
Efficient Exploration of Complex Data Flow Models∗

Patrick Frey,1 Reinhard von Hanxleden,2 Christoph Krüger,2
Ulf Rüegg,2 Christian Schneider,2 and Miro Spönemann2

1 ETAS GmbH, Stuttgart, Germany
patrick.frey@etas.com

2 Dept. of Computer Science, Christian-Albrechts-Universität zu Kiel, Germany
{rvh,ckru,uru,chsch,msp}@informatik.uni-kiel.de

Abstract: The modeling tools that are commonly used for embedded software devel-
opment are rather limited when it comes to communicating certain model properties
between different groups of engineers. For example, calibration engineers need to
understand dependencies between signals and calibration parameters, while function
developers create models with a divide-and-conquer strategy, where details of signal
dependencies are hidden by abstract interfaces.

We state requirements for modeling tools to improve the exploring of complex
data flow models and to facilitate the understanding of engineers from different do-
mains. We propose an approach that combines transient views and automatic layout
and present two implementations based on different technologies, GMF and KLighD.
While both technologies fulfill all requirements, KLighD turned out to be superior in
terms of both performance and programming effort. The implementations are based
on an open-source framework and are employed in a commercial product that targets
the calibration process for automotive software development.

1 Introduction

In many application domains, such as the automotive industry, model-driven software dev-
elopment (MDSD) has become the established approach for the design and specification of
system features, as well as their implementation in form of software executed by embed-
ded computer systems. MDSD offers advantages such as separation of specification and
implementation, reuse of function specifications across different development phases from
simulation over prototyping to target integration, and automatic generation of safe code for
different target microcontroller platforms. Commercial tools such as ASCET from ETAS
GmbH, Simulink from The MathWorks, Inc., and the research framework Ptolemy from
UC Berkeley, offer similar means to model functions graphically based on block diagrams
for data flow oriented functions, or statecharts for control flow oriented functions. In such
tools, complex functions can be divided into manageable pieces such that the problem of
graphically specifying the functions is mastered. This results in nested graphical models

∗This work was also funded in part by the Program for the Future Economy of Schleswig-Holstein and the
European Regional Development Fund (ERDF)



consisting of several hierarchies of elements, each represented by a diagram. A complex
embedded system, an engine control system of an automotive vehicle for example, can
contain several hundreds or even thousands of individual diagrams.

While the graphical modeling approaches of MDSD are well suited to divide and conquer
complex functions into manageable parts, they do not address the need of engineers to get
a seamless understanding of the overall functionality at the system level. This, however,
is especially important after a function has been designed by one engineer and needs to be
understood by other engineers.

Control applications such as anti-lock braking systems or engine control systems often
need to be fine-tuned to match a desired behavior or to optimally control a physical pro-
cess. For this purpose, calibration engineers need to get an in-depth understanding of how
the functions in the electronic control system work. Since many functions are developed
by means of MDSD approaches, the graphical models are an important source of infor-
mation to get such an understanding. Often, the engineers do not have direct access to
the models and the tools themselves, but are only provided with a textual documentation
with a fixed page size, suited for printouts, where screenshots of the model hierarchies are
depicted. It is not untypical for calibration engineers, who are highly-paid application ex-
perts, to have to work with documents that exceed 5000 pages, where the cross-navigation
index alone may consume about a third of the pages. Needless to say, retrieving specific
information and assembling a complete picture of the application from such serialized,
static documents is thus a very tedious and time-consuming exercise.

Contributions This article presents an approach for exploring and browsing fragmented
complex data flow models that may come from several sources. The work presented here
has been driven by concrete demands for the calibration of electronic control units, but we
expect the results to be applicable to other areas, facing similar challenges, as well. We
state requirements for tooling support and propose a number of methods to fulfill these
requirements, specifically 1) a transient views approach, where the information that is
relevant for model exploration is extracted from the source models and transformed on-
the-fly into a generic light-weight format for presentation, 2) systematic use of automatic
layout for drawing the diagrams, and 3) an exemplary view modification increasing the
benefit of our model browser and illustrating some opportunities of the transient views
approach.

We present two exemplary implementations of these concepts, and compare and evaluate
them in terms of tool responsiveness and implementation effort. The implementations
are part of the EHANDBOOK solution (ETAS), which provides interactive documentation
facilities with an integrated model viewer, and of the KIELER open source project.1

Outline The rest of this paper is organized as follows. We discuss related work in the
remainder of this section and collect requirements for proper tooling support in Sec. 2.
The basic concepts are presented in Sec. 3, the corresponding implementations in Sec. 4.
Comparisons and evaluations are discussed in Sec. 5. Finally, we summarize in Sec. 6.

