
Christoph Daniel Schulze
Department of Computer Science, Kiel University
Olshausenstr. 40, 24098 Kiel, Germany
Phone: +49 (0) 431 880-7297
Fax: +49 (0) 431 880-7615
cds@informatik.uni-kiel.de
http://www.informatik.uni-kiel.de/rtsys

Contact
Person

Poster presented at the ACM Student Research Competition at the ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS) 2016, © 2016 Christoph Daniel Schulze

Project
Information

Kiel University

Department of Computer Science

Faculty of Engineering

Literature
Y. K. Leung, M. D. Apperley (1994).
A review and taxonomy of distortion-oriented presentation techniques.
ACM Transactions on Computer-Human Interaction, 1(2), 126–160.
M. Sarkar, M. H. Brown (1992).
Graphical fisheye views of graphs.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 83–91.
K. Misue, P. Eades, W. Lai, K. Sugiyama (1995).
Layout adjustment and the mental map.
Journal of Visual Languages & Computing, 6(2), 183–210.
H. Eichelberger (2005).
Aesthetics and Automatic Layout of UML Class Diagrams.
PhD thesis, Bayerische Julius-Maximilians-Universität Würzburg.

[1]

[2]

[3]

[4]

https://eclipse.org/elk
CLIPSEE AYOUTL ERNELKELK

An Opportunity
Label Management Comment Attachment

The ProblemThe Problem
Visual programming languages usually cannot get away without textual labels. Depending on the visual language, these labels can grow
rather large, as in this example taken from an SCChart:

This in turn causes the diagrams to grow very large. Today's modeling tools usually only offer zooming as a solution.

Existing Solutions
Zooming basically gives users the choice between two different ways to try and cope with large diagrams. First, they can zoom into the
diagram until they can read everything, as in the example above. This can make it hard to keep the context in mind. Second, they can
lower the zoom level until the diagram fits the screen completely. However, long labels usually cause awkwardly wide aspect ratios, requi-
ring the zoom level to be reduced below the point of legibility. Other solutions, such as fisheye lenses [1, 2], can result in distortion or text
too small to be read.

Label Management
Label management attacks the problem from a model-view-controller perspective: the text the view displays for a label can differ from the
label's original text, thereby changing the amount of space required by the label. Exploiting this to change the size of the whole diagram
requires to change its layout. Having to do this manually is tedious and time-consuming, but that changes when using automatic layout.
This scenario is thus an opportunity of using automatic layout algorithms.

There are different ways to change a label's text, as there are different ways of integrating label management into the view generation
process.

Seemingly small problems can keep users from employing automatic layout. These are challenges that must be met for automatic layout
to be successful. Many such challenges seem to be related to secondary notation, of which the placement of comments is one example.
In manual layouts, the relation between comments and the diagram elements they refer to usually becomes clear through placement. Ma-
ny automatic layout algorithms do not preserve the relative placement between diagram elements and thus mess up these relations, as in
the following example from UC Berkeley's Ptolemy tool:.

Manual Placement Automatic Layout

Existing Solutions
One solution to this problem is to only use layout adjustment algorithms [3]. As opposed to layout creation algorithms, layout adjustment
algorithms do not compute a new layout from scratch, but base their placement decisions on the diagram's original layout. There may,
however, not be a layout adjustment algorithm available for the given scenario. Worse, there may not even be an original layout in the first
place.

Comment Attachment
Comment attachment infers the implicit relations between comments and the diagram elements they refer to and makes them explicit.
With the relations now available, layout creation algorithms can place comments and their diagram elements in close proximity:

Some visual languages allow users to specify explicitly which element a comment refers to [4]. This is usually indicated by a line connec-
ting the two, as in the Ptolemy diagram below. However, neither do all languages support this feature, nor would all developers use it.

To infer attachments, comments are put through a pipeline that outputs an estimation of how likely it is for a comment to refer to different
diagram elements. This result is then used to decide which element, if any, the comment will be attached to.

Comment
Enters the pipeline.

