
and hardware development; however, it is unnecessarily
restrictive for software development. Sequentially Con-
structive Esterel (SCEst) overcomes this restriction by
allowing values to change instantaneously, as long as
determinacy is still guaranteed, adopting the recently
proposed Sequentially Constructive model of computa-
tion. SCEst is grounded in the minimal Sequentially
Constructive Language, which also provides a novel se-
mantic definition and compilation approach for Esterel.

I. Introduction
Embedded real-time systems or cyber-physical systems

are typically reactive systems, meaning that they contin-
uously react to their environment. A natural approach
for developing reactive systems is to divide execution into
discrete ticks, each of which executes a reaction cycle: 1)
read inputs (sensors), 2) compute a reaction, typically by
calling a tick function, and 3) write outputs (actuators).
A common requirement, in particular for safety-critical
systems, is that the tick function is determinate, meaning
that the same sequence of inputs produces the same
sequence of outputs. This requirement of determinacy may
be simple to achieve for traditional, sequential algorithms.
Determinacy is not trivial for reactive systems, as these
often entail concurrent and preemptive control flow, which
leads to race conditions. However, the family of synchronous
languages [1] provides just that, determinacy for reactive
systems. That is, a reactive system programmed or modeled
in a synchronous language will always behave in the same
manner, irrespective of how this system is realized, be it
in hardware or software, or on a fast or a slow processor.

The Esterel language is a well-studied, textual syn-
chronous language that targets control-oriented systems. It
offers concurrency, with the || operator, and numerous
forms of preemption and suspension [2]. Esterel offers
shared signals and non-shared variables. Communication
with signals is instantaneous, meaning that threads can
communicate back and forth within a tick. This capability,

which is lacking in many other languages, is rather powerful
and valuable, as it for example facilitates to decompose
a system without having to spread a computation across
multiple ticks. However, instantaneous communication also
makes the compilation of Esterel rather challenging [2].

To facilitate determinacy, synchronous languages have
adopted fixed-point semantics, which in the case of Es-
terel means that signals must be uniquely determined
throughout a tick, that is, they must be either present
or absent. This signal coherence rule is well suited for many
application domains, such as circuits where wires should
stabilize to either high or low voltage in each clock tick. A
nice property of constructive Esterel programs is that they
correspond to delay-insensitive circuits. However, this is
often considered restrictive by programmers, who are used
to a more liberal model of computation that allows, for
example, to read a variable in some tick and then write
a different value to the same variable, in the same tick.
To illustrate, consider the minimal WriteAfterRead example
shown in Fig. 1a. This module declares a signal s (which
is possibly shared by concurrent threads within the signal
scope), checks whether it is not present, i.e., absent, and
if so, makes s present by emitting it. In that case s will
be first considered absent and then instantaneously made
present, i.e., s is not coherent. Thus WriteAfterRead is not a
valid Esterel program, and an Esterel compiler will reject
it as being not causal, or not constructive. However, if we
consider WriteAfterRead as a sequential, imperative program,
there is no reason to reject it, as there is a fixed ordering
of the read and write of s, which ensures determinacy.
This becomes clear when considering the equivalent, C-like
program in Fig. 1b: s is initialized to false, but at the end
of the reaction will have the value true.

1 module WriteAfterRead:
2 signal s in ...
3 present (not s) then emit s; ... end
4 end

(a) Invalid Esterel, but valid
SCEst

1 WriteAfterRead() {
2 bool s = false; ...
3 if (!s) { s = true; ... }
4 }

(b) Equivalent, valid
C-like Program

Fig. 1: WriteAfterRead example.
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Fig. 2: Overview of scl and scg elements.

Contributions and Outline: This paper presents Se-
quentially Constructive Esterel (SCEst), which builds on
the recently introduced Sequentially Constructive Model
of Computation (SC MoC) and the SC Language (scl) [3],
briefly reviewed in Sec. II. As detailed in Sec. III, one
extension of SCEst over Esterel concerns its data handling;
in particular, SCEst variables can be shared among threads
as well as sequentially modified. This unification not only
permits programs such as WriteAfterRead, but also opens
the door for re-initialization of signal statuses and values,
expressed with the new SCEst statements unemit and
set. As illustrated with the Control example in Sec. IV,
SCEst thus adds expressiveness compared to both scl
and Esterel. The technical core of the paper is Sec. V,
where we define SCEst as a set of transformation rules
from SCEst to scl. We thus leverage the existing formal
semantics for scl and build on the result [4] that the SC
MoC conservatively extends the “Berry constructiveness”
(BC) demanded by Esterel. Conversely, the BC subset
of SCEst without the new SCEst statements reduces to
Esterel, thus our definition of SCEst can also be considered
a new, alternative semantic grounding for Esterel. This not
only unambiguously defines the semantics of SCEst, but is
also the basis for a compilation procedure for SCEst, and
thus Esterel as well, as illustrated with experimental results
in Sec. VI. We wrap up with related work in Sec. VII and
conclusions in Sec. VIII.

II. Sequential Constructiveness
We here give a brief overview of the SC MoC and the

abstract syntax for its reference languages, the scl and its
graphical equivalent, the scg. For full detail, including a
formal semantics, we refer the reader elsewhere [3], [5].

Fig. 2 summarizes the abstract syntax of scl. A thread
is a primitive or compound statement; the parallel instan-
taneously forks off multiple threads and joins (terminates)
when all threads have terminated, corresponding to Es-
terel’s || operator; the sequence, conditional and assignment
are as in standard imperative languages such as C; the delay
corresponds to Esterel’s pause statement. The concrete
syntax of scl follows the C syntax, as illustrated in the
scl version of WriteAfterRead shown in Fig. 1b.

