
INSTITUT FÜR INFORMATIK

Executing Safe State Machines
on a Reactive Processor

Falk Starke
Claus Traulsen

Reinhard von Hanxleden

Bericht Nr. 0907
March 2009

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Executing Safe State Machines
on a Reactive Processor

Falk Starke
Claus Traulsen

Reinhard von Hanxleden

Bericht Nr. 0907
March 2009

e-mail:
{fast, ctr, rvh}@informatik.uni-kiel.de

Technical Report

Safe State Machines (SSMs), also known as SyncCharts, are a Statechart dialect with
precise synchronous semantics, used to describe the behavior of reactive systems. A
natural target for executing SSMs are reactive processors, which have an instruction
set architecture (ISA) particularly well-suited for reactive control flow. When synthe-
sizing SSMs into code, this is traditionally done via the synchronous language Esterel.
However, this is not always straightforward; transitions in SSMs can jump arbitrarily
between states, and there is no Esterel statement that matches this. We here propose to
circumvent this by synthesizing SSMs directly onto a reactive ISA that can encode tran-
sitions directly as GOTOs. This not only has the potential for smaller and faster code,
but preserves the structure of the SSM much better that going via Esterel. Conversely,
we note that SSMs appear easier to implement on a reactive processor than Esterel,
notably because there is not exception handling required.

Keywords: Safe State Machines, Statecharts, Compilation, Reactive pro-
cessors

Contents

1 Introduction 1

2 Related Work 6

3 Safe State Machines and Esterel 8
3.1 Safe State Machines . 8
3.2 Esterel . 9
3.3 Compiling SSMs to Esterel . 9

4 The Kiel Esterel Processor 12
4.1 Architecture . 12
4.2 Instruction Set . 12

5 Compiling SSM to KEP Assembler 14

6 Experimental Results 20

7 Conclusion and Outlook 23

ii

1 Introduction

Reactive systems are systems that continuously interact with their environment. The
execution of these systems is determined by their internal state and external stimuli. As a
reaction, new stimuli and/or a new internal state are generated. To describe the behavior
of reactive systems, the family of synchronous languages has been developed, including
Esterel [4], Lustre [10] and Signal [9]. These languages offer numerous control flow
primitives such as concurrency and preemption that are pertinent to reactive systems,
and the synchrony hypothesis [4] gives a sound semantical basis to these languages. For
a small example that illustrates the uses of concurrency and preemption, consider the
Esterel program in Figure 1.2b. The system waits for two inputs A and B. As soon as
both inputs have occurred, the output O is emitted. The behavior is reset by the input
R. The semantics of the language ensures deterministic behavior, for example there is
no race condition between emitting O and reacting to R here, R is guaranteed to get
precedence.

In particular for safety-critical systems, it is important that the behavior cannot only
be understood by the programmer, but as well by experts in the application area, with-
out further knowledge in computer science. In order to achieve this, graphical notations
such as Statecharts were developed. The Statecharts formalism extends the classical
formalism of finite-state machines and state transition diagrams by incorporating the
notions of hierarchy, orthogonality, compound events, and a broadcast mechanism for
communication between concurrent components. Statecharts provide an effective graph-
ical notation, not only for the specification and design of reactive systems, but also for the
simulation of the modeled system behavior. Since the original Statecharts proposal [11],
numerous dialects of Statecharts have been developed and Statecharts have also been
incorporated into the Unified Modeling Language (UML). Today, Statecharts are sup-
ported by several commercial tools, e. g., Matlab/Simulink/Stateflow1, Statemate [11] or
Rational Rose2. In this paper, we are particularly interested in the Safe State Machines
(SSMs) [2] dialect of Statecharts, also known as SyncCharts, which is a graphical variant
of Esterel. Figure 1.2a shows an SSM equivalent to the Esterel program in Figure 1.2b.

Usually SSMs are transformed to Esterel, which can then be compiled further to ei-
ther C code, synthesized to hardware or compiled in an additional HW/SW-Codesign
approach [15]. Another possibility is to execute Esterel on a reactive processor, such as,
the Kiel Esterel Processor (KEP) [12], the Emperor [22] or the StarPro [23]. These pro-
cessors are designed to allow deterministic execution of Esterel programs, by offering spe-
cial instructions for concurrency and preemption. In particular, sensing for a preemption

1http://www.mathworks.com/products/stateflow/
2http://www-306.ibm.com/software/awdtools/developer/technical/

1

http://www.mathworks.com/products/stateflow/
http://www-306.ibm.com/software/awdtools/developer/technical/

SSM

Esterel

KASM

E-Studio

smakc!

strl2kasm

(a) Different compilation schemes
from SSMs to KEP assembler
(KASM). The classical synthesis
path involves Esterel as interme-
diate step, we here propose the di-
rect translation.

SSM Esterel

KASM1 KASM2

K-Trace1 K-Trace2

E-Trace

KIEL

E-Studio

smakc! strl2kasm

KEP KEP

E-Studio

compare

(b) Each model is compiled either directly or
via Esterel. To validate the compilation, the
executions on the KEP are compared to refer-
ence traces generated by E-Studio. The reac-
tion times of both executions are compared to
each other.

Figure 1.1: Compilation paths and validation of the compiler

can be performed in parallel to the actual computation, while still preserving determin-
ism. As the KEP assembler code for the ABRO shown in Figure 1.2c illustrates, most
Esterel statements can be mapped directly to reactive assembler instructions. Apart
from a speedup, this direct correspondence simplifies the timing analysis [5]. The KEP
compiler automatically computes the maximum reaction time and initializes the KEP’s
Tick Manager accordingly, see Figure 1.2c, line 5. In the further examples, we will omit
the interface part consisting of I/O signals and the Tick Manager initialization.

This paper investigates how to efficiently execute SSMs on reactive processors. The
classical compilation chain starts with an SSM designed with Esterel Studio (E-Studio
for short, by Esterel Technologies), from which E-Studio synthesizes Esterel. From
here, the strl2kasm [12] compiler generates KEP assembler (KASM). This path is also
illustrated in Figure 1.1a. While simple SSMs can be easily transformed into equivalent
Esterel programs, this is not true for highly interconnected SSMs. Since Esterel does
not have any instructions to jump to a given arbitrary code block, only linear control
flow can be easily expressed.

