
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

KEP2 (Kiel Esterel Processor 2)
THE ESTEREL PROCESSOR

Xin Li, Reinhard von Hanxleden

Bericht Nr. 0506
June 2005

Revised August 2005

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

KEP2 (Kiel Esterel Processor 2)
THE ESTEREL PROCESSOR

Xin Li, Reinhard von Hanxleden

Bericht Nr. 0506
June 2005

Revised August 2005

E-mail:
{xli,rvh}@informatik.uni-kiel.de

An abbreviated version of this report has appeared in the
Proceedings of the 2005 International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems (CASES ’05),
September 2005, San Francisco, California, USA, ACM Press, ISBN

1-59593-149-X, pp. 225–236.

Abstract

The concurrent synchronous language Esterel allows to program reactive systems in an
abstract, concise manner. Several preemption operators, such as suspension or weak and
strong abortion, are provided to directly express reactive behavior with a deterministic,
mathematically precise semantics, without the inherent need for the support of a resource-
consuming, typically non-deterministic operating system.

An Esterel program is typically first translated into other, non-synchronous high-level lan-
guages, such as VHDL or C, and then compiled further into hardware or software. Another
approach that has been proposed recently is the direct execution of Esterel-like instructions
with a customized processor, which promises the flexibility of a software solution with an
efficiency close to a hardware implementation. However, the instruction sets and implemen-
tations of the processor architectures proposed so far still have some limitations regarding
their completeness, efficiency, and adherence to the original Esterel semantics. This paper
presents a novel processor architecture, the Kiel Esterel Processor, which addresses these
shortcomings. In particular, it provides a complete, semantically accurate implementation
of the Esterel preemption primitives, most of which can be expressed directly with a single
machine instruction.

i

Contents

1 Introduction 1

2 Related Work 3

3 The Kiel Esterel Processor Architecture 4
3.1 The KEP2 Input/Output Interface . 4
3.2 The KEP Tick Manage . 9
3.3 The Reactive Core . 9

3.3.1 The Preemption Element . 10
3.3.2 The AWAIT Element . 13
3.3.3 The CAWAIT Element . 13
3.3.4 The PRESENT Element . 13

3.4 The Interface Block . 15
3.5 Local Signals . 18

4 Experimental Results 19

5 Handling Concurrency 21

6 Conclusion and Outlook 21

A The Instruction Set Architecture 23
A.1 Preemption (abort/weak abort/suspend) . 23

A.1.1 ABORT . 23
A.1.2 WABORT . 23
A.1.3 SUSPEND . 24

A.2 Signal awaiting (await, pause) . 25
A.2.1 AWAIT . 25
A.2.2 PAUSE . 25

A.3 Multiple signal awaiting (await case) . 26
A.3.1 CAWAIT . 26
A.3.2 CAWAITE . 26

A.4 Signal emission (emit) . 27
A.4.1 EMIT . 27
A.4.2 EMITR . 27

A.5 Sustaining signals (sustain) . 28
A.5.1 SUSTAIN . 28
A.5.2 SUSTAINR . 28

A.6 The halt statement . 29
A.6.1 HALT . 29

A.7 The nothing statement . 29
A.7.1 NOTHING . 29

A.8 Testing signal presence (present) . 29
A.8.1 PRESENT . 29

A.9 Signal scoping (signal) . 30
A.9.1 SIGNAL . 30

A.10 Arithmetic and logical operations . 30
A.10.1 CLRC . 30
A.10.2 SETC . 31
A.10.3 SR . 31

ii

A.10.4 SRC . 32
A.10.5 NOTR . 32
A.10.6 LOAD . 32
A.10.7 ADD . 34
A.10.8 ADDC . 35
A.10.9 SUB . 36
A.10.10SUBC . 38
A.10.11MUL . 39
A.10.12ANDR . 41
A.10.13ORR . 42
A.10.14XORR . 44
A.10.15CMP . 45

A.11 The conditional branch statement . 47
A.11.1 JW . 47

A.12 Others . 49
A.12.1 GOTO . 49
A.12.2 CALL . 50
A.12.3 RET . 50

B Synthesizing a KEP Configuration 51
B.1 Reactive Block Generator . 51
B.2 Interface Block Generator . 51
B.3 Datapath Block Generator . 52
B.4 Innerconnection Generator . 52

C KEP2 Assembler Compiler 53

iii

List of Figures

1 An Esterel code fragment involving a weak abort statement (a), and the corre-
sponding assembler code for RePIC (b) and KEP (c). 3

2 SPEED: an example module including valued signals and variables. 4
3 Translation rules of every and loop statements. 7
4 The interface connections (a), and the waveform of the Tick signal (b). 7
5 The architecture overview. 9
6 The structure of the Watcher. 10
7 Architecture of a Reactive Block with three Watchers. 11
8 NESTED: the Esterel module illustrating the preemption statements (a), the KEP

assembler program (b), and an execution trace (c). 12
9 Architecture of the AWAIT Element. 14
10 Architecture of a CAWAIT Element, with 3 CASE Cells. 14
11 Architecture of the PRESENT Element. 15
12 The architecture of an Interface Block. 16
13 INOUT: an Esterel module illustrating the processes of I/O statements (a), and

the compiled KEP assembler program. 17
14 REINC: Translation of the Esterel signal declaration (a) into to the KEP SIGNAL

instruction (b). 18
15 Translating the Esterel abort/weak abort/suspend statements to the KEP2 in-

structions. 25
16 Translating the Esterel await/pause statements to the KEP2 AWAIT/PAUSE in-

structions. 26
17 Translating the Esterel await case statements to the KEP2 CAWAIT/CAWAITE

instructions. 27
18 Translating the Esterel emit statements to the KEP2 EMIT/EMITR instructions. . 28
19 Translating the Esterel sustain statements to the KEP2 SUSTAIN/SUSTAINR in-

structions. 29
20 Translating the Esterel present statement to the KEP2 PRESENT instruction. . . 30
21 Translating the Esterel signal statements to the KEP2 SIGNAL instructions. . . 31
22 Translating the Esterel arithmetic statements to the KEP2 instructions. 47
23 Translating the Esterel branch statements to the KEP2 branch instructions. . . . 49
24 The program of the example RUNNER in Esterel (a) and KEP assembler (b). . . . 54
25 The speed optimization of the example RUNNER. 55
26 The tradeoff optimization of the example RUNNER. 56

iv

List of Tables

1 Comparison of implementation alternatives . 2
2 Overview of the instruction set architecture (part 1/2). 5
3 Overview of the instruction set architecture (part 2/2). 6
4 KEP2 Interface Signals Descriptions. 8
5 The signal codes of the INOUT module (a), and the break down of the instruction

encoding of the EMIT G,#25 instruction (hexadecimal 0x38200019) with indica-
tions for the half bytes (b). 15

6 The codes size and RAM usage (in word) comparison of CURVE implementation
between KEP2, MCS51, and Microblaze. 19

7 Comparison of the codes sizes, in words. 20
8 The RAM usage (in words/bytes) comparison of module implementations. One

KEP word equals two bytes, and one Microblaze word equals four bytes. 20
9 Performance comparison between the KEP2 series and RePIC. 20

v

1 Introduction

The synchronous language Esterel has been developed for modeling reactive systems [4]. As
a system-level language, it gives an abstract, well-defined and executable description of the
application, and can be synthesized into other high-level languages for further compilation.

A fundamental concept of Esterel is the signal ; signals are used to communicate internally
and with the environment. The execution of an Esterel program is divided into logical instants,
or ticks, which also determine the sampling of input signals and the generation of output signals.
The synchrony of Esterel implies that the outputs generated from given inputs occur at the same
logical instant; that is, the generation of outputs is (conceptually) simultaneous with the inputs,
and computations are (conceptually) instantaneous. Signals are present or absent throughout
an instant, indicating the occurrence of certain events, and they may also carry a value.

As a system level language for programming control-dominated reactive systems, Esterel’s
control flow primitives are much richer than that of traditional, sequential programming lan-
guages. In particular, Esterel allows to express various types of preemption, including abortion
and suspension [3]. An abortion statement kills its abort body upon a specific trigger signal. In
strong abortion, expressed by abort, the body does not receive control at the instant when the
trigger occurs. For weak abortion, performed by weak abort, the body receives the control for
a last time at the abortion time. A suspension, performed by suspend, freezes the state of a
body for the instant when the trigger event occurs.

There are several methods to implement an Esterel program:

• A hardware implementation [2] has small memory requirements and low unit production
costs. However, it is not flexible, and its resource usage increases rapidly when data path
handling is needed.

• A software implementation [4, 8] on the other hand is a very flexible solution, and has low
costs for the data path and arithmetic operations. However, common (COTS) processor
architectures cannot handle reactive control constructs directly; therefore, handling these
control constructs correctly turns out to be fairly expensive on classical software imple-
mentations. Moreover, the instruction and data memory requirements can be prohibitive
for small, low-cost micro controllers.

• The co-design approach [1] partitions a model into hardware and software parts, trying to
achieve a good balance of flexibility, performance and cost; for the software part, again a
traditional µC is used.

Another approach to combine the advantages of custom hardware and traditional software is to
implement an Esterel program on a reactive processor whose instruction set has been tailored
to Esterel. We distinguish two variants of this approach.

• The patched reactive processor implementation combines a COTS processor core with an
external hardware block, which implements additional Esterel-style instructions.

• A custom reactive processor implementation consists of a full-custom reactive core, whose
instruction set and data path have been tailored exclusively for the processing of Esterel
code.

Table 1 provides a high-level comparison of these implementation alternatives.
So far, there have been only limited and fairly recent investigations of the reactive processor

approach. To our knowledge, the ReFLIX and RePIC architectures proposed by Dayaratne,
Roop, Salcic et al. [11, 12, 7] are the only ones that fall into this category, and they both follow
the patched processor strategy. Their results are fairly promising, illustrating the potential of

1

Hardware Software Co-design Patched Custom
Processor Processor

Architecture

Hardware

Custom
Hardware

Environment

Software

COTS-μC

COTS Assembler

Environment

Co-design

COTS-
μC

COTS Assembler

Environment

Custom
Hardware

Patched Processor

Extended Assembler

Environment

PIC
Core Extension Esterel-μC

Esterel Assembler

Esterel Processor

Environment

Speed ++ – + + +

Flexibility – – ++ – +/– +

Esterel Compliance ++ ++ +/– – +/–

Cost ++ – – – – +

Appl. Design Cycle – – ++ +/– ++ ++

Table 1: Comparison of implementation alternatives
++ represents best; – – means worst, e. g., Cost ++ means very low production costs.

this approach. However, there are also certain limitations of the architectures proposed so far,
for example regarding their support of the Esterel preemption primitives, as discussed further
in the following section.

In this paper, we present an alternative architecture, the Kiel Esterel Processor (KEP),
which is a custom reactive processor, to our knowledge the first of this kind. The architecture
presented in this paper is version 2.0 of the Kiel Esterel Processor, hence we also refer to it as
KEP2. Notable features of the KEP2 include the following:

1. It gives a complete, semantically accurate implementation of the Esterel preemption prim-
itives, including weak and strong abortion and suspension.

2. As the instruction set and data path have been developed specifically for Esterel execution,
the individual machine instructions can be executed fairly fast. Furthermore, most typical
Esterel commands can be expressed directly with just a single KEP command, improving
speed further and leading to minimal instruction and data memory usage.

3. The KEP also includes an interface block for handling input and output signals, which di-
rectly supports testing presence and values of signals across logical instants (corresponding
to Esterel’s pre operator).

4. Throughout the development of the KEP, scalability has been a consideration, hence the
allowed number of signals, the nesting depth of preemption primitives, and other design
parameters are fully configurable.

The rest of this paper is organized as follows. The next section discusses related work.
Section 3 presents the architecture of the KEP2, followed by a description of the KEP assembler.
The experimental results are summarized in Section 4. The KEP2 is a single, sequential
processor, and hence does not support Esterel’s concurrency operator directly, which is probably
its most significant limitation so far; this is addressed further in Section 5. Finally, Section 6 gives
some concluding remarks and outlines future work. Appendix A elaborates on the instruction
set in detail, Appendix B describes the synthesis of a specific KEP configuration, and Appendix
C describes the translation of KEP2 assembler into executable codes.

2

% Esterel

...

weak abort

...

emit Z;

await B;

emit X;

await C;

emit W;

when A;

emit Y;

...

% RePIC

...

4 ldaaddr 19

5 abort 0 A

...

8 emit Z

9 chkabort 0

10 await

11 present B

12 goto 10

13 emit X

14 chkabort 0

15 await

16 present C

17 goto 15

18 emit W

19 emit Y

...

% KEP ASM

...

WABORT 1,A,A0

...

EMIT Z

AWAIT B

EMIT X

AWAIT C

EMIT W

A0: EMIT Y

...

(a) (b) (c)

Figure 1: An Esterel code fragment involving a weak abort statement (a), and the corresponding
assembler code for RePIC (b) and KEP (c).