The scl type system is not further specified, but we
adopt Esterel’s concept of a host language, such as C, from
which we can use types and an expression language and
which can be linked to SCEst with function or procedure

calls as in Esterel. To avoid confusion with the parallel
operator || of Esterel/SCEst, we use | for (logical) or and
similarly & for (logical) and. We also assume a type bool.

For purely sequential scl programs, that is programs
without parallel, the semantics is as one might expect
from imperative, sequential programs. In particular, all
syntactically correct purely sequential scl programs such
as WriteAfterRead have a well defined, determinate semantics
and will not be rejected by an scl compiler.

Things become more interesting when concurrency is
considered, in particular when concurrent threads share
variables. scl retains determinacy by demanding that
concurrent accesses to the same variable follow the so-
called init-update-read discipline, or iur (discipline) in
short. In spirit, iur is similar to Esterel’s emit-before-
test (ebt) discipline where the first emission of a signal
must precede any test for presence of a signal. Subsequent
emissions do not change the presence status anymore and
hence may be scheduled before or after presence tests.
With iur, we classify writes as either updates, which can
be scheduled in any order, typically because they are com-
mutative and associative (such as additions/increments),
or initializations, which is the default. We say that two
variable accesses are confluent if their order of scheduling
does not matter. E.g., updates are confluent; likewise, in
Esterel, emissions of the same signal are confluent. iur
demands that for two concurrent, non-confluent accesses n1
and n2 to some variable x, n1 must be scheduled before n2 if
(i) n1 initializes x and n2 updates x, or (ii) n1 writes x and
n2 reads x. (For a full, formal treatment, including a precise
definition of confluence, we refer the reader elsewhere [3].)
For example, without iur the scl fragment fork x+=2 par y=x
par x=1 par x+=3 par x=1 join could result in different values
for y, depending on the scheduling order of the concurrent
accesses to x. However, iur demands that the (confluent)
initializations of x (x=1) are scheduled first, in any order,
followed by the two updates of x (x+=. . . ), in any order,
followed by the read of x (y=x). Thus y will always be
assigned the value 6, and iur guarantees that the program
behavior is determinate.

A key difference between scl’s iur and Esterel’s ebt
is that iur only applies to concurrent variable accesses,
while ebt applies to all accesses, even if they are already
sequentially ordered, as in the WriteAfterRead example. Thus
more programs are schedulable in scl than in Esterel. Still,
there are scl programs that cannot be scheduled, e.g.,
if they contain concurrent non-confluent initializations of
the same variable; such programs are considered to be not
sequentially constructive, and hence must be rejected.

III. Data Handling — Variables and Signals

A key aspect of a language, in particular of a concurrent
language like SCEst, is how data are handled. Like Esterel,
SCEst provides variables as well as pure and valued signals.
Table I provides an overview of their characteristics.



Variables Pure Signals Signal Values
C Esterel SCEst/scl Esterel SCEst Esterel SCEst

Syntax x = y x := y x = y [x := y] emit x emit x, unemit x emit x(v) emit x(v), ?x
if (x) if x if (x) [if x] present x present x / if (x) [if x] ?x set x(v), unemit x

Type arbitrary arbitrary arbitrary present/absent present/absent arbitrary arbitrary
Initialized each tick no no no yes (absent) yes (absent) no no

Persistence across ticks yes yes yes no no yes yes
Allow multiple values per tick yes yes yes no yes no yes

Sequential scheduling none none none first emit none emits none
constraints → reads → reads

Concurrent scheduling none read only inits first emit unemits emits unemits → sets
constraints → updates → reads → first emit → reads → emits

→ reads → reads → reads
Determinacy guaranteed no yes yes yes yes yes yes

TABLE I: Comparison of data handling in C, Esterel and SCEst. Note the syntactic detail that SCEst variable assignments
may equivalently be written “=” (C-style, preferred) as well as “:=” (Esterel-style, for backwards compatibility). Likewise
the conditional may be written C-style or Esterel-style.

Variables in C or other classical imperative languages
may have arbitrary types, as defined by the language. C
does not have a built-in concept of a tick, thus there is no
implicit initialization of a variable at the beginning of a
tick. Values persist (at least if they are static), and there is
no limitation on the number of assignments. There are no
scheduling constraints and “causality errors.” C compilers
do not reject programs because of the way variables are
written and read. However, the price to pay for this freedom
is that C and the like do not guarantee I/O determinacy
when concurrency or preemption mechanisms are used.

Variables in Esterel are more restrictive in that
concurrent accesses are limited to read accesses to achieve
determinacy. In contrast, variables in SCEst may be
used concurrently as long as the accesses are schedulable
under iur (see Sec. II), which still provides determinacy.

Pure signals in Esterel must follow the ebt discipline
(Sec. II), for both sequential and concurrent accesses. They
are initialized to absent each tick, they can be emitted/
made present, but then cannot be made absent again.

Pure signals in SCEst can be used more liberally.
They can be explicitly set to absent with unemit, and as
with SCEst variables, there are no scheduling constraints
on sequential accesses. To achieve determinate concurrency
in SCEst, concurrent signal accesses follow iur where
unemits are considered initializations and emits are treated
as updates, which results in unemits being scheduled before
concurrent emits. The signal status may be tested with
present or equivalently with if.

