
INSTITUT FÜR INFORMATIK

SyncCharts in C

Reinhard von Hanxleden

Bericht Nr. 0910
Mai 2009

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

SyncCharts in C

Reinhard von Hanxleden

Bericht Nr. 0910
Mai 2009

e-mail:
rvh@informatik.uni-kiel.de

Technical Report

Abstract

Statecharts are a well-established visual formalism for the description of reactive real-time
systems. The SyncCharts dialect of Statecharts, which builds on the synchrony hypothesis,
has a sound formal basis and ensures deterministic behavior. This report presents SyncCharts
in C (SC), an approach on how to seamlessly and efficiently embed SyncCharts constructs
into a conventional imperative programming language. SC offers deterministic concurrency
and preemption via a simulation of multi-threading, inspired by reactive processing.

SC can be used as a regular programming language, requiring just a C compiler; no
special tools or hardware are needed. However SC’s conciseness, completeness and semantic
closeness to SyncCharts make it an attractive candidate in a number of other scenarios: 1) as
an intermediate target language for synthesizing graphical SyncChart models into executable
code, in a more traceable manner than the traditional path through Esterel; 2) as instruction
set architecture for programming precision timed (PRET) or reactive architectures; or 3) as
a virtual machine instruction set. A reference implementation of SC, based on light-weight C
macros, is available as open source code.

Key words: SyncCharts, Statecharts, Esterel, synchronous programming, code synthesis,
model-based design

Contents

1 Introduction 1

2 Introductory Examples 3
2.1 Reactive Control in SC—The PCO Example 3
2.2 Signals in SC—The grcbal3 Example . 7

3 A Tour of SC 12
3.1 The SC Programming Model . 12

3.1.1 Synchronous threading . 12
3.1.2 Signals . 14

3.2 Multithreading Simulation . 15
3.2.1 Coarse program counters . 15
3.2.2 The dispatcher . 15
3.2.3 Thread and label structuring . 17
3.2.4 Thread scheduling . 20

3.3 SC Operators . 24
3.3.1 SC Thread Handling Operators . 24
3.3.2 SC signal operators . 26
3.3.3 SC sequential control operators . 28
3.3.4 An example of expanded macros—ABRO 31

3.4 SC Structure . 31
3.4.1 Program files . 31
3.4.2 Functions . 32
3.4.3 Types . 33
3.4.4 Variables . 33

4 Examples 35
4.1 Count2Suspend . 35
4.2 Exits . 36
4.3 FilteredSR . 39
4.4 Shifter3 . 39
4.5 PreAndSuspend . 41
4.6 Reincarnation . 42
4.7 PrimeFactor . 43

5 Related Work 45

iv

6 Experimental results 49
6.1 Conciseness of SC, Code Size . 49
6.2 SC Performance . 49

7 Conclusions and Outlook 52

A The SC files 57

B Complete Examples 63
B.1 ABRO . 63
B.2 grcbal3 . 70
B.3 PCO . 71
B.4 Count2Suspend . 72
B.5 Exits . 73
B.6 Exits-no-isatcall . 75
B.7 Exits-inlined . 77
B.8 FilteredSR . 78
B.9 PreAndSuspend . 79
B.10 PrimeFactor . 81
B.11 Reincarnation . 82
B.12 Shifter3 . 83
B.13 SurfDepth . 85

v

List of Figures

2.1 The PCO (Producer-Consumer-Observer) example. 4
2.2 The grcbal3 example. 8

3.1 The status of the whole program . 13
3.2 Execution status of a single thread . 13
3.3 The ABRO example. 18
3.4 The SurfDepth example. 19
3.5 ABRO tick function after macro expansion . 30

4.1 The Count2Suspend example. 35
4.2 The Exits example. 37
4.3 Alternative variants for the SC tick function of the Exits example (Fig. 4.2). . 38
4.4 The FilteredSR example. 39
4.5 The Shifter3 example. 40
4.6 The PreAndSuspend example. 41
4.7 The Reincarnation example. 42
4.8 The PrimeFactor example. 43

6.1 Comparison of SC with two code synthesis variants of Esterel Studio. 50

vi

List of Tables

2.1 SC thread operators . 5
2.2 SC signal operators and sequential control operators 9

vii

Listings, Outside Figures

3.1 selectCidPrio(): Computation of id of thread to be dispatched, considering pri-
orities (from sc.c) . 16