2 Related Work

As mentioned in the introduction, the only other reactive processor proposals in the sense of Es-
terel that we are aware of are the ReFLIX and RePIC designs [11, 12, 7], of which RePIC is the
more advanced. The RePIC includes an abort handling block, which is used for handling both
strong and weak aborts; it does not handle suspension. These abort types are distinguished by
the judicious placement of additional instructions in the assembler code. Figure 1(a)/(b) shows
an example from Dayaratne et al. [7] for translating the Esterel weak abort statement to the
RePIC assembler. The abort handler is configured with a pair of instructions; ldaaddr (line
4) specifies the continuation address, and abort (line 5) indicates the trigger signal. For weak
abortion, the RePIC inserts a chkabort instruction before every await instruction within the
abort body to determine whether control stays within the abort body in that logical instant.
For example, after emitting signal Z (line 8), the chkabort (line 9) determines whether the
“await B”, encoded in lines 10–12, should be executed next, or whether a jump to the contin-
uation address should be performed, thus aborting the body. As presented there, this would
respond correctly to the presence of the abort signal A; however, if A is absent, execution would
reach the await-loop in lines 10–12, and would in the following ticks only be sensitive to the
awaited signal B, not to the abort trigger signal A. It seems that this could be remedied by
including the chkabort instruction within the await-loop (i. e., changing the “goto 10” in line
12 to “goto 9”). However, what we see as the more significant limitation is that this abort
handling mechanism seems not as efficient as it could be, especially when considering nests of
aborts. For comparison, the KEP handles aborts directly in hardware, without the need for
additional assembler instructions to check the presence of abort signals at each control point,
thus resulting in more compact and efficient code. To illustrate, consider the KEP assembler
shown in Figure 1(c) for the same Esterel example; a single WABORT assembler instruction con-
figures the abort handler, which is then active concurrently with the execution of the abort
body, and which autonomously performs the necessary preemption of the abort body (correctly
distinguishing between weak and strong aborts) when the abort signal occurs.

3

1 % Esterel

2 module SPEED:

3 input Centimeter,Second;

4 output Speed:integer;

5 loop

6 var Distance:=0:integer in

7 abort

8 every Centimeter do

9 Distance:=Distance+1

10 end every

11 when Second do

12 emit Speed(Distance)

13 end abort

14 end var

15 end.

1 % KEP ASM

2 % module SPEED

3 INPUT Centimeter,Second

4 OUTPUTV Speed

5 VAR Distance

6 A0: LOAD Distance,#0

7 ABORT 1,Second,A1

8 AWAIT Centimeter

9 A2: ABORT 1,Centimeter,A3

10 ADD Distance,#1

11 HALT

12 A3: GOTO A2

13 A1: EMITR Speed,Distance

14 GOTO A0

Figure 2: SPEED: an example module including valued signals and variables.

Based on RePIC, Dayaratne et al. [7] propose an extension to a multi-processor architecture,
called EMPEROR, which allows the handling of Esterel’s concurrency operator. This is an
interesting approach, which could also be applied to the KEP2 to extend the range of acceptable
Esterel programs; see also Section 5.

Finally, the KEP2 itself has evolved from earlier designs, the first of which being KEP version
0.1 [9]. This version already implemented the suspension primitives correctly, but did not include
the interface block with the support of the pre-operator, did not support variables, and did not
allow local signals.

3 The Kiel Esterel Processor Architecture

The KEP2 employs a 32-bit wide instruction word with a separate 16-bit wide inner data bus.
This gives a range of up to 65535 for the signal counts, which indicate how often a signal must
occur before for example an abort is triggered. The KEP assembler language contains thirty
instructions. An overview is given in Tables 2 and 3. The most common Esterel statements,
including a majority of the reactive kernel statements, can be represented directly. Other Es-
terel statements can be implemented by standard Esterel syntax translation. To illustrate the
compactness of the KEP assembler, consider the Esterel module SPEED [3], shown in Figure 2.
This module contains local variables as well as valued signals. To generate the assembler, the
translation rules shown in Figure 3 were employed.

The architecture of the KEP2, shown in Figure 5, is inspired by the three layers that consti-
tute a reactive program [4], i. e., the interface layer, the reactive kernel, and the data handling
layer. In the KEP, a Reactive Core decides what computations and what outputs must be gener-
ated when it reacts to inputs. An interface block handles input reception and output production.
The classical computations are preformed by the data handling block. All of these blocks are
scalable and optimized for the Esterel language.

3.1 The KEP2 Input/Output Interface

The top-level I/O signals of the KEP2 are illustrated in Figure 4(a). The environment can reset
the processor via the Reset pin. An external clock must be connected to the OscClk pin; we
use Tosc to denote the rate of that clock. ROMData and ROMAddr are data and address buses

4

Mnemonic,
Operands

Description
Corresponding Es-
terel Statement

See Sec-
tion

See
page

ABORT n,S,

endAddr,startAddr

Configures the Watcher (the basic cell of
the Preemption Element) in the Reactive
Block

abort ...when n

S
A.1.1 23

WABORT n,S,

endAddr,startAddr

Configures the Watcher in the Reactive
Block

weak abort

...when n S
A.1.2 23

SUSPEND 1,S,

endAddr,startAddr

Configures the Watcher in the Reactive
Block

suspend ...when

S
A.1.3 24

AWAIT S
Configures the AWAIT Element in the Re-
active Block

await S A.2.1 25

AWAIT n,S Similar to the above, n is the counter value await n S A.2.1 25

PAUSE (AWAIT TICK) Similar to the above, delays for one instant
pause (await

tick)
A.2.2 25

AWAIT n,TICK Similar to the above, delays for n instants await n tick A.2.1 25

CAWAIT

S,SstartAddr
Configures the CAWAIT Element await case A.3.1 26

CAWAITE

S,SstartAddr

Configures the CAWAIT Element for the
last case in the list

await case A.3.2 26

EMIT S
Emits the signal S and keeps it during the
current tick

emit S A.4.1 27

EMIT S,#data
Emits the valued signal S with data and
keeps it during the current tick

emit S(data) A.4.1 27

EMITR S,reg
Emits the valued signal S with contents of
the register reg

emit S(var reg) A.4.2 27

SUSTAIN S Sustains the signal S sustain S A.5.1 28

SUSTAIN S,#data Sustains the valued signal S with data sustain S(data) A.5.1 28

SUSTAINR S,reg
Sustains the valued signal S with contents
of the register reg

sustain

S(var reg)
A.5.2 28

HALT Halts the system halt A.6.1 29

NOTHING Does nothing nothing A.7.1 29

PRESENT

S,elseAddr

Tests signal S, goes to the address
elseAddr if S is not presented

present S then

...end
A.8.1 29

SIGNAL S Initializes a local signal S
signal S in

...end
A.9.1 30

SIGNAL PRE(S)
Executes right after the SIGNAL S instruc-
tion

A.9.1 30

CALL addr Calls a subroutine which locates on addr call subroutine A.12.2 50

RET Returns from a subroutine A.12.3 50

GOTO addr Goes to the address addr A.12.1 49

Table 2: Overview of the instruction set architecture (part 1/2).

5

Mnemonic,
Operands

Description
Corresponding Es-
terel Statement

See Sec-
tion

See
page

JW Z,elseAddr

Goes to the address elseAddr if the previ-
ous operating result is not zero. Generally
it is used right after a SUB instruction to
implement the repeat statement

repeat n times

...end
A.11.1 47

JW L,elseAddr

Goes to the address elseAddr if the previ-
ous comparison operating result is not less
than. Generally it is used right after a CMP

instruction to implement the if statement

if (A<B) then

...else ...end
A.11.1 47

JW G,elseAddr

Goes to the address elseAddr if the pre-
vious comparison operating result is not
greater than

if (A>B) then

...else ...end
A.11.1 47

JW GE,elseAddr

Goes to the address elseAddr if the pre-
vious comparison operating result is not
greater than or equal

if (A>=B) then

...else ...end
A.11.1 47

JW LE,elseAddr

Goes to the address elseAddr if the previ-
ous comparison operating result is not less
than or equal

if (A<=B) then

...else ...end
A.11.1 47

JW EE,elseAddr

Goes to the address elseAddr if the pre-
vious comparison operating result is not
equal

if (A=B) then

...else ...end
A.11.1 47

JW NE,elseAddr
Goes to the address elseAddr if the previ-
ous comparison operating result is equal

if (A<>B) then

...else ...end
A.11.1 47

CLRC Clears carry A.10.1 30

SETC Sets carry A.10.2 31

SR reg Right shifts the register reg A.10.3 31

SRC reg Right shifts the register reg with a carry A.10.4 32

NOTR reg Bitwise logical NOTs the register reg A.10.5 32

LOAD reg,val

Loads the val to the register reg. The val
can be one of the following. (1) #data : an
immediate data (2) reg : the contents of a
source register (3) ?S : the value of signal S
(4) PRE(?S): the previous value of signal
S

reg:=val A.10.6 32

ADD reg,val
Adds the val to the register reg. See also
the LOAD instruction.

reg:=reg+val A.10.7 34

ADDC reg,val
Adds the val to the register reg with the
carry. See also the LOAD instruction.

A.10.8 35

SUB reg,val
Subtracts the val from the register reg.
See also the LOAD instruction.

reg:=reg-val A.10.9 36

SUBC reg,val

Subtracts the val from the register reg

with the carry. See also the LOAD instruc-
tion.

A.10.10 38

MUL reg,val
Multiplies the register reg by the val. See
also the LOAD instruction.

reg:=reg*val A.10.11 39

ANDR reg,val
Bitwise logical ANDs the register reg by
the val. See also the LOAD instruction.

A.10.12 41

ORR reg,val
Bitwise logical ORs the register reg by the
val. See also the LOAD instruction.

A.10.13 42

XORR reg,val
Bitwise logical XORs the register reg by
the val. See also the LOAD instruction.

A.10.14 44

CMP reg,val

Compares the contents of the register reg

and the val, affects equal and carry bits.
See also the LOAD instruction.

A.10.15 45

Table 3: Overview of the instruction set architecture (part 2/2).

6

every S do
p

end

≡

await S ;
loop

abort
p ;
halt

when S

end loop

loop
p

end

≡
A :

p ;
goto A

Figure 3: Translation rules of every and loop statements.

KEP2
(Kiel Esterel Processor 2)

OscClk

Reset

Sin[nin-1:0]

InstrClk

Tick

Sout[nout-1:0]

SDataout0[nrange-1:0]

SDataoutnValued-1[nrange-1:0]

.

.

ROMAddr[9:0]
ROMData[31:0]

SDatain0[nrange-1:0]

SDatainValued-1[nrange-1:0]

.

.

TickWarn Tick
-� Treact���

Sample Inputs
@@I

Set Outputs

(a) (b)

Figure 4: The interface connections (a), and the waveform of the Tick signal (b).

7

for the instruction memory. There are nin pins Sin to signal the presence of input signals, and
V alued data buses of width nrange to provide values for input signals. There are similar pins
and buses for output signals. The InstrClk indicates the instruction clock; each instruction cycle
lasts three OscClk cycles. A complete description of the I/O signals can be found in Table 4

Signal Direction Description

Reset Input
To reset the KEP2 and to generate a Reset Event, assert this
input High for at least one OscClk cycle. A Reset Event is
automatically generated, and all outputs will be set to ’0’.

OscClk Input

The frequency may range from DC to the maximum operating
frequency of the circuit, for example as reported by the FPGA
development software. In KEP2, one instruction cycle equals
three OscCLK cycles.

ROMAddr[9:0] Output
The ROMAddr address bus is an output bus from the KEP2
and it indicates the instruction memory address. RO-
MAddr[9:0] will be set to "0000000000" if Reset is set.

ROMData[31:0] Input

The ROMData data bus is an input bus to the KEP2 and
it carries encoding data from instruction memory. When the
ROMAddr changes, the new ROMData will be valid on the
following clock rising edge.

InstrClk Output InstrClk is an output from KEP2 and it indicates the instruc-
tion cycle. It is set to ’0’ when Reset is set.

Tick Output Tick is an output from KEP2 and it indicates the logical tick
of Esterel. It is set to ’0’ when Reset is set.

TickWarn Output TickWarn is an output from KEP2 and it is kept high once the
physical time of an instant extends the preconcerted value.

Sin[nin − 1:0] Input

Presents and keeps valid input signals on this port during the
Tick set (high) period. The nin depends on the amount of
input signals. e. g., nin equals 8 (Sin[7:0]) when there are 8
input signals. KEP2 supports up to 63 input signals.

SDataini[nrange − 1:0] Input

Carried data of valued signal S appears on the
SDataini[nrange:0] port. i ranges from 0 to nvalued − 1,
where nvalued is the number of valued signals. nrange depends
on the range of carried data. For example, assume there are
two valued signals, and the range of carried data is from 0
to 200 (decimal). Two ports would be generated. One is
SDatain0[7:0] which corresponds to Sout[0], and the other is
SDataout1[7:0] which corresponds to Sout[1]. nrange is up to
16 (16-bit), which corresponds to values from 0 to 216-1 =
65535.

