Semantics and Execution of Domain Specific Models

Christian Motika, Hauke Fuhrmann, Reinhard von Hanxleden
Christian-Albrechts-Universitit zu Kiel
{cmot,haf,rvh} @informatik.uni-kiel.de

Abstract:

In this paper we present a two-level approach to extend the abstract syntax of
models with concrete semantics in order to execute such models. First, a light-weight
execution infrastructure for iteratable models with a generic user interface allows the
tool smith to provide arbitrary execution and visualization engine implementations for
his or her Domain Specific Language (DSL). We discuss how the common execution
manager runtime allows co-simulations of different model types and engine imple-
mentations to provide a flexible framework in the diverse DSL scenery. Second, as a
concrete but nevertheless generic implementation of a simulation engine for behav-
ior models, we present semantic model specifications and a runtime interfacing to the
Ptolemy II tool suite. As a project in the area of model simulation, the latter provides
a mature sophisticated and formally grounded backbone for model execution.

‘We present our approach as an open source Eclipse integration to be an extension
to the Eclipse modeling projects.

1 Introduction

Computer simulations are an established means to analyze the behavior of a system. On the
one hand one wants to be able to predict and better understand physical systems and train
humans to better interact with them, for example weather forecasts or flight simulators. On
the other one aspires to emulate computer systems—often embedded ones—themselves
prior to their physical integration in order to increase safety and cost effectiveness.

The basis for such a simulation is usually a model, an abstraction of the real world, car-
rying sufficient information to specify the relevant system parameters necessary for the

Execution Manager Runtime

| | 1
v v
Data Producer/Observer Data Producer/Observer Data Observer Data Observer Data Producer Data Producer/Observer
Java Simulator| | Generic Simulator Environment Model Feedback Recorded TCP/IP Interface
Visualization Visualization Trace Player
Ptolemy Il

External Appl.

Figure 1: Schematic overview of the Execution Manager infrastructure

semantical analysis and execution. The notation of a model instance is a concrete textual
or graphical syntax.

In the past all model editing, parsing, and processing facilities were manually implemented
with little generic abstractions that inhibit interchangeability. Standardized languages,
e. g., the Unified Modeling Language (UML), try to alleviate this, but they are sometimes
too general and complex to be widely accepted.

As a recent development, Domain Specific Languages (DSL) target only a specific range
of application, offering tailored abstractions and complying to the exact needs of devel-
opers within such domains. On the one hand, there are already well established toolkits
like the Eclipse Modeling Framework (EMF) or Microsoft’s DSL toolkit to define an ab-
stract syntax of a DSL in a model-based way. They provide much infrastructure, such as a
metamodel backbone, synthesis of textual and graphical editors, and post-processing capa-
bilities like model transformations, validation, persistence, and versioning. The designer
of tools for such a DSL, the tool smith, faces less efforts in developing his or her modeling
environment. This is achieved by sophisticated tool assistance and possibly a generative
approach. The latter provides, e. g., generated implementations for simple model interac-
tions automatically and in a common and interchangeable way.

On the other hand there is the semantics of such a DSL. This additionally has to be defined
in order to let a computer execute such models. For the specification of the latter no
common way exists yet. But as such a semantics often exists at least implicitly in the mind
of the constructor of a new DSL there is a need to provide a way for making it explicit.

The contribution of this paper is a proposal on how DSL semantics can be defined by using
existing semantic domains and existing model transformation mechanisms without intro-
ducing any new kind of language or notation focusing on an Eclipse integration. Fig.
shows an example setup of the architecture. In Sec. a survey about the KIELER frame-
work, which is the context of the work presented in this paper, is given. A short overview
about existing technologies in the area of simulations and semantic specifications is given
in Sec. 2] In Sec.[3] we present how we define semantics for an example DSL with the
Ptolemy II suite (cf. Fig.[I). In this context a case study about simulating SyncCharts by
leveraging Ptolemy is presented. An implementation overview about our general approach
of integrating simulations in the Eclipse platform is given in Sec. d—the Execution Man-
ager Runtime in Fig.[I] Additionally we show that this solution is extendable and has open
support for, e. g., model analysis and validation or co-simulations. Sec. [5] concludes and
gives an outline of future work.