Filters
Discard comments that do not

relate to specific elements.
Available filters are the font size

filter and the text prefix filter.

Matchers
Estimate how likely it is that a

comment refers to a given node.
Available matchers are the text

reference, the distance, and the
alignment matcher.

Decider
Decides which element, if any,
to attach a comment to based

on the matching results.

Nodes
Used by matchers to compute

matching estimates.

Automatic Layout

A Challenge

itsBoringThankYouVeryMuch

impendingDoomState

entry / indicatorImpendingDoom = 255
exit / indicatorImpendingDoom = 0

firstDude_request_ready == false || secondDude_request_ready == false || thirdDude_request_ready == false

2: firstDude_request_ready == true && secondDude_request_ready == true && thirdDude_request_ready == true

DudeSwitching

input bool firstDude_switch_impendingDoom
input bool firstDude_switch_apocalypse
input bool secondDude_switch_impendingDoom
input bool secondDude_switch_apocalypse
input bool thirdDude_switch_impendingDoom
input bool thirdDude_switch_apocalypse
output int indicatorReady = 0
output int indicatorImpendingDoom = 0
output int indicatorApocalypse = 0
bool firstDude_request_ready
bool firstDude_request_impendingDoom
bool firstDude_request_apocalypse
bool secondDude_request_ready
bool secondDude_request_impendingDoom
bool secondDude_request_apocalypse
bool thirdDude_request_ready
bool thirdDude_request_impendingDoom
bool thirdDude_request_apocalypse

readyState

int entryTime = <millis()>
int currentTime = entryTime

entry / indicatorReady = 255
exit / indicatorReady = 0

notQuiteBoringYetWeAreWorkingOnIt itsBoringThankYouVeryMuch

2: /
currentTime =
<millis()> 1: currentTime -

entryTime >=
300000 /
indicatorReady =
0

[-]

impendingDoomState

entry / indicatorImpendingDoom = 255
exit / indicatorImpendingDoom = 0

apocalypseState

entry / indicatorApocalypse = 255
exit / indicatorApocalypse = 0

firstDude_request_ready == false ||
secondDude_request_ready == false
|| thirdDude_request_ready == false

2: firstDude_request_ready == true
&& secondDude_request_ready ==
true && thirdDude_request_ready ==
true

1: firstDude_request_apocalypse ==
true ||
secondDude_request_apocalypse ==
true || thirdDude_request_apocalypse
== true

firstDude_request_apocalypse ==
false &&
secondDude_request_apocalypse ==
false &&
thirdDude_request_apocalypse ==
false

[-] Controller

firstDudeLogic @ OneDudeLogic

[+]

[-] FirstDude

secondDudeLogic @ OneDudeLogic

[+]

[-] SecondDude

thirdDudeLogic @ OneDudeLogic

[+]

[-] ThirdDude

View Generation

Label management can be integrated into the view generation
process in two ways. The preprocessing approach invokes label
management when generating the view model. Label manage-
ment decisions can be based on options set by the user or the
mode the tool is currently operating in. In contrast, the feedback
loop approach sets up label management when generating the
view model, but delegates its invocation to the layout algorithm.
This opens up the additional opportunity to shorten only those
labels that actually cause the diagram to grow large while leaving
other labels unchanged.

View Model Generation

Automatic Layout

Preprocessing
Approach

Feedback Loop
Approach

Label Management

Shortening Strategies

(not SignalA) xor (...
Syntactical Abbreviation

SignalA, SignalB / SignalC
Semantical Abbreviation

(not SignalA) xor (not
SignalB) / SignalC(cou
nter)

Syntactical Hard Wrapping

(not SignalA) xor (not
SignalB) / SignalC(
counter)

Syntactical Soft Wrapping

(not SignalA) xor
(not SignalB) /
SignalC(counter)

Semantical Wrapping

(not SignalA) xor (not SignalB) / SignalC(counter)
Original Label Text

Ta
rg

et
 S

ho
rte

ni
ng

 W
id

th

