
Statechart Development Beyond WYSIWYG

Steffen Prochnow and Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität Kiel, Olshausenstr. 40, D-24118 Kiel, Germany

{spr,rvh}@informatik-uni-kiel.de
WWW home page: http://www.informatik.uni-kiel.de/rtsys/

Abstract. Modeling systems based on semi-formal graphical formalisms,
such as Statecharts, have become standard practice in the design of
reactive embedded devices. Statecharts are often more intuitively un-
derstandable than equivalent textual descriptions, and their animated
simulation can help to visualize complex behaviors. However, in terms
of editing speed, project management, and meta-modeling, textual de-
scriptions have advantages.
As alternative to the standard WYSIWYG editing paradigm, we present
an approach that is also graphical but oriented on the underlying struc-
ture of the system under development, and another approach based on a
textual, dialect-independent Statechart description language. These ap-
proaches have been implemented in a prototypical modeling tool, which
encompasses automatic Statechart layout. An empirical study on the us-
ability and practicability of our Statechart editing techniques, including a
Statechart layout comparison, indicates significant performance improve-
ments in terms of editing speed and model comprehension compared to
traditional modeling approaches.

1 Introduction

Statecharts [1] constitute a widely accepted formalism for the specification of
concurrent reactive systems. They extend classical finite-state machines and
state transition diagrams by incorporating hierarchy, orthogonality, compound
events, and a broadcast mechanism for communication between concurrent com-
ponents. Statecharts provide an effective graphical notation, not only for the
specification and design of reactive systems, but also for the simulation of the
modeled system behavior. Statecharts have also been incorporated into the Uni-
fied Modeling Language (UML) and are supported by several commercial tools,
e. g., Rational Rose, Matlab/Simulink/Stateflow, or Esterel Studio. Since the
inception of Statecharts some twenty years ago, significant progress has been
achieved concerning their semantics, formal analysis and efficient implemen-
tation. Concerning the practical handling of Statecharts, however, it appears
that comparatively little progress has been made since the very first Statechart
modeling tool set [2]. Specifically, the construction, modification, and revision
management of Statecharts tend to become increasingly burdensome for larger
models, and we feel that in this respect Statecharts are still at a disadvantage

relative to other development activities, such as classical programming. This
observation, corroborated in numerous discussions with practitioners and mod-
eling experiences ranging from small, academic models to industrial projects,
has motivated the work presented in this paper.

A commonly touted advantage of graphical formalisms such as Statecharts is
their intuitive usage and the good level of overview they provide—according to
the phrase “one picture is worth ten thousand words.” However, when moving
from toy examples to realistic systems, one is quickly confronted with large and
unmanageable graphics originating from a high number of components or from
intricate interactions and interdependencies.

As an alternative to the graphical modeling one can also develop reactive
systems using textual notations. There exist a couple of languages that either
describe Statecharts directly (e. g., SCXML [3], SVM [4]) or indirectly (e. g., Es-
terel [5, 6]). Consequently the developer of reactive systems may choose between
the textual and the graphical approach to specify systems. In principle, they
offer the same expressiveness and the same level of abstraction. However, there
are notable differences in terms of practical use, and both approaches have their
benefits. Graphical models benefit from intuitiveness and are good for higher
level context. Textual languages can represent precise details very well and they
permit powerful macro capabilities (e. g., using generic scripting or preprocess-
ing languages such as perl or m4) and allow a detailed revision management
(e. g., applying the UNIX diff utility to compare different versions).

In summary, textual as well as graphical languages have their specific do-
mains and advantages. The traditional model-based design flow starts with en-
tering a graphical model of the System Under Development (SUD), from which
textual programs are synthesized; however, as we argue here, it would combine
the advantages of both techniques to allow the designer to work with textual
and graphical representations of the SUD simultaneously.

Statecharts are commonly created using some what you see is what you get
(WYSIWYG) editor, where the modeler is responsible for the graphical layout,
and subsequently a Statechart appears the way a designer has modeled it. We
believe that the WYSIWYG construction paradigm, which leaves the task of
graphical layout to the human designer, has so far been a limiting factor in the
practical usability of Statecharts, or graphical modeling in general. The premise
of this paper is that this paradigm may have been justified at some point, but
advances in layout algorithms and processing power today make it feasible to
free the designer from this burden.