1 http://www.informatik.uni-kiel.de/rtsys/kieler/



Related Work

UC Berkeley’s Ptolemy project is an example of a modeling tool that allows heterogeneous
compositions of model parts [EJL+03], which is what we also want to do here. Each part
can define locally how its content shall be executed using a model of computation. The
composition of parts is done according to the actor-oriented design paradigm [LNW03],
where actors communicate via ports. Ptolemy uses a simple and extensible meta model
[BLL+08] defining the models’ abstract syntax that is implemented in Java. The Ptolemy
framework focuses on semantic aspects of heterogeneous models. Thus, each actor comes
with all information necessary for model simulation, and the models are treated as mono-
lithic artifacts. Here, in contrast, we concentrate on the exploration and browsing of large-
scale models by abstracting them into light-weight structures, which can be inspected more
efficiently.

Considerable effort has been spent on simplifying the development of modeling tools
for customized or domain-specific modeling environments. Corresponding development
environments include meta modeling facilities for creating the basic data structures as
well as support for determining the representations of those structures in diagrams. Ex-
amples of such tools are Marama [GHL+13], DIAMETA [Min06], GME [LMB+01],
VMTS [MLC06], GMF Tooling,2 and MetaEdit+.3 Those frameworks, however, focus
on the creation of models rather than browsing existing models most comfortably. In our
scenario existing complex models from different languages shall be explored by users.
This requires a high quality tool in terms of responsiveness as well as accurate rendering.
Editing assistance such as undo and redo operations, however, is not required.

The work of Storey et al. [SWFM97] employs automatic diagram synthesis for program
comprehension and architecture recovery of given code rather than representing specifica-
tion data in a reader-friendly form. In a follow-up work Bull et al. [BSLF06] developed
the Zest4 framework enabling visualizations of flat graph structures in Eclipse. Its aim is
to provide a graph widget that seamlessly integrates into the existing widget zoo. This
framework, however, supports neither ports nor nested graph representations.

Regarding the visualization of hierarchical models, an approach that follows the fisheye
view concept [SB92] was introduced by Schaffer et al. [SZG+96]: the content of hierar-
chical nodes is displayed directly inside their bounding box. The fisheye zoom technique
allows dynamic collapsing or expanding of composite nodes in order to hide or reveal their
content. This leads to the concept of focus & context, where the details of the currently
viewed component are directly embedded in the context the component is used in. Earlier
focus & context implementations employed algorithms for modifying the previous lay-
out in order to eliminate node overlaps [RMG07, SFM99], which is especially suited for
changing the layout as little as possible, thus helping the user to preserve his or her mental
map of the model. However, it is yet unclear how such layout modifications can be done
under consideration of port constraints. Here, we combine a focus & context visualization
with graph layout methods enhanced by orthogonal routing and port constraint support.

2http://www.eclipse.org/modeling/gmp/?project=gmf-tooling
3http://www.metacase.com/mep/
4 http://www.eclipse.org/gef/zest/



Figure 1: An ASCET model with original, manually drawn layout.

2 Exploring Complex Models – Requirements

In the following, we discuss requirements imposed on modeling tools that we found nec-
essary to improve the experience of navigating complex models. We focus on the process
of presenting and browsing existing models, which may be fragmented, i. e. spread over
multiple files, and neglect any functionality to create new models or alter existing ones.

The actor models of our driving application, such as shown in Fig. 1, consist of other actors
that are connected by edges via ports (denoted by little arrows). To assess the size of such
diagrams, Klauske [Kla12] analyzed 12 Simulink models from automotive applications
and measured an average size of 3333 nodes and 4274 edges per model. However, each
hierarchy level (the direct content of a composite actor) is usually rather moderate in size.
In Klauske’s measurements each level contains 22 nodes and 29 edges on average.

A very basic requirement is to draw the elements of which diagrams are composed in the
same way as in their original modeling tools. The symbols used to draw these elements of-
ten convey important semantic properties, e. g. about the type of a node. The mathematical
operators for addition, subtraction, division, and minimum are identified easily in Fig. 1
due to their intuitive graphical representation. Without this representation, the rectangular
node figures would all seem like black boxes.

Model Harmonization Large, possibly fragmented models shall be presented in a seam-
less fashion. For this purpose, several requirements can be stated.