1.1 The KIELER Framework

The execution and semantics approach presented in this paper is implemented and in-
tegrated in the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELERﬂ
framework. It is a test-bed for enhancing the pragmatics, i.e., the user interaction, of
model-based system design as described elsewhere [FvH10].

Unttp://www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/

% Resource - menges/abro.kids - KIELER =lol x|

File Edit Diagram Navigate Search Project Run KIFLER Window Help

= Data Table £ & % || E 9 = O] abokds 53 =0
P | key | value | g ABRO Zly
A —
E B Signal: &, B, R, O,
O o
O r { ABO 3
state ", + « l/@innerStates...
WaitAB
&5 Execution Manager 53 =0
8 4 L [soms [4 [td B0~ -0 @ R
Component Name || Type | Master

E Synchrounous Signal Resetter
E Data Table

Z Synccharts Ptolemy Simulator

E Viewmanagement SyncCharts Visualizer
[Data Table

Observer/Producer
Producer
Observer Producer

Observer -
Observer Kl ¥

Figure 2: GUI of KIELER and the KIEM Eclipse plug-in during a simulation run

EEEEE

The KIELER framework is a set of open source Eclipse plug-ins that integrate with common
Eclipse modeling projects, such as the Graphical Modeling Framework (GMF), the Textual
Modeling Framework (TMF), and especially the modeling backbone EMF.

While Eclipse handles model syntax in a common and generic way, this is not yet done for
semantics. Hence, before handling pragmatics of simulations for models in a generic way,
we need to find generic interfaces and specification possibilities for semantics themselves.
This is the purpose of the KIELER Execution Manager (KIEM), the execution approach
presented in this paper.

Fig. |Z| shows a simulation run with KIEM in KIELER which provides a user interface, shown
in the bottom view in Fig. 2] and visual feedback about simulation details, both in the
graphical model view itself and in a separate data table view.

1.2 Basic Concepts

A basic prerequisite for Model Driven Software Development (MDSD) are models that
base on metamodels. The latter define the abstract syntax of models and hence allow the
specification of languages as object-oriented structure models. The Meta Object Facility
(MOF) is such a metamodeling framework defined by the Object Management Group
(0MG) [Obj06]], which has been taken shape for the Eclipse world as the Eclipse Mod-
eling Framework (EMF) with its Ecore metamodel language that we use in the context of
this project.

Model transformations play a key role in generative software development. These describe
the transformation of models (i. e., metamodel instances) that conform to one metamodel
into models which then conform to another or even the same metamodel. There are several
model transformation systems available today that are well integrated into the Eclipse
platform. Xpan(ﬂ realizes a model to text template based approach, Xtend is a functional

2http://wiki.eclipse.org/Xpand

http://wiki.eclipse.org/Xpand

metamodel extension and transformation language based on Java with a syntax borrowed
from Java and OCL, and there exist other transformation frameworks such as QVT or ATL.

In our implementation we will use the Xtend language, as it is a widely used and was
refactored for a seamless integration into the Eclipse IDE. Additionally, its extensibility
features allow to escape to Java for sequential or complex transformation code fragments.
Nevertheless our approach is conceptually open to use any transformation language which
supports EMF meta models.

2 Related Work

There exists a range of modeling tools that also provide simulation for their domain mod-
els. To just mention some of the popular ones: Ptolemy II is a framework that supports
heterogeneous modeling, simulation, and design of concurrent systems. For integrated
simulation purposes Ptolemy provides the Vergil graphical editor. But there also exists the
possibility to embed the execution of Ptolemy models into arbitrary Java applications as
described by Eker et al. [EJL"03].

With Matlab/Simulink/Stateflow of Mathworks and SCADE of Esterel Technologies the
user is able to integrate control-flow and data-flow model parts in their own Statecharts
dialect and data-flow language.