The main contributions of this paper are:

– an analysis of the graphical editing process using WYSIWYG editors and
the identification of generic Statechart editing patterns;

– the presentation of two alternative Statechart construction paradigms—a
macro-based and a text-based technique—that let the modeler focus on the
modification of the Statechart structure, rather than their layout;

– a textual Statechart language, called KIel statechart extension of doT (KIT),
which is concise and Statechart-dialect independent and supports the text-
based construction of Statecharts; and

– an empirical study that evaluates the proposed construction techniques and
shows their practicability and efficiency.

The rest of the paper is organized as follows. The remainder of this section
discusses related work, and introduces the prototypical Kiel Integrated Environ-
ment for Layout (KIEL) tool, which serves as an evaluation platform for our
proposals. Sect. 2 presents the analysis of WYSIWYG editing patterns. The
macro-based and text-based Statechart construction approaches and the KIT
language are discussed in Sect. 3. Sect. 4 summarizes the findings of our empir-
ical study, Sect. 5 concludes and discusses possible future extensions.

1.1 Related Work

As indicated above, there is to our knowledge little published work that is di-
rectly related to the pragmatics of Statechart construction. However, the work
presented here cuts across several related areas that have been studied already,
namely textual Statechart description languages, the layout of Statecharts, graph-
ical editors, and cognitive studies on the effectiveness of graphical and textual
languages. Each of these areas is briefly discussed in the following.

The SCXML [3] Statechart description language has a comprehensible struc-
ture, but the required tags and their hierarchical dependencies call for spe-
cific XML editors. Alternative Statechart descriptions such as SVM [4] and the
UMC [7] Statecharts use explicit declarations of Statechart objects, which re-
duces the readability especially for large Statecharts. This provides the advan-
tages of textual entry, but does not offer the Statechart dialect-independent,
concise constructs as available in KIT. These Statechart description languages
generally serve as an intermediate format synthesized from manually edited
Statecharts; to our knowledge, none of these languages has been used so far
for Statechart synthesis, as we propose to do here. An exception is the RSML
approach [8], which synthesizes a graphical view of the topology using a very
simple, but surprisingly effective layouting scheme, which inspired KIEL’s al-
ternating linear layout. However, RSML still keeps much information that is
normally part of the graphical model instead in textual AND/OR tables.

Castelló et al. [9] have developed a framework for the automatic generation
of layouts of Statecharts based on floor planning. Harel and Yashchin [10] have
investigated the optimal layout of blobs, which are edge-less hierarchical struc-
tures that correspond to Statecharts without transitions. KIEL offers several
layout mechanisms, some employ the GraphViz [11] layout framework, others
are developed from scratch.

A well-established technique to obtain consistency between model artifacts
produced at different stages of the model life-cycle are transformational modeling
approaches. DiaGen [12] and AToM3 [13] employ graph grammars to generate
graphical editors for visual languages. GenGEd [14] uses graph grammars to

modify visual languages using graph productions. The visual language is pro-
duced by a priori specified production sequences; we here instead propose inter-
active manipulations of the model. The graph grammar based tools use graphical
constraints for placing graphical elements; we perform an automatic layout from
scratch.

Several experimental studies address the comprehensibility of textual and
visual programs; e. g., Green and Petre [15] performed an experimental study to
evaluate the usability of textual and graphical notations using LabView. They
determined that visual programs can be harder to read than textual ones. Pur-
chase et al. [16] have evaluated the aesthetics and comprehension of UML class
diagrams. We are not aware of any experimental studies on the effectiveness of
editing visual languages.

1.2 The KIEL Modeling Environment

The Kiel Integrated Environment for Layout (KIEL) is a prototypical modeling
environment that has been developed for the exploration of complex reactive
system design [17]. As the name suggests, a central capability of KIEL is the
automatic layout of graphical models, which makes KIEL a suitable testbed
for the construction paradigms presented here. The following paragraph briefly
summarizes KIEL’s capabilities.

