
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Efficient Compilation of
Cyclic Synchronous Programs

Jan Lukoschus, Reinhard von Hanxleden,
Stephen A. Edwards

Bericht Nr. 0402
April 2004

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Efficient Compilation of
Cyclic Synchronous Programs

Jan Lukoschus1, Reinhard von Hanxleden1,
Stephen A. Edwards2

Bericht Nr. 0402
April 2004

1Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathe-
matik, Olshausenstr. 40, 24098 Kiel, Germany; E-mail: {jlu,rvh}@informatik.uni-kiel.de

2Columbia University, Department of Computer Science, New York, NY 10027; E-mail:
sedwards@cs.columbia.edu

Abstract

Synchronous programs may contain cyclic signal interdependen-
cies. This prohibits a static scheduling, which limits the choice of
available compilation techniques for such programs. This paper pro-
poses an algorithm which, given a constructive synchronous pro-
gram, performs a semantics-preserving source-level code transforma-
tion that removes cyclic signal dependencies, and also exposes op-
portunities for further optimization. The transformation exploits the
monotonicity of constructive programs, and is illustrated in the con-
text of Esterel; however, it should be applicable to other synchronous
languages as well. Experimental results indicate the efficacy of this
approach, resulting in reduced run times and/or smaller code sizes,
and potentially reduced compilation times as well. Furthermore, ex-
periments with generating hardware indicate that here as well the
synthesis results can be improved.

1 Introduction

One of the strengths of synchronous languages [2] is their deterministic
semantics in the presence of concurrency. It is possible to write a syn-
chronous program which contains cyclic interdependencies among concur-
rent threads. Depending on the nature of this cycle, the program may still
be valid; however, translating such a cyclic program poses challenges to the
compiler. Therefore, not all techniques that have been proposed for compil-
ing synchronous programs are applicable to cyclic programs. Hence, cyclic
programs are currently only translatable by techniques that are relatively
inefficient with respect to execution time, code size, or both. This paper
proposes a technique for transforming valid, cyclic synchronous programs
into equivalent acyclic programs, at the source-code level, thus extending
the range of efficient compilation schemes that can be applied to these pro-
grams.

The focus of this paper is on the synchronous language Esterel [5]; how-
ever, the concepts introduced here should be applicable to other synchronous
languages as well, such as Lustre [17].

Next we will provide a classification of cyclic programs, followed by
an overview of previous work on compiling Esterel programs and handling
cycles. Section 2 introduces the transformation algorithm for pure signals,
which do not carry a value. Optimization options are presented in Section 3.
Section 4 demonstrates the transformation with further examples, including
a program using valued signals. Section 5 provides experimental results, the
paper concludes in Section 6.

1

module NREACT:
inputoutput A;

present A else
emit A

end
end module

K0GO

A

(a)

module NDET:
inputoutput A;

present A then
emit A

end

K0GO

A

(b)

module CYCLE:
inputoutput A, B;

present A then
emit B

end
||

present B then
emit A

end
end module

GO

A

B

(simplified)

(c)

Figure 1: Invalid cyclic Esterel programs. The wires shown as dashed lines
indicate the cyclic dependencies.

1.1 Cyclic Programs

The execution of an Esterel program is divided into discrete instants. An
Esterel program communicates through signals that are either present or
absent throughout each instant; this property is also referred to as the
synchrony hypothesis. If a signal S is emitted in one instant, it is considered
present from the beginning of that instant on. If a signal is not emitted in
one instant, it is considered absent.

The Esterel language consists of a set of primitive statements, from
which other statements are derived [3]. The primitives that directly in-
volve signals are signal (signal declaration), emit (signal emission), present
(conditional), and suspend (suspension).

Consider the three short Esterel programs shown in Figure 1. The first
program NREACT involves the signal A, which is an input signal, meaning
that it can be emitted in the environment, and also an output signal, mean-
ing that it can be tested by the environment. Here the environment may be
either the external environment of the program, or it may be other Esterel
modules. The body of NREACT states that if A is present (emitted by the
environment), then nothing is done, which is not problematic. However, if
A is absent, then the else part is activated: A is emitted, which invalidates

2

the former presence test for A. Such a contradiction is an invalid behavior of
an Esterel program; such a program is over-constrained, or not reactive, and
should be rejected by the compiler. This problem also becomes apparent
when synthesizing this program into hardware, as the gate representation of
this program is an inverter with it’s output directly fed back to the input.
This is obviously not a stable circuit and hence forbidden in Esterel.

The program NDET in Figure 1(b) is similar to NREACT, but with else
changed to then. Here a present A will result in an emission of A in the then
branch of the present statement, which would justify taking the then branch.
Conversely, an absent A will skip the emission of A. Hence, this program
is under-constrained, or not deterministic. A compiler should reject NDET.
This also becomes apparent at the gate representation of NDET, which is a
driver gate that transmits the input value to the output. Now the output is
fed back to the input to map the behavior of the program. As a certain gate
delay is inevitable, this circuit is an oscillator instead of providing stable
outputs.

Programs NREACT and NDET have the same underlying problem: They
involve a signal that is self dependent. In both programs the emission of A
depends on a guard containing A. In these two examples, we have a direct
self dependence, where the emission of a signal immediately depends on
the presence of a signal. However, we may also have indirect self depen-
dencies, in which a signal depends on itself via some other, intermediate
signals. Consider program CYCLE in Figure 1(c), which contains two paral-
lel threads, both testing for the signal emitted by the other one. However,
the signals are emitted only if the other one has been emitted already; the
emission of A depends on the presence of B and vice versa. In this case, we
have a cyclic dependency, or cycle for short, and the program should again
be rejected. We will refer to the emission of a signal that is guarded by
a signal test (using present, suspend, or a derived statement) as a guarded
emit.