The Topcased project is based on the Eclipse framework and targets the model driven de-
velopment with simulation as the key feature in validating models [CCG™08]|. Other sim-
ulation supporting frameworks are Scilab/Scicos from INRIA, Hyperformix Workbench
from Hyperformix, StateMate from David Harel, or Uppaal from Uppsala University.

Most of these tools are specific and follow a clear semantics. This allows such tools to pro-
vide a tailored simulation engine that can execute the models according to this concrete se-
mantics. Ptolemy supports heterogeneous modeling and different semantics for and within
the same model. However, Ptolemy has fixed concrete and abstract syntax and hence can-
not be used directly to express arbitrary DSLs, where one reason to create them is to get
a very specific language notation. Hence, we investigated it further as a generic semantic
backend in combination with the Eclipse modeling projects as elaborated in Sec.[3.3.1

As outlined by Scheidgen and Fischer [SFQ7] two fundamentally different concepts can
be emphasized for specifying model semantics: (1) Model-Transformation into a seman-
tic domain (denotational) or (2) provision of a new action language (operational). In the
first case semantics is applied to a metamodel by a simple mapping or a more complex
transformation into a domain for which there already exists an explicit semantical mean-
ing. The second concept applies semantics by extending the metamodel with semantical
operations on the same abstraction level. For this a meaning additionally has to be defined,
e.g., in writing generic model simulators that interpret this information based on formal
or informal specifications. The M3Action framework for defining operational semantics is
illustrated by Eichler et al. [ESS06] or Scheidgen and Fischer [SEOQ7]]. Chen et al. [CSNO7]
presents a compositional approach for specifying the model behavior.

We follow the first approach by utilizing existing languages only and describe structure
based transformations as explained in more details elsewhere [MotQO9].

Although defining a new high-level action language for transforming a runtime model
during execution retains a stricter separation between the different abstraction levels, we
decided to follow the more natural approach. That is, leveraging a semantic domain and
specifying model transformations with necessary inter-abstraction-level mapping links to
the model in question. We identified some advantages: (1) There is no need to define
any new language to express semantics on the meta model abstraction level. (2) There is
a quite direct connection for meta model elements and their counterparts in the semantic
domain which allows easy traceability. (3) Abstraction levels can be retained by carefully
choosing an abstract semantic domain and advanced techniques for model transformation
(e.g., a generative approach for the transformations as well).

3 Semantic Specification

As introduced above, there are two possible ways to specify semantics of a DSL, where we
use the second approach in leveraging Ptolemy II as a flexible and extensible simulation
backend. Therefore, in the following we will give a short introduction into Ptolemy, which
we use as an example semantic domain, and afterwards give some brief overview of a
concrete case study.

3.1 Ptolemy

The Ptolemy II project studies heterogeneous modeling, simulation, and design of concur-
rent systems with a focus on systems that mix computational domains [EJL"03].

The behavior of reactive systems, i.e., systems that respond to some input and a given
configuration with an output in a real-time scenario, is modeled in Java with executable
models. The latter consists of interacting components called actors, hence this approach
is referred to as Actor-Oriented-Design. These actors can be interconnected at their ports.
Ptolemy actors can be encapsulated into composed actors introducing a notion of hierar-
chy. Ptolemy models strictly try to separate the syntax and the semantics on one modeling
layer. The first is given by the structural interconnection of all used actors. The second
is encapsulated in a special and mandatory director actor that specifies the way of actor
interaction and scheduling. Ptolemy allows models to mix different models of computa-
tions (MoCs) on different hierarchy layers. Actors consist of (1) pure Java code that may
produce output for some input during execution or (2) other Ptolemy actors composed to-
gether under a separate model of computation (MoC) that defines the overall in- and output
behavior.

