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Abstract

Graphical model-based system design is very appealing. However, there exist
many different formalisms, with different semantics—as far as they do have
well-defined semantics—and differing capabilities of the accompanying tools.
In this paper, we present a case study from the avionics domain and report
on the experiences in using different modeling languages and tools. The focus
here is on the pragmatics of modeling, i. e., the practical process of building
and inspecting graphical models. The underlying application is a high-lift
flap system, which is highly safety-critical and served as a demonstrator
within the Dependable Embedded Components and Systems (DECOS) project
that explored the design of distributed dependable systems build on time-
triggered architectures.

Specifically, we compare a realization in the Safety Critical Applica-
tion Development Environment (SCADE), a commercial tool from Esterel-
Technologies, with a design in the Kiel Integrated Environment for Layout
(KIEL), a research tool that allows to explore novel model handling paradigms.
Hence we compare traditional graphical drag-and-drop WYSIWYG model-
ing with alternative, productivity enhancing approaches. We conclude with
a brief outlook on future extensions which will tightly integrate with existing
tools based on the Eclipse platform.

Key words: Model-based design, pragmatics, distributed embedded real-
time systems, SCADE, avionics
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Chapter 1

Introduction

The use of graphical representations for abstract specification of problems
or solutions in computer science well established. The most well-known—
graphs—implicitly go back to Euler in the 18th century, cf. [23].

Visually enriched and equipped with source code generation one might
regard them as the next logical step in developing systems just as the steps
from object code to assembler and to higher-level textual programming lan-
guages. In programming most developers avoid to go back to the assembler
roots unless the application requires squeezing out last performance opti-
mizations by manual tricks. So higher programming languages are ruling
the development processes and one might ask why graphical representations
have not yet taken over the scepter.

The problem is that there exists a growing set of modeling languages and
development environments for them. In the control engineering well known is
Matlab/Simulink [27] or LabView [28] while control flow is better expressed
with Statecharts introduced by Harel in 1987 [22]. These days are many dif-
ferent incompatible Statecharts semantics known [31]. The Unified Modeling
Language (UML) [39] tries to cope with these differences by standardization.
However, this was done with a focus on language syntax and with a lack of
precise semantics [13], which makes it difficult to describe system behavior
unambiguously. This lack of semantics is accompanied by a quite bewildering
variety of graphical syntaxes.

Consequently, the UML is often regarded as too general, which has lead
to the concept of Domain Specific Modeling Languages (DSMLs) [40]. It is
by now standard practice to create new DSMLs and to build custom editors
and tools for these. Often, this is still done manually; alternatively, one
may employ a framework that supports the generation of new graphical lan-
guages. The Eclipse Platform [11], with its sub-project Graphical Modeling
Framework (GMF) [18], allows to synthesize customized graphical interactive
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drag-and-drop editors for new DSMLs from some basic specifications. Hence
there now emerges a variety of new graphical languages from the Eclipse com-
munity, each for a special purpose or a special domain. With this diversity
of graphical formalisms without a real standard, the different technologies
get developed and evolve rather independently. This includes different ap-
proaches to the pragmatics of model handling, i. e., how models are created,
edited, visualized, inspected, simulated, compared and so on.

In this paper, we present a case study from the avionics domain and
report on the experiences in using different modeling languages and tools.
The focus here is on the pragmatics of modeling, here specifically on how
models are created, structured, and visualized during simulation.

While within the Dependable Embedded Components and Systems (DECOS)
project the demonstrator was mainly developed with the commercial mod-
eling environment SCADE, afterwards we transferred some of the models to
the KIEL tool in order to compare their usability. These modelling envi-
ronments are presented briefly in the remainder of the introduction. The
rest of this paper is structured as follows. Section 2 presents the application
from the avionics domain considered in this paper, including a brief descrip-
tion of the DECOS project where it served as a demonstrator. Section 3 then
describes the modeling of the application with SCADE, using traditional mod-
eling approaches as far as their pragmatics is concerned. This is compared
in Section 4 with alternative editing and simulation visualization paradigms
provided by KIEL. We conclude with an outline of prospective future devel-
opments in modeling pragmatics within the Eclipse framework.