H1 The impression of fragmentation shall be eliminated; hierarchy and fragment bound-
aries have to be spanned without breaking the natural flow of navigation.

H2 Likewise, no additional tool windows are to be opened when showing further details
of the model.

H3 Existing relationships between the fragments, e. g. wires that cross a hierarchy level,
shall be connected and be visible within the view.



H4 Multiple different modeling languages shall be combinable within one diagram, e. g.
data flow notions as well as statechart notions.

Automatic Layout The automatic generation of graph-based views requires the created
elements and shapes to be positioned in the available view area. We discern between the
micro layout, affecting the composition of figures used to draw each single element, i. e. a
node, edge, port, or label, and the macro layout, affecting the placement of these elements
on the canvas [SSvH12]. The requirements on these two levels of diagram layout are very
different: for micro layout we need a flexible mechanism for relative placement and size
determination, while for macro layout we rely on aesthetic criteria for graph drawing,
which have been well studied [BRSG07].

The most important macro layout criteria imposed in the context of actor diagrams as
considered here are the following.

L1 Edges shall point from left to right, except feedback edges, which may point to the
opposite direction.

L2 Edges are connected to specific ports on their source and target nodes. Usually these
ports cannot be moved arbitrarily, but are subject to different kinds of positioning
constraints (see below).

L3 Each output port may be connected to multiple input ports, effectively forming a
directed hyperedge.

L4 Edges shall be routed orthogonally, i. e. only using horizontal or vertical line seg-
ments, with as few crossings and bends as possible.

L5 The drawing shall be compact, i. e. it shall have a small area and good aspect ratio
(near that of a computer screen).

L6 If applicable, the layout shall be as close as possible to that seen in the original
modeling tool in which the diagram was created, which we call the original layout.

Ports are placed on the border of their respective node, but their exact positioning is subject
to different constraints that depend on the specific application (Criterion L2). We consider
different constraint levels that determine how much the automatic layout process is allowed
to modify port positions [KSSvH12]: with FREE constraints, ports can be freely placed,
while FIXEDSIDE assigns a specific node side to each port. With FIXEDPOS constraints,
port positions must not be modified by the layout process at all.

Criterion L6 is particularly relevant when users are already familiar with an existing dia-
gram from the original tool. Retaining the original layout would help users to recognize
the model at first glance, without requiring them to adjust their mental map of the model.
Several metrics have been proposed to measure the closeness of two layouts [BT00]. How-
ever, an aspect that is not covered by these abstract metrics is to respect domain-specific
constraints, e. g. placing inputs of the model to the left and outputs to the right.



(a) Ptolemy’s original editor Vergil. The content of each hierarchical node is displayed in a new tool window,
thus the user can easily lose the context he is working in.

(b) KIELER’s Ptolemy viewer. Hierarchy is embedded directly into the nodes, and multiple visual representations
are possible within the same diagram.

Figure 2: Snippet from Ptolemy’s CarTracking model. Three hierarchy levels are visible,
of which the outermost level (Following Car actor) contains data flow. One of its actors
(ModalModel) contains a statechart, of which a state (faulty) is refined by a data flow model.

3 Towards Transient Views of Actor Models

Transient Views We apply the transient views approach to synthesize the graphical rep-
resentations of semantic models automatically [SSvH13]. This approach is about the on-
demand creation of diagrams without storing any intermediate data persistently. Thereby,
no specific relationship between objects in the application model and elements in the dia-
gram is prescribed. This way implicit model information can be made explicit, and frag-
mented information can be aggregated in order to present them to users most conveniently
(Criterion H1). Concrete diagrams are created by composing view models that are then
handed over to a rendering tool. They are automatically arranged, and heavy-weight edit-
ing facilities are omitted in favor of responsiveness of the tool. The approach is optimized
for user interactivity like changing the depicted amount of detail, e. g. by expanding or
collapsing nodes.



The fact that the view models denoting the diagram are completely separated from the
source models paves the way for composing diagrams from different hierarchy levels of
a model or even different modeling languages in the same view, fulfilling Criterion H4.
Thus, the so created diagrams are not restricted to actor-based models, but can also visu-
alize state machines, process models, or component composition specifications. This way
model visualizations meeting all the harmonization requirements stated in Sec. 2 can be
realized. As illustrated by Fig. 2, the combined visualization of multiple hierarchy levels
can help the user to set the focus without losing the corresponding context of the overall
model. Furthermore, view models need not to be created in one run, but may be built up
incrementally. For example, nested diagram elements can be attached lazily when their
container element is expanded. View models may also be updated continuously, e. g. for
displaying feedback data while performing simulations or in-system-tests.