There exist several built-in directors that come along with Ptolemy II, such as Continuous
Time (CT), Discrete Events (DE), Process Networks (PN), Synchronous Dataflow (SDF),
Synchronous Reactive (SR) and Finite-State-Machines (FSM). Whenever this seems to limit

the developer, one may adapt or define new Ptolemy II directors in Java that implement
their own more specialized semantic rules of component interaction. The combination of
these various, extendable domains allows to model complex systems with a conceptually
high abstraction leading to coherent and comprehensible models. An example Ptolemy II
model is presented in Fig. 4]

For the sake of brevity we cannot discuss the technical details here and refer to the Ptolemy
documentation, in particular about the *charts (pronounced starcharts) principle [[GLL99].
It illustrates how hierarchical Finite-State-Machiness can be composed using various con-
currency models leading to arbitrarily nested and heterogeneous model semantics. We
employed this technique to emulate a Statechart dialect, thus specifying the semantics and
producing executable model representations.

M2M description produce

— dslzéto.k'tend Xtend M2M Engine —>
: it _ 'pto

pto.ecore

. <1 load &
/—> Ptolemy Simulator execute

dsl.ecore msI | Data Producer

model to | Data Observer
simulate

»

simulation data =

Execution Manager
Eclipse Plugin

metamodels commands

Figure 3: Abstract transformation and execution scheme

3.2 Concept

Fig.[3]shows the underlying concept where the description of the transformation is defined
in the file dsl2pto.xtend using the Xrend language (cf. Sec.[I.2). The latter operates on
EMF metamodel instances, hence the transformation itself must be defined referencing two
metamodels. The source metamodel dsl.ecore stems from the EMF tool chain that already
exists after defining the DSL’s abstract syntax. The target metamodel pto.ecore describes
the language of all possible Ptolemy models and is common for all DSLs.

The actual transformation of the source model model.dsl into the target Ptolemy model
model.pto is done by the Xtend transformation framework. Instrumentation code is in-
jected during the Ptolemy model composition that allows to easily map Ptolemy actors
back to their corresponding original model elements. The Ptolemy Simulator itself is part
of the execution runtime interface and can load and run Ptolemy models and interact with
the Execution Manager as described in the next chapter.

3.3 SyncCharts

The Statecharts formalism of David Harel [Har87l], which extends Mealy machines with
hierarchy, parallelism, and signal broadcast, is a well known approach for modeling control-

intensive tasks. SyncCharts were introduced almost ten years later [And96] as an adoption
to the synchronous world. They serve as a graphical representation of the Esterel lan-
guage [BC84]| following the same execution semantics.

SyncCharts simplify the modeling of complex reactive systems because they allow to
model deterministic concurrency and preemption. However, they are more difficult to ex-
ecute compared to other state machine models. As a challenging example we defined the
semantics of SyncChart EMF models in a model-to-model (M2M) transformation, mapping
each element to Ptolemy actors utilizing the combination of the Synchronous Reactive and
Finite-State-Machines domains.

3.3.1 Transformation

The main idea is to represent the hierarchical layers by Ptolemy composite actors. These
are connected by links incorporating the signal broadcast mechanism.

The SR fixed-point semantics guarantees finding a fixed point for the signal assignment
w.r.t. the signal coherence rule. The latter means that each SyncCharts signal can either
be present or absent in a synchronous tick instant but not both at once. For each tick, the
fixed point computation in SR starts with unknown signal states on all data links.

The SyncChart example of Fig. @] shows a broadcast communication between two parallel
regions R1 and R2. R1 emits the signal L by taking an enabled transition from initial state
SO to state S1 guarded by an implicit true trigger. R2 waits in its initial state S2 for the
signal L to be present in order to take the transition to state S3.

The structural transformation ensures that for each parallel region, every signal is repre-
sented as an input and output port (e.g., Li and Lo) because conceptually each region can
emit a signal or may react to a present signal, or even both. The latter implies the require-
ment of a feedback structure for each signal using a special combine actor. In the Ptolemy
model, the presence of a signal is represented by a data token traveling across the dedicated
link. The absence of a signal is equivalent to a special clear operation on a channel. If the
combine actor receives a token of any parallel region, it immediately outputs a token to the
feedback loop. If the combine actor on the other hand notices a clear on each connected

4 SyncChart) SyneChart _region_1 Lo_COMBINE
signal L; < } _
SyncClfart_region_2 SR Directo
T irector
E—L>(s)
_________ Li Lo Li Lo
| | b
O
\ / output: Lo =1 guard: Li_isPresent

Figure 4: A SyncChart model (left) and the generated Ptolemy model (right)

incoming channel, it also clears its output. This reflects the fact that a signal is present iff
it is emitted in a tick instance and a signal is absent iff it is not emitted anywhere.