The tool’s main goal is to enhance the intuitive comprehension of the behav-
ior of the SUD. While traditional Statechart development tools merely offer a
static view of the SUD during simulation, apart from highlighting active states,
KIEL provides a simulation based on the dynamic focus-and-context visualiza-
tion paradigm [17]. It employs a generic concept of Statecharts which can be
adapted to specific notations and semantics, and it can import Statecharts that
were created using other modeling tools. The currently supported dialects are
those of Esterel Studio, Stateflow, and the UML via the XMI format, as, e. g.,
generated by ArgoUML [18]. Alternatively, KIEL can synthesize graphical SSMs
from (textual) Esterel v5 programs [6]. KIEL also provides an automated check-
ing framework, which checks compliance to robustness rules [19].

2 The WYSIWYG Statechart Editing Process

To analyze and educe improvements in developing Statecharts, we inspected the
common WYSIWYG editing process. We identified nine main editing schemata,
which can be grouped into three categories: Statechart creation, modification of
Statechart elements, and deletion of elements. Fig. 1 illustrates some of these
editing schemata. For example, to apply the schema “add hierarchical successor
state” (Fig. 1d), the modeler has to perform the following steps: (1) select the
state to supplement, (2) add a new hierarchical state, (3) insert an inner initial
connector, (4) insert an inner state, and (5) insert connecting transitions.

When using conventional Statechart editors, none of the editing schemata can
be realized as a single action. Generally, each editing schema using WYSIWYG
editors passes the following action sequence:

⇒
(a) Insertion of a simple successor state.

⇒
(b) Modification of transition direction.

⇒
(c) Deletion of a Statechart element.

⇒

(d) Insertion of hierarchical successor state.

⇒

(e) Insertion of a parallel region.

Fig. 1: Exemplary generic editing schemata derived from a typical editing process using
WYSIWYG editors.

1. If needed, create free space (e. g., expand hierarchical states for new sub-
elements, move existing elements for placing new elements).

2. Focus on a Statechart element for modification resp. supplementation (move
pointer, select per mouse click).

3. Apply an editing schema.
4. If needed, rearrange the modified chart to improve readability.

It is a common experience that the modeler spends much time with the
layout-related activities of steps 1 and 4. For Statecharts developed from scratch,
this effort may be small. In contrast, if an existing chart has to be modified, the
work for arranging the elements increases roughly with the number of State-
chart elements and Statechart complexity. Quoting a practitioner: “I quite often
spend an hour or two just moving boxes and wires around, with no change in
functionality, to make it that much more comprehensible when I come back to
it” [20]. Furthermore, each editing schema requires the modeler to perform a
sequence of low-level editing steps. The alternative proposals presented in the
next section aim to improve both of these points.

3 Proposals for Enhancements in Statechart Editing

The basic idea of our approach is to automate the editing process as far as
possible. Specifically, we propose to reduce the effort of re-arranging Statechart
elements by applying automatic Statechart layout mechanisms. This produces
Statecharts laid out according to a Statechart Normal Form (SNF) [17], which
is compact and makes systematic use of secondary notations to aid readability.
Due to the application of an automatic layout mechanism, the editing action
sequence of Sect. 2 is reduced to:

1. Focus on a Statechart element for modification resp. supplementation;
2. Apply an editing schema.

Both editing actions remain under control of the modeler and will be treated by
the following editing proposals.

3.1 Macro-Based Modeling

Using WYSIWYG editors, a simple editing action (e. g., placement of a state)
scarcely needs time; but applying a complete editing schema (cf. Sect. 2) re-
quires multiple mouse and keyboard actions. Our proposal to optimize this is
to directly manipulate the Statechart structure, uncoupled from its graphical
representation.

The schemata described in Sect. 2 can be interpreted as Statechart produc-
tions. Before applying a production (a schema), the modeler selects the location
for the modification (the focus), which corresponds to the left-hand side of the
production. If the production pattern matches, the application of the schema
replaces the focus with the right-hand side of the production. The set of pro-
ductions constitutes a Statechart grammar, which has the nice property that
every application of a production results in a syntactically correct Statechart.
Hence, a design does not go through meaningless intermediate editing stages,
which frees the modeler from time-consuming syntax-checking. (An exception
to this are productions that delete model elements, which may result in isolated
states; KIEL does provide syntax checks that detect these, however.)

Concerning step 1, the setting of the focus, we propose to not only provide
the traditional mouse-oriented mechanism, but also to allow a structure-oriented
navigation, similar to text editors. E. g., in the KIEL macro editor (see Sect. 3.3),
(1) the right/left key navigates through state sequences, (2) the up/down key
navigates among sibling elements (e. g., multiple outgoing transitions from a
state object), and (3) the page up/down keys navigate up resp. down in state
hierarchies. Fig. 2a illustrates some navigation examples.