In spite of the separation of application models and view models, transient view mappings
allow to associate diagram elements to the model elements they are derived from. By
means of such associations, queries can be performed on model elements that are chosen
via their representatives in the diagram, and the results can be visualized in the diagram
for easiest understanding by the user.

Automatic Layout Automatic macro layout can be realized using graph layout methods
[DETT99]. Some of the macro layout criteria listed in Sec. 2 have been thoroughly studied
in graph drawing research. The main method for obtaining a left-to-right layout as stated
in Criterion L1 is the layer-based (a. k. a. hierarchical) approach, which was proposed by
Sugiyama et al. [STT81]. Regarding Criterion L3, Sander proposed an extension of the
layer-based approach for routing orthogonal hyperedges [San04]. More recently, further
extensions have been published to support port constraints for Criterion L2 [KSSvH12,
SFvHM10]. Minimizing the number of edge crossings and bends (Criterion L4) are both
NP-hard problems, but numerous heuristics have been developed [DETT99]. In contrast,
the compactness of layouts stated in Criterion L5 has not been addressed much yet in the
context of layer-based drawing. Most computed layouts are acceptable w. r. t. compactness,
but further research in that area could certainly improve them.

A simple solution to meet Criterion L6, closeness to the original layout, is to extract the
layout information from the original view model, attach it to the new view model created
in our browsing application, and apply that layout directly to all diagram elements. With
this procedure it is possible to obtain identically looking diagrams in both the original tool
and the new browsing tool. However, there are two major limiting factors: the approach
requires a good hand-made layout that satisfies the first five layout criteria, which is very
time-consuming, and it cannot be applied when the sizes of some elements change or new
connections are drawn, since that could cause unwanted overlappings. The latter happens
in particular when focus & context browsing methods are employed as outlined in Sec. 2.

We propose to use both the original and automatically computed layouts according to the
following scheme. We choose one of these alternatives on each hierarchy level of the
composite diagram. If none of the nodes on a given hierarchy level are expanded and no
new connections to the surrounding level have been added, the original layout is applied,
otherwise the automatic layout is applied. This can optionally be enhanced by methods for



Figure 3: Automatic layout of the ASCET model shown in Fig. 1 (here with FIXEDSIDE
port constraints on the Limiter and PIDT1 nodes). The automatic layout is quite similar
to the manually drawn one, supporting our assumption that state-of-the-art algorithms are
able to provide layouts of adequate quality.

dynamic graph layout [Bra01] using the original layout as prototype, which constrain the
computed layout to be as close as possible to that prototype. In our experience, however,
today’s state-of-the-art layout algorithms already produce layouts of such quality that in
most cases the effort of including dynamic layout methods would not pay off. Fig. 3 shows
an automatic layout of the diagram in Fig. 1, which is drawn with original layout.

Bridging Hierarchy Boundaries – An Exemplary View Customization

In the graphical notations of actor-based models, (see Fig. 3), each actor is connected with
other actors of the same hierarchy level through ports and links. The ports are depicted
by little symbols placed onto the boundaries of the figure representing the actor. Regard-
ing the actor itself, those external port views are part of the actor’s context. In contrast,
specifications of the interior of non-atomic actors usually represent the actor’s ports as
floating nodes, which are connected with other elements that are part of the specification
(see Fig. 2a). Those internal port views are part of the actor’s focus.

Following the concept of focus & context, our application shall be able to visualize the con-
tent of a composite actor surrounded by its context (cf. Criterion H1). However, this con-
cept implies that both the floating internal ports and the actor’s external ports are present
in the view, which can lead to confusion. According to Criterion H3, internal and external
ports shall be connected as shown in the left of Fig. 4. This way the data flow is made
explicit and can be followed much easier.



Figure 4: Expansion of the Limiter block with direct links between hierarchy levels.

In most actor-based modeling languages ports are subject to FIXEDPOS constraints (see
Sec. 2). However, when focus & context browsing is employed, it is advisable to relax
these constraints. Adding edges to connect the content of a focused node with its context
and keeping strict port constraints could lead to confusing edge routings: for instance, con-
nections to input ports anchored to the top side would need to be routed all the way to the
left side of the contained diagram. If the constraints are relaxed to FREE, in contrast, the
layout algorithm can arrange all input ports to the left and output ports to the right, which
complies better with the overall flow of connections and thus allows shorter edges and less
bend points. The expanded node in Fig. 4, which originally had two input ports on the
top side (see Fig. 1), has been drawn with such relaxed constraints. As a consequence, we
need a flexible interface in order to dynamically adapt parameters of the layout algorithm
such as the port constraints depending on the context. We use the layout configuration
interface provided by KIELER for this purpose [SSM+13].