In the generated Ptolemy model of Fig. {] the concurrent actor SyncChart_region_1 will
produce an output token that will be received and forwarded by the combine actor. Finally,
a duplicate of this token reaches the actor SyncChart_region_2 triggering a state transition.

Further concepts of the transformation description consider the aspect of hierarchy: Con-
current Ptolemy actors that represent parallel regions contain FSM nodes that are either
refined in case of original SyncCharts macro states or not refined in case of original Sync-
Charts simple states. The refinements can again contain concurrent actors representing
regions within such a macro state. Because signals within a SyncCharts state can be emit-
ted in any inner state, their dedicated ports are replicated in the transformation process for
all lower hierarchy layers.

The Ptolemy expression language allows evaluation of complex triggers that for example
are a boolean combination of signal presence values. This makes it straight forward to
support the last special SyncChart concept of compound events in Ptolemy models.

The mapping takes also place during the model transformation process as we link the EMF
model elements with attributes of the generated Ptolemy model elements. This simulation
engine is interfaced with the Execution Manager presented in Sec.[d] as depicted in Fig.[3]
It will process input and output signals and also collect additional output information such
as the current active states. The information and the signal data are used to visualize the
simulation and feed a Data Table, as shown in Fig. 2]

4 Execution Integration

As a subproject of KIELER the Execution Manager (KIEM) implements an infrastructure
for the simulation and execution of domain specific models and possibly graphical vi-
sualizations. It does not do any simulation computation by itself but bridges simulation
components, visualization components and a user interface to control execution within the
KIELER application, as indicated in Fig.|l} These components can simply be constructed
using the Java language implementing some commonly defined interfaces.

An approach on how to implement such simulation engines themselves using model trans-
formations and Ptolemy as a simulation backend has just been presented in Sec. [3] The
simulator component depicted in Fig. [3|]loads Ptolemy models using Ptolemy internal load-
ing mechanisms. Ptolemy models are instances of Java classes. Thus they can easily be
accessed by the simulator component for example to inject input values coming from KIEM
or extract output values and current state information to send them to KIEM.

U

— OO0 dA N B W=

4.1 DataComponents

DataComponents are the building blocks of executions in the KIEM framework. They use
data in order to interact with each other. Hence they may produce data addressed for other
DataComponents or observe data from other components or even both at once. See again
Fig. |l| for an example setup. It shows several example data components like a basic Java
simulator or a more abstract Ptolemy simulator and also components that only visualize
data either in the model itself or in a separate view of the model’s environment.

DataComponents can be classified according to their type of interaction into multiple cate-
gories: Pure observer DataComponents do not produce any data which for example is the
case for simulation visualizations. Pure producer DataComponents like user input facili-
ties do not observe any data. Hence they are data independent of others. Often there are
observing and producing DataComponents like simulation engines that react to input with
some output.

public interface IDataComponent {

void initialize() throws KiemInitializationException;
void wrapup () throws KiemInitializationException;

boolean isProducer();
boolean isObserver();

JSONObject step (JSONObject jSONObject) throws KiemExecutionException;

Figure 5: DataComponent Interface

Fig.[5|shows the simple and self-explanatory interface for DataComponents. A component
needs to declare whether it is an observer or a producer of data. It should declare some
initialization and wrapup code. The step method is most significant in this interface. It
should implement the execution behavior of the DataComponent. The parameter value
holds all input data in case of an observer component. The return value should hold all
output data in case of a producer component.