All three programs shown in Figure 1 involve cyclic signal dependencies
and are invalid, and hence of no further interest to us. However, there are
programs that contain dependency cycles and yet are valid. A program is
considered valid, or constructive, if we can establish the presence or absence
of each signal without speculative reasoning, which may be possible even
if the program contains cycles. The equivalent formulation in hardware
is that there are circuits that contains cycles and yet are self-stabilizing,
irrespective of delays [4].

Consider the program PAUSE CYC in Figure 2(a): The cyclic depen-
dency consists of an emission of B guarded by a test for A and an emission
of A guarded by a test for B. At run time, however, the dependencies are

3

module PAUSE CYC:
input A, B;
output C;

present A then
emit B

end;
pause;
present B then

emit A
end

||
present B then

emit C
end

end module

module PAUSE PREP:
input A, B;
output C;

signal A , B , ST1, ST2 in

emit ST1;

present [A or A] then

emit B
end;
pause;
emit ST2;

present [B or B] then

emit A
end

||
present [B or B] then

emit C
end

end signal

end module

(a) (b)
module PAUSE ACYC:
input A, B;
output C;

signal A , B , ST1, ST2 in
emit ST1;
present [A or

(ST2 and (B or ST1))] then

emit B
end;
pause;
emit ST2;
present [B or B] then

emit A
end

||
present [B or B] then

emit C
end

end signal
end module

module PAUSE OPT:
input A, B;
output C;

signal B in
present A then

emit B
end;
pause;
present B then

emit A
end

||
present [B or B] then

emit C
end

end signal
end module

(c) (d)

Figure 2: Resolving a false cycle.

4

module DRIVER CYC:
input D;
inputoutput A, B;

loop
present D then

present A then
emit B

end
else

present B then
emit A

end
end;
pause

end
end module

module DRIVER ACYC:
input D;
inputoutput A;
input B;

output B ;

loop
present D then

present A then
emit B

end
else

present B then
emit A

end
end;
pause

end
end module

A

GO

B

D

(a) (b) (c)

Figure 3: False cyclic dependencies in a bidirectional bus driver. The wires
shown as dashed lines indicate the cyclic dependency.

separated by a pause statement into separate execution instants. The emis-
sion of B in the first instant has no effect on the test for B in the second
instance.

In such a case, where not all dependencies are active in the same exe-
cution instant, we will call the cyclic dependency a false cycle. In contrast,
the programs shown in Figure 1 all contained true cycles, where all depen-
dencies involved were present at the same instant. A cycle may be false
because it is broken by a register, as is the case in PAUSE CYC, or because
it is broken by a guard, as is the case in program DRIVER CYC shown in
Figure 3(a). Programs that only contain false cycles are still constructive
and hence are valid programs that should be accepted by a compiler.

So far, we have considered only programs that contained true cycles
and were invalid (NREACT, NDET, CYCLE) or that contained false cycles
and were valid (PAUSE CYC, DRIVER CYC). However, there also exist pro-
grams that contain true cycles, with all dependencies evaluated at the same
instant, and yet are valid programs. A classic example of a truly cyclic,
yet constructive program is the Token Ring Arbiter [18]; Figure 4 shows a
version with three stations. Each network station consists of two parallel
threads: One computes the arbitration signals, the other passes a single
token in each instant from one station to the next in each instant.

An inspection of the Arbiter reveals that there is a true cycle involving
signals P1, P2, and P3. However, the program is still constructive as there is

5

module TR3 CYC:

input R1, R2, R3;
output G1, G2, G3;

signal P1, P2, P3,
T1, T2, T3

in
emit T1

||
loop % STATION1

present [T1 or P1]
then

present R1 then
emit G1

else
emit P2

end
end ;
pause

end loop
||

loop
present T1 then

pause;
emit T2

else
pause

end
end

||
loop % STATION2

present [T2 or P2]
then

present R2 then
emit G2

else
emit P3

end
end ;
pause

end loop
||

loop
present T2 then

pause;
emit T3

else
pause

end
end

||
loop % STATION3

present [T3 or P3]
then

present R3 then
emit G3

else
emit P1

end
end ;
pause

end loop
||

loop
present T3 then

pause;
emit T1

else
pause

end
end

end module

Figure 4: Token Ring Arbiter with three stations.

6

always at least one token present which breaks the cycle. Hence, a compiler
should accept this program. (However, the same program, but without
the first thread that emits T1 in the first instant, should be rejected—this
illustrates that determining constructiveness of a program is a non-trivial
process.)

1.2 Related Work

A number of different approaches for compiling Esterel programs into either
software or hardware have been proposed.

An early approach to synthesize software, employed by Berry et al.’s
V3 compiler [5] and others [1, 8], builds an automaton through exhaustive
simulation. This approach can compile cyclic programs. The resulting code
is very fast, but potentially very large, as it is affected by possible state
explosion.

Another approach, used by the v5 compiler [6], is to translate an Esterel
program into a net-list, which can either be realized in hardware or which
can be simulated in software. Using the technique proposed by Shiple et
al. [19], this approach handles cycles by re-synthesizing cyclic portions into
acyclic portions, employing the algorithm by Bourdoncle [7]. This approach
offers better scalability than the automata-based approach, as it does not
suffer from possible state explosion; however, the software variant tends to
be rather slow, as it simulates the complete circuit during each instant,
irrespective of which parts of the circuit are currently active.