1.1 SCADE

The Safety Critical Application Development Environment (SCADE) is a
modeling tool of Esterel-Technologies [12]. It allows to graphically define
dataflow for control loops like Matlab/Simulink and control-flow like State-
charts (e.g. Matlab/Stateflow), but uses a precise formal semantics built on
the synchronous model of computation. Hence, it can be seen as a graphi-
cal editor on top of synchronous, textual languages [4, 32]. In SCADE up to
version 5, which is the version used for the DECOS aerospace project, it was
mainly Lustre for dataflow [21] and Esterel for control-flow [5]. Since version
6 SCADE employs its own SCADE textual language, which tries to merge the
two basic paradigms as described by Colaço et. al. [9].

A certified code generator can generate C-Code to be used in aerospace
safety-critical systems that must be developed according to DO-178B [37].
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1.2 KIEL

The Kiel Integrated Environment for Layout (KIEL) project is a test bed to
experiment with novel system modeling paradigms. It has a focus on the
pragmatics on how graphical models are created, inspected, analyzed and
visualized [41], and employs the Statechart formalism. A main concept is
to leverage automatic assistance by the computer to relieve the developer
of tedious tasks in practical model handling [35]. For example, the editing
of graphical models with the traditional WYSIWYG drag-and-drop editors
can be quite time consuming, compared to performing similar edits to a
textual program. Changing a Statechart by inserting a new state at some
position typically requires the developer to first manually make space for the
new state by enlarging the parent state and moving all surrounding objects.
Additionally inexperienced users often come up with rather unstructured
models difficult to comprehend, just due to their manual layout.

The basic idea is to separate the graphical representation of a model from
the model itself, and to let the designer work on the model, nots its repre-
sentation. This is akin to the Model-View-Controller familiar from software
engineering [36]; the critical difference is that here we employ MVC not to
develop the modeling tool, but we let the user of the modeling tool employ
MVC to develop some application.

The key enabler for providing MVC at the tool user level is the sys-
tematic application of automatic layout for graphical models. Modeling it-
self is no more a drag-and-drop interaction where the developer manually
positions items on the screen, instead the system performs the full layout
automatically. The user can employ a macro-based structural approach to
perform changes of the model structure and the layout is decided by the
framework [34]. For example, a single command may add a successor state
to an existing state, or upgrade a simple state to a composite or a parallel
state. An alternative editing paradigm is provided by a fully synchronized
text-editor that allows to edit a textual representation of the diagram whose
changes are immediately reflected in the graphical representation [33].
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Chapter 2

The Application: A High-Lift
Flap System

The application considered here was developed within the Dependable Embed-
ded Components and Systems (DECOS) project, an Integrated Project within
the European Union Framework Program 6 [10,19,24]. The project explored
approaches to build a system based on components of the shelf (COTS) com-
ponents and employs different layers of abstractions and tools to develop and
deploy the application. Aiming at mixed criticality systems, including safety-
critical ones, it was built upon the Time-Triggered Architecture (TTA) [25]
with different possible lower level implementations, including the TTP [26]
and FlexRay [3] communication protocols.

Next to the basic technology development in DECOS, there were three
demonstrator sub-projects, each employing the new technology in a different
domain. One domain is industrial control [20], another domain is the auto-
motive industry [8]. The third domain, which centered on the application
considered here, is the aerospace sector [14–16,38], represented in DECOS by
Airbus Germany [1].

The aerospace demonstrator implements a high-lift flap system, which is
motivated by the state-of-the-art of such systems [29]. The main purpose of
a flap system as depicted in Fig. 2.1 is to increase the size and concavity of
the wings and by this to increase the high-lift temporarily. This is used at
low speed for landing and take off purposes only. There are several reasons
why the high-lift system is safety-critical.

• First, its proper function is required during landing procedures. Hence
a system freeze during flight might cause severe landing problems.