Concerning step 2, the selection of an editing schema, the designer may se-
lect a schema from a pull-down menu or by pressing a keyboard shortcut. E. g.
in KIEL Ctrl+I generates a new successor state with a connecting transition
and adjusts if necessary the priorities associated with transitions (cf. Fig. 2b).
Afterwards a rearrangement of the Statechart elements will be performed auto-
matically, according to the SNF.

3.2 Text-Based Modeling

Macro-based modeling works directly on the Statechart topology, combining sev-
eral simple editing actions. As another, alternative structure-based Statechart
editing technique we propose to employ a textual Statechart structure descrip-
tion. The KIel statechart extension of doT (KIT) combines implicit declarations
as used in dot [11], the hierarchy construction as used in textual Argos [21], and
the orthogonal construction as used in Esterel [22] with the ability to describe
different dialects of Statecharts.

Fig. 3 presents a KIT example with the equivalent graphical model of a
Safe State Machine (SSM), the Statechart-dialect implemented in Esterel Studio.
Fig. 3a lists the KIT code, which is shortly described in the following. The State-
chart preamble is listed in Line 1, containing the Statechart name and the model
type and version, which determine the Statechart dialect and the accompanying

→
→

→
Page ↑

Page ↓Page ↓

↓

↓

(a) Navigation with key strokes.

Ctrl + I
=========⇒

(b) Example of applying the “insert simple
successor state” schema. Before applying
the schema, state S2 is selected; afterwards
the inserted state S4 remains selected for
further editing operations.

Fig. 2: Editing actions and navigation using the macro-based modeling approach.

1 statechart abro[model="Esterel Studio";version="5.0"]{
2 input A;

3 input B;

4 input R;

5 output O;

6 {

7 ->ABO;

8 ABO{

9 AB{

10 ->A;

11 A->AF[type=sa;label="A"];
12 AF[type=final];
13 ||

14 ->B;

15 B->BF[type=sa;label="B"];
16 BF[type=final];
17 };

18 ->AB;

19 AB->Program_Terminated[type=nt;label="/ O"];

20 Program_Terminated[type=final];
21 };

22 ABO->ABO[type=sa;label="R"];
23 };

24 };

(a) KIT description representation. (b) SSM representation.

Fig. 3: Textual and graphical representations of the ABRO example [22].

graphical Statechart representation of the targeted modeling tool. Lines 2–5 de-
clare the signal events. Afterwards, Lines 7–23 declare Statechart elements and
their relations. State objects are implicitly identified by their state names, (cf.
Line 8), curly braces define the scope of hierarchical relations (e. g., state AB,
cf. Line 9–17), transitions are written as -> (cf. Line 11), and the || operator
denotes parallel regions (cf. Line 13). KIT includes a couple of shorthand nota-
tions; e. g., a transition without a source node determines an initial connector
(cf. Line 7), a transition of type sa abbreviates the SSMs strong abortion (cf.
Line 11).

Fig. 4: Screenshot of KIEL displaying the Statechart tree-structure, the graphical
model, and the KIT editor.

3.3 Implementation in KIEL

We have implemented the above proposed Statechart editing techniques in KIEL,
which resulted in the KIEL macro editor and the KIT editor. Both editors
are accessible simultaneously and are arranged side by side so that they allow
alternative views on the same SUD, as can be seen in Figure 4. The user may
thus chose to manipulate either the textual or the graphical view, and the tool
keeps both views automatically and continuously consistent.

The KIEL macro editor is implemented as an extension of the graphic display-
ing window; there the modeler marks and modifies graphical elements directly.
The KIT code is kept in sync with the graphical model. In the opposite direc-
tion, if the modeler is using the KIT editor, the graphical model is synthesized
from KIT code. This employs a parser/synthesizer generated by SableCC [23].
A similarly generated tool performs the application of the production rules us-
ing the KIEL macro editor. The productions are specified using an underlying
grammar; the set of production can be easily extended with further production
rules. Figure 5 depicts the tool chain of the KIT editor and the KIEL macro
editor and their integration within KIEL.