A third approach to synthesize software is to generate an event-driven
simulator, which breaks the simulated circuit into a number of small func-
tions that are conditionally executed [10, 12, 9]. These compilers tend to
produce code that is compact and yet almost as fast as automata-based
code. The drawback of these techniques is that so far, they rely on the ex-
istence of a static schedule and hence are limited to acyclic programs. One
approach to overcome this limitation, which has been suggested earlier by
Berry and has been described by one of the authors [12], is to unroll the
strongly connected regions of the Conditional Control Flow Graph; Esterel’s
constructive semantics guarantees that all unknown inputs to these strongly
connected regions can be set to arbitrary, known values without changing
the meaning of the program.

As it turns out, the transformation we are proposing here also makes
use of this property of constructiveness to resolve cycles; however, unlike
the approaches suggested earlier [13, 14], it does so at the source code
level. Hence this makes it possible to compile originally cyclic programs
using for example the existing efficient compilers that implement event-

7

Basics
N: Set of natural numbers

For n ∈ N : Nn =def {i ∈ N | i < n}
P : Given Esterel Program

S: Set of signals used in P

Guarded emits
len ∈ Ni: Length of cycle

Cycle = {GEmiti | i ∈ Nlen}
i: Guarded emit index, i ∈ Nlen

GEmiti = 〈GExpi, GSigi〉: A guarded emit

GExpi: Boolean expression involving signals GIn ⊆ S
GSigi ∈ S: Signal emitted in guarded emit

GSigs: Set of original cycle signals

GSig(i mod len)+1 ∈ GIn: Cycle property

GSig′i: A fresh signal used to replace emission of GSig in GEmiti

GSigs′: Set of fresh cycle signals

STi: A fresh state signal (used to indicate testing of guarded emit)

STs = {STi | i ∈ Nlen}: Set of state signals

Figure 5: Notation.

driven simulators. Furthermore, the experimental results indicate that this
transformation can also improve the code resulting from the techniques that
can already handle cyclic programs, such as the net-list approach employed
by the V5 compiler. It also turns out that the compilation itself can be sped
up by transforming cyclic programs into acyclic ones first.

2 The Basic Transformation Algorithm

Figure 5 introduces the notation we will use for our transformation. Figure 6
presents the algorithm for transforming cyclic Esterel programs into acyclic
programs. The algorithm is applicable to programs with cycles that involve
pure signals only.

The algorithm is introduced on the basis of the example PAUSE CYC in

8

Input: Program P , potentially containing cycles
Output: Modified program P ′′, without cycles

1. Check constructiveness of P .
If P is not constructive: Error.

2. Preprocessing of P :

(a) If P is composed of several modules, instantiate them into one
flat main module.

(b) Expand derived statements that build on on the kernel state-
ments emit/present/suspend.

(c) Spread suspend blocks across enclosed statements.

(d) Transform suspend into equivalent present/trap statements.

3. If P does not contain cycles: Done.
Otherwise: Select a cycle Cycle, of length len.

4. Transform P into P ′; for all GEmiti ∈ Cycle:

(a) Declare a new signal GSig′
i in the same scope as GSigi. If GSigi

is an output signal in the module interface, then add GSig′
i to

the list of output signals instead.
(b) Replace “emit GSigi” by “emit GSig′

i”.

(c) Replace tests for GSigi by tests for “(GSigi or GSig′i)”.

(d) Declare a new signal STi in the scope enclosing the entire cycle.

(e) Place “emit STi;” before the guarded emit.

5. Transform (still cyclic) P ′ into (acyclic) P ′′:

(a) Select some cycle signal GSig′
i ∈ GSigs′.

(b) Let Cycle′ be the cycle in P ′ that corresponds to Cycle in P ′,
(similarly for GEmit′i, GExp′i, GIn′

i). In all guarded emits in
Cycle′, replace tests for GSig′

i by GExp∗i , where GExp∗i is an
expression that does not involve any signals in GSigs′.

6. Goto Step 3, treat P ′′ now as P .

Figure 6: Transformation algorithm, for pure signals.

9

Figure 2(a), which is transformed into the acyclic program PAUSE ACYC in
Figure 2(c). The transformation of the program DRIVER CYC in Figure 3(a)
into DRIVER ACYC in Figure 3(b) is similar. We also discuss for each
transformation step the worst-case increase in code size.

Step 1: First we have to check the constructiveness. We can use one of
the standard techniques, as for example proposed by Shiple et al. [19].

Step 2a: The expansion of modules is a straightforward textual re-
placement of module calls by their respective body. No dynamic runtime
structures are needed, since Esterel does not allow recursions. Just the re-
placement of formal parameter names by their actual signals must be done.
Since PAUSE CYC does not contain any sub-modules, there is nothing to do
in this step for PAUSE CYC.

The complexity of this module expansion can reach exponential growth
of code size, but this expansion is done by every Esterel compiler and not
a special requirement of this transformation algorithm.

Step 2b: Regarding the statements handling signals, the transformation
algorithm is expressed in terms of Esterel kernel statements. Therefore
statements that are derived from emit, present, or suspend must be reduced
to these statements. PAUSE CYC consists entirely of kernel statements,
therefore no replacement is needed.

One derived statement is replaced by a fixed construct of kernel state-
ments, therefore the complexity of this step is a constant factor on the
number of statements in the program.

Steps 2c and 2d: An example program with suspend statements is
discussed in Section 4.1 on page 17.

Each statement inside a suspend statement is enclosed in a block made
up of suspend/present statements of constant size. Therefore the complexity
is also a constant factor on the number of statements in the program.

Step 3: If there is more than one cycle present in the program, then
the application of the algorithm is repeated for each cycle. PAUSE CYC
contains only one cycle. {〈A, B〉, 〈B, A〉}.