• Second, it is required that all flaps on both wing sides are at all times
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Figure 2.1: Schematical View of a High-Lift Flap System [29]

perfectly synchronized. Otherwise it would influence the flight attitude
and would most likely ultimately lead to a crash.

• Third, the surface area of one flap panel is quite large, much larger for
example than the ailerons. For this reason the mechanical forces on the
panels are tremendous. If the holding mechanisms (brakes, motors) of
the panel shafts would fail, the high forces would feedback onto the
actuator shafts and cause them to spin. Ultimately centrifugal forces
might then destruct the installation and seriously damage the wings.

In the following, we consider two deployment alternatives, which are the
traditional, mechanical approach and a novel, electrical approach.
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Figure 2.2: Electronically Synchronized System Schematics

2.1 Mechanical Synchronization

For the perfect synchronization of all flap panels, state-of-the-art mechanisms
perform the alignment purely mechanically. Every flap panel is driven by a
rotary actuator that gets its actuation by a rotating shaft lengthwise within
the wing. Another long cross-shaft lies across the whole fuselage and connects
the left wing flap panel with the right wing flap panel. A central power control
unit actuates the shaft with the help of two electrical motors. If one motor
fails, the other side will move the whole shaft with half the speed by a speed
summing differential. This way both sides are always perfectly synchronized
unless a shaft breaks or blocks, whereupon the shaft brakes freeze the system.
However this scenario is highly unlikely.

The drawback of this solution is obvious: The shaft across the fuselage
is very inflexible and the development of the tip-to-tip shaft transmission
very laborious and includes the internal construction of the fuselage into the
development of the flap system, which makes the system neither modular nor
reusable.
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2.2 Electrical Synchronization

The approach is to perform the flap panel synchronization electrically instead
of mechanically and to remove the cross-shaft through the fuselage. The
system architecture used in the project is depicted in Fig. 2.2. For the sake
of simplicity only two panels were developed, one for each wing. Each panel
is still actuated by an individual cross-shaft, but they are not mechanically
connected anymore. Additionally, each shaft is actuated by a set of two
motors at the ends of the shaft. Hence the two panels could be moved
independently, and the electrical synchronization is responsible for avoiding
this. The two motors on each panel are still mechanically connected for
redundancy reasons: if one motor would fail, the other one could still rotate
the shaft with half-speed. Due to this direct mechanical connection, the
motors must be precisely synchronized in order to avoid a torque-fight. Each
shaft is equipped with a cross-shaft brake (CSB) to freeze the system when it
is not moving, and two redundant sensors, called position pick-off unit (PPU)
. Each motor is controlled on low level by its motor control electronics (MCE)
and on application level by an additional actuator control electronics (ACE).
MCE and ACE are closely coupled and for simplicity could be regarded as one
unit. The control loops are closed between the ACEs and PPUs so that the
shafts can be moved to any exact position with high precision. Additionally,
one central system control unit (SCU) communicates with the cockpit and
takes pilot flap position requests on the one hand, and calculates set-point
values for the shafts and monitors the system and commands fault reaction
strategies on the other hand.

For this safety-critical application with small control loop periods (2ms),
the field bus connecting SCU, ACEs and PPUs is a time-triggered architecture
as proposed by the DECOS project described above. The communication
between SCU and other aircraft systems use the standard Airbus Avionics
Full Duplex Switched Ethernet (AFDX) [2] communication, which extends
standard Ethernet with enhancements for predictability and dependability.
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Chapter 3

The Initial Model of the
Application—SCADE

The high-lift flap system basically separates in two different functions:

A. Closing the control loop between actuator and sensors, influenced by
control commands of the central control unit communicating with the
cockpit and

B. monitoring of the system, detecting faults and react on them appropri-
ately to get as much fault-tolerance as possible.