Consider the SSM in Figure 1.3a. It takes two inputs N (nickel) and D (dime). The
state encodes how many cents have been entered: 0 for state Zero, 5 for state Five and
10 for state Ten. A GUM is emitted whenever 15 cents have been entered. We assume
that the inputs N and D never occur simultaneously. While such a complete graph is
an example for highly non-linear control-flow, it illustrates the problems that can occur
when such SSMs are transformed into Esterel. Naturally, these difficulties get more
pronounced as the number of states and transitions increases. Figure 1.3b shows the

2

(a) Safe State Machine

1 module ABRO:

2 input A, B, R;

3 output O;

4 loop
5 [

6 await A

7 ||
8 await B

9];

10 emit O;

11 each R

12 end module

(b) Esterel code

1 % −−−− I /O S i g n a l s −−−−−−−−−−−−−−−
2 INPUT A, B, R

3 OUTPUT O

4 % −−−− I n i t i a l i z e Tick Manager −−−
5 EMIT TICKLEN , #11

6

7 A0 : ABORT R , A1 % Begin l oop each

8 PAR 1 , A2 , 1

% Sta r t c on cu r r e n t t h r e ad s

9 PAR 1 , A3 , 2

10 PARE A4 , 1

11 A2 : AWAIT A % Thread 1

12 A3 : AWAIT B % Thread 2

13 A4 : JOIN 0 % Jo in t h r e ad s

14 EMIT O

15 HALT % Wait f o r r e s e t

16 A1 : GOTO A0 % End loop each

(c) KEP assembler derived via Esterel (strl2kasm)

Figure 1.2: ABRO—a system that waits for two inputs (A and B), before emitting
output O. Shown are equivalent descriptions as SSM and Esterel program, and the KEP
assembler generated from Esterel by strl2kasm.

Esterel code that was synthesized by E-Studio3. Two auxiliary signals are introduced,
to indicate that not the initial state Zero, but either state Five or state Ten should be
activated.

The problem illustrated here is that a Statechart transition allows arbitrary control
changes, akin to a GOTO, and Esterel only allows structured control. More funda-
mentally, Statecharts are a means to describe reactive behavior [11], where it may be
perfectly natural to transfer from one system state to an arbitrary other system state.
The situation is somewhat different in “classical” computer programs, where a structured
control flow is desirable [7]. Actually, it is a common misconception among Statechart
novices to treat Statecharts as control flow diagrams, where states may merely encode
the state of the program counter. This “state” is rather short-lived and relates to the

3To improve readability of the automatically generated code samples—the Esterel produced by E-
Studio as well as the KASM code samples—, we added comments, renamed some labels and slightly
polished the formatting.

3

computation of a behavior, but not the behavior itself. This difference manifests itself
also in the synchronous model, where computations are considered to not take any time
at all. In contrast, a state of a reactive system should in general be something that the
system can reside in for some duration of physical time. Note that one may require a cer-
tain structure in Statechart transitions as well. For example, SSMs disallow inter-level
transitions, which may simplify compilation and (formal) analysis. However, within one
hierarchy level, transitions are generally unrestricted.

We here propose an alternative path to synthesize code for reactive processors from
SSMs, which avoids the detour via Esterel, and performs a direct translation instead.
We have investigated this for the KEP execution platform and have developed a state
machine to KEP compiler (called smakc!), which produces KEP assembler directly from
SSMs—see again Figure 1.1a. For the Vending example, the code produced by smakc!
is shown in Figure 1.3c. As can be seen, this code does need any additional signals
and directly reflects the original structure. Each state is encoded as a HALT, which is
enclosed by (weak or strong) ABORTs that trigger outgoing transitions. For example,
state Zero corresponds to the HALT in line 4. The transition from Zero to Five, which
depends on signal N, is triggered by the WABORT that is initialized in line 2; if triggered,
this transfers control to the label Zero2Five, where a GOTO Five is performed. Note that
the nesting order of the ABORTs reflects the transition priorities in the SSM. Hence,
the generation of KEP assembler directly from the SSM gives a very simple one-to-one
mapping where each assembler instruction can be directly mapped to a state action or a
transition. This not only results in compact and efficient code, but also greatly improves
code traceability. This supports testing and verification, and in case of safety-critical
systems may also aid in certification.

In this paper, we investigate how SSMs can be naturally executed on a reactive proces-
sor. On the one hand, this execution is more efficient than the common way to compile
an SSM to Esterel and preserves the structure of the SSM in the assembler code. On the
other hand, due to the special Instruction Set Architecture (ISA) of reactive processors,
the compilation is much simpler than the compilation to a general purpose language like
C. Still, the compilation approach presented here could also be beneficial for classical,
non-reactive processors, for example if they provide a virtual machine that implements
a reactive ISA [14].

In the next section, we will give a short overview about related work. Section 3
introduces SSMs, Esterel, and synchronous languages in more detail. Section 4 gives a
short overview about our target platform, a reactive processor and its ISA. Section 5
details our compilation process and Section 6 gives experimental results. We conclude
in Section 7.

4

(a) Safe State Machine

1 signal go2Five in
2 loop
3 signal go2Ten in
4 present [go2Five] then
5 % −−−− state Five −−−−
6 await
7 case [N] do
8 emit go2Ten

9 case [D] do
10 emit GUM

11 end await
12 else
13 % −−−− state Zero −−−−
14 await
15 case [N] do
16 emit go2Five

17 case [D] do
18 emit go2Ten

19 end await
20 end present;

21 present [go2Ten] then
22 % −−−− state Ten −−−−−
23 await
24 case [N] do
25 emit GUM

26 case [D] do
27 emit GUM;

28 emit go2Five

29 end await
30 end present
31 end signal
32 end loop
33 end signal

(b) Esterel code synthesized from
the SSM by E-Studio

1 % −−−−−−−− s t a t e Zero −−−−−−−−
2 Zero : WABORT N, Z e r o 2 F i v e

3 WABORT D, Zero2Ten

4 HALT
5 Zero2Ten : GOTO Ten

6 Z e r o 2 F i v e : GOTO F i v e

7 % −−−−−−−− s t a t e F i v e −−−−−−−−
8 F i v e : WABORT D, F i v e 2 Z e r o

9 WABORT N, Five2Ten

10 HALT
11 Five2Ten : GOTO Ten

12 F i v e 2 Z e r o : EMIT GUM

13 GOTO Zero

14 % −−−−−−−− s t a t e Ten −−−−−−−−−
15 Ten : WABORT N, Ten2Zero

16 WABORT D, Ten2Five

17 HALT
18 Ten2Five : EMIT GUM

19 GOTO F i v e

20 Ten2Zero : EMIT GUM

21 GOTO Zero

22 HALT

(c) KEP assembler produced directly from the
SSM by smakc!