3.2 selectCidNoprio(): Computation of id of thread to be dispatched, without con-
sidering priorities (from sc.c) . 16

3.3 dispatch(): Variable definitions for the dispatcher (from sc.h) 16
A.1 The header file sc.h . 57
A.2 The main program file sc.c . 60
A.3 The Makefile . 61
A.4 make.trace: a run of make . 61
B.1 ABRO.c . 63
B.2 ABRO.out . 63
B.3 Assembler generated from ABRO tick function without optimizations before

linking . 64
B.4 Assembler of ABRO tick function with optimizations (gcc -O3), before linking 68
B.5 grcbal3.c . 70
B.6 grcbal3.out . 70
B.7 PCO.c . 71
B.8 PCO.out . 71
B.9 Count2Suspend.c . 72
B.10 Count2Suspend.out . 72
B.11 Exits.c . 73
B.12 Exits.out . 74
B.13 Exits-no-isatcall.c . 75
B.14 Exits-no-isatcall.out . 76
B.15 Exits-inlined.c . 77
B.16 Exits-inlined.out . 77
B.17 FilteredSR.c . 78
B.18 FilteredSR.out . 79
B.19 PreAndSuspend.c . 79
B.20 PreAndSuspend.out . 80
B.21 PrimeFactor.c . 81
B.22 PrimeFactor.out . 82
B.23 Reincarnation.c . 82
B.24 Reincarnation.out . 83
B.25 Shifter3.c . 83
B.26 Shifter3.out . 84
B.27 SurfDepth.c . 85

viii

B.28 SurfDepth.out . 85

ix

Chapter 1

Introduction

The control flow of reactive systems typically entails not just the sequential control flow found
in traditional programming languages, such as conditionals and loops, but also exhibits con-
currency and preemption. This reactive control flow is naturally expressed by the Statechart
formalism introduced by David Harel [12], which extends classical finite state machines by
concurrency and hierarchy/preemption. These extensions allow to keep descriptions compact
and avoid the classical state explosion problem.

The graphical Statechart formalism has been originally developed to let application ex-
perts precisely describe the behavior desired for an application. Its visual nature makes this
formalism accessible to non-computer scientists, without the need to be versed in a traditional
programming language. However, beyond this visual syntax, Statecharts offer important con-
cepts that can be expressed in non-visual languages as well, such as the concepts of state-based
control flow, hierarchy, concurrency, and its model of time. This model of computation (MoC)
of Statecharts offers a powerful abstraction mechanism compared to classical programming
models. For this reason, Statechart models are typically viewed as more abstract than, say, a
program written in C.

A typical design flow may start with a graphical modeling tool, which synthesizes a Stat-
echart model into a C program, which is further compiled into some executable. However,
it is also quite common to bypass the visual modeling step. Just as the code generator of a
modeling tool is able to express the Statechart MoC in a C program, so it is possible for a
human programmer to express Statechart behavior as a C program [27, 31]. This does not
offer the visual appeal of graphical Statecharts, but has other advantages:

• no need for a modeling tool,

• high portability, and

• seamless integration with a fully featured, widely used programming language, includ-
ing the type system, expression handling, control flow, access to low-level I/O, pre-
processors, etc.

Even if one assumes a design flow that starts at a graphical modeling tool that supports
Statecharts, it is of interest how Statechart behavior can be expressed concisely in a traditional
programming language. For a number of reasons, we would like to be able to generate code
that preserves the structure of the graphical model:

• it simplifies the development of the code synthesizer of the modeling tool;

1

• it facilitates back-annotations from the executable code into the graphical model, which
allows visual animations of the running code and allows to set break points in the model;
and

• it simplifies code certification for safety-critical embedded systems.

This report describes SyncCharts in C (SC), which is a light-weight approach to express
SyncCharts [2] in C programs. SC combines the formal soundness of SyncCharts, including
deterministic concurrency and preemption, with the efficiency and wide support for the C
language. The main idea of SC is to emulate multi-threading, and is inspired by reactive
processing [30]. As we do not have direct access to the program counter at the C language
level, we keep track of individual threads via state labels, implemented as usual C program
labels. These labels can also be viewed as continuations [4], or coroutine [8, 14] re-entry
points. Precedence among transitions, respecting strong/weak abortions and hierarchy, and
the adherence to signal dependencies are achieved by checking transition triggers in the proper
order as well as assigning appropriate thread ids and priorities.