Sout[nout − 1:0] Output

Output signals appear on this port until the current Tick is
finished (falling edge). The nout depends on the amount of
output signals, see also Sin[nin − 1:0]. KEP2 supports up to
63 output signals.

SDataouti[nrange − 1:0] Output Carried data of valued signal S appears on the
SDataouti[nrange:0] port. See also SDataini[nrange − 1:0].

Table 4: KEP2 Interface Signals Descriptions.

The Tick pin indicates the logical tick of Esterel. Figure 4(b) shows a waveform of the
Tick signal. The activated period (Tick high) is Treact, which indicates the reaction time of the
module. A gap of length Tosc identifies when the inputs are sampled and when the outputs are
generated by the reactive processor. The processor samples the inputs on the Tick rising edge,
and holds the outputs generated during a logical tick until the Tick falling edge. The deactivated

8

KEP2 (Kiel Esterel Processor 2)

In
ne

r b
us

(D
at

a/
A

dd
r)

Instruction Memory

Instruction
Fetch

Address
Multiplexer

 Tick, TickWarn
&

InstrClk

Reset

OscClk

State
Generation

Decoder
&

Controller

Reactive
Block

In
ne

r
Ti

ck
 a

nd

C
on

tro
l

S
ig

na
ls

Register
File

Interface
block

ALU

MUXMUX

Tick
Manager

Input
 Signals

Output
Signals

Figure 5: The architecture overview.

period (Tick low) leaves a period for the environment to modify the inputs.

3.2 The KEP Tick Manage

The KEP has a special valued signal TICKLEN, which can be set to a certain value by the
assembler program to define an upper bound on the number of instructions that may be executed
within a logical tick. When the program executes an “EMIT TICKLEN” instruction, generally
at the beginning of a module, this initializes the Tick Manager. When more than TICKLEN
instructions have been executed since the last tick delimiting instruction (pause or await), the
Tick Manager considers this a tick length timing violation. In this case, the current tick length
will be extended automatically until the tick is finished. Furthermore, the timing violation is
signaled to the environment via the TickWarn pin.

The programmer can try to find an appropriate value for TICKLEN and add a correspond-
ing emit statement to the assembler program. However, we have also developed an analysis
procedure that automatically performs this Worst Case Reaction Time (WCRT) analysis [10].
This analysis has been integrated into a compiler that translates Esterel to KEP assembler and
automatically sets TICKLEN.

3.3 The Reactive Core

The implementation of Esterel’s reactive statements relies on the cooperation of the KEP2’s De-
coder & Controller and the Reactive Block, which together form the Reactive Core. The Reactive
Block contains a Preemption Element, which contains a configurable number of Watcher mod-
ules, that are responsible for implementing the preemption operations. The Reactive Block also
contains the AWAIT and CAWAIT Elements, implementing single and concurrent signal awaiting,
and the PRESENT Element, testing for signal presence.

9

Enable Watcher Trigger Watcher

Watcher

StartAddr >=

EndAddr <

PC

Unicode Signals

&

SignalCode

EW

Tick

DownCounter

SignalCount

TW

PreemptionFlag

innerData[15:0]
innerAddr[7:0]

PreemptionFlag

EndAddr

innerExID[2:0]

PriorityController

Figure 6: The structure of the Watcher.

3.3.1 The Preemption Element

According to the Esterel semantics, a preemption (abortion or suspension) is enabled when
control is in its body, and disabled when control is outside of its body. When a preemption is
enabled, the corresponding trigger signal is watched and the module can react to the presence of it
(is active). Otherwise, the signal does not cause preemption. We call this scheme Inside/Outside
Preemption Range Watching (IOPRW).

A Watcher, shown in Figure 6, contains two functions to implement the IOPRW, the Enable
Watcher and the Trigger Watcher. The Enable Watcher watches the program counter PC and
compares it with the corresponding preemption’s start and end addresses. Based on that, it
decides whether this preemption should be in the enabled state or in the disabled state. If the
watched signal is present on the Tick rising edge and the Watcher is in the enabled state, the
Watcher triggers a corresponding action, unless it is overridden by another Watcher with higher
priority, e. g., an enclosing nesting activates a suspension and freezes the state of its body. Once
the Watcher changes its state from disabled to enabled, which means that the PC re-enters the
watching range, the SignalCount will be reloaded into the counter.

The function of the Trigger Watcher depends on the configuration of the Watcher. For an
abortion, it watches the trigger signal; if the signal occurs, the Watcher goes into the triggered
state and counts down the signal count; then, depending on whether the trigger signal count
specified by the abortion statement has already been reached, the Watcher decides whether it
should go into the terminated state, which would kill the abort body, or not. For a suspension,
the Watcher watches the trigger signal and decides whether the suspension body ought to go
into the suspended state or not. Once an abortion is terminated or a suspension is activated, a
TW event will be emitted.

Figure 7 shows the architecture of a Reactive Block including three Watcher modules. To
illustrate its operation, consider the Esterel module NESTED in Figure 8(a), which is an example
of a nested preemption. After starting, the module watches C and A as the abortion trigger
signals, and B as the suspension trigger signal. The execution stays on line 8 to wait for signal

10

Reactive Block
Preemption Element

Watcher0

Watcher1
PC[9:0]

Unicode signals

Tick

innerData[15:0]

wrPreemption

Priority
Contoller

PreemptionFlag0

TW0

TW1

TP
PreemptionFlag

PreemptionAddress[9:0]
MUX(Addr)

MUX

Watcher2
TW2

PreemptionFlag1

PreemptionFlag2

rdAWAIT

AWAIT Element

wrAWAIT
Selector

SignalCode

DownCounter

CAWAIT Element

CASE Cell 0

Index

innerAddr[7:0]

wrCAWAIT

PriorityCell rdCAWAIT

CAWAITAddress[9:0]
MUX(Addr)

CASE Cell 1

innerMark[2:0]

rdAbort
weakFlag
rdSuspend

rdPRESENT

PRESENT Element

Selector

SignalCode

MUX(Addr)
returnAddr

Figure 7: Architecture of a Reactive Block with three Watchers.

11

1 % Esterel

2 module NESTED:

3 input A,B,C,D;

4 output E,F,G,H;

5 weak abort

6 suspend

7 abort

8 await D;

9 emit E;

10 when C;

11 emit F;

12 await D;

13 emit E;

14 when B;

15 await D;

16 emit G;

17 when A;

18 emit H;

19 halt;

20 end module

1 % KEP ASM

2 % module NESTED

3 % Instruction Address

4 INPUT A,B,C,D

5 OUTPUT E,F,G,H

6 WABORT 1,A,A2 (0-1)

7 SUSPEND 1,B,A1 (2-3)

8 ABORT 1,C,A0 (4-5)

9 AWAIT D (6)

10 EMIT E (7)

11 A0:

12 EMIT F (8)

13 AWAIT D (9)

14 EMIT E (10)

15 A1:

16 AWAIT D (11)

17 EMIT G (12)

18 A2:

19 EMIT H (13)

20 HALT (14)

Tick -

B

C

C

D

F

A

D

E

H

(a) (b) (c)

Figure 8: NESTED: the Esterel module illustrating the preemption statements (a), the KEP
assembler program (b), and an execution trace (c).

D. Those three preemptive statements constitute a mixed preemption nest, and the priority of
the outer preemptive statement is higher than that of the inner one. Figure 8 (b) shows the
corresponding KEP assembler program of the NESTED module. Figure 8 (c) shows a possible
execution trace.

When executing NESTED, first the watchers Watcher0, Watcher1 and Watcher2 are configured
via three preemption instructions (lines 6–8). The PC stays at address (6) (line 9) until any of
the signals A, B, C, or D occur. Since this address is within each of the watchers’ watching range,
all of the watchers are enabled now.

If B and C occur simultaneously, TW1 and TW2 are set at the same time. The Preemption-
Flag1 indicates a suspension, and PreemptionFlag2 indicates strong abortion. The PriorityCon-
troller processes TW events based on rules about priorities and preemption types of Watchers
according to the Esterel semantics. In this case, the suspension triggered by B has higher priority.
The PriorityController maps Watcher1’s outputs to the Reactive Block’s output, so the Preemption
Element’s TP, which means Trigger Preemption, is ’1’ for denoting an active preemption, and
the PreemptionFlag indicates a suspension. The generated control signals will be broadcast to
all of the lower priority watchers and other relevant elements. Watcher2 receives the result of
the PriorityController, and since the current active preemption is a suspension, Watcher2 will
keep its state, which means that the counter of this watcher will not be decremented. A decoder
analyzes the TP and PreemptionFlag signals, and decodes them to three signals of the Reactive
Block, i. e., rdAbort, weakFlag and rdSuspend, which indicate the current active preemption for
the Decoder & Controller. The Decoder & Controller checks the rdAbort, weakFlag, rdSuspend,
rdAWAIT, and so on, simultaneously. Since the active preemption is a suspension, the KEP
keeps its state until the current tick is finished.

Assuming now that the signals C and D occur simultaneously in the next instant, Watcher2
takes priority. The outputs of Watcher2 are mapped to that of the Preemption Element, so the

12

Reactive Block’s rdAbort is ’1’ to denote that there is an active abortion. The returnAddr equals 8
(the next instruction address behind the body of abortion C), and the weakFlag is ’0’ to indicate
a strong abortion type. Since the sensitive signal of the AWAIT statement is present, the AWAIT
Element sets rdAWAIT to ’1’ to denote that AWAIT is terminated. The Decoder & Controller
checks the rdAbort, weakFlag and rdAWAIT signals and responds to the strong abortion. The
returnAddr is mapped to the PC via the Address Multiplexer. The KEP jumps to address 8 and
executes “EMIT F” and “AWAIT D”.

When signals A and D occur simultaneously in the following instant, weak abortion A takes
priority. The PriorityController maps Watcher0’s outputs to that of the Preemption Element, so
the Reactive Block’s rdAbort is ’1’ to denote an active abortion, the returnAddress equals 13 (the
next instruction address behind the body of abortion A), and the weakFlag is ’1’ to indicate a
weak abortion type. At the same time, the AWAIT Element sets rdAWAIT to ’1’ to denote that
the AWAIT is terminated. Since the active abortion is a weak abortion, the KEP will respond
to the terminated AWAIT instruction first. “EMIT E” (10) is executed and then the “AWAIT D”
(11) is fetched. Since it is a non-instantaneous statement, the Reactive Core will ignore it, and
instead respond to the weak abortion. The returnAddress is mapped to the PC, and then control
jumps to (13). The KEP executes “EMIT H” (13) and HALT (14).

3.3.2 The AWAIT Element

The above case illustrates how the KEP deals with different preemption types. The KEP cor-
rectly and very efficiently implements abort/weak abort/suspend statements and allows arbi-
trary nesting. The Reactive Block includes further elements to directly implement the majority
of reactive statements of Esterel.

The AWAIT and PAUSE instructions are handled by the AWAIT Element, which is shown in
Figure 9. The AWAIT Element contains two parameter registers. One registers the watched
signal coder value and the other registers the counter value. The element watches sensitive
signal on Tick rising edge. If the watched signal is ’1’, the counter value will be deducted. When
the counter value equals zero, the AWAIT Element sets rdAWAIT to ’1’ to denote the termination
of AWAIT.

When the Reactive Core executes an AWAIT or PAUSE instruction for the first time, it configures
the AWAIT Element via inner buses. Then after the end of the current tick, the Decoder &
Controller waits for the terminating signal from the AWAIT Element. If the Reactive Core responses
to an active abortion before the current AWAIT instruction terminates, the AWAIT instruction will
be cancelled.

3.3.3 The CAWAIT Element

The CAWAIT Element watches several signals in parallel. The architecture of the CAWAIT
Element is similar to that of the Preemption Element Element. Every CASE Cell includes two
parameters, i.e. SignalCoder and CASEAddr. The CASEAddr registers the start address of the
case body. The SignalCoder indicates which signal ought to be watched. Figure 11 illustrates a
CAWAIT Element which includes three CASE Cell.

When several watched signals occur simultaneously, the corresponding CASE Cells are all
active. The PriorityCell chooses the first active one in the list to take priority. In other words,
the earlier case takes priority. The Decoder & Controller will respond to this event and jump to
the registered address.

3.3.4 The PRESENT Element

The implementation of PRESENT statement depends on the PRESENT Element, which is shown
in 11. The basic form of the Esterel PRESENT statement checks for one signal expression and

13

rdAWAITUnicode signals

Tick

AWAIT Element

innerData[15:0]

innerAddr[7:0]
wrAWAIT

Selector

SignalCoder

DownCounter

instrClk

Figure 9: Architecture of the AWAIT Element.

CAWAIT Element

CASE Cell 0Unicode signals

Tick

Index

innerData[15:0]
innerAddr[7:0]
wrCAWAIT

PriorityCell rdCAWAIT

CAWAITAddress[9:0]
MUX(Addr)

CASE Cell 1

CASE Cell 2

Figure 10: Architecture of a CAWAIT Element, with 3 CASE Cells.