4 Experimental Evaluation

We have used successive generations of KIEL in the classroom since 2005, in-
cluding the macro-based and text-based editors presented here. The feedback on
these editing approaches has been generally quite positive, also in comparison
to the classical editing paradigms employed by the other, commercial modeling
tools also used in classes. However, to gain a better, objective insight into the

KIEL KIT Editor

KIEL Macro Editor

KIT

KIT Parser

KIEL
Textual KIT Editor KIEL

Statechart Data Structure

KIEL
Graphical Statechart Browser

Java
Token Tree Java

Transformation

KIT Synthesizer

SableCC
Parser Generator KIEL

Statechart Auto-Layouter

KIT Grammar

KIEL
Statechart Macro ManipulatorStatechart Grammar SableCC

Parser Generator

KIEL KIT Editor

KIEL Macro Editor

KIT

KIT Parser

KIEL
Textual KIT Editor KIEL

Statechart Data Structure

KIEL
Graphical Statechart Browser

Java
Token Tree Java

Transformation

KIT Synthesizer

SableCC
Parser Generator KIEL

Statechart Auto-Layouter

KIT Grammar

KIEL
Statechart Macro ManipulatorStatechart Grammar SableCC

Parser Generator

Fig. 5: Integration of the KIT editor and the KIEL macro editor into KIEL. The solid
lines characterize the information flow during runtime, the dashed lines represent de-
pendencies during compile-time of KIEL.

effectiveness of our modeling approaches, we have performed an experiment to
investigate differences in editing performance between the conventional WYSI-
WYG approach, the KIT editor, and the KIEL macro editor. As mentioned in
Sect. 3.3, KIEL provides a mechanism that automatically produces our preferred
Statecharts arrangements; in the following we call this the alternating dot layout
(ADL) (see Fig. 6a). Hence, a further goal of the experiment was to compare
the readability of the ADL with other layout strategies.

4.1 Experiment design

The participants in the experiment (the subjects) were graduate-level students
attending the lecture “Model-Based Design and Distributed Real-Time Systems”
in the Winter Semester 2006/071. Most of them were not familiar with the
Statechart formalism in advance. The experiment consisted of two parts. The
first part took place early in the semester, after two lecture units introducing
the Statechart formalism. The subjects had by then also solved a first home-
work on understanding Statechart semantics. The second part proceeded after
the final lecture unit at the end of the semester. In the meantime the subjects
had gained practical experiences in modeling Statecharts; furthermore, they had
learned about the importance of modeling paradigms, such as maintainability
and co-notation of Statecharts. 24 students participated in the first experiment,
19 took the second one. In the following we refer to the participants of the first
experiment as novices and to the participants of the second experiment as ad-
vanced. Furthermore, we define as experts the modelers that have significant
practical experience beyond course work. Both experiments have similar design
and consist of three parts:

Modeling Technique Evaluation: The subjects had to create Statecharts of vary-
ing complexity using different Statechart modeling techniques: a graphical

1 URL: http://www.informatik.uni-kiel.de/rtsys/teaching/ws06-07/v-model/

(a) Alternating dot layout (ADL). (b) ADL backwards (ADBL).

(c) Linear
layer layout
(LLL).(d) Alternating linear layout

(ALL).
(e) Arbitrary layout (AL).

Fig. 6: Different Statechart layouts for experimental comparison. The layouts in Fig. 6a,
6b, and 6d were automatically generated from the KIEL layout mechanism; the State-
chart models in Fig. 6c and 6e were drawn manually.

WYSIWYG Statechart editor (we decided to employ Esterel Studio), the
KIEL macro editor, and the KIT editor. Afterwards the created Statechart
had to be extended and modified. A one-page reference card per modeling
tool instructed the subjects. As editing performance metric the elapsed time
was measured.

Subjective Layout Evaluation: The subjects were asked to score readability and
comprehensibility of five different Statechart layouts without understanding
(cf. Fig. 6).

Objective Layout Evaluation In this experiment the subjects had to analyze dif-
ferent Statechart models, constructing a sequence of active states and up-
coming signal events according to the semantics of SSMs. The elapsed time
of each Statechart reading was measured for performance evaluation.

Each subject had to process a personal randomized experiment assignment
(see Sect. 4.3), containing the tasks described above. The study was realized
as a controlled experiment, i. e., the experiment leader checked and rejected
the solutions of Parts A and C in case of incorrectness. Each of the subject’s
experiments was performed in a single session of one to two hours; the sessions
were videotaped.