Step 4a and 4b: To prepare the removal of the cycle, we first transform
PAUSE CYC in Step 4 into the equivalent program PAUSE PREP, shown in
Figure 2(b). It differs from PAUSE CYC in that the signals carrying the cycle
(A and B) have been replaced by fresh signals (A and B) which are only
emitted within the cycle. In a way, this introduction of fresh signals, which
are emitted exclusively in the cycle, is akin to Static Single Assignment
(SSA) [11].

For each signal in the program, at most one replacement signal is added,
thus complexity of this task is a constant factor of the program size.

Step 4c: All tests for A and B in the original program are replaced by

10

tests for [A or A] and [B or B], respectively. Using the SSA analogy, this
corresponds to a φ-node.

Each changed signal test is expanded by an expression of constant size,
therefore we get a constant factor on the number of signal test expressions
in the program.

Step 4d: The declarations of ST1 and ST2 are simply added to the
declarations of A and B .

The number of added signals is likewise of linear complexity of the pro-
gram size.

Step 4e: PAUSE PREP contains the fresh state signals ST1 and ST2,
which indicate the evaluation of a guarded emit. This makes the activity of
the guard expression itself available for another present test.

The number of added signal emissions is limited by the number of emit
statements in the program, and thus of linear complexity.

Step 5a: One signal in the set of cyclic signals must be selected as
a point to break the cyclic dependency. Basically any signal in the cycle
will work; the actual selection can be based on the smallest replacement
expression computed for the next step. In PAUSE PREP, we select A as
the signal to break the cycle.

Step 5b: Finally we are ready to break the cycle in PAUSE PREP. For
that, we have to replace the signal selected in Step 5a —in the cycle—by
an expression that does not use any of the cycle signals, without changing
the meaning of the program.

To compute the replacement expression for A in PAUSE PREP, we note
that A is present iff (if and only if) ST2 is present and B or B is present;
expressed as an equation, it is:

A = ST2 ∧ (B ∨ B). (1)

This equation now refers to another cycle signal, B ; note that we consider
B not a cycle signal anymore, as it is not emitted within the cycle anymore.
To replace B in Equation 1, we observe:

B = ST1 ∧ (A ∨ A). (2)

Substituting 2 into 1 yields:

A = ST2 ∧ (B ∨ (ST1 ∧ (A ∨ A))). (3)

This is now an equation which expresses the cycle signal A as a function of
itself and other signals that are not part of the cycle; so we have unrolled
the cycle. We could now simulate this using three-valued logic; however, we
can also make use of the constructiveness of the program, which guarantees

11

monotonicity. This means that a more defined input always produces an
equal or more defined output. Hence, if the program is known to never
produce undefined outputs, we can set all unknown inputs (such as A in
this case) to arbitrary, known values without changing the meaning of the
program [12]. Applying this to Equation 3 yields, for A = false (absent):

A = ST2 ∧ (B ∨ (ST1 ∧ A)). (4)

Similarly, for A = true (present):

A = ST2 ∧ (B ∨ ST1). (5)

We now have derived two equally valid replacement expressions for A , which
do not involve any cycle signal. Substituting 5, the simpler of these expres-
sions, for A in PAUSE PREP yields the now acyclic program PAUSE ACYC
shown in Figure 2(c).

The complexity of the replacement expressions depends on the length of
the cycle, because the length of the cycle dictates the number of replacement
iterations needed to eliminate all but the first cycle signals in the guard
expression. The length of the cycle and the size of each replacement are
limited by the number of signals in the program. So there is a quadratic
dependency of the size of the replacement expression to the program size.
The number of times the replacement expression will be inserted in the
program is likewise dependent on the program size. Thus the growth in
program size for one cycle is of cubic complexity.

Step 6: The transformation algorithm must be repeated for each cycle
and the upper limit of cycles to resolve is the number of signals in the
program.

Overall, a very conservative estimate results in a code size of O(n4),
where n is the source program size after module expansion; however, we
expect the typical code size increase to be much lower. In fact, we often
experience an actual reduction in source size, as the transformation often
offers optimization opportunities where statements are removed. As for the
size of the generated object code, here the experimental results (Section 5)
also demonstrate that typically the transformation results in a code size
reduction.

Application to the Token Ring Arbiter Before transforming program
TR3 CYC from Figure 4 into the acyclic TR3 ACYC shown in Figure 7, we
can apply some optimizations. We first note that the guarded emits that
constitute the cycle involving the cycle signals GSigs = {P1, P2, P3} are
always executed. Hence we do not need to introduce fresh state signals.

12

module TR3 ACYC:

input R1, R2, R3;
output G1, G2, G3;

signal P2, P3,
% P1 deleted
T1, T2, T3

in
emit T1

||
loop % STATION1

present [T1 or
(not R3 and (T3

or (not R2 and

(T2 or not R1))))

] then
present R1 then

emit G1
else

emit P2
end

end ;
pause

end loop
||

loop
present T1 then

pause;
emit T2

else
pause

end
end

||
loop % STATION2

present [T2 or P2]
then

present R2 then
emit G2

else
emit P3

end
end ;
pause

end loop
||

loop
present T2 then

pause;
emit T3

else
pause

end
end

||
loop % STATION3

present [T3 or P3]
then

present R3 then
emit G3

% else branch
% deleted
end

end;
pause

end loop
||

loop
present T3 then

pause;
emit T1

else
pause

end
end

end module

Figure 7: Non cyclic Token Ring Arbiter.

13

Furthermore, there are no tests for the cycle signals outside of the cycle, so
we do not need fresh cycle signals either. These optimizations are explained
further in Section 3.