4 Two Approaches for Realization

In this section, we present two different realizations of the transient-views-based concepts
introduced in Sec. 3. One uses the established GMF Tooling for rapid prototyping of
graphical editors, while the other uses a viewer framework based on KIELER with the
focus on high performance and minimizing the time-to-diagram. Both realizations use
the KIELER layout algorithms for automatically computing macro layouts as described
in Sec. 3. The foundation is laid by an implementation of the layer-based graph layout
algorithm with extensions for port constraints and orthogonal edge routing [KSSvH12].
The diagrams shown in Fig. 2b, 3, and 4 all have been arranged with that algorithm.

We employed the two realizations for visualizing Ptolemy models in an open source ap-
plication, as well as ASCET and Simulink models in an industrial application. The latter
is implemented and validated in the EHANDBOOK (ETAS), an Eclipse-based interactive
documentation system for ECU software. This system aims to support the efficient explo-



Figure 5: KIELER Actor Oriented Modeling (KAOM) meta model describing structural
information and key-value annotations.

ration of complex models and to facilitate the system-wide function understanding needed
by calibration engineers.

4.1 Graphical Modeling Framework (GMF)

GMF Tooling uses a model-driven approach to generate graphical editors from abstract
specifications. These specifications are built around an application-specific meta model
based on the Eclipse Modeling Framework (EMF), which is used to represent concrete
model instances. In our application, however, model instances are extracted from different
third party tools that are not based on Eclipse. We bridge this technological gap using
a generic meta model, called KIELER Actor Oriented Modeling (KAOM) and shown in
Fig. 5, that contains only the necessary data for displaying the models. Models from differ-
ent sources, e. g. Ptolemy, ASCET, or Simulink, are all first transformed into this common
EMF-based format. The code generated by GMF Tooling then takes care of creating cor-
responding diagrams (the view and the controller in terms of the MVC paradigm). This
process involves creating a dedicated concrete view model that is an instance of the GMF
Notation model for storing macro layout information, a set of edit parts for controlling
user interaction, and a set of figures for drawing the diagram elements.

The KAOM meta model is inspired by the MoML format used by Ptolemy [BLL+08,
Chapter 1]. The central class is Entity, which represents nodes of the diagram, e. g. primi-
tive actors such as addition operators or composite actors containing other entities. Actors
contain Port instances to describe their interface, and ports can be connected via Link in-
stances. Relation is used to properly represent Ptolemy models, but is currently not used
for other languages. Each of these classes can contain Annotation instances, which are



basically key-value pairs for attaching arbitrary data to model elements. We use annota-
tions to store the source language and the specific type of an element in order to select
the according figure from a predefined library, which is important for rendering the dia-
gram element in the same way as done in its source tool. Furthermore, we add annotations
holding the concrete position of each element in the original layout.

GMF supports collapsing and expanding composite nodes, which fits directly with our
focus & context approach. In theory it would be possible to load a whole model at once,
let GMF create the graphical viewer, and initially collapse all composite actors; users could
then selectively expand the actors in their focus. However, many models from industrial
applications are too large for this naive approach to work: loading the models would take
a long time, or might even fail due to memory limitations. Fortunately, as mentioned in
Sec. 2, even for such large-scale applications it is quite typical for each hierarchy level to
have a limited number of actors and connections such that they can be printed easily on one
page. Following this observation and the approach of Scheidgen et al. [SZFK12], we split
the input models such that each hierarchy level is persisted as a fragment. When a diagram
is opened, only its top-level fragment is loaded. Upon expansion of a composite actor,
its content is loaded lazily from the corresponding fragment, and when it is collapsed,
its content is unloaded again. This method limits memory consumption to the subset of
model elements that are actually shown in the generated view and greatly reduces the time
to open an initial view compared to the standard behavior of GMF, but of course it also
raises the time to expand composite actors.