4.2 Hypotheses

The main questions asked in this experiment are the following: “Do the macro-
based and text-based editing techniques make the Statechart construction pro-
cess easier and faster than the conventional WYSIWYG method? Are the re-
sulting Statecharts more readable and comprehensible?” To guide the analysis
of the results it is useful to formulate some explicit expectations in form of hy-
potheses about the differences that might occur. Hence, the experiment should
investigate the hypotheses as follows:

1. Statechart Creation: We expect that novices will need less time to create a
Statechart using the WYSIWYG editor compared to the usage of the KIEL
macro editor or the KIT editor. However, the Statechart creation times of
advanced modelers using the KIT editor should be less than when using the
WYSIWYG editor.

2. Statechart Modification: We expect that modification of an existing State-
chart using the KIT editor or the KIEL macro editor is faster than using the
WYSIWYG editor.

3. Aesthetics: Statecharts are sensed as aesthetic if their elements are arranged
conforming to a certain layout style guide. We expect the best scores for
Statecharts laid out according to the ADL (see Fig. 6a).

4. Comprehension: We suppose that well arranged Statecharts influence the
readability. Hence, we expect a faster comprehension of the ADL compared
to other Statechart layouts.

4.3 Validity

Concerning the internal validity, all relevant external variables (subjects’ State-
chart modeling experience, maturation, aptitude, motivation, environmental con-
dition, etc.) were equalized between appropriate groups by randomized group as-
signment. Regarding the external validity, there are several sources of differences
between the experimental and real Statechart modeling situations that limit the
generalization of the experiments: In real situations, there are modelers with
more experience, often working in teams, and there are Statechart models of
different size or structure. However, we do not consider this to invalidate the
basic findings of the experiment.

4.4 Results

This section presents and interprets the results of the experiments. The analysis
is organized according to the hypotheses listed in Sect. 4.2. Box plots present the
obtained statistical data; the comparison of means will be assisted by the two
sample t-test. The test compares the difference of sample means from two data
series to an hypothesized difference of the series means. It computes the p-value,
which indicates statistically significance. We will call a difference significant if
p < 0.05. The analysis and plots were performed with R v. 2.4.0 [24].

●

●●

●

KIEL−KIT

KIEL−macros

WYSIWYG editor

KIEL−KIT

KIEL−macros

WYSIWYG editor

0 200 400 600 800

Times [sec]

Novices
Advanced

(a) Distribution of times for creating a
new Statechart. Novices: The Statechart
creation times using a WYSIWYG editor
are smaller than using the KIEL macro
editor (t-test p = 0.04) and tend to be
smaller using the KIT editor (t-test p =
0.25). Advanced: The Statechart creation
times using a WYSIWYG editor tend to
be smaller than using the KIEL macro ed-
itor (t-test p = 0.12); time differences be-
tween WYSIWYG editor and KIT editor
are not significant (t-test p = 0.46).

●

●

●KIEL−KIT

KIEL−macros

WYSIWYG editor

KIEL−KIT

KIEL−macros

WYSIWYG editor

0 50 100 150 200 250 300

Times [sec]

Novices
Advanced

(b) Distribution of times for modifying
an existing Statechart. Novices and Ad-
vanced: The needed times for Statechart
modification using the KIEL macro edi-
tor or using the KIT editor are smaller
than the times using the WYSIWYG ed-
itor (both: t-test p = 0.00).

●

●

AL

LLL

ALL

ADBL

ADL

AL

LLL

ALL

ADBL

ADL

−1.0 −0.5 0.0 0.5 1.0

Scores

Novices
Advanced

(c) Distribution of subjective Statechart
layout scores. Novices and Advanced: The
ADL scores better than all other State-
chart layouts (all layouts: t-test p = 0.00).
Score meaning: 1.0: strong preference,
−1.0: strong rejection.

●

●

●●

AL

LLL

ALL

ADBL

ADL

AL

LLL

ALL

ADBL

ADL

200 400 600 800 1000

Times [sec]

Novices
Advanced

(d) Distribution of Statechart comprehen-
sion times. Novices: Less time is needed
for comprehending Statechart according
to ADL (ADBL: t-test p = 0.02, oth-
ers: t-test p = 0.00). Advanced: ADL
times tend to be smaller than times of the
ADBL (t-test p = 0.1); less time is needed
for other layouts (ALL: t-test p = 0.04,
LLL: t-test p = 0.03, AL: t-test p = 0.03).