We now select signal P1 to break the cycle. We can compute the expres-
sion to replace P1 in the test in STATION1 as follows:

P2 = R1 ∧ (T1 ∨ P1), (6)
P3 = R2 ∧ (T2 ∨ P2)

= R2 ∧ (T2 ∨ (R1 ∧ (T1 ∨ P1))), (7)
P1 = R3 ∧ (T3 ∨ P3)

= R3 ∧ (T3 ∨ (R2 ∧ (T2 ∨ (R1 ∧ (T1 ∨ P1))))). (8)

Equation 8 now again expresses a cycle carrying signal (P1) as a function
of itself and other signals that are outside of the cycle. Again we can
employ the constructiveness of TR3 CYC to replace P1 in this replacement
expression by either true or false. Setting P1 to false yields:

P1 = R3 ∧ (T3 ∨ (R2 ∧ (T2 ∨ (R1 ∧ T1)))). (9)

Setting P1 to true yields:

P1 = R3 ∧ (T3 ∨ (R2 ∧ (T2 ∨ R1))). (10)

This is also the replacement expression applied when transforming TR3 CYC.
The other transformation steps are fairly straightforward, and offer further
optimization opportunities, as also discussed in the next section.

3 Optimizations

The application of the algorithm in Figure 6 exposes opportunities for fur-
ther optimizations. For example, the program PAUSE ACYC can be opti-
mized into the program PAUSE OPT shown in Figure 2(d).

Replacing state signal tests by constants The replacement expression
GExp∗i (Step 5b of the algorithm) may reference some state signal STj ∈
STs that can be shown to be always present or absent:

1. If GExp∗i replaces GSig′
i in GExpj , we know that at this location in

the program, STj must always be present. Therefore, we can replace
STj by the constant true in GExp∗i .
In the program PAUSE ACYC, this applies to the state signal ST1 in
the replacement expression “(ST2 and (B or ST1)),” which we therefore
can simplify to “(ST2 and B).”

14

2. More generally, we can replace a state signal by the constant true
whenever we know that it must be emitted in every instant.

This applies for example to the Token Ring Arbiter, where we know
that all guarded emits that constitute the cycle are evaluated in every
instant of the program.

3. Correspondingly, it may also be the case that a state signal is al-
ways absent when tested in some replacement expression GExp∗

i . In
particular, this is the case when we have a false cycle.

In the program PAUSE ACYC, this applies to the state signal ST2;
due to the pause statement between the evaluation of the replacement
expression and the emission of ST2, we can set ST2 to false in the
replacement expression. In this case, this reduces the whole replace-
ment expression to false; therefore, the “[A or (ST2 and (B or ST1))]”
from PAUSE ACYC gets reduced to just “A” in PAUSE OPT.

Eliminating emission of state signals If all tests for a state signal are
replaced by constants, the state signal is no longer needed and therefore
does not need to be emitted any more.

In the program PAUSE ACYC, this applies to both ST1 and ST2, we can
therefore drop the corresponding emit in the optimized PAUSE OPT.

Absence of External Emissions of Cycle Signals If a cycle signal
GSigi is not emitted outside of the cycle, we do not need to generate a
fresh signal GSig′

i, but can instead just use GSigi. In this case, one may
skip Steps 4a, 4b, and 4c.

This is the case in the Arbiter, where the signals carrying the cycle
(P1/P2/P3) are not emitted outside of the cycle.

Absence of External Tests of Cycle Breaking Signal If the signal
GSig′i that is selected in Step 5a to break the cycle is not tested outside
of the cycle, this means that after replacing the tests for GSig′

i within the
cycle (Step 5b) by GExp∗i , the signal GSig′

i is not tested anywhere in the
program. One can therefore eliminate its emission.

This also applies to the Arbiter, where signal P1, which we replaced
within the cycle, becomes superfluous. We can therefore eliminate the emit
P1, and the enclosing else branch.

Simplification of External Tests Depending on how often one must
replace a particular signal GSigi in Step 4c by the expression “(GSigi or

15

module PAUSES:
inputoutput A, B, C, D;

signal T1, T2 in
loop

pause; pause; pause;
present [A or T1] then

emit B;
emit C

end
end

||
loop

pause; pause; pause;
pause; pause;
present [B or T2] then

emit A;
emit D

end
end

||
loop

emit T1;
pause;
emit T2;
pause

end
end module

module PAUSES ACYC:
inputoutput A, B, C, D;
output B ;

signal T1, T2, ST1 in
loop

pause; pause; pause;
emit ST1;

present [A or T1] then
emit B ;
emit C

end
end

||
loop

pause; pause; pause;
pause; pause;
present [(B or ST1)

or T2] then
emit A;
emit D

end
end

||
loop

emit T1;
pause;
emit T2;
pause

end
end module

(a) (b)

Figure 8: Example requiring extra state signals.

GSig′i)”, it may be beneficial to introduce another fresh signal GSig′′
i . This

signal must be emitted whenever GSigi or GSig′
i are present, for example

using a new globally parallel statement of the form “every [GSigi or GSig′i]
do emit GSig′′

i end”. Then it suffices to replace tests for GSigi by tests for
GSig′′i .

4 Further Example Transformations

Figure 8 gives another program with a cycle involving signals A and B.
However, the cycle is only present at certain instants; the guarded emit
of B takes place every 3rd instant, whereas the guarded emit of A takes
place every 5th instant, hence the cycle is active only every 15th instants.
Here the transformation into an acyclic version requires the emission of the
signal ST1, which indicates the evaluation of the guard dependency with

16

module SUSP CYC:
output A,B;

pause;
suspend

emit A
when immediate B

||
suspend

emit B
when immediate A

end module

module SUSP ACYC:
output A,B;
output B ;

signal ST1 in
pause;
suspend

emit A;
when immediate ST1

||
trap T in

loop
emit ST1;
present [not A] then

emit B ;
exit T

end;
pause;

end loop
end trap

end signal
end module

(a) (b)

Figure 9: Simple cyclic program with suspend.

sink B. As an optimization, due to the invariant “T1 or T2 = true”, which
is ensured by the third parallel thread, it suffices to just add an “or ST1” to
the guard in the guard dependency involving A in the transformed program.