4.2 KIELER Lightweight Diagrams (KLighD)

KLighD enables the visualization of models and other graph-like data in form of node-
link-diagrams according to the transient views approach [SSvH13]. Its aim is to provide
this opportunity without the burden of making oneself familiar with the peculiarities of
drawing frameworks and techniques of arranging diagrams. In contrast to GMF Tooling,
which derives diagrams from application models in a one-to-one manner, KLighD relies on
custom diagram synthesis mappings to formally describe diagrams based on given applica-
tion data. The view models produced by such mappings adhere to the KGraph/KRendering
format, which is well-suited for applying automatic layout and modifying diagrams inter-
actively [SSvH12]. The fact that it is specified in EMF’s meta modeling language Ecore
enables the full integration with Eclipse-based MDSD concepts and tools for implement-
ing diagram synthesis mappings.

The drawings of the desired diagrams, which correspond to the views in the MVC pattern,
are rendered by the mature 2D graphics framework Piccolo2D,5 which has been migrated
to SWT for use in Eclipse. The life cycle of those diagrams is controlled by an MVC-
like controller that is part of KLighD. This controller is in charge of updating the views
according to changes in the view models, as well as implementing the first class citizen op-
erations hiding and showing, expanding and collapsing, focusing elements, etc. Similarly

5http://www.piccolo2d.org/



Figure 6: Diagram synthesis process of KLighD [SSvH13]: 1) Request for diagram of ap-
plication model, 2) mapping selection, 3) mapping application, 4) receipt of corresponding
view model, 5) handover to KIML, 6) receipt of view model with layout data, 7) handover
to a Piccolo2D diagram canvas and diagram rendering.

to the GMF-based solution, the arrangement of the diagram elements is contributed by the
KIELER Infrastructure for Meta Layout (KIML). The KGraph part of the view model is
the input for the KIML component, which evaluates layout directives such as port con-
straints (see Sec. 2), selects and executes layout algorithms, and augments the view model
elements with concrete position information. The procedure of creating graphical views
of given models is outlined in Fig. 6.

5 Evaluation

This section presents evaluations comparing the GMF-based and KLighD-based approaches
presented in the previous section. We consider two aspects of these approaches: perfor-
mance and implementation effort.

Performance We measured the execution time first for synthesizing view models and
rendering the diagrams, and second for applying automatic layout and updating the di-
agram rendering. The measurements were performed with about 360 example models
provided by the Ptolemy project. These models represent more realistic content than
randomly constructed ones do. In addition, this collection covers a reasonable range of
diagram elements per model.

Each of those models was examined 5 times with an intermediary sleep time of a few sec-
onds, allowing the tool to perform cleanup operations and the garbage collector to tidy up
the memory. Based on the data obtained this way, we computed the mean execution time
for opening and closing diagrams of each model, as well as for computing and applying an
automatic layout. The result is shown in Fig. 7: we measured an overall average speedup
of 2.64 for opening diagrams with KLighD compared to GMF, and a speedup of 7.41 for



(a) Opening diagrams (b) Automatically arranging diagrams

Figure 7: Experimental measurement results for execution time.

automatically arranging diagrams. The superior fluidity of the KLighD-based viewer is
noticeable at first glance while using the tool, especially for operations such as collapsing
or expanding composite elements.

We monitored the heap memory that was used by the whole application for both techniques
by means of the VisualVM6 tool. With large examples we observed a reduction of up to
50% for the KLighD-based approach compared to GMF. Since the concrete measured
amounts of consumed memory include the offset required by the application platform, the
ratio of the adjusted values would be even more in favor of KLighD. The measurements
were done on a typical mobile business computer with a quad core CPU, a memory of
8GB, and an up-to-date Java Runtime Environment (JRE) installed.

Comparison of Implementations We experienced several problems of the GMF-based
solution regarding its implementation and maintenance. While the time to obtain a first
version of a diagram editor for KAOM models is very short, the realization of many fur-
ther features and details requires a lot of effort. The GMF Tooling generated 96 Java
classes with over 12 000 lines of code; understanding that code and how it relates to the
corresponding source models is a tedious task, but regrettably it is often necessary. The
feature that involved most effort was the accurate reconstruction of the figures for render-
ing the many different node types of the source languages, especially considering that they
are all represented by the class Entity in the KAOM model. The code generated by GMF
had to be extended in order to dynamically adapt the visual representation of each entity
depending on annotations of the corresponding KAOM model element.