1 A0 : SIGNAL go2Ten

2 PRESENT go2Five , A1

3 % −−−−−−−−−− s t a t e F i v e −−−−−−−−−−
4 A3 : PAUSE
5 PRESENT N, A7

6 EXIT AC, A3

7 A7 : PRESENT D, A8

8 EXIT AC 0 , A3

9 A8 : GOTO A3

10 AC 0 : EMIT GUM

11 EXIT AWAIT CASE , A3

12 AC : EMIT go2Ten

13 EXIT AWAIT CASE , A3

14 AWAIT CASE : GOTO AWAIT CASE 0

15 % −−−−−−−−−− s t a t e Zero −−−−−−−−−−
16 A1 : PAUSE
17 PRESENT N, A13

18 EXIT AC 1 , A1

19 A13 : PRESENT D, A14

20 EXIT AC 2 , A1

21 A14 : GOTO A1

22 AC 2 : EMIT go2Ten

23 EXIT AWAIT CASE 0 , A1

24 AC 1 : EMIT g o 2 F i v e

25 EXIT AWAIT CASE 0 , A1

26 AWAIT CASE 0 : PRESENT go2Ten , A15

27 % −−−−−−−−−− s t a t e Ten −−−−−−−−−−−
28 A16 : PAUSE
29 PRESENT N, A20

30 EXIT AC 3 , A16

31 A20 : PRESENT D, A21

32 EXIT AC 4 , A16

33 A21 : GOTO A16

34 AC 4 : EMIT GUM

35 EMIT g o 2 F i v e

36 EXIT A15 , A16

37 AC 3 : EMIT GUM

38 EXIT A15 , A16

39 A15 : GOTO A0

(d) KEP assembler derived via Esterel

Figure 1.3: Vending—an example of tightly interconnected SSM, and various derivatives.

5

2 Related Work

While Statecharts are an appealing language to describe reactive behaviors, the gener-
ation of efficient code is not trivial. Three different methods of compiling Statecharts
can be distinguished: compilation into an object oriented language using the state pat-
tern [1], dynamic simulation [21], and flattening into finite state machines. Since flat-
tening can suffer from state explosion, often a combination of flattening and dynamic
simulation is used. As Statecharts exist in various different flavors, which code gener-
ation scheme is best might also depend on the actual Statechart type and the actual
semantics. We focus on SSMs, which have a formal, clean semantics. Since our target
architecture directly supports concurrency and hierarchy (by means of preemption) our
approach differs from standard Statechart compilation. However, it can be seen as a
simulation based approach as used for general purpose processors, were the simulator is
implemented in hardware.

A translation from SSMs to Esterel was proposed by André [2] together with the
initial definition of SSMs and their semantics. This transformation, with additional
unpublished optimizations, is implemented in E-Studio.

Our work is most closely related to the extension of Esterel with GOTO by Tardieu
and Edwards [18]. Since they extend the language, they have to consider all possible
usages of GOTO, e. g., jumping from one thread into another. Our approach could be
directly used to generate efficient extended Esterel (including GOTO) from SSMs, since
the structure of the SSM will always generate valid GOTOs. We choose to target KEP
assembler, which already has a GOTO statement. One practical reason is that there is
no publicly available compiler for extended Esterel; another is that the KEP assembler
is close enough to Esterel that this intermediate step would not make much difference
in code generation.

The issue of extracting complex signal expressions into simple condition triggers (see
Section 5) is related to extracting such expressions into external hardware in hardware/-
software co-design [8]. In co-design, the motivation is to accelerate computation, and the
challenge is to cleanly extract such expressions into the hw/sw interface. In our setting,
the motivation is to provide triggers for the abortion watchers, and the challenge is to
ensure that the trigger signals are computed for as long as necessary without blocking
progress.

Considering a non-synchronous language like C as alternative synthesis target, the
direct generation of C code from SSMs might also be more efficient than the current
method to first generate Esterel. But since the compilation of Esterel as well as SSMs
is by no means trivial, e. g., because of causality issues, a direct compiler from SSMs to
C would be very complex.

6

Reactive processors are especially designed for reactive systems. In particular, they
support preemption and concurrency, as well as timing predictability. All existing reac-
tive processors have been built with the idea of executing Esterel programs in mind [20].
Thus their ISA is very similar to Esterel statements. Besides reactive processors that
are based on Esterel, there are also approaches for efficient processors with deterministic
timing that use C as an input language like the PReT [13] or the PREDATOR1 project.

Esterel programs can be compiled to the KEP by using strl2kasm. It first translates
Esterel into an intermediate graph structure, called concurrent KEP assembler graph
(CKAG), on which the scheduling is performed. The compiler also incorporates a Worst
Case Reaction Time (WCRT) analysis [5]. The compiler for the STARPro [23] is very
similar to the strl2kasm, but has to insert explicit instructions to check for preemption.
The compilation for the EMPEROR [6] differs from both other approaches, since the
target is not multi-threaded, but consists of multiple cores that execute in truly parallel
fashion.

1http://predator-project.eu/

7

http://predator-project.eu/

3 Safe State Machines and Esterel

SSMs as well as Esterel are synchronous languages, specially designed to describe re-
active systems. Both emphasize on preemption and concurrency, key issues for such
systems. Concurrent threads run completely synchronously and can communicate in-
stantaneously back and forth. The execution is divided into logical instants, or ticks,
and communication within or across threads occurs via signals. At each tick, a signal is
either present (emitted) or absent (not emitted). While pure signals only have a status,
valued signals carry an additional value. This value is preserved over instants, and it
can only change if the signal is present. Besides usual termination, all program parts can
be suspended or aborted. Both languages distinguish between weak abortion, where the
aborted code is executed one last tick, and strong abortion, where the code is aborted
immediately.

While the semantics of SSMs and Esterel are quite similar, their appeal is different.
SSMs, as a graphical language, are very good to give an intuitive understanding of
the system, without prior knowledge of the semantical details, while Esterel code can
be more compact. However there is also some behavior which can be described more
compactly in SSMs. In particular, systems with different modes, where the mode can
change from any state to another, are easier to express in SSMs than in Esterel, like the
example in Figure 1.3a.