4.1 Suspend

So far we presented only cycles with a present test as a guard for an emit
statement. Another way to influence the execution of emit is the suspend
statement. A complication with suspend is that, unlike with present, one
cannot easily generate a signal that is emitted unconditionally whenever the
guard of a suspend is evaluated. The transformation algorithm therefore first
transforms the suspend statements into equivalent present/trap statements,
in Steps 2c and 2d.

As an example, consider the program SUSP CYC in Figure 9(a). The
program again contains a cyclic dependency on the signals A and B, the
emission of each signal is inhibited by the presence of the other signal.

Applying Steps 2c and 2d involves a chain of transformations not shown
here; the end result, after applying the whole transformation algorithm, is
SUSP ACYC in Figure 9(b).

17

module VALUE CYC:

input S;
input A : integer , B : integer ;
output X : integer , Y : integer ;

present S then
present A then

emit B(?A)
end

else
present B then

emit A(?B)
end

end;

present A then emit X(?A) end;
present B then emit Y(?B) end
end module

module VALUE ACYC:

input S;
input A : integer , B : integer ;
output X : integer , Y : integer ;

signal B :integer, B :integer in

present S then
present A then

emit B (?A)
end

else
present B then

emit A(?B)
end

end;

present A then emit X(?A) end;
present B then emit Y(?B) end

II
every B do emit B (?B) end

II
every B do emit B (?B) end

end signal

end module

(a) (b)

Figure 10: Esterel program with a cycle on valued signals.

4.2 Valued Signals

Figure 10(a) contains an Esterel program VALUE CYC with a (false) cycle
on the signals A and B. Both signals carry values of type integer. The pure
signal S is used to select one of two data flows: From A to B or vice versa.
This results in two guarded emits with reversed signal use. Therefore both
guarded emits build a cycle. The cycle is false, because signal S ensures
that only one of both emits is active in an instant. After the guarded emits
are evaluated, two additional guarded emits copy the values from A and B
to the outputs X and Y, respectively.

Figure 10(b) contains the program VALUE ACYC, an acyclic transfor-
mation of VALUE CYC. Two additional signals are introduced: B and B .
B is the replacement for B to break the cycle, and B is used to represent
the state of B outside the cycle. Two additional parallel statements forward
the values of B (from the module interface) and B (from the cycle) to the
signal B .

There are two emit statements for the same signal B . Both are executed
in the same instant if B is emitted on the module interface and B is emitted
in the cycle. Therefore we need a combine function if we can not exclude

18

this case. But this problem is not introduced by the transformation of the
cycle. The original VALUE CYC contains needs a combine function, too.
Consider S, A and B being present at the module interface. Then the first
guarded emit will be executed and B will be emitted in the same instant a
second time. The same holds for S absent, then A will be emitted twice.
We can compile the program without a combine function if we assert that A
and B are not both present in the same instant. This resolves the problem
for VALUE ACYC, too.

5 Experimental Results

The proposed algorithm is currently not implemented in a ready-to-use
compiler. However some preliminary benchmarks can be obtained by ap-
plying the algorithm manually to some small cyclic Esterel programs. The
examples used here are:

TR3: This is the Token Ring Arbiter with three network stations. The
implementation is as in Figure 4.

TR10: This is an extension of tr3 from three to ten network stations.
The aim is to test the scaling of the algorithm for code size and runtime.

TR10p: While the former test cases implemented only the arbiter part
of the network without any local activity on the network stations, this test
program adds some simple concurrent “payload” activity to each network
station to simulate a CPU performing some computations with occasional
access to the network bus.

VALUE: The program VALUE in Figure 10 is included to test the appli-
cation of the algorithm to valued signals.

All programs are tested in the originally cyclic and in the transformed
acyclic version.

5.1 Synthesizing Software

To evaluate the transformation in the realm of generating software, we used
six different compilation techniques:

v5-L: The Esterel compiler v5.92 [6] is publicly available [15]. It is used
in this case with option -L to produce code based on the circuit represen-
tation of Esterel. The code is organized as a list of equations ordered by
dependencies. This results in a fairly compact code, but with a compara-
tively slow execution speed. This compiler is able to handle constructive
Esterel programs with cyclic dependencies.

v5-A: The same compiler, but with the option -A, produces code based
on a flat automaton. This code is very fast, but prohibitively big for pro-

19

grams with many weakly synchronized parallel activities. This option is
available for cyclic programs, too.

v7: The Esterel v7 compiler (available at Esterel Technologies) is used
here in version v7 10i8 to compile acyclic code based on sorted equations,
like the v5 compiler.

v7-O: The former compiler, but with option -O, applies some circuit
optimizations to reduce program size and runtime.

CEC: The Columbia Esterel Compiler (available with source code [9])
produces event driven C code, which is fast with small code size. However,
this compiler cannot handle cyclic dependencies. Thus it can only be applied
to the transformed cyclic programs.

CEC-g: The CEC with -g produces code using computed goto targets
to reduce the runtime even further. This feature is an extension to ANSI-C
offered by GCC-3.3 [16].

A simple C back-end is provided for each Esterel program to produce
input signals and accept output signals to and from the Esterel part. The
back-end iterates over the first three token ring examples 10,000,000 times
and 30,000,000 times for the last (simpler) valued signal example. These
iteration counts result in handy execution times in the range of about 0.8
to 18 seconds. These times where obtained on a desktop PC (AMD Athlon
XP 2400+, 2.0 GHz).