To write and execute an SC application requires neither specific tools nor special execution
platforms, although both may support this concept further. All that is needed to get started is
an understanding of SyncCharts (see e. g. the tutorial provided by Andé [2]), a C compiler, and
the SC files. The SC files consist of one header file (sc.h), to be included by the application
code, and one C-file (sc.c), to be linked in by the application. They are open source and
available for free download1.

As the name suggests, SC has been developed with the SyncCharts execution model
in mind. However, SC can also be viewed as a generic approach for programming light-
weight, deterministic concurrent programs in C, without using SyncChart-specifics such as
(valued) signals or (weak) abortions. For example, SC appears to be a suitable candidate for
writing concurrent C programs that have predictable functionality and timing on PRET-like
architectures [18], without having to resort to low-level synchronization mechanisms based on
physical timing characteristics.

In this report, we will first work through two examples that give an overview how SC
programmers can implement reactive control and signal-based communication, followed by a
full tour of SC in Chapter 3 and further examples in Chapter 4. Chapter 5 discusses related
work, experimental results are presented in Chapter 6. The report concludes in Chapter 7.
Appendix A lists the SC files, Appendix B gives the complete code for the examples.

1http://www.informatik.uni-kiel.de/rtsys/sc/

2

http://www.informatik.uni-kiel.de/rtsys/sc/

Chapter 2

Introductory Examples

This chapter gives a first practical introduction to SC by working through two examples.
The first presents the fundamental reactive control flow mechanism supported by SC, namely
concurrency and preemption. The second example makes use of signal handling and illustrates
how SC supports intricate thread inter-dependencies.

2.1 Reactive Control in SC—The PCO Example

This section covers

• the general structure of SC programs,

• how SC macros are embedded in regular C code,

• the concept of deterministic, label-based simulated multi-threading, and

• deterministic preemptions.

We will illustrate these points with PCO, shown in Fig. 2.1, a simple producer-consumer
example with an observer, inspired by Lickly et al. [18]. In addition to the original example,
PCO also has a parent thread that restarts production/consumption once the buffer has the
value 10, and which terminates after 20 iterations.

The SyncCharts version (Fig. 2.1a) shows a Parent macrostate, which is an AND (parallel)
state that consists of three substates, corresponding to the producer, consumer and observer.
Each substate consists of a state with a self-transition, which is triggered unconditionally and
performs some action. For example, the producer state writes the current value of i into a
buffer BUF, a valued signal in SyncCharts parlance. The consumer state reads the value of
BUF into some variable tmp and then writes tmp into an array arr. The observer also reads
from BUF. The Parent state re-enters itself when BUF has the value 10, and transitions to
some final state when k, incremented by the observer, has reached the value 20.

Compared to an implementation that would try to achieve the same behavior with, say,
Java threads, the interesting aspect of the SyncChart implementation is that the concurrency
is deterministic. The three substates of Parent execute in lock step, and the SyncCharts
semantics requires that in each execution, BUF must be written before it is read. Hence, the
code generator of EsterelStudio, which generates C code from this (via Esterel), must schedule

3

(a) SyncChart, produced with EsterelStudio

int main() {
 DEAD(28);
 volatile unsigned int * buf =
 (unsigned int*)(0x3F800200);
 unsigned int i = 0;
 for (i = 0; ; i++) {
 DEAD(26);
 *buf = i;
 }
 return 0;
}

Producer

int main() {
 DEAD(41);
 volatile unsigned int * buf =
 (unsigned int*)(0x3F800200);
 unsigned int i = 0;
 int arr[8];
 for (i =0; i<8; i++)
 arr[i] = 0;
 for (i = 0; ; i++) {
 DEAD(26);
 register int tmp = *buf;
 arr[i%8] = tmp;
 }
 return 0;
}