Valued signals in SCEst are an analogous extension
of valued signals in Esterel. Both carry a non-persistent
signal presence/absence status like pure signals as well as a
value that is persistent across ticks. Like pure signals, their
status can be initialized to absent with unemit. Analogously,
their value can be initialized with set. Emissions are
considered updates, and like in Esterel some combine
function is required to handle concurrent updates or an
update concurrent with an initialization.

As explained, if variable accesses are ordered by se-

1 module ReEmit:
2 signal A : combine boolean with or in
3 emit A(true);
4 if ?A then emit O end;
5 emit A(true)
6 end

Fig. 3: ReEmit is not
valid in Esterel, due to
the emission of A after
its value is read with ?A,
but valid in SCEst.

quential control flow, the SC MoC uses that sequential
ordering to schedule the variable accesses. No causality
issues arise, as already illustrated in the WriteAfterRead
example in Fig. 1. This also applies to signal values, as can
be seen in ReEmit from Fig. 3 (taken from [2, p. 22]). Here A
is a valued boolean signal, where multiple signal emissions
are combined with the logical or. Esterel rejects this, due
to the second emission of A after the value access ?A, even
though that second emission does not change the value of
A anymore. In contrast, SCEst accepts this program based
on the schedule imposed by “;” that orders the read ?A
sequentially before the second emission. Hence, iur does
not apply because the accesses to A are not concurrent.

IV. The Control Example
WriteAfterRead and ReEmit provided a first indication of

the additional expressiveness of SCEst over Esterel. To
illustrate this expressiveness in more detail, we consider
the Control example presented in Fig. 4. The original scl
description is shown in Fig. 4f. As discussed elsewhere [3],
this example is an abstracted version of a Programmable
Logic Controller software used in the railway domain. By
revisiting this example here we now take a more systematic
look at the current capabilities and limitations of Esterel
compared to what is done in [3].

The functionality of Control is as follows. A Request
thread takes resource requests, indicated by req, from the
environment and internally signals requests with CheckReq
to a Dispatch thread. If a resource is available, indicated by
the environment with free, the request is granted, signalled
to the Request thread and the environment with grant.
Otherwise, the request is still pending, indicated by the



Request

checkReqreq

pend
freeDispatch

grant
Dispatch

Control

(a) The dataflow view

-

free = true
req = false

grant = false
pend = false

free = true
req = true

grant = true
pend = false

free = false
req = true

grant = false
pend = true

(b) An example trace with three
ticks for Control, shown as tick time
line. Inputs are above the time line,
outputs below.

-
free

free
req

(pend)
(grant)

free
req

grant

req

(pend) pend

(c) Example trace for ControlPause, in-
dicating the present (encoding true)
input/output signals. Output signals
occurring outside of output ticks are
in parentheses.

-
free free, req

grant

req

pend

(d) Example trace for ControlSSA/
ControlVar/ControlSCEst.

(e) The SC Graph (scg), indicating sequential flow (con-
tinuous arrows), concurrent data dependencies (dashed,
green arrows), and the tick delimiter edges (dotted lines).

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread ”Request”
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend & grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }
19 par {
20 // Thread ”Dispatch”
21 Dispatch entry:
22 grant = false;
23 if (checkReq & free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

(f) The scl program

1 module ControlPause:
2 input free, req;
3 output grant, pend;
4 signal checkReq in
5 % Thread ”Request”
6 loop
7 present req then
8 emit pend;
9 emit checkReq;

10 end present;
11 pause; % Extra delay
12 present pre(pend)
13 and pre(grant)
14 else emit pend;
15 end present;
16 present pre(grant)
17 then emit grant;
18 end present;
19 pause;
20 end loop
21 ||
22 % Thread ”Dispatch”
23 loop
24 present checkReq
25 and free then
26 emit grant;
27 end present;
28 pause;
29 pause % Extra delay
30 end loop
31 end signal
32 end module

(g) Esterel with extra
delay

1 module ControlSSA:
2 input free, req;
3 output grant, pend;
4 signal checkReq, pend2 in
5 % Thread ”Request”
6 loop
7 present req then
8 emit pend2;
9 emit checkReq

10 end present;
11 present pend2 and
12 not grant then
13 emit pend
14 end present;
15 pause
16 end loop
17 ||
18 % Thread ”Dispatch”
19 loop
20 present checkReq
21 and free then
22 emit grant
23 end present;
24 pause
25 end loop
26 end signal
27 end module

(h) SSA-style Esterel

1 module ControlVar:
2 input free, req;
3 output grant, pend;
4 signal checkReq in
5 % Thread ”Request”
6 loop
7 var pendv := false:
8 boolean in
9 present req then

10 pendv := true;
11 emit checkReq
12 end present;
13 if pendv then
14 present grant
15 then pendv := false
16 end present
17 end if;
18 if pendv then emit pend
19 end if
20 end var;
21 pause
22 end loop
23 ||
24 % Thread ”Dispatch”
25 loop
26 present checkReq
27 and free then
28 emit grant
29 end present;
30 pause
31 end loop
32 end signal
33 end module

(i) Esterel with local vari-
able

1 module ControlSCEstVar:
2 input bool free, req;
3 output bool grant, pend;
4 var checkReq: boolean in
5 % Thread ”Request”
6 loop
7 pend := false;
8 if req then
9 pend := true

10 end;
11 checkReq := req;
12 if pend and grant then
13 pend := false
14 end if;
15 pause
16 end loop
17 ||
18 % Thread ”Dispatch”
19 loop
20 grant := false;
21 if checkReq and free then
22 grant := true
23 end;
24 pause
25 end loop
26 end signal
27 end module

(j) SCEst with variables

1 module ControlSCEstSig:
2 input free, req;
3 output grant, pend;
4 signal checkReq in
5 [
6 % Thread ”Request”
7 loop
8 present req then
9 emit pend;

10 emit checkReq
11 end present;
12 present pend and
13 grant then
14 unemit pend
15 end present;
16 pause
17 end loop
18 ||
19 % Thread ”Dispatch”
20 loop
21 present checkReq
22 and free then
23 emit grant
24 end present;
25 pause
26 end loop
27 ]
28 end signal
29 end module

(k) SCEst with signals

Fig. 4: The Control example, illustrating the sequential modification of shared variables.