14

rdPRESENTUnicode signals

PRESENT Element

innerAddr[7:0]

Selector

SignalCoder

Figure 11: Architecture of the PRESENT Element.

performs binary branching. We map 26th to 19th bit of instruction encoding to the selected-
signal-coder port of the PRESENT Element. The value of the selected signal is immediately put
to an output port which is named as rdPRESENT.

Considering the stages of instruction execution, the selected signal’s coder is emitted when
KEP2 fetches a PRESENT instruction. When the Core executes the instruction, it just needs to
test the rdPRESENT signal to decide whether to branch or not.

3.4 The Interface Block

The Interface Block is created as an interface layer of the reactive system. Figure 12 shows the
architecture of an Interface Block, which here is configured with four pure and two valued inputs
and outputs. The width of the valued signals’ carried data is configured to be eight bits.

The Interface Block supports the pre operation (introduced in Esterel V5.91), which allows
to access the previous presence status and value of a signal, directly in hardware. There are
two basic pre modes. One is the pre(S), which indicates the previous status of signal S, i. e.,
its presence status in the previous instant. The other is pre(?S), which expresses the value of
signal S in the previous instant.

Signal d7 − d2 d1 d0

TICKLEN 000000 0 0

A 000001 1 0

B 000010 1 0

C 000011 1 0

G 000001 0 0

H 000010 0 0

I 000011 0 0

PRE(A) 000001 1 1

PRE(I) 000011 0 1

X 000001

Bit field Value Meaning
d31 − d27 0011|1 Opcode
d26 − d19 000|0010|0 The signal’s unicode value
d18 − d16 000 The extended code
d15 − d00 0000|0000|0001|1001 The carried data

(a) (b)

Table 5: The signal codes of the INOUT module (a), and the break down of the instruction
encoding of the EMIT G,#25 instruction (hexadecimal 0x38200019) with indications for the half
bytes (b).

To illustrate how the Interface Block deals with the input and output signals, consider the
INOUT module shown in Figure 13(a), and the corresponding compiled KEP assembler program

15

Interface Block

Pre Value
Register File

Distribute
Register File

Sin[5:0]

Tick

innerData[15:0]

wrEmit

innerAddr[7:0]
innerMark[2:0]

UnicoderPre
Signal

Register

Register

Register

O
ut

pu
t

R
eg

is
te

r

TickLenDataRegister

Distribute
Register File

Register

Register

SDataout0[7:0]

SDataout1[7:0]

SDatain0[7:0]

SDatain1[7:0]
Register
Register
Register
Register

regDatIn[7:0]]

Sout[5:0]

regDatOut[7:0]

Unicode signals

Figure 12: The architecture of an Interface Block.

16

1 % Esterel

2 module INOUT:

3 input A:integer;

4 input B:integer,C;

5 output G:integer;

6 output H:integer,I;

7 var X in

8 await A;

9 present C then

10 emit I;

11 end present;

12 await B;

13 present pre(I) then

14 emit G(25);

15 X:=pre(?A);

16 emit H(X);

17 end present;

18 halt;

19 end.

1 INPUTV A,B

2 INPUT C

3 OUTPUTV G,H

4 OUTPUT I

5 VAR X

6 [0000] {38000005} EMIT _TICKLEN #5

7 [0001] {30300001} AWAIT A

8 [0002] {10700004} PRESENT C,A0

9 [0003] {38600000} EMIT I

10 [0004] {30500001} A0: AWAIT B

11 [0005] {10680009} PRESENT PRE(I),A1

12 [0006] {38200019} EMIT G,#25

13 [0007] {A03E0400} LOAD X,PRE(?A)

14 [0008] {90400400} EMITR H,X

15 [0009] {28000000} A1: HALT

(a) (b)

Figure 13: INOUT: an Esterel module illustrating the processes of I/O statements (a), and the
compiled KEP assembler program.

shown in Figure 13(b). Table 5(a) shows the signal codes of the INOUT module. The TICKLEN
is a reserved name of a valued signal for configuring the Tick Manager, see Section 3. The signal
code is 8 bits wide. Bit 0 is used as the pre extended bit of the original signal. Bit 1 is used
to describe the signal type, i. e., ’1’ indicates an input type signal. Bits 7–2 further identify the
signal. In this way, all of the signals’ current or previous states are mapped to a set of signals
and can be accessed directly. A similar method is used for the values of signals and for variables
(which are similar to valued signals, but do not carry a presence status). Table 5(b) shows the
encoding of an EMIT instruction. Bits 26–19 of an instruction are the Unicode Signals code. In
the KEP, all the input and output signals are recoded into a Unicode Signals bus, which can be
accessed by the inner blocks and elements directly.

The first instruction in INOUT is “EMIT TICKLEN,#5”. The emitted value is transmitted
to the TickLenData port and received by the Tick Manager for initialization. Then “AWAIT A”
configures the AWAIT Element in the Reactive Block. Control stays there and waits for the trigger
signal.

Assume the valued input signal A and pure signal C are both present after the initial instant,
and A carries the value 20. The Reactive Block sets rdAWAIT to ’1’ to denote that AWAIT is
terminated. The Unicode Signals are multiplexed to the Selector of the PRESENT Element in
the Reactive Block. When the “PRESENT C,A0” instruction is fetched, the MUX maps signal
00001110b to the rdPRESENT signal. Since C is present in this instant, the rdPRESENT is high
to skip the branch. Then the “EMIT I” is executed, and the output register locks the presence
of the emitted signal until the current tick ends. The execution of “AWAIT B” causes the KEP
to wait for the next tick.

When the following instant starts, the old status of input and output signals will be written
into the Pre Signal Register, and then regarded as the previous signal status (“pre(S)” in
Esterel). The carried data of valued signals (“?S”) will be written into the Pre Value register
file, and can be accessed as the previous value (“pre(?S)”). Assuming that signal B is present,
“AWAIT B” terminates. Since the signal I was emitted in the previous instant, PRE(I) is present.
Therefore, the “PRESENT PRE(I),A1” instruction will not branch, and “EMIT G,#25” will be

17

1 % Esterel

2 module REINC:

3 input S;

4 output O1,O2;

5 loop

6 signal S in

7 present S then

8 emit O1;

9 else

10 emit O2;

11 end;

12 pause;

13 emit S

14 end signal

15 end loop

1 % KEP ASM

2 % module REINC

3 INPUT S

4 OUTPUT O1,O2

5 A0:

6 SIGNAL S

7 PRESENT S,A1

8 EMIT O1

9 GOTO A2

10 A1:

11 EMIT O2;

12 A2:

13 PAUSE

14 EMIT S

15 GOTO A0

(a) (b)

Figure 14: REINC: Translation of the Esterel signal declaration (a) into to the KEP SIGNAL
instruction (b).

executed. The valued signal G consists of two interface hardware objects: a pure signal, which
indicates signal presence or absence, and a signal bus, which conveys signal values. The inner
buses of the KEP transmit the data to a MUX which selects the source of the data. The data
on the inner data bus is selected and written into a distributed register file, and then issued as
the value of G.

The instruction “LOAD X,PRE(?A)” causes the previously registered data of signal A to be
taken from the Pre Value register file, and to be mapped to the regDatIn[7:0] port via MUXs.
The Decoder & Controller will write the data into the register file of the processor. The imple-
mentation process of the “EMITR H,X” is similar to that of the “EMIT G,#25” instruction, except
that the source of the data is the register file of the processor instead of the inner data bus.

3.5 Local Signals

Another feature of the Interface Block is the handling of local signals, which are declared in
Esterel with a signal declaration. Unlike the (global) interface signals, a local signal has a
limited scope. This may results in reincarnation [3]; i. e., in case of an instantaneous repetition
of loops, local signals can have several simultaneous instantiations.

The SIGNAL instruction implements a signal scope and correctly handles reincarnation. In
the KEP, a local signal is implemented by a pair of connected I/O ports. When executing a
“SIGNAL S” statement, the presence status and value of S is cleared, thus effectively introducing
a fresh signal. To illustrate, consider the Esterel module REINC, shown in Figure 14 along
with the corresponding KEP assembler. In the first instant, the local signal S is declared and
initialized. Therefore, its status is absent. The else branch of the present statement is taken
and O2 is emitted. In the second instant, S is emitted. The loop body terminates and then it is
restarted. The local signal declaration is immediately re-initialized, and the fresh incarnation is
absent. The present statement tests the fresh incarnation and only O2 is emitted.

18

4 Experimental Results

To quantitatively compare the data handling abilities between the Esterel processor and other
implementations, we used the CURVE module (contained in the mca200 test bench [6]) as an
example, since it is a typical module that includes varied data handling statements. Table 6
compares the resource usages of the KEP2 with different hard- and software implementations.
For the hardware implementations, we synthesize the module to VHDL with the Esterel V7
compiler, since other hardware compilers cannot support valued signals. The V7 compiler does
not provide a data ranging function, i. e., an integer type valued input signal will always occupy
a 32-bit bus to represent the carried value. As an optimization, we manually resized all of
the valued signals and variables to 16-bit width, since that range is sufficient for this Esterel
module. Then those VHDL programs are implemented by the ISE6.3, and the speed (default)
optimization is used. For the software implementation, we use the CEC V0.3 compiler to
synthesize the module to a C program, which is then compiled onto the 32-bit Microblaze soft
processor core, and the MCS51, which is a classical widely used 8-bit processor.

KEP-C Hardware Hardware MCS51(1) Microblaze(2)

(16-bit) (32-bit) (16-bit) (8-bit) (32-bit)

Logic Cells 1384 1510 968 - 1906

Code size (words) 185 - - 1070(3) 436
Code size (bytes) 740 - - 1636 1744

RAM Usage (words) 9 - - 31 19
RAM Usage (bytes) 18 - - 31 76

(1) Compiled by Keil C51 compiler V6.12. The level 8 (default) optimization is used.
(2) Compiled by gcc (for Microblaze) version 2.95.3-4. The level 2 (default) optimization is used.
(3) The lengths of MCS51’s instructions vary; here, a word represents a complete assembler line.

Table 6: The codes size and RAM usage (in word) comparison of CURVE implementation between
KEP2, MCS51, and Microblaze.

To evaluate the performance of the KEP2, we use some standard test cases [3, 1, 6]. Those
modules are typical Esterel applications, which not only contain the reactive statements, but
also include arithmetic and logical data handling. However, we leave out the module which
contains the pre operator, since the CEC compiler does not support it [5]. The module is first
translated into the KEP assembler program and then compiled to the KEP executable codes.
This is then compared with software synthesis results of the Esterel Compiler V5.92, the Esterel
Compiler V7 and the CEC compiler 0.3. Table 6 reveals that the code for the 32-bit processor is
smaller than that of a 8-bit processor (in words). Therefore, we use the Microblaze as reference
point in the following.

Tables 7 and 8 illustrates the comparison of executable code size and RAM usage between the
KEP implementation and the Microblaze software implementation. The optimized data path of
the KEP results on average in a 89% reduction of codes size and 77% reduction of RAM usage
in words (or 89% reduction in bytes) when compared with the best result of the Microblaze
implementation.

The Esterel module’s line count is very close to the KEP2’s codes size (in words). This fact
implies that the KEP handles the Esterel statements on a high level. Practically, the majority
of Esterel statements can be translated into KEP assembler instructions word by word.

As mentioned in the introduction, the KEP has been designed to be highly configurable.
Table 9 compares five different KEP2 variants which include different elements to target various
applications. The KEP2-E offers similar functions to RePIC and can be compared with RePIC

19

Module name Esterel Microblaze (words(1)) KEP2
lines V5 V7 CEC (words)

SPEED 11 276 1081 253 11
BELT CONTROL 14 440 1169 340 18

TIMER 6 368 1160 295 9
CONTROLLER 26 560 1226 487 24
DEBOUNCE 31 392 1198 299 28

ALARM COMPARE 16 315 1109 265 14
SPEEDOMETER 23 328 1145 293 20

DASHBOARD TIMER 77 617 1388 541 65
FRC 26 375 1163 313 18
CURVE 190 1307 2017 436 185

BAT DIAG 45 487 1274 378 63
VER ACC DIAG 38 433 1229 303 41

LONG SPEED STRAT 60 573 1306 319 56

(1) For the code size, one word equals four bytes.

Table 7: Comparison of the codes sizes, in words.

Module name Microblaze (RAM words/bytes) KEP2
V5 V7 CEC (RAM words/bytes)

SPEED 13/52 12/48 9/36 1/2
BELT CONTROL 16/64 18/72 10/40 0/0

TIMER 14/56 14/56 10/40 0/0
CONTROLLER 18/72 22/88 17/68 0/0
DEBOUNCE 18/72 17/68 12/48 4/8

ALARM COMPARE 14/56 15/60 10/40 2/4
SPEEDOMETER 16/64 15/60 11/44 2/4

DASHBOARD TIMER 25/100 24/96 17/68 8/16
FRC 19/76 20/80 12/48 2/4
CURVE 34/136 26/104 19/76 9/18

BAT DIAG 20/80 19/76 14/56 6/12
VER ACC DIAG 18/72 17/68 13/52 4/8

LONG SPEED STRAT 20/80 18/72 13/52 4/8

Table 8: The RAM usage (in words/bytes) comparison of module implementations. One KEP
word equals two bytes, and one Microblaze word equals four bytes.