4.2 User Interface

Fig. [2 shows the Graphical User Interface (GUI) of the Execution Manager. Listed are all
DataComponents that take part in the execution. The order of the DataComponents in the
list is the one in which they are scheduled. Together with (optional) property settings the
list of DataComponents forms a savable execution setting. The execution can be triggered
by the user by pressing one of the active control buttons (e. g., step, play, or pause). The
step button allows a stepwise, incremental execution while in each step all DataCompo-
nents are executed at most once (see below). The lower bound on a step duration can be
set in the UI, while the upper bound depends on the set of all producer DataComponents.

4.3 Data Pool and Scheduling

Data are exchanged by DataComponents in order to communicate with each other. The
Execution Manager collects and distributes sets of data from and to each registered (w.r.t.
the Eclipse Rich Client Platform (RCP) plug-in concept) DataComponent. Therefore it
needs some kind of memory for intermediate storage to reduce the overhead of a broad-
cast, and to restrict and decouple the communication providing a better and more specific
service to each single DataComponent.

This storage is organized in a data pool where all data are collected for later usage. The
Execution Manager only collects data from components that are producers of data. When-
ever it needs to serve an observer DataComponent, it extracts the needed information from
its data pool, transparent to the component itself.

All components are called by the Execution Manager in a linear order that can be defined
by the user in an execution setting. Because the execution is an iterative process—so far
only iteratable simulations are supported—all components (e.g., a simulation engine or a
visualizer) should also preserve this iterative characteristic. During an execution, KIEM
will stepwise activate all components that take part in the current execution run and trigger
them to produce new data or to react to current data. As KIEM is meant also to be an
interactive debugging facility, the user may choose to synchronize the iteration step times
to real-time. However, this might cause difficulties for slow DataComponents as discussed
below.

All components are executed concurrently. This means that they are executed in their
own threads. For this reason, DataComponents should communicate (e. g., synchronize)
with each other via the data exchange mechanism provided by the Execution Manager
only to ensure thread safety. There are also additional scheduling differences between the
types of DataComponents listed above. These concern two facts: First, DataComponents
that only produce data do not have to wait for any other DataComponent and can start
their computation immediately. Second, DataComponents that only observe data, often do
not need to be called in a synchronous blocking scheme since no other DataComponents
depend on their (nonexistent) output.

4.4 Further Concepts

Besides the described basic concepts of the Execution Manager there are some facilities
and improvements that are summarized in the following.

Analysis and Valdiation: For analysis and validation purposes it is easy to include vali-
dation DataComponents that observe special conditions related to a set of data val-
ues within the Data Pool. These components may record events in which such con-
ditions hold or may even be able to pause the execution to notify the user.

Extensibility: The data format chosen in the implementation relies on the Java Script Ob-
ject Notation (JSON). This is often referred to as a simplified and light-weight XML.

It is commonly used whenever a more efficient data exchange format is needed.
Due to its wide acceptance many implementations for various languages exist, thus
aiding the extensibility of the Execution Manager.

Although DataComponents need to be specified in Java, the data may originally stem
from almost any kind of software component, e. g., an online-debugging component
of an embedded target. With this approach the Java DataComponents do not need to
reformat the data and can simply act as gateways between the Execution Manager
and the embedded target.

As an example we have developed a mobile phone Java M application that can
fully interact with the Execution Manager.

Co-Simulation: Co-operative simulation allows the execution of interacting components
run by different simulation tools. For each different simulation tool a specific in-
terface DataComponent just needs to be defined. This way Matlab/Simulink for
example could co-simulate with a SyncCharts model and an online-target debug-
ging interface to get a model- and hardware-in-the-loop setup, which is useful for
designing embedded/cyberphysical systems.

History: Together with the Data Pool the built-in history feature comes for free. This
enables the user to make steps backwards into the past. DataComponents need to
explicitly support this feature: For example one may not want a recording compo-
nent to observe/record any data again when the user clicks backwards. This feature
may help analyzing situations better. For example, when a validation observer Dat-
aComponent pauses the execution because a special condition holds, one may want
to analyze how the model evolved just before. This assists during interactive debug-
ging sessions.

5 Conclusions and Outlook

The usage of DSLs gains more and more importance when it comes to system specifications
intended to be done by domain experts as opposed to computer experts.