Fig. 7: Distribution of times for modeling Statecharts and distribution of Statechart
layout assessments. The box plots denote quartiles, small circles indicate outliers.

Evaluation of Modeling Techniques. The plots in Fig. 7a corroborate our
Hypothesis 1 for novices. Due to the novelty of the KIEL macro editor and KIT
editor, the novices sought advice in the reference card (cf. Sect. 4.1); in contrast
the WYSIWYG editor could be used intuitively and without any reference card.
Hence, on average the novices needed less time for creating Statecharts using
the WYSIWYG editor than using the KIT editor or the KIEL macro editor.
For advanced learners, however, the mean times are slightly less using the KIT
editor. We suppose that for experts in Statechart creation this difference would
increase further.

Fig. 7b illustrates the efficiency using the KIT editor and the KIEL macro
editor in Statechart modification; this corroborates Hypotheses 2. With the KIT
editor and the KIEL macro editor the modeler only works on the Statechart
structure, while KIEL’s Statechart auto-layouter arranges the graphical model.
In contrast, using the WYSIWYG editor the subjects spent most of the time
with making room for new Statechart elements and re-arranging the existing
ones to make the developed chart readable. Despite the fewer operations needed
using the KIEL macro editor, the subjects needed more time to modify a State-
chart. The time was largely due to frequent consultations of the reference cards.
Hence, for experts we suppose that the KIEL macro editor would provide the
fastest modeling method.

Evaluation of Statechart Layouts. The scores of subjective Statechart layout
assessment (cf. Fig. 7c) clearly show the subjects’ preference for Statecharts laid
out according to the ADL; hence, hypothesis 3 can be retained. Apparently it is
not sufficient that layouts underlie an automatic layout; in fact Statechart layouts
have to satisfy certain aesthetics to be assessed as good layouts. Accordingly,
subjects stated that “transitions must be short and traceable” and “the element
structure has to follow the Statechart meaning”. E. g., due to unnecessary long
transitions the ALL scores lower than the LLL.

Figure 7d demonstrates that a proper layout enhances the readability of
Statecharts; Statecharts laid out according to the ADL are faster comprehensi-
ble than other Statechart layouts, which corroborates hypothesis 4. This results
from the accompanying proper micro layout (e. g., label placement) as well as
proper macro layout (e. g., compact and white-space avoiding element arrange-
ment).

5 Conclusion and Future Work

Embedded devices are proliferating, and their complexity is ever increasing.
Statecharts are a well established formalism for the description of the reactive
behavior of such devices. However, there is evidence that the current use of this
formalism is not optimal, in particular as models get more complex.

We have presented a description language called KIT that was developed with
the intention to describe topological Statechart structures. The KIEL tool com-
bines the ability of easy textual editing and simultaneous viewing of the result-

ing graphical Statechart model. As another alternative to the classic, low-level
WYSIWYG graphical editing paradigm, the graphical model can be modified
using high-level editing schemata. This technique employs Statechart produc-
tion rules that ensure the syntax-consistency through the whole editing process.
The user feedback on this has been generally very positive, and this has been
supported by experimental data.

In the future we intend to experiment further with the simultaneous display
of textual and graphical representation of the SUD. E. g., for a better traceability
an indexing mechanism between elements of the textual and the graphical models
could be useful. Beyond, we intend to apply the graphical model synthesis from
a textual description, in combination with layout and simultaneous display, to
data-flow languages such as SCADE/LUSTRE.

Acknowledgments. Mirko Wischer has performed the implementation of the
KIEL macro editor and KIT editor presented here; the rest of the KIEL devel-
opment team have also contributed. Prof. Dr. Jürgen Golz, Dept. of Psychology,
CAU Kiel, has been an invaluable help in the design and analysis of the vali-
dation experiment. We also thank Ken Bell and the anonymous reviewers for
helpful comments on this paper. Finally, we thank the students participating in
the experimental study for their support and interest.