3.1 Safe State Machines

SSMs are a Statechart dialect with a synchronous semantics that strictly conforms to
the Esterel semantics. A procedural definition of SSMs is given by André [2]. The
basic object in SSMs is a reactive cell, which is a state with its outgoing transitions.
Reactive cells are combined to state-transition graphs, which we will also refer to as state
regions. A macro-state consists of one or more state-transition graphs. Additionally,
SSMs can contain textual macrostates, which consist of plain Esterel code. States can
also have internal actions: on entry, on exit and during. SSMs inherit the concept of
signals and valued signals from Esterel. Hence a transition trigger can consist of an
event, which tests for presence and absence of values, and a conditional, which may
compare numerical values. Characteristic for SSMs are the different forms of preemption,
expressed by different state transition types. Weak and strong abortion transitions as
well as suspension can be applied to macrostates. A macrostate can either be left by
an abortion, which has an explicit trigger, or by a normal termination, which is taken if
the macrostate enters a terminal state. Analogously to Esterel, all transitions can either
be immediate or delayed, where a delayed transitions is only taken if the source state

8

was already active at the start of an instant. In contrast, immediate transitions may be
taken as soon as the state becomes active; this enables the activation and deactivation of
a state multiple times within one instant. Delayed transitions can also be count delayed,
i. e., the trigger must have been evaluated to true for a specific number of times, before
the transition is enabled. When a state has more than one outgoing transition, a unique
priority is assigned to each of them, where lower numbers have higher priority. Weak
abortions must have lower priority than strong abortions, and if a normal termination
exists, it always has the lowest priority.

3.2 Esterel

Esterel is a textual language, with a strict synchronous semantics. For an overview of
representative Esterel statements, see Table 3.1. Esterel statements are either transient,
in which case they do not consume logical time, or delayed, in which case execution is
finished for the current tick. Per default statements are transient; delayed statements
include pause and (non-immediate) await. Esterel’s parallel operator || groups statements
in concurrently executed threads. The Esterel language distinguishes kernel statements
(e. g., emit, pause) and derived statements (e. g., await, every). Derived statements are
in general just syntactic sugar and can be reduced to kernel statements.

Esterel traps are used to express exceptions. When an exit is executed, control imme-
diately shifts to the corresponding handler. When multiple parallel traps are raised, the
trap with the outermost handler will be executed.

3.3 Compiling SSMs to Esterel

Since SSMs were developed as a graphical version of Esterel, programs in one language
can in general be fairly directly translated into the other. The transformation from SSMs
to Esterel is implemented in E-Studio, while the opposite transformation is implemented
in the KIEL tool [16]. The main difficulty in going from Esterel to SSMs is that SSMs
do not directly provide traps (exceptions). Weak abortion type transitions in SSMs are
related to traps, but do not provide the immediate control change offered by exceptions.
Transitions in SSMs are more restrictive in that abortions only happen at tick bound-
aries. However, as mentioned before, transitions in SSMs are less restrictive than control
flow in Esterel in that transitions can transfer control to arbitrary other states (within
the same hierarchy). Put another way, control flow timing is more restrictive in SSMs,
but control flow structure is more restrictive in Esterel. The GOTO offered by reactive
processors is not restrictive in either dimension.

The translation of states is trivial, they can be directly expressed by await or abort in
Esterel. The translation of transitions is more complex: Esterel provides conditionals,
loops and trap exits, but does not allow to jump directly to another block of code. Hence,
when we want a transition from state A to state B, A must be in the scope of B. But
if we have the reverse transition as well, A and B must be in each others scope, which

9

is not possible in Esterel’s syntax. Instead, the whole region needs to be embedded into
a loop, as illustrated in the Vending example (Figure 1.3b). Each state is encoded as
an await case statement, with one case for each transition trigger. Signals encode which
state is to be taken next; the presence of go2Five or go2Ten indicate a transition to
states Five or Ten, respectively; if neither is present, this indicates a transition to state
Zero. When a transition is taken, control will jump to the end of the loop, restart the
region and determine which state shall be active. For the Vending example, the Esterel
code behaves as follows. Initially, go2Five is absent, so control will flow to the second
await statement, which corresponds to state Zero. The await is non-immediate, hence
the current tick terminates. Assume that signal N is set in the next tick. Then emit
go2Five (line 16) is executed. Hence the control will skip the next present (line 21), the
loop body terminates, the loop is restarted and control flows to the first await (line 6,
state Five).

Now consider the KEP assembler in Figure 1.3d. The structure is quite similar to the
Esterel code, and also uses signals go2Five and go2Ten to trigger transitions. As go2Ten
is declared for the whole program, the compiler only assigns a register to it, but does not
introduce a SIGNAL instruction that resets a signal at the entry of its scope. In contrast,
the go2Ten signal is declared inside the loop and must be reset in each iteration (line 1).

As the KEP ISA does not directly support await case, the strl2kasm compiler converts
this into a sequence of trap exits embedded in a loop. The transition from Zero to Five
is implemented by 10 instructions: L16–L18, L24–26, L39, L1–L4. For comparison, in
the KEP assembler in Figure 1.3c, this requires only 5 instructions: L4, L6, L8–10 are
executed.

The Esterel program, and the KEP assembler code derived from it, correctly present
the semantics of the original SSM, but do not really preserve its structure. This example
with only three states is still fairly simple. SSMs with more states and more elaborate
transition patterns can result in arbitrarily complicated control flow in the generated
Esterel program.

10

Mnemonic, Operands Esterel Syntax Cycles Notes

PAR prio1, startAddr1, id1

. . .
PAR prion, startAddrn, idn

PARE endAddr
startAddr1:
. . .
startAddr2:

. . .
startAddrn:
. . .
endAddr :
JOIN prio

[
p1

||
...

||
pn

]

 n + 1

1

For each thread, one PAR is
needed to define the start ad-
dress, thread id and initial pri-
ority. The end of a thread is
defined by the start address of
the next thread, except for the
last thread, whose end is de-
fined via PARE.

The prio argument of JOIN in-
struction sets the priority of
the parent thread. This allows
to lower the priority of a parent
thread after spawning of child
threads.

PRIO prio 1 Set current thread prior-
ity to prio.

[W]ABORT[I, n] S, endAddr
. . .
endAddr :

[weak] abort
. . .

when [immediate, n] S

2

SUSPEND[I,n] S, endAddr
. . .
endAddr :

suspend
. . .

when [immediate, n] S

2

startAddr :
. . .
EXIT exitAddr startAddr
. . .
exitAddr:

trap T in
. . .
exit T
. . .

end trap

1

Exit from a trap, star-
tAddr/exitAddr specifies
the trap scope.

Unlike the GOTO, the EXIT
checks for concurrent EXITs
and terminates enclosing ||.

PAUSE pause 1 Wait for a signal. AWAIT
TICK is equivalent to PAUSE.AWAIT [I, n] S await [immediate, n] S 1

SIGNAL S signal S in . . . end 1 Initialize a local signal S.
EMIT S [, {#data|reg}] emit S [(val)] 1 Emit (valued) signal S.
SUSTAIN S [, {#data|reg}] sustain S [(val)] 1 Sustain (valued) signal S.
PRESENT S, elseAddr present S then . . . end 1 Jump to elseAddr if S is absent.