3.1 Basic Control

The basic control algorithms are implemented rather straight forward. The
basic loop is shown in Fig. 3.1. The whole system is for safety reasons purely
time-triggered, and so is the field bus. Hence the central system control
unit (SCU) sends to the actuator control electronics (ACE) periodically set-
points for the cross-shaft position at every time-cycle. To synchronize all four
actuator stations, the SCU does not send a final destination value, but instead
calculates the whole movement trajectory (including in- and decreasing of
speed) of the cross-shaft. At each time cycle only the position and speed
that the four stations should have at that time are supplied. To calculate
the correct trajectory, the SCU considers the current plane angle and speed
and the flap angle requested by the pilot via the control levers. The latter
two values are used to do auto-retraction of the panels in certain flight modes
in order to avoid damage to them.

The ACEs control the speed command to their motors such that the given
set-point values are always best matched. A simple proportional controller
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Figure 3.1: Basic Control Loop

Figure 3.2: Simple Loop Controller in SCADE

with differential additions is implemented in the ACE module.
The whole control loop is implemented in SCADE and spans over many

modules and many hierarchy levels. Due to its standard navigation and view
mechanisms, its graphical representations are too complex to be presented
fully in this paper. To give an example, the proportional controller of the
ACE is shown in Fig. 3.2. This pure dataflow diagram shows the model
inputs on the left—the set-point values for motor speed and shaft position
and the measured current shaft position as obtained by the PPU—and its
output to the motor control electronics (MCE) on the right.

The control loops are implemented mainly with SCADE dataflow and little
control-flow. The more challenging part is the monitoring and fault reaction
implementation presented in the following.
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3.2 Fault Detection and Reaction

3.2.1 Local Monitoring

To determine what can go wrong in the system, first a Failure Modes and
Effects Analysis (FMEA) was performed by the mechanical engineers within
the DECOS aerospace sub-project. Basic failure modes were identified, the
effects on the system, how the modes could be detected by the system (with-
out additional sensors) and what an appropriate reaction would be. Main
failure classes are classified as follows:

1. loss of motor power or disconnection from shaft,

2. powered runaway in both directions,

3. jam of motor, gear or cross-shaft,

4. breakage of shaft at different positions,

5. cross-shaft brake (CSB) failure, either released or set, and

6. communication failure.

Some of these cases the system can tolerate and still be operational with
reduced performance. E.g. when one motor gets disconnected somehow, the
other motor of that flap panel is still able to drive the cross-shaft and hence
the whole flap panel with reduced speed. A loss of the CSB can be coped
with by the motors by actively holding and controlling the cross-shaft to
certain positions where the system should be held. While the whole system
is designed following the single fault hypothesis [30] such that it tolerates
every single failure, it still can tolerate certain multiple concurrent faults as
well. For example one motor may fail at each flap panel and both brakes
could go out of order and the flaps could still be maneuvered. Nevertheless a
jam of the system or two motor failures at the same panel would disable the
proper operation and hence the system must be completely frozen on both
sides to avoid asynchronous states.

The implementation in SCADE mixes both dataflow and control-flow as-
pects. The first version was implemented in SCADE version 5 and hence the
two paradigms are explicitly separated (just the same as in Simulink). The
first part is schematically shown in Fig. 3.3.

The main state of each flap panel is modelled by a complex Statechart
which gets described in more detail in the next section. States represent de-
tected error modes and the currently active reaction strategy. Hence transi-
tions between these states are responsible for the error detection and reaction
decision.
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Figure 3.3: Schematical View on Local Monitoring Concept

The guards of the transitions must therefore somehow relate to the sensor
readings of the PPUs and the set-point values of the SCU. To determine
failure modes, those values need to be processed and compared. Doing this
in transition trigger expressions of pure Statecharts would lead to very long
and incomprehensible textual transition guards. As in SCADE version 5 it is
not possible to mix dataflow expressions into the Statecharts, the dataflow
got pulled out of the chart and the calculations are done in advance. So the
relevant variables in the monitors are fed into complex comparison and check
operators in the dataflow level of the model and get translated into simple
Boolean triggers for the control Statechart. The Statechart then can decide
by querying simple Boolean signals in what system modes it should switch
and output this mode and some other commands or failure codes.