Request thread with pend. An example trace is shown in
Fig. 4b. In the initial tick, the resource is free but not
requested; in the second tick, it is free, requested, and
hence granted; in the third tick, the resource is requested
but not free, hence the request remains pending.

We first discuss different design alternatives for Control
with Esterel. This also serves as a brief review of Esterel’s
signal and variable mechanisms. A stumbling point is pend,
which (1) serves to communicate with the (concurrent)
environment, and (2) may change from false to true and
back to false within a tick.

Esterel with extra delay: One approach to resolve (2) is
to break up a reaction into multiple ticks. This is achieved
by inserting pause statements and pre-operators that access
the signal status in the previous tick, as realized in the
ControlPause code in Fig. 4g. In the initial tick, pend is
emitted if req is present; in the next tick, pend will be
emitted unless pend and grant have been present in the
initial tick (note the else instead of a then). Thus, instead
of the standard behavior where at each tick inputs are
consumed and outputs are produced, we have a division
into input ticks (in ControlPause these are ticks 1, 3, . . . )
and output ticks (2, 4, . . . ). An example trace is shown in
Fig. 4c. This possible solution has several disadvantages:
• The environment cannot immediately access valid

outputs in the same tick with the inputs.
• Introducing pause statements may introduce timing

issues and in general results in a brittle design. This
breaks the synchrony hypothesis which achieves robust
designs by abstracting from computation times. To
keep the thread logic in synch in ControlPause, the
extra delay introduced in the Request thread must be
matched by an extra delay in Dispatch. Similarly, to
keep the output of grant in synch with the output of
pend, grant must be re-emitted after the extra delay if
it is present in an input tick.

• The clocking of the module must be doubled to achieve
the same interaction rate with the environment.

• The interaction with the environment becomes more
complicated, as outputs are not in the same tick as the
inputs anymore. In Control, the environment should
provide inputs only every other tick, and it should
access the outputs one tick after providing the inputs.

Note that these disadvantages are common to languages
and models of computation that do not support instanta-
neous reactions, e.g., by disallowing instantaneous reaction
to signal absence. It is a strength of Esterel that it does not
have this limitation; however, in situations as the one here,
where values do not evolve monotonically, that strength
cannot be applied. Instead, a conceptually instantaneous
computation must be broken into several parts, using
a mechanism (pause/pre) whose original purpose is to
indicate the passage of physical time, not to schedule
computations. Note, we do not claim that SCEst produces
faster code by avoiding pauses. We are more concerned with
separating the passage of physical time from scheduling

issues. In sum, the inability to handle (2) burdens the
programmer with the task to construct a disambiguating
schedule across clock ticks. In SCEst this scheduling within
a tick is automatically done by the compiler.

SSA-style Esterel: Another approach to circumvent (2)
is to split a signal into multiple copies. This is akin to the
well-known static single assignment (SSA) paradigm [6],
where variables are split up such that each copy of a
variable is assigned a value only once. This is illustrated in
ControlSSA in Fig. 4h, where a new local signal pend2 serves
as “intermediate signal.” ControlSSA, unlike ControlPause,
retains the original timing and input/output behavior
of Control and thus seems preferable over ControlPause.
However, the disadvantage of this solution, apart from the
need to introduce another signal, is that this “manual SSA-
conversion” requires a close analysis of potential emissions
and tests of the different instances of the re-instantiated
signal. In ControlSSA, the programmer must analyze that
pend is emitted (true at the end of the tick) if pend2
is present but grant is absent. Again, the programmer is
burdened with a transformation task that could be taken
over by the compiler and in this case would be unnecessary
if we were to permit variable pend to be reset.

Esterel with variables: Finally, we may employ a com-
bination of Esterel variables, which allow (2), and signals,
which handle (1). As in the SSA solution this retains the
original timing of Control, but is equally cumbersome as
SSA since variable values must explicitly be “copied” into
signals, as illustrated in ControlVar in Fig. 4i (lines 18/19).

Sequentially Constructive Esterel: In contrast to Es-
terel, SCEst has no difficulties reconciling (1) and (2). As
discussed in Sec. III, SCEst provides variables with the
same capabilities as scl. The SCEst-equivalent of Control
based on variables is shown in Fig. 4j. In addition, SCEst
provides signals that can be used as in Esterel, but with
fewer restrictions. Specifically,

1) SCEst signals may be emitted after they have been
tested and possibly have been determined to be absent.
There is no general ebt requirement.

2) SCEst signals can be re-initialized to absent, with the
newly added unemit statement.

This allows to model the behavior of pend in Control directly
with a signal, without extra delays, signal splitting or
variable copying. The resulting ControlSCEstSig code is
shown in Fig. 4k. This is also more concise than the original
scl version since pend and grant need not be explicitly
initialized to false/absent at the beginning of each tick.