HALT halt 1 Halt the program.
addr : . . . GOTO addr loop . . . end loop 1 Jump to addr.

Table 3.1: Overview of the KEP instruction set architecture, and their relation to Esterel
and the number of processor cycles for the execution of each instruction.

11

4 The Kiel Esterel Processor

The main idea of the KEP is the direct support for preemption via watchers and paral-
lelism by supporting hardware threads with a priority based scheduling. Originally the
KEP was implemented by Xin Li [12] using VHDL. It was reimplemented in Esterel [19],
then named KEPe, for better maintainability and to test the practicability of Esterel for
hardware design. However, the KEPe does not fully implement all features, for example
valued signals are missing. Exceptions (trap/exit) are also not supported by the KEPe.
This is a limitation for running Esterel programs, but not for executing SSMs.

4.1 Architecture

The significant parts of the architecture of the KEP are the thread block and the reactive
core [12]. The thread block manages the different threads and schedules them according
to their priority. It also has to handle abortion of threads by their parent threads. Each
thread has an independent program counter (PC) and threads are scheduled according
to their respective status and dynamically changing priorities. At the beginning of each
instruction cycle the enabled thread with the highest priority is selected and executed.
The scheduler is very light-weight. In the KEP, scheduling and context switching do not
cost extra instruction cycles, only changing the priority of a thread costs an instruction.
The priority-based execution scheme allows on the one hand to enforce an ordering
among threads that obeys the constraints given by Esterel’s semantics, but on the other
hand avoids unnecessary context switches. If a thread lowers its priority during execution
but still has the highest priority, it simply keeps executing.

The reactive block provides a configurable number of Watcher units, which detect
whether a signal triggering a preemption is present and whether the program counter
(PC) is in the corresponding preemption body. Therefore, no additional instruction
cycles are needed to test for preemption. The reactive block also provides a signal test
and an await cell to handle delays.

4.2 Instruction Set

The instruction set of the KEP is very similar to the Esterel language. The KEP ISA
includes all kernel statements, and in addition some frequently used derived statements.
The KEP ISA also includes valued signals, which cannot be reduced to kernel statements.
The only parts of Esterel v5 that are not part of the KEP ISA are combined signal
handling and external task handling.

12

Due to this direct mapping from Esterel to the KEP ISA, most Esterel statements can
be executed in just one instruction cycle. For more complicated statements, well-known
translations into kernel statements exist, allowing the KEP to execute arbitrary Esterel
programs. Part of the KEP instruction set is shown in Table 3.1.

13

5 Compiling SSM to KEP Assembler

In order to compile an SSM into KEP assembler, several transformations are applied
to the SSM, which might alter its structure, or enrich it with additional information.
In a last step, the generated SSM can be directly written into KEP assembler. The
compilation is carried out by the following steps:

1. Complex conditionals extraction: this transforms complex signal expressions to
simple signal tests. This transformation results in an SSM with the same behavior,
which does not contain conditional expressions.

2. Dependency analysis: this detects data and control flow dependencies and adds
them to the SSM as special transition type.

3. Cycle detection: to ensure schedulability, the dependency graph is inspected for
cycles.

4. Scheduling: the states are scheduled according to the encountered dependencies,
the schedule is implemented by assigning appropriate thread priorities.

5. Code generation: this generates the target platform’s code.

In the following we will illustrate the compilation process for the Vending2 example
in Figure 5.1. The left part of the SSM is identical to the SSM in Figure 1.3a. It takes
as input the information whether a dime (D) or a nickel (N) was entered. It emits the
signal GUM whenever 15 cents where entered. When the user has entered 20 cents, the
user is credited 5 cents (indicated by signal X), and has 5 seconds time to enter another
10 cents; otherwise, the right side of the SSM will trigger a reset (signal R), and the
credit is lost.

Step 1: Complex conditionals extraction

Computing complex conditionals is a common task for compilation. In SSMs, transitions
may be triggered by complex signal expressions. A complication when compiling to a
reactive processor is that aborts are triggered by simple signals, thus necessitating the
creation of a new auxiliary signal that is present whenever the original signal expression
evaluates to true. This auxiliary signal is computed in parallel to the state region where
the complex expression occurs. In the original state region, the complex expression is
then replaced by a test for this one signal. This also has the benefit that the same signal
can be reused in case one expression is used multiple times in the same state region.

14

(a) Safe State Machine

Ten

Five FiveX

ZeroX

Count
GUM

GUM

X

control

R

(b) Signal and control dependen-
cies

Count

ZeroX FiveX

Vending2 Zero Ten Five

0

1

2

3

(c) Packing from which the schedule will be de-
rived

1 % −−−−−−− s t a t e Vending2 (pa r t 1/2) −−−
2 SIGNAL R

3 SIGNAL X

4 PAR 3 , Count , 1

5 PAR 2 , ZeroX , 2

6 PARE EndVending2 , 0

7 % −−−−−−− s t a t e Count (pa r t 1/2) −−−−−−
8 Count : WABORT R , Count2Count

9 PAR 3 , Zero , 3

10 PARE EndCount , 0

11 % −−−−−−− s t a t e Zero −−−−−−−−−−−−−−−−−−
12 Zero : WABORT N, Z e r o 2 F i v e

13 WABORT D, Zero2Ten

14 HALT
15 Zero2Ten : GOTO Ten

16 Z e r o 2 F i v e : GOTO F i v e

17 % −−−−−−− s t a t e F i v e −−−−−−−−−−−−−−−−−−
18 F i v e : WABORT D, F i v e 2 Z e r o

19 WABORT N, Five2Ten

20 HALT
21 Five2Ten : GOTO Ten

22 F i v e 2 Z e r o : EMIT GUM

23 GOTO Zero

24 % −−−−−−− s t a t e Ten −−−−−−−−−−−−−−−−−−−
25 Ten : WABORT N, Ten2Zero

26 WABORT D, Ten2Five

27 HALT
28 Ten2Five : EMIT GUM

29 EMIT X

30 GOTO F i v e

31 Ten2Zero : EMIT GUM

32 GOTO Zero

33 % −−−−−−− s t a t e Count (pa r t 2/2) −−−−−−
34 EndCount : JOIN 1

35 HALT
36 Count2Count : GOTO Count

37 % −−−−−−− s t a t e ZeroX −−−−−−−−−−−−−−−−−
38 ZeroX : AWAITI X

39 GOTO FiveX

40 % −−−−−−− s t a t e FiveX −−−−−−−−−−−−−−−−−
41 FiveX :

WABORT GUM, FiveX2ZeroX 1

42 LOAD Count ,#5

43 WABORT SEC , FiveX2ZeroX 2

44 HALT
45 FiveX2ZeroX 2 : EMIT R

46 GOTO ZeroX

47 FiveX2ZeroX 1 : GOTO ZeroX

48 % −−−−−−− s t a t e Vending2 (pa r t 2/2) −−−
49 EndVending2 : JOIN 3

50 HALT

(d) KEP Assembler produced by smakc!