This is the main point where the application would benefit from the
new mix of paradigms introduced in SCADE version 6. In SCADE 5 it is
only possible to embed a Statechart into a dataflow diagram and use simple
dataflow variables as signal inputs for the Statechart. The other way round
is only possible in SCADE 6, where one may mix dataflow and control-flow in
any hierarchy level. Dataflow components may be placed within states for
example. A state of a state machine can define some kind of modal dataflow,
which means the dataflow is only active when the state is active. Hence in
every state the outputs of the subsystem are required to be written at most
once. If an output is not written in some state, it holds its old value.
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Figure 3.4: Schematic Overview of the Global Command Unit

With these mechanisms our monitor could be implemented much more
intuitively. Certain dataflow operations as checks and calculations on data
could reside within the system states that require those checks to be done.
This would lead to simpler development and simulation as the mental map
of the model is better preserved by this locality.

Global Commanding

The local monitoring results of each flap panel get combined and compared in
a high-level control module schematically depicted in Fig. 3.4. The relevant
variables get processed by the wing monitors described above. Important
synchronization messages are passed between the two monitors for the basic
events, i.e. the other side is either driving, holding or switched to emergency
mode. Determined failure codes and states of one flap panel are processed
by two respective sub-command modules that decide to activate motors or
the CSBs.

A high-level command unit decides upon the rotation speed according to
the error state of all flaps and passes this information to the main set-point
calculation unit that combines it with the destination flap angle and outputs
the set-points for speed and position to the ACEs.

System Setup

The whole system is modeled in SCADE and augmented with additional archi-
tecture configuration that is specified by the DECOS internal tool chain. This
especially concerns the time-triggered communication and operating system
setup. SCADE generates C-code that is deployed on the target platform, a
physical test-rig at the Technical University Hamburg-Harbug. Addition-
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ally the system can be simulated prior to its physical integration. For that
a continuous-time high precision model of the mechanical parts of the sys-
tem is available that can be connected to the SCADE controllers. SCADE
is a purely discrete modeling environment following the strict synchronous
semantics and does not directly support continuous-time modeling. Hence
the environment model was designed in Matlab/Simulink. During simulation
Simulink and SCADE are executing in parallel while they exchange simulation
data in each simulation step. This interaction and setup is explained in more
detail elsewhere [16].

Figure 3.5: Seeing the big picture in SCADE

Structuring the models in SCADE with hierarchy requires to create a com-
pletely new sub-model for each hierarchical operator. Graphically it is not
possible to directly display one’s interior within the same graphical view.
Hence if the user might want to see the context of many operators, he or she
might end up with a screen cluttered as shown in Fig. 3.5. However, to ar-
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range all components in this fashion on the screen is not only time consuming
(it took about 20 minutes of opening, positioning and resizing windows to
create this view), but ultimately rather useless as the overall structure is still
unclear and the individual charts become too small to be legible. Hence, this
is not the way one would actually work with the tool. Usually one displays
only one or a few operators at a time, and there is a lot of time-consuming
navigation between windows, going back and forth in the model to learn
about the system and how the dataflow interplays between the components.
Hence to identify the context in which one operator is located is not trivial
and slows down the development process.
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Chapter 4

Alternative Approaches—Kiel
Integrated Environment for
Layout (KIEL)

The main monitoring Statechart of the local monitoring subsystems originally
has been modeled in SCADE, i.e. the Safe State Machine (SSM) editor of
the SCADE suite. This is a separate tool and only partly integrates into
the dataflow editor. In the newer version the new mixture of control- and
dataflow is tightly integrated into one development tool.

For documentation and demonstration purposes this Statechart has been
re-modeled using the Kiel Integrated Environment for Layout (KIEL) tool.
While the graphical representation of the original SSM is hardly adequate
to briefly describe in a paper, the dynamic view structure of KIEL allows to
generate multiple views with different complexity of the chart.