References

1. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3) (June 1987) 231–274

2. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: A Working Environment for the
Development of Complex Reactive Systems. IEEE Transactions on Software En-
gineering 16(4) (April 1990) 403–414

3. W3C: State Chart XML (SCXML): State Machine Notation for Control Abstrac-
tion (February 2007) URL: http://www.w3.org/TR/scxml/.

4. Feng, T.H.: An extended semantics for a Statechart Virtual Machine. In Bruzzone,
A., Itmi, M., eds.: Summer Computer Simulation Conference (SCSC 2003), Student
Workshop, The Society for Computer Modelling and Simulation (July 2003) S147—
S166 Montréal, Canada.

5. Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. Science of Computer Programming 19(2) (1992) 87–
152 URL: http://citeseer.nj.nec.com/berry92esterel.html.

6. Prochnow, S., Traulsen, C., von Hanxleden, R.: Synthesizing Safe State Machines
from Esterel. In: Proceedings of ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa, Canada
(June 2006)

7. Mazzanti, F.: UMG User Guide (Version 2.5). Istituto di Scienza e Tecnologie
dell’Informazione “Alessandro Faedo” (ISTI), Pisa, Italy. (2003)

8. Heimdahl, M.P.E., Leveson, N.G.: Completeness and Consistency in Hierarchical
State-Based Requirements. Software Engineering 22(6) (1996) 363–377

9. Castelló, R., Mili, R., Tollis, I.G.: A Framework for the Static and Interactive
Visualization for Statecharts. Journal of Graph Algorithms and Applications 6(3)
(2002) 313–351

10. Harel, D., Yashchin, G.: An Algorithm for Blob Hierarchy Layout. The Visual
Computer 18 (2002) 164–185

11. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software—Practice and Experience 30(11) (2000)
1203–1234 URL: http://www.research.att.com/sw/tools/graphviz/GN99.pdf.

12. Minas, M.: Specifying Statecharts with DiaGen. HCC ’01 – 2001 IEEE Symposia on
Human-Centric Computing Languages and Environments, Symposium on Visual
Languages and Formal Methods, Statechart Modeling Contest (September 2001)
URL: http://www2.informatik.uni-erlangen.de/VLFM01/Statecharts/minas.

pdf&e=747.
13. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars

for multi-paradigm modelling in AToM3. Software and Systems Modeling (SoSyM)
3(3) (August 2004) 194–209

14. Bardohl, R.: GenGEd – A visual environment for visual languages. Science of
Computer Programming, Special Issue of GraTra ’00 (2002)

15. Green, T.R.G., Petre, M.: When Visual Programs are Harder to Read than Textual
Programs. In: Human-Computer Interaction: Tasks and Organisation, Proceedings
ECCE-6 (6th European Conference Cognitive Ergonomics). (1992) URL: http:

//citeseer.nj.nec.com/green92when.html.
16. Purchase, H.C., McGill, M., Colpoys, L., Carrington, D.: Graph drawing aes-

thetics and the comprehension of UML class diagrams: an empirical study. In:
ACM International Conference Proceeding Series archive, Australian symposium
on Information visualisation. (2001) 129–137

17. Prochnow, S., von Hanxleden, R.: Comfortable Modeling of Complex Reactive
Systems. In: Proceedings of Design, Automation and Test in Europe (DATE’06),
Munich (March 2006)

18. ArgoUML: Tigris.org. Open Source Software Engineering Tools URL: http://

argouml.tigris.org/.
19. Prochnow, S., Schaefer, G., Bell, K., von Hanxleden, R.: Analyzing Robustness of

UML State Machines. In: Proceedings of the Workshop on Modeling and Analysis
of Real-Time and Embedded Systems (MARTES’06), held in conjunction with
the 9th International Conference on Model Driven Engineering Languages and
Systems, MoDELS/UML 2006, Genua (October 2006)

20. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Communications of the ACM 38(6) (June 1995) 33–44

21. Maraninchi, F.: The Argos language: Graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages. (October
1991)

22. Berry, G.: The Foundations of Esterel. Proof, Language and Interaction: Essays
in Honour of Robin Milner (2000) Editors: G. Plotkin, C. Stirling and M. Tofte.

23. Gagnon, E.M., Hendren, L.J.: SableCC, an object-oriented compiler framework.
In: TOOLS (26), IEEE Computer Society (1998) 140–154

24. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. (2006) URL:
http://www.R-project.org.