V. SCEst Language Definition
The SCEst language extends Esterel in two ways. First,

it uses sequential scheduling information to reduce causality
problems. Second, SCEst adds three new statements: the
signal handling statement unemit that re-initializes a signal
status, the data-handling statement set that initializes a
signal value, both as introduced in Sec. III, and as new
control flow statement a restricted form of goto.



1 module ControlSCEstSig
2 input bool free;
3 input bool req;
4 output bool grant;
5 output bool pend;
6
7 fork
8 l7: grant = false;
9 pend = false;

10 pause;
11 goto l7;
12 par
13 bool checkReq;
14 fork
15 fork
16 l3: if (req) {
17 pend |= true;

18 checkReq |= true };
19 if (pend & grant) {
20 pend = false };
21 pause;
22 goto l3
23 par
24 l5: if (checkReq & free) {
25 grant |= true };
26 pause;
27 goto l5
28 join
29 par
30 l6: checkReq = false;
31 pause;
32 goto l6;
33 join
34 join

Fig. 5: ControlSCEstSig (Fig. 4k) transformed to scl.

A nice feature of Esterel is that it is grounded on a small
number of kernel statements, from which the remaining
statements can be derived with simple structural transla-
tions. These other derived statements are thus syntactic
sugar that helps to write concise programs. There are some
Esterel features not covered by the kernel statements, such
as the interfacing with a host language, but these do not
pose particular semantic challenges. Our baseline is Esterel
v5, although most features of Esterel v7, such as its rich
type system, should be straightforward to adopt as well.
Berry [2] defined the following eleven pure Esterel kernel
statements (with the classification suggested by us), where
p and q are Esterel statements, S is a signal name, and T is
a trap name: the control flow statements nothing, pause, p; q,
loop p end, p || q, the signal handling statements signal S in p
end, emit S, present S then p else q end, and the preemption
statements trap T , exit T , and suspend p when S.

In our definition of SCEst, we build on this concept by
reducing the Esterel kernel statements and the aforemen-
tioned new SCEst statements to another “kernel language,”
namely scl, which is already formally defined [3].

In the following, we present the necessary transformation
rules from SCEst to scl. These transformation rules must
be applied inside-out (bottom-up in the abstract syntax
tree) to generate the corresponding scl program.

A. Control Flow Statements

SCEst’s control flow statements are rather simple to map
to scl. The nothing statement is not really meant to be
used in programming but helps in formalizations, e.g., to
ensure well-formed conditionals when a branch is missing.
It corresponds to the empty statement in scl. Esterel’s
pause corresponds to scl’s pause, the same for the sequence
operator ; and for SCEst’s goto. As in scl, SCEst’s goto
is not allowed to cross thread boundaries. The remaining
control flow transformation rules are shown in Fig. 6.

Notation: p, q are arbitrary (possibly compound) state-
ments. Some transformations produce fresh variables or
labels, indicated in their names with an underscore “ ”.

loop
p

end

(loop)

	
l:
p;

goto l

p
||

q

(parallel)

	
fork

p par q
join

Fig. 6: Transforming loop and parallel from SCEst to scl.

B. Signal Handling Statements
To emulate a signal s, we map it to a boolean variable s,

and encode present as true and absent as false. The non-
trivial question is how to initialize s to absent at each tick,
before it is potentially emitted. One approach to handle
initialization is to unemit s (i.e., set it to false) whenever
the scope of s is entered and, within the scope of s, to
unemit it again after each tick boundary, i.e., after each
pause statement. This approach was used to derive the
scl version of WriteAfterRead (Fig. 1b). However, this does
not scale well to signal scopes with an arbitrary number
of internal tick boundaries.

signal s in
p

end

(signal)

	
{ bool s, term;

fork l: s = false;
if (! term) {pause; goto l}

par p; term = true
join }

unemit s
(unemit)

	 s = false

emit s
(emit)

	 s |= true

present s then p else q end
(present)

	 if (s) {p} else {q}

Fig. 7: Transformations for pure signals.

For a more general solution that makes do with only one
signal initialization per tick, we make use of concurrency
and the iur protocol, which permits concurrent writes
under certain conditions. In particular, an initialization will
be scheduled before any number of updates. What remains
then is to ensure that the scl scheduler considers emit as an
update and only unemit as initialization. To achieve this, we
encode emit not as an absolute write “s = true,” but instead
as a relative write “s = s | true,” abbreviated “s | = true.” The
resulting transformation rules are shown in Fig. 7. The
flag term indicates when the signal scope is left and the
signal initialization thread should terminate. Braces are
used to delineate the scope of s and term. Signals may
also be reincarnated, meaning that their signal scope is
instantaneously left and entered again, in which case they
are correctly re-initialized.

The rule for output signals is similar to the rule for local
signals. Input signals are initialized by the environment and
hence need no initialization to absence, they are mapped
directly to scl boolean inputs.

C. Data Handling Statements
SCEst variables map directly to scl variables. To

emulate SCEst valued signals, we adopt the approach



followed in Quartz [7] and Potop-Butucaru’s encoding of
Esterel valued signals [2] of splitting a valued signal into a
pure signal s and a signal value s val.

signal s := s init :
combine type with f in

p
end

(signalv)

	

1 { bool s, s set, term;
2 type s cur, s val = s init;
3 fork
4 l: s = false; s set = false;
5 if (!s set) s cur = f neutral;
6 if (s) s val = s cur;
7 if (! term) {pause; goto l}
8 par
9 p; term = true

10 join

set s(v)
(set)

	 1 s |= true; s set |= true; s cur = v

emit s(v)
(emitv)

	 1 s |= true; s cur = f(s cur, v)

Fig. 8: Transformation for valued signals of some type
with initial value s init, combine function f and its neutral
element f neutral.