Fig. 4.1 is a screenshot of the Statechart from SCADE’s SSM editor tool.
It shows the most important states and even shows some hierarchy. However,
because of the complexity, some of the lower level states (brake, activehold,
onemot, twomot) were defined as hidden macro states, i. e. they are refined
by further substates, but this is not shown in this view. The decision which
states are hidden and which are visible within a diagram is more or less
final and static and therefore becomes an important design decision by the
developer for the goal of creating a comprehensible statechart.

Here we have chosen this level of detail in this view, in order to give the
user a good first overview of the diagram. However if he or she has to dig
deeper in the diagram, only the lower former hidden macrostates are shown
and you lose the view of the surrounding context.

Opposing to that Fig. 4.2 shows almost the same Statechart in the KIEL
tool. It represents the monitoring Statechart of one flap panel on the highest
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Figure 4.1: Monitor SSM in SCADE Editor

level with all states unfolded. This allows to get a first impression of the
complexity of the whole chart, but it is certainly difficult to discern any
details.

KIEL has a built-in Statechart simulation engine based on SSM semantics.
During a simulation run one can leverage the Dynamic Charts paradigm [34].
The idea is to use focus and context mechanisms to display the currently
interesting parts of the diagram in full detail in the focus. This “interesting”
part of the model in a Statechart is naturally the currently active state with
all its ancestors. The other states, the context, is visible only with reduced
detail. The sibling states are still present but get folded so that their contents
is not visible anymore.

Fig. 4.3 shows this dynamic focus and context in action when the simu-
lation is started for the Statechart. As you can see, the chart gets simplified
very much and its meaning becomes obvious: In the beginning the system is
in a power off state and it might switch eventually into an operational state.

The system in operational state is shown in Fig. 4.4a. This reveals the
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Figure 4.2: Overview of the Monitor SSM in KIEL

Figure 4.3: First Dynamic View on the Model

interior of this state to the next hierarchy level. The panel might either be
active, i.e. still capable of being moved, or in emergency mode, which means
the whole system needs to be frozen, because some intolerable fault (most
likely more than one consecutive fault at a time) has happened. In the latter
case there are no further refinements and hence no other substates.

During normal operation the system will be in the active state as shown in
Fig. 4.4b. This reveals two substates: The hold state in which the flap panel
is not moving and the drive state in which the flap panel is moving in one
direction. Either of the states is active and the hold mode is the initial one.
It itself has two basic substates and a simple init state. When the system is
held, it can either be held by the brake (brake state) or if the brake has failed
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(a) The Operational State here in Emer-
gency Mode

(b) The Operational State entering Active
Mode

(c) The Brake Mode

(d) The Drive Mode and its Direct Children

Figure 4.4: Different Dynamic Views in KIEL
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it can actively be held by the motors (activehold state).
The brake mode is illustrated in Fig. 4.4c and depicts the lowest hierarchy

level of this Statechart: The brake monitor state is the default state here and
the other states indicate severe error conditions. An exceed signal of one of
the control loops would indicate that this station has moved too far from
its set-point position where the flap should be held. In this case it can be
assumed that the brake is not working properly. The brake state switches
to its following acthold state, which is marked final and hence would follow
the normal termination transition to exit the parent brake state and switch
to the activehold state (which also has some internal monitoring states that
are not explicitly shown here).

Given a flap movement command of the pilot, the panels will start to
move in the desired direction. Therefore the system switches from hold mode
to drive mode. This also has two main states and an initializer. The main
states twomot and onemot say whether one or two motors of the panel are
still operational. This triggers different movement speeds and also different
foregoing monitoring states and respective guards to their error states. The
drive state with its direct children is shown in Fig. 4.4d.

In this paper for every new dynamic view we need to present a new image
and for better readability need to adjust the zoom level. During simulation
in KIEL this is morphed smoothly between the dynamic views in order to pre-
serve the user’s mental map of the system. Hence it is quite comprehensible
to follow from one view to the next. The dynamic views are computed on the
fly, using a hierarchical layout engine that recursively performs a bottom-up
layout across the hierarchy levels. The computation times for the layout are
in practice negligible and typically well in the sub-second range.