Figure 5.1: Vending2—a vending machine with credit.

15

A remaining issue is for how long this auxiliary signal needs to be computed. If we
would simply compute this indefinitely, the whole parallel region would not properly
terminate, as the semantics of concurrency here is that a parallel region only terminates
if all concurrent regions have terminated (or an external preemption takes place).

As illustrated in Figure 5.2, we handle this issue by introducing further auxiliary sig-
nals, by which on the one hand an original signal region communicates to the auxiliary
signal computation region that an original region has finished (signals FINISH A and
FINISH B), and on the other hand the auxiliary signal computation region communi-

cates to the original regions that the whole parallel region is ready to terminate (signal
FINISH ALL).

Step 2: Dependency analysis

The signal dependency detection for SSMs is fairly straightforward. For each signal, we
first compute all possible sources and sinks. A state A is a source of a signal S, if it is
either emitted in a state action, or if it is emitted on any outgoing transition. A state B
is a potential sink of a signal S, if S is tested in any action, on an outgoing transition,
or in the suspend trigger of B. A signal dependency is a pair of states (A, B) which
are concurrent, and for which a signal S exists, such that A is a source of S and B is a
sink of S. We do not have to consider dependencies between non-concurrent states, as
those states are already in a fixed ordering which cannot be changed through scheduling
of threads. However, we must consider states that can reach each other via immediate
transitions. If this is the case, the priority of the source state in general has to be at least
as high as the priority of the sink state, which corresponds to a control dependency. In
the Vending2 example, state ZeroX transfers control immediately to FiveX if X is present
(the immediate nature of the transition is indicated by the hash mark). Hence ZeroX
“inherits” the priority from FiveX. In this example, this turns out to be unnecessarily
conservative; however, it would be necessary if FiveX could immediately emit a signal,
e. g. via an on-entry action or an immediate outgoing transition.

To determine whether two states are concurrent to each other, it suffices to compute
the lowest state that contains both states and then to check whether both states occur
in the same region of this state.

The dependencies returned by this algorithm are conservative over-approximations,
since some structurally possible constellations of simultaneously active states might not
be possible in a state machine. But precise checking whether two states can be executed
in parallel during run-time is not decidable for SSMs with data1.

In our vending machine example, we get the dependencies illustrated in Figure 5.1b.
Sources for signal GUM are state Five and state Ten, and reader is FiveX. The only source

1It is well known that checking whether two-clocks of a Lustre program are semantically equivalent is
undecidable [10]. The translation of the Lustre program into an automaton yields a valid SSM. By
putting two simple automata in parallel, where the value of the clocks is encoded by two states, we
can reduce the problem to check for clock equivalence to the problem to check whether states can
be executed in parallel.

16

for signal R is FiveX, and the only reader is Count. Source for signal X is state Ten, and
the only reader s state ZeroX. As explained before, there is also a control dependency
from ZeroX to FiveX.

Step 3: Cycle detection

On the dependencies, a simple cycle detection is performed. This analysis could be
omitted, since the subsequent scheduling algorithm also detects cycles. However, it
could be useful to run it anyway, as the cycle detection also finds out which states lie
on a dependency cycle.

The algorithm operates on the data dependencies found in a state machine and is
implemented by the Floyd-Warshall algorithm. It stops the compiler with an error if
a cycle in the data dependencies was found in any input SSM, or continues with the
cycle-free SSMs, depending on the value of a compiler flag.

The Vending2 example does not contain any cycles.

Step 4: Scheduling

The signal dependencies can now be used to schedule the SSM. Each source state must
have a higher priority than the corresponding sink state. Since a thread on the KEP
can only decrease its priority during one tick, each state must have a priority that is
greater or equal to all its successor states. Similar, the priority of a complex state
must be greater or equal than all of its child states. With this information, we could
use constraint solving or the simplex algorithm to compute a schedule. However, we
choose to use ideas from strip packing [3] instead. This allows to easily incorporate
pre-scheduled states (e. g., for modularization): we assign a height of 1 to each state,
whereas the scheduling of SSMs that have already been scheduled can be reused by
assigning the total height of their packing as item height.

Placing the source of a dependency above the sink for each dependency yields a valid
sequence of execution for the states that fulfills the dependencies. The packing in Fig-
ure 5.1c is such a placement (compare with Figure 5.1b). Note that the states that do
not have any dependencies attached to them (in the example Vending2 and Zero) get
arbitrarily assigned the top placement. So, in the example, the states Vending2, Zero,
Five, and Ten all have the highest priority (3), followed by ZeroX and FiveX (priority 2)
and Count (priority 1).

As an optimization, states that are neither source nor sink of a dependency can be
omitted from the scheduling entirely, and later during code generation simply get the
current thread priority assigned. This saves some more priority switch instructions.

17

Step 5: Code generation

Once we have scheduled the SSM, generating code can be done by a simple templating
mechanism. Each state first initializes one abort for each outgoing transition and possi-
bly a suspend, when a suspend trigger for this state exists. The body of a simple state
contains all on entry actions, followed by a loop that contains all on inside action or a
HALT if no on inside actions exists. For a complex state, the body spawns a parallel
thread for each region, before recursively inserting code for the sub states.

At the end of the abort scope for each transition, first code that emits the effect of the
transition is generated. Thereafter, the correct priority for the target state is set, before
a GOTO to the target state is executed. For optimization, an empty state that only
has one outgoing transition is translated to an AWAIT instruction instead of an abort.
Conditional pseudo-states are implemented by present tests. It might be the case that
the outgoing transitions of a macrostate must be executed with a lower priority than its
inner states. Therefore, we might first execute the inner state in a separate, embedded
thread running at high priority. Then, the macro-state executes the JOIN statement in
each tick at a lower priority, which can trigger a preemption. Note that the watchers
are also triggered by executing the inner states.

This thread embedding illustrated in the code in Figure 5.1d, where Count, running at
priority 3 (specified as first argument to PAR instruction in line 4), spawns (lines 9/10)
an internal thread running also at priority 3. This internal thread executes the sub-states
of Count, which, via signal GUM and state FiveX (running subsequently at priority 2)
may indirectly trigger the preemption of Count. Once the sub-states of Count and the
states concurrent to Count have executed, Count regains control with the JOIN statement
in line 34. That JOIN is first executed with priority 3, but also sets the priority of the
Count thread to 1. (This implies that the JOIN must be executed twice in the initial
tick, once before the child threads, once after the child threads.) The Count thread then
remains at priority 1 until it is terminated. The JOIN also tests the preemption signal R.
If R is present, the corresponding watcher (line 8) triggers a reset via the GOTO Count
(line 36).