Esterel provides a basic construct to declare combine
functions for signals. We realize this by initializing the
signal value to the neutral element of the combine function,
denoted by f neutral, at the beginning of each tick by an
absolute write. Whenever the signal is emitted with some
value v, that value is combined with the current signal value.
One technical issue is that if the signal is not emitted in a
tick, it should keep its value from the previous tick, and
should not be overwritten with the neutral element. To
resolve this, the transformations shown in Fig. 8 build the
new value first, with the (emitv) rule, in a temporary value
s cur, which is copied to s val by the (signalv) rule if s
is emitted. References “?s” to the value of s are simply
replaced by s val.

To allow concurrent emits, the assignment to s cur
generated by (emitv) must be not an initialization, but an
update of s cur. This not only requires that f is a valid
combination function, but also that v does not reference
s cur. Our SCEst implementation generates updates as
augmented assignments, such as, e.g., s cur += v if f
is addition; the downstream compilation of SCL then
recognizes this as an update of s cur provided that v does
not contain s cur.

The set differs from the emit in that it uses an absolute
write (initialization) to s cur instead of a relative write
(update). Thus, iur ensures that a set is scheduled before
a concurrent emit. As usual in the SC MoC, sequential
accesses can be made in any order.

The purpose of the flag s set is to make sure that
only one of the initializations of s cur produced by the
(signalv) and (set) takes place, as these are concurrent and
in general not confluent; otherwise, these would result in a
scheduling conflict under the iur protocol. The downstream
scl compiler performs the (fairly straightforward) analysis
that the initializations are mutually exclusive at run time.

Again, the rule for output valued signals is similar, we

only must consider that both the status and value become
an output. Input valued signals are again initialized by the
environment at each tick.

D. Preemption Statements
A suspend statement prevents the execution of the

current tick’s micro steps when a specified signal s is present
after the initial tick. The execution continues in the next
tick in which s is absent. In scl, suspend is realized by a
conditional goto loop surrounding every pause in the body
of the statement, see Fig. 10. Hence, at the beginning of
each tick, i.e., after each pause, the condition is checked
and, when evaluated to true, the pause is repeated.

Notation: p [s1 → s2 | . . .] replaces all s1 in p by s2,
for an arbitrary number of replacement patterns.

suspend p when s
(suspend)

	 p [ pause→ l: pause; if (s) goto l ]

trap t in
p

end

(trap/exit)

	
{ bool t = false;

p [ exit t→ t = true; gotoj l
| pause→ if ( t) gotoj l; pause
| join→ join; if ( t) gotoj l ];

l: }

Fig. 10: Transformations for preemption statements.

A trap t preempts its body when the body executes an
exit t, see Fig. 10. Notation: gotoj l stands for either (i)
goto l, if label l is in the immediately enclosing thread, or
otherwise (ii) goto exit, where exit is a fresh label added
at the end of the current thread.

As gotos in scl cannot jump across joins, we must create
a chain of jumps from the exit through any intermediate
joins to l. This is implemented by using gotoj l instead of
goto l, and by checking not only at each pause but also at
each join whether an exception has occurred.

Threads that run concurrently in the statement body
execute the current tick, even if the trap statement is
triggered, and are preempted when the control reaches a
tick boundary. This is signalled with the flag t. Concurrent
exit statements result in concurrent initializations of t,
which does not pose a scheduling problem for iur as
the initializations are confluent. Before each pause, t is
checked; as an optimization, it suffices to do so only in
pause statements for which there is a concurrent exit T. If

t is true, the control jumps to the label l at end of the
trap statement.

As transformations are applied inside-out, as stated
before, this also nicely handles Esterel’s trap priorities
which require that if nested traps are exited concurrently,
the outermost trap should have priority. This is illustrated
in the example in Fig. 11, where after the join, first the outer
trap u is tested, and hence s is not emitted. The jumps in
lines 4/6 result from the gotoj l1/ l2 generated for the exit
statements; these jumps can clearly be eliminated.

Note that the translation rule for traps provided here
serves well to define its semantics, but is not necessarily



await s
(await)

	
1 pause;
2 trap t in loop
3 present s then exit t
4 else pause
5 end present
6 end loop end trap

(scl)

	
1 pause;
2 { bool t = false;
3 l: if (s) { t = true; goto l1 }
4 else { if ( t) goto l1; pause };
5 goto l;
6 l1: }

(opt1 )

	
1 pause;
2 l: if (s) { goto l1 }
3 else { pause };
4 goto l;
5 l1:

(opt2 )

	
l:

pause;
if (!s)
goto l;

Fig. 9: await transformation: (await) is the Esterel definition for await, (scl) are the rules for expanding SCEst to
scl, (opt1 ) propagates false to the test of t, as control leaves the scope of t after it is set to true (the pause is not
concurrent to the exit), (opt2 ) simplifies control flow.