KEP2-A KEP2-B KEP2-C KEP2-D KEP2-E RePIC

AWAIT CASE Number 2 2 2 2 2 2
Preemption Nest 2 2 2 4 4 4

Counter Value Range 1 255 1 255 1 1
Input/Output 11/11 16/16 11/11 16/16 12/12 12/12

Valued Input/Output 2/2 2/2 3/3 2/2 1/1 1/1
Datapath Width 8 8 16 16 8 8

Logic Cells 1092 1270 1384 1972 1488 2068
Max Osc Freq (MHz) 54.11 47.93 42.06 41.46 42.87 40.27

Instruction Freq (MHz) 18.04 15.93 14.02 13.82 14.29 10.1

Table 9: Performance comparison between the KEP2 series and RePIC.

20

directly.1 RePIC uses four clock cycles to execute an instruction cycle, but the KEP2 uses
only three clock cycles. When they run on the same clock frequency, the KEP2’s instruction
cycle period is just 75% of that of the RePIC’s—and the KEP2 typically takes significantly less
instructions to implement the same behavior.

5 Handling Concurrency

The KEP2 does already execute a number of operations concurrently that in traditional pro-
cessors must be sequentialized. For example, it simultaneously watches all trigger signals that
are active at any time, thus allowing very efficient and compact handling of preemption nests.
However, as mentioned in the introduction, the KEP2 does not implement Esterel’s concurrency
operator (“||”) yet, which so far significantly limits the range of programs that can be translated
to KEP assembler directly.

There are a number of options to address this limitation:

Sequentialization It is always possible to translate an Esterel program into an equivalent
program that has a flattened state space. As the KEP2 does already handle hierarchy,
in this case the state space would not need to be flattened completely; however, true
concurrency would need to be eliminated, with the corresponding potential state explosion.

Multiprocessing Following the EMPORER proposal of Dayaratne et al. [7], multiple KEP2
cores could be combined to execute multiple Esterel threads concurrently. This approach
seems feasible; however, it is relatively hardware-intensive, in particular if one wants to
scale up to high degrees of concurrency.

Interleaving In this approach, a single KEP core would be extended to handle concurrency
by an interleaved control flow. Here, the Decoder & Controller would be combined with
a newly created Thread Manager to alternate between concurrent blocks. This would be
different from statically scheduled interleaving, which could for example be implemented
with gotos, in that the threads would be assigned dynamic priorities, and the Decoder &
Controller would run the individual threads accordingly.

In a future design of the KEP, we plan to explore the third of these options, the interleaving
approach.

6 Conclusion and Outlook

This paper presents the KEP2, a semi-custom, configurable Esterel processor. It consists of a
reactive core and an optimized data path for the direct execution of Esterel programs. The KEP
supports full standard Esterel preemption statements, i. e., abort, weak abort, and suspend, in
a very precise, direct and efficient way. The maximal nesting depth of these constructs is given
by the number of watchers that are provided by the KEP; however, this number is configurable
for a particular KEP. Just as in the original Esterel, the KEP can nest and combine these
constructs in an arbitrary fashion. The KEP supports valued signals and signal counters, local
signal declarations, and the pre operator.

The performance of the KEP is predictable. All instructions can be executed in a single
instruction cycle, except for the instructions that configure watchers (ABORT/WABORT/ SUSPEND)

1Regarding the logic cell count, one should note that the KEP2’s implementation is based on a Xilinx’s
XC2S100-6TQ144 FPGA chip, and the RePIC is implemented on an ALTERA’ EP20K200EFC484-2 FPGA chip.
However, the basic units of those two chips have similar structures, functions, and speed. Therefore, we can
assume that logic cell counts are comparable.

21

instructions, which require two instruction cycles. However, if there are enough watchers avail-
able such that they must not be reused among abort statements, it is also possible to configure
the watchers just once, at the start of the program. In this case, all instructions executed after the
initial instant after system resetting really require just one instruction cycle. The predictability
of the KEP also lends itself to an automated Worst Case Reaction Time analysis [10].

As an initial prototype, the KEP2 can be further optimized. To extend the KEP to handly
concurrency, we are currently investigating the interleaving architecture as described in the
previous section. Other improvements concern the direct implementation of further Esterel
constructs, such as the immediate signal triggering, that can already be handled by the current
architecture, but require multiple instructions to do so.

References

[1] Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio Passerone, Ellen M. Sentovich, Bassam Tabbara,
Massimiliano Chiodo, Harry Hsieh, Luciono Lavagno, Alberto Sangiovanni-Vincentelli, and Kei Suzuki.
Hardware-Software Co-Design of Embedded Systems, The POLIS Approach. Kluwer Academic Publishers,
April 1997.

[2] Gérard Berry. Esterel on Hardware. Philosophical Transactions of the Royal Society of London, 339:87–104,
1992.

[3] Gérard Berry. The Esterel v5 Language Primer, 1999.

[4] Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming Language: Design, Semantics,
Implementation. Science of Computer Programming, 19(2):87–152, 1992.

[5] CEC: The Columbia Esterel Compiler.

[6] Estbench Esterel Benchmark Suite. http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.

tar.gz.

[7] M. W. Sajeewa Dayaratne, Partha S. Roop, and Zoran Salcic. Direct Execution of Esterel Using Reactive
Microprocessors. In Proceedings of Synchronous Languages, Applications, and Programming (SLAP), April
2005.

[8] Stephen A. Edwards. An Esterel compiler for large control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 21(2), February 2002.

[9] Xin Li and Reinhard von Hanxleden. The Kiel Esterel Processor - a semi-custom, configurable re-
active processor. In Stephen A. Edwards, Nicolas Halbwachs, Reinhard v. Hanxleden, and Thomas
Stauner, editors, Synchronous Programming - SYNCHRON’04, number 04491 in Dagstuhl Seminar Pro-
ceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/159.

[10] Xin Li, Jan Lukoschus, Marian Boldt, Michael Harder, and Reinhard von Hanxleden. An Esterel Processor
with Full Preemption Support and its Worst Case Reaction Time Analysis. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages 225–236, New
York, NY, USA, September 2005. ACM Press.

[11] P. S. Roop, Z. Salcic, M. Biglari-Abhari, and A. Bigdeli. A New Reactive Processor with Architecture
Support for Control Dominated Embedded Systems. In IEEE International Conference on VLSI Design,
pages 189–194. IEEE CS Press, January 2003.

[12] P. S. Roop, Z. Salcic, and M. W. S. Dayaratne. Towards Direct Execution of Esterel Programs on Reac-
tive Processors. In 4th ACM International Conference on Embedded Software (EMSOFT 04), Pisa, Italy,
September 2004.

22

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://drops.dagstuhl.de/opus/volltexte/2005/159

A The Instruction Set Architecture

A.1 Preemption (abort/weak abort/suspend)

A.1.1 ABORT

Assembly syntax:
ABORT n, S, endAddr (, startAddr)

n Counter value (default: 1).

S The name of the signal.

endAddr The address behind the end of the abortion body; see Figure 15.

startAddr The start address of the abortion body. It is generated by the KEP2 compiler
automatically, see Appendix C.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

First Instruction Encoding 00011 wwwwwwwa aaa aaaaaa AAAAAAAAAA
Second Instruction Encoding 00011 SSSSSSSS 000 nnnnnn nnnnnnnnnn

First Instruction Encoding:

[31:27] Opcode=ABORT/WABORT/SUSPEND

[26:20] The index number of the Watcher, the KEP2 supports up to 128 Watchers.

[19:10] The address behind the end of the abortion body.

[09:00] The start address of the abortion body.

Second Instruction Encoding:

[31:27] Opcode=ABORT/WABORT/SUSPEND.

[26:19] The signal’s unicode value. See also Section 3.4.

[18:16] "000" indicates ABORT (strong abortion).

[15:00] The initialized counter value.

A.1.2 WABORT

Assembly syntax:
WABORT n, S, endAddr (, startAddr)

n Counter value (default: 1).

S The name of the signal.

endAddr The address behind the end of the abortion body; see Figure 15.

startAddr The start address of the abortion body. It is generated by the KEP2 compiler
automatically, see Appendix C.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

First Instruction Encoding 00011 wwwwwwwa aaa aaaaaa AAAAAAAAAA
Second Instruction Encoding 00011 SSSSSSSS 100 nnnnnn nnnnnnnnnn

First Instruction Encoding:

23

[31:27] Opcode=ABORT/WABORT/SUSPEND

[26:20] The index number of the Watcher, the KEP2 supports up to 128 Watchers.

[19:10] The address behind the end of the abortion body.

[09:00] The start address of the abortion body.

Second Instruction Encoding:

[31:27] Opcode=ABORT/WABORT/SUSPEND

[26:19] The signal’s unicode value. See also Section 3.4.

[18:16] "100" indicates WABORT (weak abortion).

[15:00] The initialized counter value.

A.1.3 SUSPEND

Assembly syntax:
SUSPEND 1, S, endAddr (, startAddr)

S The name of the signal.

endAddr The address behind the end of the suspension body; see Figure 15.

startAddr The start address of the suspension body. It is generated by the KEP2 compiler
automatically, see Appendix C.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

First Instruction Encoding 00011 wwwwwwwa aaa aaaaaa AAAAAAAAAA
Second Instruction Encoding 00011 SSSSSSSS 010 000000 0000000001

First Instruction Encoding:

[31:27] Opcode=ABORT/WABORT/SUSPEND

[26:20] The index number of the Watcher, the KEP2 supports up to 128 Watchers.

[19:10] The address behind the end of the suspension body.

[09:00] The start address of the suspension body.

Second Instruction Encoding:

[31:27] Opcode=ABORT/WABORT/SUSPEND

[26:19] The signal’s unicode value. Total 63 signals can be supported. See also Section 3.4.

[18:16] "010" indicates SUSPEND.

[15:00] The initialized counter value is fixed in 1.

24

%Esterel

emit A;

abort

emit B;

suspend

emit C;

await D;

when E;

emit A;

when 3 F;

emit A;

weak abort

emit H;

await I;

when pre(J);

emit A;

%KEP ASM

EMIT A

ABORT 3,F,A0

EMIT B

SUSPEND 1,E,A1

EMIT C

AWAIT D

A1:

EMIT A

A0:

EMIT A

WABORT 1,PRE(J),A2

EMIT H

AWAIT I

A2:

EMIT A

Figure 15: Translating the Esterel abort/weak abort/suspend statements to the KEP2 in-
structions.

A.2 Signal awaiting (await, pause)

A.2.1 AWAIT

Assembly syntax:
AWAIT S

AWAIT n,S
AWAIT n,Tick

n Counter value.

S The name of the signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00110 SSSSSSSS 000 nnnnnn nnnnnnnnnn

Encoding:

[23:19] Opcode=AWAIT/PAUSE

[26:19] The signal’s unicode value. See also Section 3.4.

[15:00] The initialized counter value. For the AWAIT S expression, the value equals 1.

A.2.2 PAUSE

Assembly syntax:
PAUSE

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00110 00000000 000 000000 0000000001

Encoding:

[23:19] Opcode=AWAIT/PAUSE

[26:19] The unicode value of Tick. See also Section 3.4.

[15:00] The initialized counter value equals 1.

25

%Esterel

emit A;

await B;

emit C;

await 25 D;

pause;

await pre(B);

emit E;

%KEP ASM

EMIT A

AWAIT B

EMIT C

AWAIT 25,D

PAUSE

AWAIT PRE(B)

EMIT E

Figure 16: Translating the Esterel await/pause statements to the KEP2 AWAIT/PAUSE instruc-
tions.

A.3 Multiple signal awaiting (await case)

A.3.1 CAWAIT

Assembly syntax:
CAWAIT Sn, SnstartAddr

Sn The name of the signal.

SnstartAddr The start address of the CASE body.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00001 SSSSSSSS 000 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=CAWAIT/CAWAITE

[26:19] The signal’s unicode value. See also Section 3.4.

[18:16] Being set to "000" when CAWAIT. It means this is not the last CASE of the CASE list.

[09:00] The start address of Signal Sn’s CASE body.

A.3.2 CAWAITE

Assembly syntax:
CAWAITE Sn, SnstartAddr

Sn The name of the signal.

SnstartAddr The start address of the last CASE body.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00001 SSSSSSSS 100 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=CAWAIT/CAWAITE

[26:19] The signal’s unicode value. See also Section 3.4.

[18:16] Being set to "100" when CAWAITE. It means this is the last CASE of the CASE list. See
also Figure 17. KEP2 watches all of the CASE sensitivity signals concurrently until any of
them is presented. If several signals occur simultaneously, the first relative CASE in the list
will take priority and others will be ignored, as specified in Esterel [3].