Table 1(a) compares the execution speed of the example programs for the
v5, v7, and CEC compilers with their respective options. The v5 compiler
is applied both to the original cyclic programs and the transformed acyclic
programs. The CEC and v7 compiler can handle only acyclic code.

When comparing the runtime results of the v5 compiler (with sorted
equations) for the cyclic and acyclic versions of the token ring arbiter, there
is a noticeable reduction in runtime for the transformed acyclic programs.
This came as a bit of a surprise. It seems that the v5 compiler is a little bit
less efficient in resolving cyclic dependencies in sorted equations. For the
automaton code there are only minor differences in runtime. The acyclic
version of the VALUE program is less efficient in runtime using the v5 com-
piler. The reason for this lies in the additional parallel activities introduced
by the transformation algorithm.

For the two token ring arbiter variants without payload, the v7 compiler
produces the fastest code. The third token ring example with payload is
executed fastest with the CEC compiler, but only slightly better than the
v5 compiler in automata mode. Again the the optimized sorted equation
code of v7 fits bests to the VALUE example.

Table 1(b) compares the fastest code for our cyclic programs to the
fastest code for the transformed acyclic programs. For each test program

20

the relative reduction in runtime is listed.
Table 2 lists the sizes of the compiled binaries. All compilers produce

code of similar sizes, but with one exception: The v5 compiler produces a
very big automaton code for the third token ring example. That program
contains several parallel threads which are only loosely related. If someone
tries to map such a program on a flat automaton, it is well known that such
a structure results in a “state explosion”. Actually, we had to limit the
number of parallel tasks in this example to get the program to compile in
reasonable time.

Table 3 contains the compilation times for the different Esterel com-
pilers to compile the various test programs. The v5 compiler for sorted
equations code needs only little time to compile the acyclic versions of the
test programs. In fact, it is among the fastest compilers in all four acyclic
test cases. When this compiler is applied to cyclic programs, the compi-
lation times are several times slower but within reasonable limits. When
compiling for automaton code with the v5 compiler, then the compilation
time is mostly independent of cyclic and acyclic properties of the compiled
program. The compilation times are low for small programs with few states,
but drastically higher for programs with many independent, parallel states.
The CEC compiler is comparatively slow for small acyclic programs, but
the compilation time does not rise that much for more complex programs.
The v7 compiler behaves similarly.

5.2 Synthesizing Hardware

To evaluate the effect of our transformation on hardware synthesis, we com-
pared again the results of the v5, v7, and CEC compilers, for the same set of
benchmarks as for the software synthesis. Again only v5 can handle the un-
transformed, cyclic code version; furthermore, v5 is the only compiler that
can generate hardware for valued signals. The compilers differ in which
hardware description languages they can produce, but a common format
supported by all of them is the Berkeley Logic Interchange Format (BLIF),
therefore we base our comparisons on this output format.

Table 4 compares the number of nodes synthesized. Considering the v5
compiler, there is a noticeable reduction in the number of nodes generated
for the Arbiter. However, for the VALUE benchmark the number of nodes
increases, again due to the extra parallel threads added for joining the valued
signals. When considering the synthesis results of v7 and CEC for the
acyclic version of the Arbiter, v7 produces the best overall results, with the
node count less than half of v5’s synthesis results for the cyclic variants.

Table 5 compares the number of literals generated. The overall results

21

Variant Compiler TR3 TR10 TR10p VALUE

cyclic v5-L 1.60 5.43 17.26 5.43
(original) v5-A 0.90 2.60 5.28 8.01

v5-L 1.35 4.75 11.75 5.83
acyclic v5-A 0.90 2.59 5.28 8.73
(trans- v7 1.75 6.05 13.18 6.74
formed) v7-O 0.49 1.97 6.02 4.65

CEC 1.22 5.40 11.23 6.25
CEC-g 0.83 3.06 5.25 5.32

(a)

TR3 TR10 TR10p VALUE

min(Tcyclic) 0.90 2.60 5.28 5.43
min(Tacyclic) 0.49 1.97 5.25 4.65

reduction 46% 24% 0.6% 14%

(b)

Table 1: (a) Run times (in seconds) of cyclic and acyclic Esterel programs
compiled with the v5, v7, and CEC compiler. (b) Relative runtime reduc-
tion from the fastest cyclic version to the fastest version for the acyclic
transformation, with reduction = 100% ∗ (1 − min(Tacyclic)/min(Tcyclic)).

Variant Compiler TR3 TR10 TR10p VALUE

cyclic v5-L 14271 21530 32244 12906
(original) v5-A 13039 16091 304095 13358

v5-L 13937 19772 28566 13330
acyclic v5-A 13041 16093 304097 13510
(trans- v7 14460 19916 27033 14315
formed) v7-O 13449 16314 21217 13836

CEC 13506 19764 27315 13089
CEC-g 13164 18302 23341 12787

Table 2: Size of compiled Esterel programs (in bytes) using the v5, v7, and
CEC compiler.

22

Variant Compiler TR3 TR10 TR10p VALUE

cyclic v5-L 0.09 0.29 1.42 0.04
(original) v5-A 0.02 0.06 11.07 0.03

v5-L 0.03 0.04 0.08 0.01
acyclic v5-A 0.02 0.04 10.43 0.02
(trans- v7 0.09 0.20 0.29 0.07
formed) v7-O 0.14 0.42 1.02 0.13

CEC 0.11 0.23 0.56 0.11
CEC-g 0.14 0.25 0.54 0.09

Table 3: Run times of the Esterel v5, v7, and CEC compilers (in seconds).