Note that the strl2kasm compiler has to solve the same problem, and does so slightly
differently. It does not use thread embedding, but instead would convert each HALT
instruction to a PAUSE embedded in a loop that lowers and raises priorities accordingly.
In Figure 5.1d, the HALT instructions in the thread embedded in Count would become
something like Label: PRIO 1; PRIO 3; PAUSE; GOTO Label. This saves the extra thread,
but typically results in larger, slower code. For comparison, the thread embedding
approach does not manipulate priorities in this explicit fashion at each tick, but instead
uses the capabilities provided in hardware by the JOIN instruction.

18

(a) Original SSM

(b) Expanded expressions

Figure 5.2: Example for expanding signal expressions.

19

6 Experimental Results

We used the K(r)epevalbench1 to verify the KEP assembler produced by smakc! and to
measure its reaction times. Experiments were carried out on several SSM examples. The
SSMs were created in E-Studio, which was also used to compile them into Esterel code
and to generate traces (E-traces) that covered all SSM transitions. We compiled the
SSM and the generated Esterel program into KEP assembler. The two KEP programs
could then be directly compared to each other in terms of size and reaction times, see
Figure 1.1b.

We did so by executing the programs on the KEP with the E-traces as inputs, gener-
ating output traces (K-Traces). The K(r)epevalbench compared the generated outputs
to the outputs in the E-traces, thereby confirming the correctness of the compilation.
It also recorded the minimum, maximum and average reaction times of the generated
code, which we compared to the reaction times for the compilation via Esterel. Hence
we used E-Studio as a reference point both for validation (correctness of smakc!) and
for benchmarking (competitiveness of smakc! with code synthesized via E-Studio).

The object code size, measured in 40-bit instruction words, for compilation by the
two compilers is listed in Figure 6.1a. Our tests showed that the direct code generation
in general produced comparable code sizes. The smakc! compiler generates smaller pro-
grams than strl2kasm. Still the code could be further optimized by removing superfluous
thread embeddings and GOTOs, this requires a slightly more sophisticated dependency
and control flow analysis. The smakc! compiler is particular at an advantage when the
levels of nested hierarchy and transition count per state grow. A possible explanation
is that the transformation to Esterel described by André and implemented in E-Studio
has difficulties to efficiently encode exactly these two cases.

Average and maximum reaction times of the code are shown in Figure 6.1b. Again,
the results are comparable, but usually slightly better for the direct compilation, in
particular in the automata-like examples. A difficult encoding using a lot of Esterel
instructions also accounts for more KEP assembler instructions, increasing the reaction
times of the resulting code. The reactions of the code generated by smakc! can sometimes
be slower, in particular due to the thread embedding, where additional JOIN statements
are executed in each tick.

While the direct compilation is only better in some cases, the figures are in general
comparable. The strl2kasm compiler makes a more involved dependency analysis. In-
corporating this into the smakc should help to avoid many unnecessary embeddings of
threads in macrostates, and hence improve both code size and reaction times.

The clean structure of the assembler code generated from the templating process

1http://www.informatik.uni-kiel.de/rtsys/kep/

20

http://www.informatik.uni-kiel.de/rtsys/kep/

ABRO Displays ParHier TrafficLight Vending2 Vending
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

smakc!
strl2kasm

O
pc

od
e

w
or

ds

(a) Comparison of code size.
ABRO Displays ParHier TrafficLight Vending2 Vending

0

5

10

15

20

25

30

35

40

45

50 smakc! - avg
smakc! - max
strl2kasm –
avg
strl2kasm –
max

In
st

ru
ct

io
n

cy
cl

es

(b) Comparison of reaction times, per logical
tick.

Figure 6.1: Comparison between smakc and strl2kasm.

applied to the SSM permits a very simple implementation of a tracing tool. With
approximately only three hours of coding work, we wrote a small program that reads
an assembler file generated with our compiler and an SSM source code file, both in a
single pass. The SSM source code uses the textual, human-readable KIT format [17].
The program generates a map that maps an assembler code line to the corresponding
line in the SSM source. This map can be used by the K(r)epevalbench when tracing a
the run of a KEP program. As illustrated in Figure 6.2, the current state of a system
can be highlighted in the textual description of the SSM. An alternative, which is not
implemented yet but should be fairly straightforward, would be to highlight the current
state not in the textual format, but directly in the graphical SSM.

21

Figure 6.2: Executing the Vending2 SSM (Figure 5.1a) using the evaluation bench. The
left panel shows the KIT-source for the SSM, the center and right panels show input
and output signals, respectively. The system is currently in states Ten and ZeroX, and
entering a dime (signal D) triggers transitions to Five and FiveX, respectively.

22

7 Conclusion and Outlook

We have shown that SSMs can be translated to a reactive processor in a fairly straight-
forward, efficient manner. While reactive processors are (so far) designed for Esterel,
their special hardware instructions match the needs for SSM execution. This makes the
compilation much easier and more efficient than the compilation to a general purpose
architecture via a language like C.

Our experiments showed that direct compilation has significant performance advan-
tages only in some cases. In regular applications, there is usually a linear, or circular
main control flow with some branches. This type of “classic” program can be efficiently
compiled to the KEP using the compilation via a high level language, in this case Esterel.
Applications closer to hardware behavior description with a high level of interconnection
however do perform better when directly compiled to a processor’s assembler, making
use of a GOTO for encoding transitions.

Another benefit is that the structure of the SSM is preserved on the assembler level.
This greatly simplifies the traceability from the original state-machine to the KEP as-
sembler, by giving a one to one correspondence between assembler instructions and state
or transitions, respectively. We currently take advantage of this by tracing the execu-
tion of reactive programs in textual SSM descriptions; as mentioned above, it should be
straightforward to map these traces directly to graphical SSMs as well.

Overall, we conclude that SSMs are a very natural input language for reactive pro-
cessors. Even though at this point we did not reach substantial performance increases
compared to the route via Esterel, we noticed that several issues that can be rather
tedious when going via Esterel, like causality analysis and scheduling, become relatively
straightforward when coming from SSMs. This not only helps the aforementioned trace-
ability, but also simplifies the job of the compiler writer. On the one hand, reactive ISAs
directly provide the flexible control flow expressed in SSMs; on the other hand, SSMs
do not entail certain features of Esterel (notably traps) that are complicated to support
in a reactive ISA.