26

%Esterel

emit G;

await

case A do

emit D;

case B do

emit E;

case C do

emit F;

end await;

emit G;

%KEP ASM

EMIT G

CAWAIT A,A0

CAWAIT B,A1

CAWAITE C,A2

A0:

EMIT D

GOTO A3

A1:

EMIT E

GOTO A3

A2:

EMIT F

GOTO A3

A3:

EMIT G

Figure 17: Translating the Esterel await case statements to the KEP2 CAWAIT/CAWAITE in-
structions.

[09:00] The start address of Signal Sn’s CASE body.

A.4 Signal emission (emit)

A.4.1 EMIT

Assembly syntax:
EMIT S

EMIT S,#data

S The name of the signal.

data The carried data of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00111 SSSSSSSS 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=EMIT

[26:19] The signal’s unicode value. See also Section 3.4.

[15:00] The carried data of valued signal, which ranges from 0 to 65535 (16-bit). Being set to
"000000 0000000000" when the expression is EMIT S (pure signal).

A.4.2 EMITR

Assembly syntax:
EMITR S,reg

S The name of the signal.

reg The name of the register.

27

%Esterel

emit A;

emit B(27);

emit C(REG_A);

%KEP ASM

EMIT A

EMIT B,#27

EMITR C,REG_A

Figure 18: Translating the Esterel emit statements to the KEP2 EMIT/EMITR instructions.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10010 SSSSSSSS 000 rrrrrr 0000000000

Encoding:

[31:27] Opcode=EMITR

[26:19] The signal’s unicode value. See also Section 3.4.

[15:10] The index value of the register. The contents of the register reg will be output as the
carried data of the valued signal.

A.5 Sustaining signals (sustain)

A.5.1 SUSTAIN

Assembly syntax:
SUSTAIN S

SUSTAIN S,#data

S The name of the signal.

data The carried data of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 01000 SSSSSSSS 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=SUSTAIN

[26:19] The signal’s unicode value. See also Section 3.4.

[15:00] The carried data of the valued signal ranges from 0 to 65535 (16-bit). Being set to
"000000 0000000000" when the expression is SUSTAIN S (pure signal).

A.5.2 SUSTAINR

Assembly syntax:
SUSTAINR S,reg

S The name of the signal.

reg The name of the register. (See Figure 19)

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10011 SSSSSSSS 000 rrrrrr 0000000000

Encoding:

28

%Esterel

sustain A;

sustain B(27);

sustain C(REG_A);

%KEP ASM

SUSTAIN A

SUSTAIN B,#27

SUSTAINR C,REG_A

Figure 19: Translating the Esterel sustain statements to the KEP2 SUSTAIN/SUSTAINR instruc-
tions.

[31:27] Opcode=SUSTAINR

[26:19] The signal’s unicode value. See also Section 3.4.

[15:10] The index value of the register. The contents of the register reg will be output as the
carried data of the valued signal.

A.6 The halt statement

A.6.1 HALT

Assembly syntax:
HALT

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00101 00000000 000 000000 0000000000

Encoding:

[31:27] Opcode=HALT

A.7 The nothing statement

A.7.1 NOTHING

Assembly syntax:
NOTHING

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00000 00000000 000 000000 0000000000

Encoding:

[23:19] Opcode=NOTHING

A.8 Testing signal presence (present)

A.8.1 PRESENT

Assembly syntax:
PRESENT S, elseaddr

S The name of the signal.

elseaddr The branching address.

29

%Esterel

present A then

emit B;

end present;

emit C;

present pre(D) then

emit E;

else

emit F;

end present;

emit G;

%KEP ASM

PRESENT A,A0

EMIT B

A0:

EMIT C

PRESENT PRE(D),A1

EMIT E

GOTO A2

A1:

EMIT F

A2:

EMIT G

Figure 20: Translating the Esterel present statement to the KEP2 PRESENT instruction.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00010 SSSSSSSS 000 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=PRESENT

[18:14] The signal’s unicode value. See also Section 3.4.

[09:00] The address behind the end of the presentation body. If Signal S is presented at the
current cycle, the KEP2 will execute the following instruction, or else it will go to this
indicated address.

A.9 Signal scoping (signal)

A.9.1 SIGNAL

Assembly syntax:
SIGNAL S

SIGNAL PRE(S)

S The name of the signal. If the following Esterel program accesses the previous S, the SIGNAL
PRE(S) instruction is needed. See Figure 21

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 01001 SSSSSSSS 000 000000 0000000000

Encoding:

[31:27] Opcode=SIGNAL

[18:14] The local signal’s unicode value. See also Section section 3.4.

A.10 Arithmetic and logical operations

A.10.1 CLRC

Assembly syntax:
CLRC

30

%Esterel

signal A in

emit A;

end signal;

emit B;

pause;

signal A in

present pre(A) then

emit C;

end present;

end signal;

halt;

%KEP ASM

SIGNAL A

%SIGNAL PRE(A)

EMIT A

EMIT B

SIGNAL A

SIGNAL PRE(A)

PRESENT PRE(A),A1

EMIT C

A1:

HALT

Figure 21: Translating the Esterel signal statements to the KEP2 SIGNAL instructions.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10001 00000000 000 000000 0000000000

Encoding:

[31:27] Opcode=CLRC/SETC/SR/SRC/NOTR

[18:16] Being set to "000" when CLRC. It means the carry bit will be cleared.

A.10.2 SETC

Assembly syntax:
SETC

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10001 00000000 100 000000 0000000000

Encoding:

[31:27] Opcode=CLRC/SETC/SR/SRC/NOTR

[18:16] Being set to "100" when SETC. It means the carry bit will be set to ’1’.

A.10.3 SR

Assembly syntax:
SR reg

reg The name of the register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10001 00000000 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=CLRC/SETC/SR/SRC/NOTR

[18:16] Being set to "010" when SR reg . It means the contents of the register reg will be
right shifted. The highest bit will be replaced by ’0’.

31

A.10.4 SRC

Assembly syntax:
SRC reg

reg The name of the register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10001 00000000 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=CLRC/SETC/SR/SRC/NOTR

[18:16] Being set to "110" when SRC reg . It means the contents of the register reg will be
right shifted. The highest bit will be replaced by the value of the carry bit, and the carry
bit will be replaced by the lowest bit of the reg .

A.10.5 NOTR

Assembly syntax:
NOTR reg

reg The name of the register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10001 00000000 001 rrrrrr 0000000000

Encoding:

[31:27] Opcode=CLRC/SETC/SR/SRC/NOTR

[18:16] Being set to "001" when NOTR reg . It means the contents of the register reg will be
NOTed.

A.10.6 LOAD

Assembly syntax:

• LOAD reg,#data

reg The name of the target register.

data The data to be loaded into the register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10100 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=LOAD

[26:21] The index value of the target register.

[18:16] Being set to "000" when LOAD REG,#data . It means the contents of the register
reg will be replaced by the value of data.

[15:00] The value of the data.

32

• LOAD reg,src

reg The name of the target register.

src The name of the source register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10100 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=LOAD

[26:21] The index value of the source register.

[18:16] Being set to "100" when LOAD reg,src . It means the contents of the register
reg will be replaced by the contents of the register src .

[15:10] The index value of the target register.

• LOAD reg,?S

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10100 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=LOAD

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "010" when LOAD reg,?S . It means the contents of the register reg
will be replaced by the carried data of the valued signal S .

[15:10] The index value of the target register.

• LOAD reg,PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10100 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=LOAD

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "110" when LOAD reg,PRE(?S). It means the contents of the register
reg will be replaced by the carried data of the valued signal S in the previous tick.

[15:10] The index value of the target register.

33

A.10.7 ADD

Assembly syntax:

• ADD reg,#data

reg The name of the target (augend/sum) register.

data The value of addend.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=ADD/ADDC

[26:21] The index value of the target (augend/sum) register.

[18:16] Being set to "000" when ADD reg,#data . It means the contents of the register
reg will be added with the value of the data , and the sum will be stored into the
register reg .

[15:00] The value of the data.

• ADD reg,src

reg The name of the target (augend/sum) register.

src The name of the source (addend) register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ADD/ADDC

[26:21] The index value of the source (addend) register.

[18:16] Being set to "100" when ADD reg,src . It means the contents of the register src
will be added with the contents of the register reg , and the sum will be stored into
the register reg .

[15:10] The index value of the target (augend/sum) register.

• ADD reg,?S

reg The name of the target (augend/sum) register.

S The name of the valued signal (addend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ADD/ADDC

[26:19] The valued signal’s unicode. See also Section 3.4.

34

[18:16] Being set to "010" when ADD reg,?S . It means the contents of the register reg

will be added with the carried data of the valued signal S , and the sum will be stored
into the register reg .

[15:10] The index value of the target (augend/sum) register.

• ADD reg,PRE(?S)

reg The name of the target (augend/sum) register.

S The name of the valued signal (addend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ADD/ADDC

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "110" when ADD reg,PRE(?S). It means the contents of the register
reg will be added with the carried data of the valued signal S in the previous tick,
and the sum will be stored into the register reg .

[15:10] The index value of the target (augend/sum) register.

A.10.8 ADDC

Assembly syntax:

• ADDC reg,#data

reg The name of the target (augend/sum) register.

data The value of addend.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 RRRRRR00 001 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=ADD/ADDC

[26:21] The index value of the target (augend/sum) register.

[18:16] Being set to "001" when ADDC reg,#data . It means the contents of the register
reg will be added with the value of the data and the value of the carry bit, and the
sum will be stored into the register reg .

[15:00] The value of the data.

• ADDC reg,src

reg The name of the target (augend/sum) register.

src The name of the source (addend) register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 RRRRRR00 101 rrrrrr 0000000000

Encoding:

35

[31:27] Opcode=ADD/ADDC

[26:21] The index value of the source (addend) register.

[18:16] Being set to "101" when ADDC reg,src . It means the contents of the register
reg will be added with the contents of the register src and the value of the carry
bit, and the sum will be stored into the register reg .

[15:10] The index value of the target (augend/sum) register.

• ADDC reg,?S

reg The name of the target (augend/sum) register.

S The name of the valued signal (addend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ADD/ADDC

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "011" when ADDC reg,?S . It means the contents of the register reg
will be added with the carried data of the valued signal S and the value of the carry
bit, and the sum will be stored into the register reg .

[15:10] The index value of the target (augend/sum) register.

• ADDC reg,PRE(?S)

reg The name of the target (augend/sum) register.

S The name of the valued signal (addend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10101 SSSSSSSS 111 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ADD/ADDC

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "111" when ADDC reg,PRE(?S). It means the contents of the register
reg will be added with the carried data of the valued signal S in the previous tick
and the value of the carry bit, and the sum will be stored into the register reg .

[15:10] The index value of the target (augend/sum) register.

A.10.9 SUB

Assembly syntax:

• SUB reg,#data

reg The name of the target (minuend/difference) register.

data The value of subtrahend.

36

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=SUB/SUBC

[26:21] The index value of the target (minuend/difference) register.

[18:16] Being set to "000" when SUB reg,#data . It means the value of the data will
be subtracted from the contents of the register reg , and the difference will be stored
into the register reg .

[15:00] The value of the data.

• SUB reg,src

reg The name of the target (minuend/difference) register.

src The name of the source (subtrahend) register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=SUB/SUBC

[26:21] The index value of the source (subtrahend) register.

[18:16] Being set to "100" when SUB reg,src . It means the contents of the register src
will be subtracted from the contents of the register reg , and the difference will be
stored into the register reg .

[15:10] The index value of the target (minuend/difference) register.

• SUB reg,?S

reg The name of the target (minuend/difference) register.

S The name of the valued signal (subtrahend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=SUB/SUBC

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "010" when SUB reg,?S . It means the carried data of the valued
signal S will be subtracted from the contents of the register reg , and the difference
will be stored into the register reg .

[15:10] The index value of the target (minuend/difference) register.

• SUB reg,PRE(?S)

reg The name of the target (minuend/difference) register.

S The name of the valued signal (subtrahend).

37

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=SUB/SUBC

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "110" when SUB reg,PRE(?S). It means the carried data of the
valued signal S in the previous tick will be subtracted from the contents of the
register reg , and the difference will be stored into the register reg .

[15:10] The index value of the target (minuend/difference) register.

A.10.10 SUBC

Assembly syntax:

• SUBC reg,#data

reg The name of the target (minuend/difference) register.

data The value of subtrahend.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 RRRRRR00 001 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=SUB/SUBC

[26:21] The index value of the target (minuend/difference) register.

[18:16] Being set to "001" when SUBC reg,#data . It means the value of the data and
the value of the carry bit will be subtracted from the contents of the register reg ,
and the difference will be stored into the register reg .

[15:00] The value of the data.

• SUBC reg,src

reg The name of the target (minuend/difference) register.

src The name of the source (subtrahend) register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 RRRRRR00 101 rrrrrr 0000000000

Encoding:

[31:27] Opcode=SUB/SUBC

[26:21] The index value of the source (subtrahend) register.