Consumer

int main() {
 DEAD(41);
 volatile unsigned int * buf =
 (unsigned int*)(0x3F800200);
 volatile unsigned int * fd =
 (unsigned int*)(0x80000600);
 unsigned int i = 0;
 for (i = 0; ; i++) {
 DEAD(26);
 *fd = *buf;
 }
 return 0;
}

Observer

(b) PRET version, without preemption (from [18])

1 #include ”sc.h”
2

3 int BUF, fd, i , j , k = 0, tmp, arr [8], idHi = 4;
4 typedef enum { TickEnd, Main, Cons, Obs, Prod }

idtype;
5 const int ids [] = { 0, 1, 2, 3, 4 };
6 const char ∗id2threadname[] = { ”TickEnd”, ”Main”,

”Cons”, ”Obs”, ”Prod” };
7

8 // ====== MAIN FUNCTION ======
9 int main()

10 {
11 int notDone, init = 1;
12

13 do {
14 notDone = tick(init) ; // Call tick function
15 //sleep(1) ; // Slow down by 1 sec
16 init = 0;
17 } while (notDone);
18 return 0;
19 }
20

21 // ====== TICK FUNCTION ======
22 int tick (int isInit)
23 {
24 TICKSTART(isInit); // Main thread
25

26 PCO: PAR(0, Prod, ids [Prod]);
27 PAR(0, Cons, ids[Cons]);
28 PAR(0, Obs, ids[Obs]);
29 PARE(0, Parent, id2b(Prod) | id2b(Cons) |

id2b(Obs));
30

31 Prod: for (i = 0; ; i++) { // Producer
32 PAUSE(L0);
33 L0: BUF = i; }
34

35 Cons: for (j = 0; j < 8; j++) // Consumer
36 arr [j] = 0;
37 for (j = 0; ; j++) {
38 PAUSE(L1);
39 L1: tmp = BUF;
40 arr [j % 8] = tmp; }
41

42 Obs: for (; ;) { // Observer
43 PAUSE(L2);
44 L2: fd = BUF;
45 k++; }
46

47 Parent: PAUSE(L3); // Main (cont’d)
48 L3: if (k == 20) // IF iteration limit
49 TRANS(Done); // THEN terminate
50 if (BUF == 10) // IF buffer = 10
51 TRANS(PCO); // THEN restart PCO
52 goto Parent; // ELSE continue
53

54 Done: TERM;
55 TICKEND;
56 }

(c) Complete SC program

Figure 2.1: The PCO (Producer-Consumer-Observer) example.

4

Mnemonic, Operands Notes
TICKSTART∗(isInitial) Start (initial) tick.
TICKEND Finalize tick, return 1 iff there is still an enabled thread.
PAUSE∗(l) Deactivate current thread for this tick, continue next tick at address label l.
TRANS(l) Abort descendant threads, jump to l.
SUSPEND∗(l) Suspend (pause) thread and its descendants, continue at l.
TERM∗ Terminate current thread.
PAR(p, l, id) PAR creates a thread with an initial priority p, a start address l, and an id id.
PARE∗(p, l, idsdesc) PARE denotes priority p and continuation address l for the spawning thread. To

allow detection of normal termination of descendant threads (via JOIN), store their
ids in idsdesc.

JOIN∗(lthen, lelse) If descendant threads have terminated normally, jump to lthen; else pause, proceed
to lelse.

PRIO∗(p, l) Set current thread priority to p, continue at l.
PPAUSE∗(p, l) Shorthand for PRIO(p, l′); l′: PAUSE(l) (saves one call to dispatcher).
JPPAUSE∗(p, lthen, lelse) Shorthand for JOIN(lthen, l); l: PPAUSE(p, lelse) (saves another call to dispatcher).

Table 2.1: SC thread operators—tick delimiters, fork/join, priority handling, and abortion
and suspension. Operators marked with an asterisk may call the thread dispatcher, i. e., can
result in a thread context switch.

the producer before the consumer and the observer. Similarly, the transitions leaving Parent
have deterministic behavior; in this example, they are so-called weak abortions, meaning that
the body of the parent gets to finish its current execution before a transition is taken. An
implementation with classical Java threads offers none of these assurances. To achieve the
same effect would require explicit barrier synchronization. Note also that for example using
Java’s synchronized to protect access to the shared buffer does not help, as this would only
guarantee exclusive access, but no ordering.