The KLighD-based solution allows much more direct and light-weight modifications of
the created diagrams. In particular, the indirection of an intermediate meta model such
as KAOM is not required, and adapting the rendering of entity figures can be done in a
descriptive manner using elements of the KRendering meta model. This leads to a more

6http://visualvm.java.net/



intelligible and maintainable code base. For instance, the GMF-based visualization of
Ptolemy models was implemented in the Xtend7 language and compiled to 1372 lines
of Java code with 733 lines of hand-written code for the transformation to the KAOM
format, plus 1576 lines for the correct rendering of Ptolemy diagram elements, 5337 lines
generated by EMF for the KAOM meta model, 2374 lines of generic extensions of the
GMF editor code, and the aforementioned generated GMF code, which was customized
with 14 hand-edited code generation template files. This amounts to a total of roughly
24 000 lines of code. The KLighD-based visualization with the same functionality is made
of Xtend code that compiles to 4829 lines of Java code with 884 lines of hand-written code,
which is less than 6 000 lines in total.

6 Summary and Future Work

Today’s modeling tools provide reasonable support for application developers, who are
typically responsible for just a small portion of the system. However, it is sometimes nec-
essary to get an understanding of overall system functionality and to extract information
that is spread over a range of components. We have identified a number of requirements
that arise here, and have presented a concept combining transient views and automatic
layout to address them. The concept has been realized with two different Eclipse-based
technologies: GMF and KLighD. The presented methods allow the seamless browsing of
previously fragmented models as well as the integrated handling of heterogeneous models
comprising different source notations.

Comparing the two realizations of the transient views concept, we found that KLighD
allows to implement such applications with less effort both for the first prototypes and in
the long term compared to GMF. Furthermore, it reaches much better performance both
in terms of execution time and memory consumption. Hence, KLighD meets its design
objective stated in [SSvH13] in this application, and, as a bottom line, we would not
recommend employing a heavy-weight editor framework such as GMF when the goal is
merely visualizing and browsing models, but not editing.

First practical experiences with real-world models of the automotive industry have con-
firmed our thesis that automatically arranged models can easily be understood. The auto-
matic layout algorithms that take into account the positioning of ports optimize the read-
ability of the graphical models. This offers large time-saving potential for engineers who
are used to work with classical, page-oriented documentation.

While the pilot users of the EHANDBOOK solution at ETAS report promising experiences,
a substantial user study, evaluating the impacts on the daily work routine, has yet to be
performed. We also plan to integrate further methods supporting the understanding of the
models, e. g. dynamic exploration during the simulation of a model and the visualization
of time-critical paths based on profiling information. Another area for future work is the
further optimization of automatic layout algorithms in the context of hierarchical data-flow
models and very-large-scale models.

7http://www.eclipse.org/xtend/



References

[BLL+08] Christopher Brooks, Edward A. Lee, Xiaojun Liu, Stephen Neuendorffer, Yang Zhao,
and Haiyang Zheng. Heterogeneous Concurrent Modeling and Design in Java, Volume
2: Ptolemy II Software Architecture. Technical Report UCB/EECS-2008-29, EECS
Department, University of California, Berkeley, April 2008.

[Bra01] Jürgen Branke. Dynamic Graph Drawing. In Michael Kaufmann and Dorothea Wag-
ner, editors, Drawing Graphs: Methods and Models, volume 2025 of LNCS. Springer,
2001.

[BRSG07] Chris Bennett, Jody Ryall, Leo Spalteholz, and Amy Gooch. The Aesthetics of Graph
Visualization. In Proceedings of the International Symposium on Computational Aes-
thetics in Graphics, Visualization, and Imaging (CAe’07), pages 57–64. Eurographics
Association, 2007.

[BSLF06] Robert Ian Bull, Margaret-Anne Storey, Marin Litoiu, and Jean-Marie Favre. An Ar-
chitecture to Support Model Driven Software Visualization. In Proceedings of the
14th IEEE International Conference on Program Comprehension (ICPC’06), pages
100–106. IEEE, 2006.

[BT00] Stina Bridgeman and Roberto Tamassia. Difference Metrics for Interactive Orthogonal
Graph Drawing Algorithms. Journal of Graph Algorithms and Applications, 4(3):47–
74, 2000.

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[EJL+03] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming Heterogeneity—The
Ptolemy Approach. Proceedings of the IEEE, 91(1):127–144, Jan 2003.

[GHL+13] John C. Grundy, John Hosking, Karen Na Li, Norhayati Mohd Ali, Jun Huh, and
Richard Lei Li. Generating Domain-Specific Visual Language Tools from Abstract
Visual Specifications. IEEE Transactions on Software Engineering, 39(4):487–515,
April 2013.