[18:16] Being set to "101" when SUBC reg,src . It means the contents of the register
src and the value of the carry bit will be subtracted from the contents of the register
reg , and the difference will be stored into the register reg .

[15:10] The index value of the target (minuend/difference) register.

• SUBC reg,?S

38

reg The name of the target (minuend/difference) register.

S The name of the valued signal (subtrahend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 SSSSSSSS 011 rrrrrr 0000000000

Encoding:

[31:27] Opcode=SUB/SUBC

[26:19] The index value of the source valued signal.

[18:16] Being set to "011" when SUBC reg,?S . It means the carried data of the valued
signal S and the value of the carry bit will be subtracted from the contents of the
register reg , and the difference will be stored into the register reg .

[15:10] The index value of the target (minuend/difference) register.

• SUBC reg,PRE(?S)

reg The name of the target (minuend/difference) register.

S The name of the valued signal (subtrahend).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10110 SSSSSSSS 111 rrrrrr 0000000000

Encoding:

[31:27] Opcode=SUB/SUBC

[26:19] The index value of the source valued signal.

[18:16] Being set to "111" when SUBC reg,PRE(?S). It means the carried data of the
valued signal S in the previous tick and the value of the carry bit will be subtracted
from the contents of the register reg , and the difference will be stored into the register
reg .

[15:10] The index value of the target (minuend/difference) register.

A.10.11 MUL

Assembly syntax:

• MUL reg,#data

reg The name of the target (multiplicand/product) register.

data The value of multiplier.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10111 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=MUL

[26:21] The index value of the target (multiplicand) register.

39

[18:16] Being set to "000" when MUL reg,#data . It means the contents of the register
reg will be multiplied by the value of the data , and the product will be stored into
the register reg .

[15:00] The value of the data.

• MUL reg,src

reg The name of the target (multiplicand/product) register.

src The name of the source (multiplier) register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10111 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=MUL

[26:21] The index value of the source (multiplier) register.

[18:16] Being set to "100" when MUL reg,src . It means the contents of the register reg
will be multiplied by the the contents of the register src , and the product will be
stored into the register reg .

[15:10] The index value of the target (multiplicand/product) register.

• MUL reg,?S

reg The name of the target (multiplicand/product) register.

S The name of the valued signal (multiplier).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10111 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=MUL

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "010" when MUL reg,?S . It means the contents of the register reg

will be multiplied by the carried data of the valued signal S , and the product will be
stored into the register reg .

[15:10] The index value of the target (multiplicand/product) register.

• MUL reg,PRE(?S)

reg The name of the target (multiplicand/product) register.

S The name of the valued signal (multiplier).

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10111 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=MUL

[26:19] The valued signal’s unicode. See also Section 3.4.

40

[18:16] Being set to "110" when MUL reg,PRE(?S). It means the contents of the register
reg will be multiplied by the carried data of the valued signal S in the previous tick,
and the product will be stored into the register reg .

[15:10] The index value of the target (multiplicand/product) register.

A.10.12 ANDR

Assembly syntax:

• ANDR reg,#data

REG The name of the target register.

data The operating data.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11000 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=ANDR

[26:21] The index value of the target register.

[18:16] Being set to "000" when ANDR reg,#data . It means the contents of the register
reg will be ANDed with the value of the data , and the result will be stored into the
register reg .

[15:00] The value of the operating data.

• ANDR reg,src

reg The name of the target register.

src The name of the source register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11000 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ANDR

[26:21] The index value of the source register.

[18:16] Being set to "100" when ANDR reg,src . It means the contents of the register reg
will be ANDed with the contents of the register src , and the result will be stored
into the register reg .

[15:10] The index value of the target register.

• ANDR reg,?S

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11000 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

41

[31:27] Opcode=ANDR

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "010" when ANDR reg,?S . It means the contents of the register reg
will be ANDed with the carried data of the valued signal S , and the result will be
stored into the register reg .

[15:10] The index value of the target register.

• ANDR reg,PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11000 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ANDR

[26:19] The index value of the source valued signal.

[18:16] Being set to "110" when ANDR reg,PRE(?S). It means the contents of the register
reg will be ANDed with the carried data of the valued signal S in the previous tick,
and the result will be stored into the register reg .

[15:10] The index value of the target register.

A.10.13 ORR

Assembly syntax:

• ORR reg,#data

reg The name of the target register.

data The operating data.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11001 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=ORR

[26:21] The index value of the target register.

[18:16] Being set to "000" when ORR reg,#data . It means the contents of the register
reg will be ORed with the value of the data , and the result will be stored into the
register reg .

[15:00] The value of the operating data.

• ORR reg,src

reg The name of the target register.

src The name of the source register.

42

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11001 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ORR

[26:21] The index value of the source register.

[18:16] Being set to "100" when ORR reg,src . It means the contents of the register reg
will be ORed with the contents of the register src , and the result will be stored into
the register reg .

[15:10] The index value of the target register.

• ORR reg,?S

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11001 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ORR

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "010" when ORR reg,?S . It means the contents of the register reg

will be ORed with the carried data of the valued signal S , and the result will be
stored into the register reg .

[15:10] The index value of the target register.

• ORR reg,PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11001 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=ORR

[26:19] The index value of the source valued signal.

[18:16] Being set to "110" when ORR reg,PRE(?S). It means the contents of the register
reg will be ORed with the carried data of the valued signal S in the previous tick,
and the result will be stored into the register reg .

[15:10] The index value of the target register.

43

A.10.14 XORR

Assembly syntax:

• XORR reg,#data

reg The name of the target register.

data The operating data.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11010 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=XORR

[26:21] The index value of the target register.

[18:16] Being set to "000" when XORR reg,#data . It means the contents of the register
reg will be XORed with the value of the data , and the result will be stored into the
register reg .

[15:00] The value of the operating data.

• XORR reg,src

reg The name of the target register.

src The name of the source register.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11010 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=XORR

[26:21] The index value of the source register.

[18:16] Being set to "100" when XORR reg,src . It means the contents of the register reg
will be XORed with the contents of the register src , and the result will be stored
into the register reg .

[15:10] The index value of the target register.

• XORR reg,?S

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11010 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=XORR

[26:19] The valued signal’s unicode. See also Section 3.4.

44

[18:16] Being set to "010" when XORR reg,?S . It means the contents of the register reg
will be XORed with the carried data of the valued signal S , and the result will be
stored into the register reg .

[15:10] The index value of the target register.

• XORR reg,PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11010 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=XORR

[26:19] The index value of the source valued signal.

[18:16] Being set to "110" when XORR reg,PRE(?S). It means the contents of the register
reg will be XORed with the carried data of the valued signal S in the previous tick,
and the result will be stored into the register reg .

[15:10] The index value of the target register.

A.10.15 CMP

Assembly syntax:

• CMP reg,#data

reg The name of the target register.

data The operating data.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11011 RRRRRR00 000 nnnnnn nnnnnnnnnn

Encoding:

[31:27] Opcode=CMP

[26:21] The index value of the target register.

[18:16] Being set to "000" when CMP reg,#data . It means the contents of the register
reg will be compared with the value of the data. The result will affect the zero and
carry bits. If the contents of the register reg equals to the value of the data , the
zero bit will be set to ’1’, and the carry bit will be set to ’0’. If the contents of the
register reg is less than the value of the data , the carry bit will be set to ’1’, and
the zero bit will be set to ’0’. If the contents of the register reg is greater than the
value of the data , the carry and equal bits will be set to ’0’.

[15:00] The value of the operating data.

• CMP reg,src

reg The name of the target register.

src The name of the source register.

45

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11011 RRRRRR00 100 rrrrrr 0000000000

Encoding:

[31:27] Opcode=CMP

[26:21] The index value of the source register.

[18:16] Being set to "100" when CMP reg,src . It means the contents of the register reg
will be compared with the contents of the register src . The result will affect the zero
and carry bits.

[15:10] The index value of the target register.

• CMP reg,?S

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11011 SSSSSSSS 010 rrrrrr 0000000000

Encoding:

[31:27] Opcode=CMP

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "010" when CMP reg,?S . It means the contents of the register reg

will be compared with the carried data of the valued signal S . The result will affect
the zero and carry bits.

[15:10] The index value of the target register.

• CMP reg,PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 11011 SSSSSSSS 110 rrrrrr 0000000000

Encoding:

[31:27] Opcode=CMP

[26:19] The valued signal’s unicode. See also Section 3.4.

[18:16] Being set to "110" when CMP reg,PRE(?S). It means the contents of the register
reg will be compared with the carried data of the valued signal S in the previous
tick. The result will affect the zero and carry bits.

[15:10] The index value of the target register.

46

%Esterel

REG_A:=25;

REG_B:=REG_A+32;

emit C(REG_A);

emit D((?C)*REG_B);

halt;

%KEP ASM

LOAD REG_A, #25

LOAD REG_B, REG_A

ADD REG_B, #32

EMITR C, REG_A

LOAD REG_TMP, ?C

MUL REG_TMP, REG_B

EMITR D, REG_TMP

HALT

Figure 22: Translating the Esterel arithmetic statements to the KEP2 instructions.

A.11 The conditional branch statement

A.11.1 JW

Assembly syntax:

• JW Z,elseaddr

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 000 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=JW

[18:16] Being set to "000" when JW Z,elseaddr . It means that the KEP2 will test the
zero bit. If the zero bit is ’1’ (true), the KEP2 will execute the following instruction,
or else it will go to the branching address. The status of the zero bit depends on the
last data which is stored into the register file.

[09:00] The branching address.

• JW L,elseaddr

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 000 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=JW

[18:16] Being set to "010" when JW L,elseaddr . It means that the KEP2 will test the
carry bit. If the carry bit is ’1’ (true), the KEP2 will execute the following instruction,
or else it will go to the branching address. The status of the zero bit depends on the
last statement which can affect the carry bit, e. g., SUBC, ADDC, or CMP, etc. It also
can be expressed as JW C,elseaddr .

[09:00] The branching address.

• JW G,elseaddr

47

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 110 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=JW

[18:16] Being set to "110" when JW G,elseaddr . It means the KEP2 will test the carry
and zero bits. This instruction should be used right after a CMP instruction. If
the result of the comparison is greater than, the KEP2 will execute the following
instruction, or else it will go to the branching address.

[09:00] The branching address.

• JW GE,elseaddr

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 001 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=JW

[18:16] Being set to "001" when JW GE,elseaddr . It means the KEP2 will test the carry
and zero bits. This instruction should be used right after a CMP instruction. If the
result of the comparison is greater than or equal, the KEP2 will execute the following
instruction, or else it will go to the branching address.

[09:00] The branching address.

• JW LE,elseaddr

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 101 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=JW

[18:16] Being set to "101" when JW LE,elseaddr . It means the KEP2 will test the carry
and zero bits. This instruction should be used right after a CMP instruction. If the
result of the comparison is less than or equal, the KEP2 will execute the following
instruction, or else it will go to the branching address.

[09:00] The branching address.

• JW EE,elseaddr

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 011 000000 aaaaaaaaaa

Encoding:

48

%Esterel

REG_A:=?C;

if REG_A>=35 then

emit C(REG_A);

else

emit C(0);

end if;

pause;

emit D(pre(?C));

halt;

%KEP ASM

LOAD REG_A, ?C

CMP REG_A, #35

JW GE, A0

EMITR C, REG_A

GOTO A1

A0:

EMIT C,#0

A1:

PAUSE

LOAD REG_TMP, PRE(?C)

EMITR D, REG_TMP

HALT

Figure 23: Translating the Esterel branch statements to the KEP2 branch instructions.

[31:27] Opcode=JW

[18:16] Being set to "011" when JW EE,elseaddr . It means the KEP2 will test the zero
bit. This instruction should be used right after a CMP instruction. If the result of the
comparison is equal, the KEP2 will execute the following instruction, or else it will
go to the branching address.

[09:00] The branching address.

• JW NE,elseaddr

elseaddr The branching address.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 10000 00000000 111 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=JW

[18:16] Being set to "111" when JW NE,elseaddr . It means the KEP2 will test the zero
bit. This instruction should be used right after a CMP instruction. If the result of the
comparison is not equal, the KEP2 will execute the following instruction, or else it
will go to the branching address.

[09:00] The branching address.

A.12 Others

A.12.1 GOTO

Assembly syntax:
GOTO addr

addr The target address

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 00100 00000000 000 000000 aaaaaaaaaa

Encoding:

49

[31:27] Opcode=GOTO

[09:00] The target address. The KEP2 will go to this indicated address.

A.12.2 CALL

Assembly syntax:
CALL addr

addr The start address of the subroutine.

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 01010 00000000 000 000000 aaaaaaaaaa

Encoding:

[31:27] Opcode=CALL

[09:00] The start address of the subroutine. When a procedure calls a subroutine, the address
behind current instruction will be pushed. Subsequently a jump to addr is preformed.