One approach suggested recently to enforce this synchronization is to use explicit low-
level time-triggered scheduling. The PRET architecture [18] offers a DEAD instruction which
guarantees a (minimal) delay before a thread proceeds. Fig. 2.1b shows the PRET version of
a reduced variant of PCO that does not have preemptions. In this PRET version, the buffer
access is coordinated by giving the producer a head start before the consumer and observers
(DEAD 28 vs. DEAD 41), and then keeping all three running at the same rate (DEAD 26).
To guarantee proper synchronization this way requires a timing analysis of the code and the
underlying architecture, and the resulting program is fairly non-portable.

The SC version of PCO is shown in Fig. 2.1c. The main function contains a while loop
that calls a tick function. This function computes one reaction by simulating all enabled
threads for one tick. The return value of tick indicates whether the program has terminated,
i. e., whether all threads have become disabled. The while loop of main continues as long
as any thread is still enabled. In this example, a call to sleep(1) results in a reaction rate
of—approximately—once per second.

The tick function consists of regular C code and some macros. These SC macros are
declared in sc.h, included in line 1. An overview of the SC Thread Handling Operators, which
perform the multi-threading simulation and form the core of SC, is given in Table 2.1. The

5

remaining SC operators are introduced in Sec. 2.2, Table 2.2. A full discussion of all SC is
presented in Sec. 3.3.

The first SC macro used in PCO, TICKSTART, performs some book keeping, depending
on whether this is the initial tick or not. This is followed by a sequence of PAR/PARE macros,
which fork off the children of the current thread. The current thread, started when entering
tick, is the Main thread. The forked threads are Prod, Cons, and Obs.

As the forked threads are associated with the Parent state of the SyncChart, we will also
refer to these as Parent’s children; however, the thread that is forking them is the Main thread.
In this example, the Main thread only forks these children, as the Parent macrostate is the
only macrostate ever entered by Main.

Each PAR gives a thread its initial priority (here all 0), a starting label, and an id. PARE
specifies a priority for the current thread (again 0), a continuation label (ParentMain), and
the set of children that were just forked. Sets of threads are encoded as a bit vector, id2b
maps a thread into this vector. This set is needed to properly abort Main’s children when
TRANS is called, see below.

Threads are declared with the idtype enumeration type (line 4).
The starting point of each thread is declared with an ordinary C label, named after the

thread. This is just a convention; from a C perspective, these labels and the thread names
have different name spaces and are different objects: one is a memory address, the other is
an enumeration type index.

The code for each thread is regular C code, except that each thread contains a PAUSE
macro. PAUSE indicates that a thread becomes inactive and is ready to relinquish control to
the dispatcher. An argument to PAUSE indicates at which label the pausing thread should
resume in the next tick.

The dispatcher, called by PAUSE, selects a thread for resumption. In PCO the dispatcher
selects from the active threads, which still have work to do in the current thread, the one
with the highest thread id. The dispatcher may also consider dynamic priorities, see Sec. 2.2,
but in PCO these are all 0. Threads are mapped to their ids with the ids array (line 5). The
TickEnd thread, which must be present in any SC program and must have the lowest id (0),
returns from tick if none of the other threads are active anymore.

Taking a look at the Main thread continuation at the Parent label (line 47), we note that
the transitions triggered by inspecting first k and then BUF are implemented with a TRANS
macro (lines 49 and 51). This macro transfers control to the argument label, and also aborts
Parent’s child threads. Finally, TERM terminates the current thread (Main), and TICKEND
does last book keeping before leaving tick again.

To summarize, we simulate multi-threading by keeping track of continuation points and
calling a dispatcher whenever a context switch might occur. In the example, the dispatcher
is called by PAUSE (thread becomes inactive for the current tick), PARE (children have been
created, current thread may have changed priority), and TERM (thread has terminated). The
context of a thread is very light-weight: it consists of its id (static), its continuation label
(dynamic), and a priority (dynamic). Everything else is shared. The thread id encodes the
order in which threads are dispatched. In PCO, the producer has to run before the consumer
and the observer, hence Prod gets the highest id, which is 4. For a full discussion of PCO’s
precedence constraints, see Sec. 3.2.4, p. 23.