Variant Compiler TR3 TR10 TR10p VALUE

cyclic v5 107 338 686 116

v5 68 295 643 164
acyclic v7 48 160 298 -

CEC 106 344 614 -

Table 4: Comparison of node count for BLIF output.

Variant Compiler TR3 TR10 TR10p VALUE

cyclic v5 205 735 1499 1007

v5 155 591 1281 1792
acyclic v7 97 328 628 -

CEC 167 559 1117 -

Table 5: Comparison of sum-of-product (lits(sop)) count for BLIF output.

23

are similar to the ones for the node count; the transformation has increased
the literal count for VALUE, but has been lowered significantly for the ar-
biter.

6 Conclusions and
future work

We have presented an algorithm for transforming cyclic Esterel programs
into acyclic programs. This expands the range of available compilation
techniques, and, as to be expected, some of the techniques that are restricted
to acyclic programs produce faster and/or smaller code than is possible
with the compilers that can handle cyclic codes as well. Furthermore, the
experiments showed that the code transformation proposed here can even
improve code quality produced by the same compiler.

We have presented the transformation for Esterel programs; however, as
mentioned in the introduction, this transformation should also be applicable
to other synchronous languages, such as Lustre. Lustre is also a synchronous
language, but data-flow oriented, as opposed to the control-oriented nature
of Esterel. To our knowledge, none of the compilers available for Lustre
can handle cyclic programs, even though valid cyclic programs (such as the
Token Ring Arbiter) can be expressed in the language. Hence in the case of
Lustre, applying the source-level transformation proposed here is not only
a question of efficiency, but a question of translatability in the first place.

Regarding future work, the transformation algorithm spells out only
how to handle cycles carried by pure signals. We have presented an exam-
ple for removing a cycle involving a valued signal, but this still has to be
generalized.

Furthermore, as it stands, programmers can apply the algorithm pre-
sented here to remove cycles from a program just manually, perhaps guided
by information from the compiler regarding the exact location of cycles.
However, to be truly usable, the transformation should be performed auto-
matically. Therefore, we plan to implement this transformation as a pre-
processing step within the CEC.

Acknowledgment

We thank Xin Li for conducting the hardware synthesis experiments.

24

References

[1] Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A.,
Lavagno, L., Sangiovanni-Vincentelli, A., Sentovich, E. M.,
and Suzuki, K. Sythesis of Software Programs for Embedded Con-
trol Applications. In IEEE Transactions of Computer-Aided Design of
Integrated Circuits and System (June 1999), vol. 18, pp. 834–849.

[2] Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N.,
Guernic, P. L., and de Simone, R. The Synchronous Languages
Twelve Years Later. In Proceedings of the IEEE, Special Issue on Em-
bedded Systems (Jan. 2003), vol. 91, pp. 64–83.

[3] Berry, G. The Constructive Semantics of Pure Esterel. Draft Book,
1999.

[4] Berry, G. The foundations of Esterel. Proof, Language and Interac-
tion: Essays in Honour of Robin Milner (2000). Editors: G. Plotkin,
C. Stirling and M. Tofte.

[5] Berry, G., and Gonthier, G. The Esterel synchronous program-
ming language: Design, semantics, implementation. Science of Com-
puter Programming 19, 2 (1992), 87–152.

[6] Berry, G., and the Esterel Team. The Esterel v5 91 System
Manual. INRIA, June 2000.

[7] Bourdoncle, F. Efficient chaotic iteration strategies with widenings.
In Formal Methods in Programming and Their Applications: Interna-
tional Conference Proceedings (June 1993), vol. 735 of Lecture Notes
in Computer Science, Springer.

[8] Castelluccia, C., Dabbous, W., and O’Malley, S. Generat-
ing efficient protocol code from an abstract specification. IEEE/ACM
Transactions on Networking 5, 4 (1997), 514–524.

[9] CEC: The Columbia Esterel Compiler.
http://www1.cs.columbia.edu/~sedwards/cec/.

[10] Closse, E., Poize, M., Pulou, J., Venier, P., and Weil, D.
SAXO-RT: Interpreting Esterel semantic on a sequential execution
structure. In Electronic Notes in Theoretical Computer Science (July
2002), F. Maraninchi, A. Girault, and E. Rutten, Eds., vol. 65, Elsevier.

25

[11] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and
Zadeck, F. K. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems 13, 4 (October 1991), 451–490.

[12] Edwards, S. A. An Esterel compiler for large control-dominated
systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21, 2 (Feb. 2002).

[13] Edwards, S. A. Making Cyclic Circuits Acyclic. In Proceedings of
the 40th conference on Design automation (June 2003).

[14] Edwards, S. A., and Lee, E. A. The Semantics and Execution
of a Synchronous Block-Diagram Language. In Science of Computer
Programming (July 2003), vol. 48, Elsevier.

[15] Esterel web. http://www-sop.inria.fr/esterel.org/.

[16] The GNU compiler collection. http://gcc.gnu.org/.

[17] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The
synchronous data-flow programming language LUSTRE. Proceedings
of the IEEE 79, 9 (September 1991), 1305–1320.

[18] Pandya, P. The saga of synchronous bus arbiter: On model checking
quantitative timing properties of synchronous programs. In Electronic
Notes in Theoretical Computer Science (2002), F. Maraninchi, A. Gi-
rault, and Éric Rutten, Eds., vol. 65, Elsevier.

[19] Shiple, T. R., Berry, G., and Toutati, H. Constructive Analysis
of Cyclic Circuits. In Proc. International Design and Test Conference
ITDC 98, Paris, France (Mar. 1996).

26