There are several opportunities for optimizations, as already mentioned in Section 6.
Consider also again the code in Figure 5.1d. The GOTO Five in line 16 could be safely
eliminated, as it transfers control to a state that follows immediately. One could also
order states in a way that further exposes such optimization possibilities. The GOTO
ZeroX in line 46 could also be safely eliminated, for a slightly different reason: here we
have two transitions to the same target, and the lower-priority transition does not have
any action associated with it. One might also try to optimize the priority assignment
further, e. g. by exploiting thread-id precedences to enforce dependencies.

We would like to extend the input to SSM with reference and textual macro states,
which would also expand the range of available benchmarks. Reference states could

23

allow the efficient reuse of already compiled state-machines. However, note that modular
compilation for synchronous programs is not possible in general, due to the instantaneous
communication. So, a conservative approximation of possible signal dependencies must
be taken. Textual macrostates would require to use the existing compiler from Esterel
to the KEP inside our compiler.

Other, but similar, target platforms could be addressed as well, like the STARPro or
Esterel with GOTO. One might also explore the design of reactive processors with an
ISA that does not try to support full Esterel, but only the subset needed for SSMs. This
essentially would remove traps, which would simplify the logic required in the reactive
core. On the same token, one could develop a virtual machine running on classical
general purpose processor that provides such a reduced ISA. This would allow to take
advantage of the smakc! compilation approach on a much broader range of platforms
than just reactive processors.

24

Bibliography

[1] Jauhar Ali and Jiro Tanaka. Converting Statecharts into Java code. In Proceed-
ings of the Fourth World Conference on Integrated Design and Process Technol-
ogy (IDPT ’99), Dallas, Texas, June 2000. Society for Design and Process Science
(SDPS).

[2] Charles André. Semantics of S.S.M (Safe State Machine). Technical report, Esterel
Technologies, Sophia-Antipolis, France, April 2003. http://www.esterel-technologies.
com.

[3] John Augustine, Sudarshan Banerjee, and Sandy Irani. Strip packing with prece-
dence constraints and strip packing with release times. In Proceedings of the Eigh-
teenth Annual Acm Symposium on Parallelism in Algorithms and Architectures
(SPAA’06), pages 180–189, New York, NY, USA, 2006. ACM.

[4] Gérard Berry and Georges Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992.

[5] Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst case reaction
time analysis of concurrent reactive programs. Electronic Notes in Theoretical Com-
puter Science, 203(4):65–79, June 2008. Proceedings of the International Workshop
on Model-Driven High-Level Programming of Embedded Systems (SLA++P’07),
March 2007, Braga, Portugal.

[6] M. W. Sajeewa Dayaratne, Partha S. Roop, and Zoran Salcic. Direct Execution of
Esterel Using Reactive Microprocessors. In Proceedings of Synchronous Languages,
Applications, and Programming (SLAP’05), April 2005.

[7] Edsger W. Dijkstra. GOTO considered harmful. Communications of the ACM,
11(3):147–148, March 1968.

[8] Sascha Gädtke, Claus Traulsen, and Reinhard von Hanxleden. HW/SW Co-Design
for Esterel Processing. In Proceedings of the International Conference on Hardware-
Software Codesign and System Synthesis (CODES+ISSS’07), Salzburg, Austria,
September 2007.

[9] Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire. Pro-
gramming real time applications with SIGNAL. Proceedings of the IEEE, 79(9),
September 1991.

25

http://www.esterel-technologies.com
http://www.esterel-technologies.com

[10] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[11] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi
Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbrot. Statemate: A working
environment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4):403–414, April 1990.

[12] Xin Li, Marian Boldt, and Reinhard von Hanxleden. Mapping Esterel onto a multi-
threaded embedded processor. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS’06), San Jose, CA, October 21–25 2006.

[13] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and
Edward A. Lee. Predictable programming on a precision timed architecture. In
Proceedings of Compilers, Architectures, and Synthesis of Embedded Systems
(CASES), Atlanta, USA, October 2008.

[14] Becky Plummer, Mukul Khajanchi, and Stephen A. Edwards. An Esterel virtual
machine for embedded systems. In International Workshop on Synchronous Lan-
guages, Applications, and Programming (SLAP’06), Vienna, Austria, March 2006.

[15] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling Es-
terel. Springer, May 2007.

[16] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Synthesizing Safe
State Machines from Esterel. In Proceedings of ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems (LCTES’06),
Ottawa, Canada, June 2006.

[17] Steffen Prochnow and Reinhard von Hanxleden. Statechart development beyond
WYSIWYG. In Proceedings of the ACM/IEEE 10th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’07), Nashville, TN,
USA, October 2007.

[18] Olivier Tardieu and Stephen A. Edwards. Instanteneous transitions in esterel.
In Proceedings of Model Driven High-Level Programming of Embedded Systems
(SLA++P’07), Braga, Portugal, March 2007.

[19] Malte Tiedje and Claus Traulsen. Designing a reactive processor with Esterel v7.
In Proceedings of the Workshop on Model-Driven High-Level Programming of Em-
bedded Systems (SLA++P’08), Budapest, Hungary, April 2008.

[20] Reinhard von Hanxleden, Xin Li, Partha Roop, Zoran Salcic, and Li Hsien Yoong.
Reactive processing for reactive systems. ERCIM News, 66:28–29, October 2006.

26

[21] Andrzej Wasowski. On efficient program synthesis from Statecharts. In Proceedings
of the 2003 ACM SIGPLAN Conference on Language, Compilers, and Tools for
Embedded Systems (LCTES’03), volume 38, issue 7, June 2003. ACM SIGPLAN
Notices.

[22] Li Hsien Yoong, Partha Roop, Zoran Salcic, and Flavius Gruian. Compiling Esterel
for distributed execution. In International Workshop on Synchronous Languages,
Applications, and Programming (SLAP’06), Vienna, Austria, March 2006.

[23] Simon Yuan, Sidharta Andalam, Li Hsien Yoong, Partha S. Roop, and Zoran
Salcic. STARPro—a new multithreaded direct execution platform for Esterel.
In Proceedings of Model Driven High-Level Programming of Embedded Systems
(SLA++P’08), Budapest, Hungary, April 2008.

27

	Introduction
	Related Work
	Safe State Machines and Esterel
	Safe State Machines
	Esterel
	Compiling SSMs to Esterel

	The Kiel Esterel Processor
	Architecture
	Instruction Set

	Compiling SSM to KEP Assembler
	Experimental Results
	Conclusion and Outlook