All threads are included in one C tick function, just as for example a SyncChart or Esterel
program is usually synthesized into a single reaction function. This makes data sharing and

6

communication trivial (compare for example with the PRET communication in Fig. 2.1b), but
limits modularization. This is a consequence of the label-based continuation encoding, since in
C, we cannot transfer control to a label across function calls. Alternatives, such as encodings
based on setjmp/longjmp, would provide more flexibility, but would also incur higher overhead.
Note, however, that modularization is still possible insofar as “instantaneous” functionality,
without any SC operator that calls the dispatcher, can still be compartmentalized into function
calls. This suggests a programming model where the thread structure and their scheduling
logic is summarized in a top-level tick function, and thread-local activities and data-intensive
computations are modularized as function calls.

2.2 Signals in SC—The grcbal3 Example

This section covers

• more elaborate thread scheduling via the use of dynamic thread priorities,

• signal handling,

• a synthesis path from Esterel to SC, and

• how SC macros alone suffice to write a tick function.

Again we use an example, grcbal3, to illustrate these issues. Originally, this example was
programmed in Esterel, and has been presented by Edwards and Zeng in their description of
the Columbia Esterel Compiler [9]. Hence the name of the benchmark: GRC is the Graph
Code intermediate representation of the CEC, BAL is the Bytcode Assembly Language of a
virtual machine (VM) targeted by the CEC. The grcbal3 Esterel code has been transformed
into a SyncChart using KIEL [23]. Fig. 2.2a shows the Esterel version, on the right, with the
generated SyncChart, in the midst of an animated simulation—the initial tick has just been
executed, with no inputs present.

The Esterel program illustrates the use of signals to synchronize threads. It has an input
signal A and output signals B. . . E. There are three concurrent threads, which are enclosed in
a trap triggered by T. Esterel’s trap construct provides exception handling; in the example,
the exit T statement (line 11) throws the exception. The three threads communicate back
and forth via signals; for example, if A is present, the first thread emits a B, which causes the
second thread to emit C, which in turn causes the first thread to emit a D.

The SyncChart synthesized by KIEL is equivalent to the Esterel version. However, as
SyncCharts do not provide traps, they have to be emulated with weak abortions. This
translation is always possible, and in grcbal3 this can be done in a straightforward fashion,
via a weak abort triggered by a fresh signal T . The transition that implements this is shown
in the lower right of the SyncChart, which leads to a final state (double circle). The #-mark
means that the transition is immediate, meaning it can be triggered from the initial instant on.
Note that the synthesis process produces a superflous state, reachable via haltTrap39—which
is nowhere emitted, hence it can be safely eliminated. This is a result of the general rule for
transforming traps, which has to handle nested traps and trap actions [23], and a lack of a
subsequent opimization in KIEL that would remove such clearly unreachable states.

7

(a) Screen shot of KIEL [24], as it synthesizes a SyncChart from the original Esterel code [9]

1 TICKSTART(isInit); // Main thread has id 1
2 PAR(3, A1, ids[A1]); // A1 has id 2
3 PAR(2, A2, ids[A2]); // A2 has id 3
4 PAR(1, A3, ids[A3]); // A3 had id 4
5 PARE(0, AMain, id2b(A1) | id2b(A2) | id2b(A3));
6

7 A1: PRESENT(A, A1B);
8 EMIT(B);
9 PRIO(2, L0);

10 L0: PRESENT(C, A1A);
11 EMIT(D);
12 A1A: PRIO(1, L1);
13 L1: PRESENT(E, A1B);
14 EMIT(T);
15 GOTO(A1C);
16 A1B: PAUSE(L2);
17 L2: EMIT(B);
18 A1C: TERM;
19 A2: PRESENT(B, A2A);
20 EMIT(C);
21 A2A: TERM;
22

23 A3: PRESENT(D, A3A);
24 EMIT(E);
25 A3A: TERM;
26

27 AMain: PRESENT(T , AJoin);
28 TRANS(B);
29 AJoin: JOIN(B, AMain);
30

31 B: TERM;
32 TICKEND;

(b) SC tick function

1 ==== TICK 0 STARTS, inputs = 01, enabled = 00
2 ==== Inputs: A (0)
3 ==== Enabled: <none>
4 PAR: Main (id 1, prio 0) forks A1 (2) with prio 3
5 PAR: Main (id 1, prio 0) forks A2 (3) with prio 2
6 PAR: Main (id 1, prio 0) forks A3 (4) with prio 1
7 PARE: Main (id 1, prio 0) has descendants 034
8 PRESENT: A1 (id 2, prio 3) determines A (0) as present
9 EMIT: A1 (id 2, prio 3) emits B (1)