A.12.3 RET

Assembly syntax:
RET

d31 − d27 d26 − d19 d18 − d16 d15 − d10 d09 − d00

Encoding 01011 00000000 000 000000 0000000000

Encoding:

[31:27] Opcode=RET Return to the procedure from a subroutine. The pushed address will be
popped as the target address.

50

B Synthesizing a KEP Configuration

We use several programs to generate the scalable blocks, which are then combined into a pro-
cessor series to target different applications efficiently. Naturally, a processor which contains
more input/output signals, supports wider data range, or includes more peripheral cells (e. g.,
Watcher, Case Cell, etc.) will result in more resource usage and less system speed.

B.1 Reactive Block Generator

The blkreactive command invokes this generator, and creates a synthesizable VHDL program
for implementing the Reactive Block.

blkreactive -s value [-l nestlevels] [-d datawidth] [-c casenums]

Options

• -s value

Specifies the amount of Reactive Block’s input signals. The value ranges from 1 to 63.

• -l nestlevels

Specifies the amount of Reactive Block’s nest levels. The nestlevels ranges from 1 to
127. The default value is 2.

• -d datawidth

Specifies the bit width of Reactive Block’s counters. The datawidth ranges from 0 to 15
(16-bit). The default value is 1.

• -c casenums

Specifies the amount of Reactive Block’s CASE Cells. The casenums ranges from 1 to
MAXINT, the largest representable integer. The default value is 2.

B.2 Interface Block Generator

The blkinterface command invokes this generator, and creates a synthesizable VHDL program
for implementing the Interface Block.

blkinterface -s value [-d datawidth] [-v valuedsignalnums]

Options

• -s value

Specifies the amount of Interface Block’s pure and valued input/output signals. The value
ranges from 1 to 63. e. g., 8 input signals and 8 output signals will be created when the
value is 8.

• -d datawidth

Specifies the carried data width of Interface Block’s valued signals. To be compatible with
the inner register file, the datawidth should be 8 or 16 (8-bit/16-bit). The default data
width of valued signals is 16-bit, which ranges from 0 to 65535.

• -v valuedsignalnums

Specifies the amount of Interface Block’s valued input/output signals. e. g., 1 valued input
signal and 1 valued output signal will be created when the valuedsignalnums is 1.

51

B.3 Datapath Block Generator

The blkreg command invokes this generator, and creates a synthesizable VHDL program for
implementing the Datapath Block, which includes register file, ALU, etc.

blkreg -d datawidth

Options

• -d datawidth

Specify the data width of Datapath Block. It determines the data width for calculating,
logical operation, and the data width of the contents of register file, etc. The datawidth

should be 8 or 16 (8-bit/16-bit). The default data width is 16-bit, which ranges from 0
to 65535. We recommend that the datawidth parameter is consistent with others block
generators’ options.

B.4 Innerconnection Generator

The blkkep command invokes this generator, and creates a synthesizable VHDL program for
implementing the innerconnection of KEP2’s blocks.

blkkep -s value value [-d datawidth] [-v valuedsignalnums]

Options

• -s value

Specifies the amount of KEP2’s input/output signals. The value ranges from 1 to 63. It
ought to be consistent with the value parameter of the Interface Block Generator.

• -d datawidth

Specifies the data width of KEP2. To be compatible with the inner register file, the
datawidth should be 8 or 16 (8-bit/16-bit). The default data width is 16-bit. We recom-
mend that the datawidth parameter is consistent with others block generators’ options.

• -v valuedsignalnums

Specifies the amount of KEP2’s valued input/output signals. It ought to be consistent
with the valuedsignalnums option of Interface Block Generator.

52

C KEP2 Assembler Compiler

The KEP2 Assembler Compiler compiles a KEP2 assembler file into executable codes. The
command for invoking KEP2 compiler is:

kepcmp [-w resource|speed|all] [-s value] [-v valuedsignalnum] [-d datawidth]
-i filename

Options

• -w resource|speed|all
Specifies the Watcher optimized strategy.

• -s value

Specifies the maximum amount of KEP2’s input/output signals. The compiler will give
error message if the I/O limitation is not satisfied. This option can be omitted.

• -v valuedsignalnums

Specifies the maximum amount of KEP2’s valued input/output signals. The compiler will
give error message if the valued I/O signal limitation is not satisfied. This option can be
omitted.

• -i filename

Specifies the (input) KEP2 assembler language file name.

A novelty of the compiler is the optimized strategy for Watcher initialization. To illustrate,
considers the RUNNER [3] module shown in Figure 24.

Figure 24 (a) shows the Esterel version. The KEP does not support every statement directly,
but it can be translated into the expression of abort statement according the syntax translation
rules. The -w speed option of KEP2 compiler invokes speed optimization. The -w resource
option makes the compiler generate the original assembler codes which is shown in Figure 24
(b). This strategy aims to save the Watcher usage and is called resource optimization.

For the original program, assume the KEP2 stays on the first HALT instruction and the
MORNING signal is presented. The abortion MORNING will be activated. KEP2 kills this abor-
tion and executes the GOTO A0. And then the execution will continue until the SUSTAIN WALK
instruction is met. A total of 9 instruction cycles are needed.

According to KEP2’s preemption implementing process, once the Watcher is configured, it
can run automatically and there is no need to be managed any more. So the source assembler
program can be transformed to the following style.

At first, the compiler marks the start addresses of the preemptions body, i. e., $0, $1,
$2, $3 and $4. Then those parameters are combined with the original preemption instruc-
tions, see Figure 25. A combined preemption instruction contains all parameters for configur-
ing the Watcher. That means the preemption instruction can be located at anywhere in the
program. So the compiler moves all preemption instructions to the beginning of the module,
out of the loop body. Since the Tick Manger will not work until its initialization instruction,
i. e., EMIT TICKLEN,#data , is executed, the moved instructions ought to be before the EMIT
TICKLEN,#data instruction. The moved preemption instructions and the Tick Manger initial-
ization instruction constitute the initializing part of the program. So the data in the EMIT
TICKLEN,#data instruction can also be re-assigned to indicate a shorter tick length.

For the optimized program, under the same condition, the required period is just 3 instruction
cycles because all of the ABORT instructions need not be executed anymore. The result is shown
in Figure 25 (b). The execution time speeds up 3 times. This strategy improves the execution
time obviously and is called speed optimization.

53

%Esterel

module RUNNER

input Morning,Meter,Step

input Second,Lap

output Walk,Jump,Run

every Morning do

abort

abort

sustain Walk;

when 100 Meter;

abort

every Step do

emit Jump

end every;

when 15 Second;

sustain Run;

when Lap;

end every;

end module;

⇒

%KEP ASM

%MODULE RUNNER

INPUT MORNING,METER,STEP

INPUT SECOND,LAP

OUTPUT WALK,JUMP,RUN

EMIT _TICKLEN,#9

AWAIT MORNING

A0:

ABORT 1,MORNING,A3

ABORT 1,LAP,A3

ABORT 100,METER,A1

SUSTAIN WALK

A1:

ABORT 15,SECOND,A2

AWAIT STEP

A5:

ABORT 1,STEP,A4

EMIT JUMP

HALT

A4:

GOTO A5

A2:

SUSTAIN RUN

HALT

A3:

GOTO A0

(a) (b)

Figure 24: The program of the example RUNNER in Esterel (a) and KEP assembler (b).

54

%KEP ASM

INPUT MORNING,METER,STEP

INPUT SECOND,LAP

OUTPUT WALK,JUMP,RUN

EMIT _TICKLEN,#9

AWAIT MORNING

A0:

$0:ABORT 1,MORNING,A3,$0

$1: ABORT 1,LAP,A3,$1

$2: ABORT 100,METER,A1,$2

SUSTAIN WALK

A1:

$3: ABORT 15,SECOND,A2,$3

AWAIT STEP

A5:

$4: ABORT 1,STEP,A4,$4

EMIT JUMP

HALT

A4:

GOTO A5

A2:

SUSTAIN RUN

HALT

A3:

GOTO A0

⇒

%KEP ASM

INPUT MORNING,METER,STEP

INPUT SECOND,LAP

OUTPUT WALK,JUMP,RUN

ABORT 1,MORNING,A3,$0

ABORT 1,LAP,A3,$1

ABORT 100,METER,A1,$2

ABORT 15,SECOND,A2,$3

ABORT 1,STEP,A4,$4

EMIT _TICKLEN,#3

AWAIT MORNING

A0: $0: $1: $2:

SUSTAIN WALK

A1: $3:

AWAIT STEP

A5: $4:

EMIT JUMP

HALT

A4:

GOTO A5

A2:

SUSTAIN RUN

HALT

A3:

GOTO A0

(a) (b)

Figure 25: The speed optimization of the example RUNNER.

55

%KEP ASM

INPUT MORNING,METER,STEP

INPUT SECOND,LAP

OUTPUT WALK,JUMP,RUN

EMIT _TICKLEN,#5

AWAIT MORNING

A0:

$0:ABORT 1,MORNING,A3,$0

$1: ABORT 1,LAP,A3,$1

$2: ABORT 100,METER,A1,$2

SUSTAIN WALK

A1:

$3: ABORT 15,SECOND,A2,$3

AWAIT STEP

A5:

$4: ABORT 1,STEP,A4,$4

EMIT JUMP

HALT

A4:

GOTO A5

A2:

SUSTAIN RUN

HALT

A3:

GOTO A0

⇒

%KEP ASM

INPUT MORNING,METER,STEP

INPUT SECOND,LAP

OUTPUT WALK,JUMP,RUN

ABORT 1,MORNING,A3,$0

ABORT 1,LAP,A3,$1

ABORT 1,STEP,A4,$4

EMIT _TICKLEN,#9

AWAIT MORNING

A0: $0: $1:

$2: ABORT 100,METER,A1,$2

SUSTAIN WALK

A1:

$3: ABORT 15,SECOND,A2,$3

AWAIT STEP

A5: $4:

EMIT JUMP

HALT

A4:

GOTO A5

A2:

SUSTAIN RUN

HALT

A3:

GOTO A0

(a) (b)

Figure 26: The tradeoff optimization of the example RUNNER.

The limitation of speed optimization is that every preemption instruction in the program
occurs a Watcher. For example, since the deepest preemption nest is four levels, the original
RUNNER assembler codes only need four Watchers in fact. But the speed optimized assembler
codes of the RUNNER need five Watchers because the codes contain five preemption instructions.

For tradeoff between the shorter execution time and the lower Watcher usage, another op-
timized method is recommended. Reviewing the compiling process, the outer preemption is
assigned to the higher priority Watcher. So the Watcher, which is not reused, can be judged by
the corresponding instruction’s priority.

For the RUNNER module, the abortion MORNING gets the highest priority since it locates in the
outside. Thus this preemption is assigned to the Watcher0. For the similar reason, the abortion
LAP is assigned to the Watcher1.

The abortion SECOND locates in the abortion LAP’s body. The Watcher2 is the corresponding
Watcher. And the abortion STEP occurs Watcher3.

The abortion METER also locates in the abortion LAP’s body, so it gets the same priority as
the abortion SECOND’s. Therefore, Watcher2 is used by two abortions, i. e., abortion METER and
abortion SECOND. That means it is a reused Watcher, and all instructions which are assigned to
Watcher ought to be kept in the loop body for configuration during the execution period.

Figure 26 shows the RUNNER program codes which are optimized by the tradeoff strategy.
Assume the KEP2 stays on the first HALT instruction and the MORNING signal is presented, totally
5 instruction cycles are needed for this instant. The execution time speeds up 1.8 times over the
resource optimized codes, and the Watcher usage is less than that of the speed optimized codes.
The -w all option of KEP2 compiler invokes the tradeoff optimization.

56

	Introduction
	Related Work
	The Kiel Esterel Processor Architecture
	The KEP2 Input/Output Interface
	The KEP Tick Manage
	The Reactive Core
	The Preemption Element
	The AWAIT Element
	The CAWAIT Element
	The PRESENT Element

	The Interface Block
	Local Signals

	Experimental Results
	Handling Concurrency
	Conclusion and Outlook
	The Instruction Set Architecture
	Preemption (abort/weak abort/suspend)
	ABORT
	WABORT
	SUSPEND

	Signal awaiting (await, pause)
	AWAIT
	PAUSE

	Multiple signal awaiting (await case)
	CAWAIT
	CAWAITE

	Signal emission (emit)
	EMIT
	EMITR

	Sustaining signals (sustain)
	SUSTAIN
	SUSTAINR

	The halt statement
	HALT

	The nothing statement
	NOTHING

	Testing signal presence (present)
	PRESENT

	Signal scoping (signal)
	SIGNAL

	Arithmetic and logical operations
	CLRC
	SETC
	SR
	SRC
	NOTR
	LOAD
	ADD
	ADDC
	SUB
	SUBC
	MUL
	ANDR
	ORR
	XORR
	CMP

	The conditional branch statement
	JW

	Others
	GOTO
	CALL
	RET

	Synthesizing a KEP Configuration
	Reactive Block Generator
	Interface Block Generator
	Datapath Block Generator
	Innerconnection Generator

	KEP2 Assembler Compiler