1 trap t in
2 trap u in
3 fork
4 exit t
5 par
6 exit u
7 join
8 end trap;
9 emit s

10 end trap

	

1 { bool t = false;
2 { bool u = false;
3 fork
4 t = true; goto exit1; exit1:
5 par
6 u = true; goto exit2; exit2:
7 join;
8 if ( t) goto l2;
9 if ( u) goto l1;

10 l1:}
11 s |= true;
12 l2: }

Fig. 11: Illustration of proper handling of nested traps.

the most efficient one for implementation purposes, both
in terms of code size and execution time. Depending on
the application characteristics (trap nesting depth, number
of pause statements within trap scope) and the synthesis
target (hardware or software), other translation approaches
might be preferable, e.g., by encoding trap priorities with
completion codes as done in Esterel.

E. Derived Statements
The above definitions are complete in that all of SCEst

can be mapped to scl. For the semantic definition of
the remainder of SCEst, which includes all of Esterel,
we simply adopt the expansion rules already provided
for Esterel. This for example applies to the reduction
of await s shown in Fig. 9, which pauses for a tick and
from the next tick on terminates as soon as s becomes
present. As illustrated there, the grounding in scl may
offer optimization opportunities that can be exploited
with transformation rules that map derived SCEst/Esterel
statements (such as await) directly to efficient scl.

Fig. 12 shows further derived preemption statement
transformations. As for await, the transformations are
not constructed ad-hoc but based on the SCEst rules
for the Esterel kernel statements plus classical Esterel
expansion rules and subsequent optimizations. The await
immediate s differs from (“delayed”) await s in that it
potentially terminates from the initial tick on. Like Esterel,
SCEst provides four forms of abort, which differ along two
independent dimensions. (1) If the abort is triggered in
some tick, weak aborts let their body still execute in that
tick, whereas strong aborts do not give their body control
in that tick. Thus, the transformations for the weak aborts
check the abort condition at the end of a tick, i.e., before
a pause, whereas the strong aborts check the abort at the

await immediate s
(awaiti)

	 1 l: if (!s) { pause; goto l }

abort
p

when s

(abort)

	
1 { bool t = false;
2 p [ pause→ pause;
3 if (s) { t = true; gotoj l }
4 | join→ join; if ( t) gotoj l ];
5 l: }

abort
p

when immediate s

(aborti)

	
1 if (s) goto l;
2 p [ pause→ pause; if (s) gotoj l
3 | join→ join; if (s) gotoj l ];
4 l:

weak abort
p

when s

(wabort)

	
1 { bool t = false, depth = false;
2 p [ pause→ if (s & depth ) {
3 t = true; gotoj l };
4 pause; depth = true
5 | join→ join; if ( t) gotoj l ];
6 l: }

weak abort
p

when immediate s

(waborti)

	
1 p [ pause→ if (s) gotoj l; pause
2 | join→ join; if (s) gotoj l ];
3 l:

loop
p

each s

(loope)

	
1 l: { bool t = false;
2 p [ pause→ pause;
3 if (s) { t = true; gotoj l }
4 | join→ join; if ( t) gotoj l ];
5 pause;
6 l1: if (s) goto l;
7 goto l1 };

loop
% No join in p
% instantaneously
% reachable
p

each s

(loope-opt)

	
1 l: p [ pause→ pause;
2 if (s) gotoj l;
3 | join→ join; if (s) gotoj l ];
4 pause;
5 l1: if (s) goto l;
6 goto l1;

Fig. 12: Derived preemption statement transformations.

beginning of a tick/after a pause. (2) Immediate aborts test
their trigger immediately, whereas delayed aborts always
pause for a tick, and then start testing their trigger s; if
s holds in the initial tick when the abort is started, it is
simply ignored by the delayed abort. The delayed aborts
therefore do not test the abort condition directly at each
join, but use an auxiliary flag t instead; furthermore, the
weak delayed abort also uses a depth flag.

The loop p each s restarts p whenever s holds. As an
optimization, one can check whether no join is potentially
reachable in the initial tick of the abort; if so, then one can
do without the t flag. This leads to the optimized loope-opt
rule. (Similar optimized rules for the delayed aborts are
omitted here.)



1 module ABRO:
2 input A,B,R;
3 output O;
4 loop
5 [ await A
6 ||
7 await B ];
8 emit O;
9 each R

10 end module

	

1 module ABRO:
2 input bool A,B,R;
3 output bool O;
4 fork
5 l8: O = false;
6 pause;
7 goto l8
8 par
9 l7: fork

10 l1: pause;
11 if (R) goto l4;
12 if (!A) goto l1;
13 l4:

14 par
15 l2: pause;
16 if (R) goto l5;
17 if (!B) goto l2;
18 l5:
19 join;
20 if (R) goto l7;
21 O |= true;
22 l3: pause;
23 if (R) goto l7;
24 goto l3
25 join
26 end module

Fig. 13: Transforming ABRO from Esterel/SCEst to scl.

Fig. 13 illustrates the transformation (including loope-
opt) applied to ABRO, the “hello world” program of Esterel.

VI. Experimental Validation
To validate that the definition of SCEst is indeed

conservative with respect to Esterel, we have implemented
an SCCharts compiler in the open-source, Eclipse-based
KIELER framework1. The SCEst to SCL translation rules
are implemented with Xtend2. For downstream compilation
of scl to C, we reused the KIELER’s SCCharts com-
piler [5], which also (conservatively) checks for sequential
constructiveness by statically analyzing the SCG. For
numerous benchmarks that tested individual language
features, Eclipse unit tests compared the outputs of the
generated code with what was expected. The test cases
that were valid Esterel programs, i.e., that did not use
any new feature of SCEst, were also compared with the
Columbia Esterel Compiler (CEC, version 0.4) [8].