[Kla12] Lars Kristian Klauske. Effizientes Bearbeiten von Simulink Modellen mit Hilfe eines
spezifisch angepassten Layoutalgorithmus. PhD thesis, Technische Universität Berlin,
2012.

[KSSvH12] Lars Kristian Klauske, Christoph Daniel Schulze, Miro Spönemann, and Reinhard von
Hanxleden. Improved Layout for Data Flow Diagrams with Port Constraints. In Pro-
ceedings of the 7th International Conference on the Theory and Application of Dia-
grams (DIAGRAMS’12), volume 7352 of LNAI, pages 65–79. Springer, 2012.

[LMB+01] Ákos Lédeczi, Miklós Maróti, Árpád Bakay, Gábor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Péter Völgyesi. The Generic
Modeling Environment. In Workshop on Intelligent Signal Processing, 2001.

[LNW03] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-Oriented De-
sign of Embedded Hardware and Software Systems. Journal of Circuits, Systems, and
Computers (JCSC), 12(3):231–260, 2003.

[Min06] Mark Minas. Generating Meta-Model-Based Freehand Editors. In Proceedings of
the 3rd International Workshop on Graph Based Tools (GraBaTs’06), volume 1 of
Electronic Communications of the EASST, Berlin, Germany, 2006.



[MLC06] Gergely Mezei, Tihamér Levendovszky, and Hassan Charaf. Visual Presentation So-
lutions for Domain Specific Languages. In Proceedings of the IASTED International
Conference on Software Engineering, Innsbruck, Austria, 2006.

[RMG07] Tobias Reinhard, Silvio Meier, and Martin Glinz. An Improved Fisheye Zoom Al-
gorithm for Visualizing and Editing Hierarchical Models. In Second International
Workshop on Requirements Engineering Visualization, pages 9–19. IEEE, 2007.

[San04] Georg Sander. Layout of Directed Hypergraphs with Orthogonal Hyperedges. In Pro-
ceedings of the 11th International Symposium on Graph Drawing (GD’03), volume
2912 of LNCS, pages 381–386. Springer, 2004.

[SB92] Manojit Sarkar and Marc H. Brown. Graphical Fisheye Views of Graphs. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
83–91. ACM, 1992.

[SFM99] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Customizing a
Fisheye View Algorithm to Preserve the Mental Map. Journal of Visual Languages &
Computing, 10(3):245–267, 1999.

[SFvHM10] Miro Spönemann, Hauke Fuhrmann, Reinhard von Hanxleden, and Petra Mutzel. Port
Constraints in Hierarchical Layout of Data Flow Diagrams. In Proceedings of the 17th
International Symposium on Graph Drawing (GD’09), volume 5849 of LNCS, pages
135–146. Springer, 2010.

[SSM+13] Miro Spönemann, Christoph Daniel Schulze, Christian Motika, Christian Schnei-
der, and Reinhard von Hanxleden. KIELER: Building on Automatic Layout for
Pragmatics-Aware Modeling (Showpiece). In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’13), San Jose, CA,
USA, 15–19 September 2013.

[SSvH12] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Transient View
Generation in Eclipse. In Proceedings of the First Workshop on Academics Modeling
with Eclipse, Kgs. Lyngby, Denmark, July 2012.

[SSvH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Just Model!
– Putting Automatic Synthesis of Node-Link-Diagrams into Practice. In Proceed-
ings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’13), San Jose, CA, USA, 15–19 September 2013. With accompanying
poster.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, February 1981.

[SWFM97] Margaret-Anne D. Storey, K. Wong, F. David Fracchia, and Hausi A. Müller. On
integrating visualization techniques for effective software exploration. In Proceedings
of the IEEE Symposium on Information Visualization, pages 38–45. IEEE, 1997.

[SZFK12] Markus Scheidgen, Anatolij Zubow, Joachim Fischer, and Thomas H. Kolbe. Auto-
mated and Transparent Model Fragmentation for Persisting Large Models. In Proceed-
ings of the 15th International Conference on Model Driven Engineering Languages
and Systems (MODELS’12), volume 7590 of LNCS, pages 102–118. Springer, 2012.

[SZG+96] Doug Schaffer, Zhengping Zuo, Saul Greenberg, Lyn Bartram, John Dill, Shelli Dubs,
and Mark Roseman. Navigating hierarchically clustered networks through fisheye and
full-zoom methods. ACM Transactions on Computer-Human Interaction, 3:162–188,
1996.