To create the models, KIEL’s interaction mechanisms were employed,
namely the macro-based editing and the synchronized textual representation.
With these methods, the developer does not need to manually move around
boxes and arrows, think about what makes a comprehensible layout or spend
time making space for new objects. Hence creating those models—though
they are a bit simplified—took only a fraction of time compared to build the
models in the classical drag-and-drop fashion in SCADE.

19



Chapter 5

Conclusion

We presented a safety-critical aerospace application that was graphically
modeled in the commercial tool SCADE and the experimental KIEL platform.

SCADE has its strengths in its rigorous, formal basis as it builds upon
synchronous languages and supports qualified code generation. In questions
of user interaction it reflects the current state-of-the-practice, which means
to be a drag-and-drop static view graphical editing and simulation environ-
ment. Either during editing of a diagram or simulation the user is busy with
manually navigating to the views of interest or manually arranging or fixing
the graphical layout for the diagram.

The KIEL tool shows the idea of systematically employed automatic graph-
ical layout and relieves the developer of many laborious mechanical tasks.
Additionally it is the enabler for further techniques, as illustrated with the
dynamic charts for this application. Those can help to better understand
not only the structure of an application but also its behavior.

Despite its good approaches, the KIEL tool has some major restrictions.
Its prototype monolithic Java implementation does yet integrate only with
a small set of other tools (Esterel Studio, Stateflow, ArgoUML). The only
supported graphical modeling language is Statecharts, though it supports
multiple dialects of those. Only a small set of concrete layout engines is
integrated, that sometimes do not lead to optimal layouts. Especially the
fact that one whole diagram is layouted at once gives sometimes bad results
for big diagrams.

5.1 Future Work

We consider the KIEL results to be a promising start, but there is much space
for improvement. We are currently undertaking a complete redesign, with the
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aims of added functionality, support for a broader set of modeling languages,
and better integration with other tools. This new platform integrates into
the rich-client application framework of Eclipse [11], which leads to its name
Kiel Integrated Environment for Layout for the Eclipse RichClientPlatform
(KIELER) [17].

The Eclipse integration is done for multiple reasons. First it allows to
build upon an existing platform and leverage common already existing frame-
works and therefore let this project concentrate on its own topics. Second it
can try to integrate the new interaction mechanisms of graphical modeling in
a more generic way. It gets integrated into the common platform so that its
contributions can be used by a big, already existing and still growing commu-
nity. Hence the idea of consistent employed automatic layout gets interfaced
with the existing graphical modeling projects in Eclipse, the Graphical Edit-
ing Framework (GEF). This way every graphical editor that is built upon
GEF can leverage the KIELER functionalities.

Another major difference between KIEL and KIELER lies in the approach
towards providing simulation capabilities. In KIEL, simulation is either done
with an integrated simulator, as done for SSMs, or by an interface to an
external tool that centers on a specific modeling language, such interfaces
exist for Stateflow and ArgoUML. Either method is rather labor intensive
and ultimately provides only limited simulation capabilities. In KIELER, we
follow an alternative approach, which seeks for a clean separation of modeling
pragmatics and semantics, including simulation capabilities. The aim is to
allow a smooth integration with other modeling frameworks that augment
the KIELER capabilities in the realm of pragmatics with other capabilities
such as simulation and code synthesis. We are currently investigating such
an integration with the Ptolemy framework [7], also with the aim of tool
supported multi-modeling [6].

Next to the simple layout interface a set of layout engines gets integrated.
Especially for actor-oriented dataflow diagrams like SCADE or Simulink this
is not trivial, because the layout cannot naturally be mapped to standard
graph layout problems.

The ideas of dynamic views onto a model shall be expanded, especially
to actor oriented dataflow languages. Here, again, it is not as obvious as in
Statecharts how to trigger the different focus and context views of a model.
The introduction of a common notion of simulation and semantics in Eclipse
could help to build the necessary base for this task.
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