Even though the development of a new Esterel compiler
was not our primary objective, a natural question to ask is
how competitive the transformation from SCEst/Esterel to
scl and further to C and ultimately executable code is with
existing compilation approaches for Esterel. To that end,
we evaluated our dataflow-based compilation approach by
comparing sizes and reaction times of the generated code
from the SCEst compiler with the CEC. We used a system
with an Intel Core 2 Duo T9800 (2.93GHz) architecture.
Fig. 14 shows the evaluation results, where the reaction
times were averaged for 1000 ticks. These benchmarks are
admittedly rather small (29 lines of code for the Control-
Sig, to 93/171 lines of code before/after module expansion
for MSRCSFlipFlop), and we did not extensively try the
compile options offered by the CEC. Thus the results should
be treated with care. However, the trend so far is that
the reaction time of the SCEst is quite competitive (on
average about 30% faster than CEC), but code size so
far is not (on average about double). At this point, we
suspect that the main culprit regarding code size is the
downstream compilation from scl to C, since for example
the generation of synchronizers for the join statements so
far induces unnecessary redundancies for nested threads. A

1http://www.informatik.uni-kiel.de/rtsys/kieler/
2http://www.eclipse.org/xtend/
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Fig. 14: Size and speed comparison of SCEst compilation
and CEC. The Control-Sig example is not Berry constructive
(see Sec. IV) and hence rejected by the CEC.

detailed comparison, or ideally an open evaluation platform
with a benchmark suite, sample data and an interface where
compiler developers can compete, is still future work.

VII. Related Work
There have been several proposals that extend C or

Java with concurrency constructs. Some of these proposed
concurrency extensions avoid race conditions by building
on synchronous programming principles. ECL extends C as
well with Esterel-like reactive constructs [9]; ECL programs
are compiled into a reactive part (Esterel) and a data-
part (C), plus some “glue logic”. FairThreads [10] are
an extension introducing concurrency via native threads.
PRET-C [11] also provides determinate reactive control
flow; however, PRET-C assumes fixed priorities per thread,
thus could not execute SC programs that require back-and-
forth context switching between threads. None of these
language proposals embeds the concept of Esterel-style
constructiveness into shared variables as we do here.

Concerning extensions of Esterel, Tardieu and Edwards
have presented two control flow constructs, namely go-
topause [12] and goto [13]. These have been motivated in
part by the desire to synthesize SyncCharts [14], where
state transitions correspond to jumps that are difficult to
map to the structured control flow offered by Esterel. They
are also helpful for handling signal reincarnation. SCEst’s
goto is more restricted in that it only allows jumps within
the same thread. However, the SCEst goto is still capable of
implementing SyncChart/SCChart transitions (which have
the same restriction) and, together with the iur protocol,
of handling signal reincarnation.

Caspi et al. [15] have extended Lustre with a shared
memory model. However, they adhere to the current
synchronous model of execution in that they forbid multiple
writes even when they are sequentially ordered.

Sequentially Constructive Charts (SCCharts) [5] is a
graphical language that relate to SCEst as SyncCharts
relate to Esterel. Both SCCharts and SCEst build on the
SC MoC which relaxes Berry’s notion of constructiveness.
Yet, like Esterel, they still assume a locally asynchronous,
globally synchronous (LAGS) model of computation. A
different, largely orthogonal approach is the notion of con-
structive polychrony by Talpin et.al. [16] to extend Esterel



for multi-clocked data-flow in order to capture globally
asynchronous locally synchronous (GALS) systems.

VIII. Conclusions and Outlook
SCEst is a new language for designing reactive systems

with determinate behavior that combines the rich feature
set of Esterel, in particular concerning reactive control
flow, with a data handling flexibility familiar from standard
imperative languages. SCEst resolves “spurious” causality
issues introduced by sequential control flow, thus accepting
a larger class of programs than Esterel. SCEst makes use of
the recently proposed Sequentially Constructive model of
computation, and we have defined the semantics of SCEst
by providing translation rules from SCEst to scl.

Experience will show how significant the extensions of
SCEst over Esterel really are, both in terms of increased
expressiveness and ease of use, in particular for language
novices. However, apart from the language extensions of
SCEst, we consider the “unification” of shared signals and
sequential variables as valuable, even in the context of
Esterel alone. As explained elsewhere [4], this allows for
example a more efficient handling of schizophrenic signals
at source code level, with worst-case linear instead of
quadratic code increase.

Our extension of Esterel is “minimally invasive” in that
we provide translation rules for the Esterel kernel state-
ments plus three new SCEst statements (unemit, set, goto).
We reuse the derivation of non-kernel Esterel statements
concerning their semantics. For some derived statements,
their expansion into kernel statements and further to scl
opens optimization possibilities that should be exploited
in a compiler. As illustrated with the await statement, this
is made possible by having rather elementary features such
as the goto available directly in scl.

There are several issues that we did not have the space to
discuss here, but for which we refer the reader to Rathlev’s
thesis on SCEst [17]. In particular, when compiling scl
with a data-flow based approach that demands acyclic SC
schedulability [3], care has to be taken to not inadvertently
introduce cycles in the resulting scg. Rathlev also discusses
the — still largely open — inclusion of weak suspend, as
introduced by Esterel v7 and Quartz, which would facilitate
for example multi-clock hardware design.

Finally, we expect that the further work on SCEst
— and SCCharts — will also lead to new insights and
variations on the underlying SC MoC. E.g., adding a “pre-
init” stage to iur would facilitate to distinguish local and
global initializations, as would be suitable for multi-core
implementations.
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