In this paper we presented a two-level approach into the simulation and semantics of do-
main specific behavior models. We gave a short introduction into used concepts and into
the Ptolemy suite as a multi-domain, highly flexible and extensible modeling environment
with formally founded semantics. In order to not reinvent the wheel we proposed to utilize
these existing features in an integrated way for specifying denotational semantics w.r.t. an
adequate simulation. As an example a case study discussed how to conceptually leverage
Ptolemy for simulating SyncCharts models. Further, it was outlined how iterative execu-
tions are seamlessly integrated into KIELER and therewith into the Eclipse platform.

We plan to evaluate further the needs and requirements for a transformation language used
in the context of semantic definitions as described in this paper. Also we hope to advance

3Java Micro Edition Framework: |http://java.sun.com/javame

http://java.sun.com/javame

the generative model-based approach, e. g., to come up with a generated transformation of
some higher order mapping specifications in the future. Finally, there are other ongoing
efforts to integrate additional simulation engines into Eclipse using the presented KIEM
infrastructure.

References

[And96]

[BC84]

[CCGT08]

[CSNO7]

[EIL103]

[ESS06]

[EVH10]

[GLL99]

[Har87]

[Mot09]

[Obj06]

[SFO7]

Charles André. SyncCharts: A Visual Representation of Reactive Behaviors. Technical
Report RR 95-52, rev. RR 96-56, I3S, Sophia-Antipolis, France, Rev. April 1996.

Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Programming Lan-
guage and its Mathematical Semantics. In Seminar on Concurrency, Carnegie-Mellon
University, volume 197 of LNCS, pages 389-448. Springer-Verlag, 1984.

Benoit Combemale, Xavier Cregut, Jean-Patrice Giacometti, Pierre Michel, and Marc
Pantel. Introducing Simulation and Model Animation in the MDE Topcased Toolkit.
In Proceedings of the 4th European Congress EMBEDDED REAL TIME SOFTWARE
(ERTS ’08), 2008.

Kai Chen, Janos Sztipanovits, and Sandeep Neema. Compositional specification of
behavioral semantics. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE’07), pages 906-911, San Jose, CA, USA, 2007.

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendortfer, Sonia Sachs, and Yuhong Xiong. Taming Heterogeneity—The
Ptolemy Approach. Proceedings of the IEEE, 91(1):127-144, Jan 2003.

Hajo Eichler, Markus Scheidgen, and Michael Soden. A Meta-Modelling Framework
for Modelling Semantics in the contect of Existing Domain Platforms. Technical report,
Department of Computer Science, Humboldt-Universitit zu Berlin, 2006.

Hauke Fuhrmann and Reinhard von Hanxleden. Taming Graphical Modeling. In Pro-
ceedings of the ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’10), LNCS, Oslo, Norway, October 2010. Springer.

Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical Finite State Machines
with Multiple Concurrency Models. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18:742-760, 1999.

David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming, 8(3):231-274, June 1987.

Christian Motika. Semantics and Execution of Domain Specific Models—KIlePto and
an Execution Framework. Diploma thesis, Christian-Albrechts-Universitit zu Kiel, De-
partment of Computer Science, December 2009. http://rtsys.informatik.uni-kiel.de/
~biblio/downloads/theses/cmot-dt.pdf.

Object Management Group. Meta Object Facility (MOF) Core Specification, v2.0, Jan-
uary 2006. http://www.omg.org/spec/MOF/2.0/PDF/.

Markus Scheidgen and Joachim Fischer. Human Comprehensible and Machine Pro-
cessable Specifications of Operational Semantics. In Model Driven Architecture- Foun-
dations and Applications, volume 4530 of LNCS. Springer-Verlag, 2007.

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://www.omg.org/spec/MOF/2.0/PDF/

	Introduction
	The KIELER Framework
	Basic Concepts

	Related Work
	Semantic Specification
	Ptolemy
	Concept
	SyncCharts
	Transformation

	Execution Integration
	DataComponents
	User Interface
	Data Pool and Scheduling
	Further Concepts

	Conclusions and Outlook