10 PRIO: A1 (id 2, prio 3) set to priority 2
11 PRESENT: A2 (id 3, prio 2) determines B (1) as present
12 EMIT: A2 (id 3, prio 2) emits C (2)
13 TERM: A2 (id 3, prio 2) terminates , enabled = 027
14 PRESENT: A1 (id 2, prio 2) determines C (2) as present
15 EMIT: A1 (id 2, prio 2) emits D (3)
16 PRIO: A1 (id 2, prio 2) set to priority 1
17 PRESENT: A3 (id 4, prio 1) determines D (3) as present
18 EMIT: A3 (id 4, prio 1) emits E (4)
19 TERM: A3 (id 4, prio 1) terminates , enabled = 07
20 PRESENT: A1 (id 2, prio 1) determines E (4) as present
21 EMIT: A1 (id 2, prio 1) emits T (5)
22 TERM: A1 (id 2, prio 1) terminates , enabled = 03
23 PRESENT: Main (id 1, prio 0) determines T (5) as present
24 TRANS: Main (id 1, prio 0) transfers , enabled = 03
25 TERM: Main (id 1, prio 0) terminates , enabled = 01
26 ==== TICK 0 terminates after 23 instructions, enabled = 01.
27 ==== Resulting signals: A (0), B (1), C (2), D (3), E (4), T

(5) , Outputs OK.

(c) Example trace

Figure 2.2: The grcbal3 example.

8

Mnemonic, Operands Notes
SIGNAL(S) Initialize a local signal S.
EMIT(S) Emit signal S.
PRESENT(S, lelse) If S is present, proceed normally; else, jump to lelse.
EMITINT(S, val) Emit valued signal S, of type integer, with value val.
EMITINTMUL(S, val) Emit valued signal S, of type integer, combined with multiplication, with value

val.
VAL(S, reg) Retrieve value of signal S, into register/variable reg.
PRESENTPRE(S, lelse) If S was present in previous tick, proceed normally; else, jump to lelse. If S is a

signal local to thread t, consider last preceeding tick in which t was active, i. e.,
not suspended.

VALPRE(S, reg) Retrieve value of signal S at previous tick, into register/variable reg.

GOTO(l) Jump to label l.
CALL(l, lret) Call function l (eg, an on exit function), return to lret.
RET Return from function call.
ISAT(id, lstate, l) If thread id is at state lstate, then proceed to next instruction (which might be an

on exit function of associated with id at state lstate). Else, jump to label l.
ISATCALL(id, lstate, laction, l) Shorthand for ISAT(id, lstate, l); CALL(laction, l)

Table 2.2: SC signal operators (pure signals, valued signals, and accesses to the previous tick)
and SC sequential control operators (jumps and exit actions).

Fig. 2.2b shows the tick function of the SC version of grcbal3. In addition to the SC
concurrency operators already introduced in Sec. 2.1 and Table 2.1, grcbal3 makes use of SC
signal operators. An overview of these and some other, sequential control operators is given
in Table 2.2.

To better understand this example’s operation, consider also the execution trace shown
in Fig. 2.2c. All SC macros (apart from TICKSTART and TICKEND) log their operation to
stdout if instructed to do so via a preprocessor directive. The trace illustrates the operation
of grcbal3 in case input signal A is present. The first line shows the input signals (A) and the
enabled threads (initially none) as bit vector, in octal notation with leading 0. TICKSTART,
PAR, and PARE are as explained for the PCO example (Sec. 2.1). One difference, however, is
that threads A1, A2 and A3, which correspond to the three concurrent substates embedded in
the macrostate in the SyncChart version, are started with priorities 3, 2, and 1, respectively.
This priority is used by the dispatcher, which always resumes the active thread with the
highest priority; if there are multiple such threads with the same, highest priority, then the
highest thread id decides. In PCO, all threads had priority 0, hence there only the thread id
matters to the dispatcher.

After Main has forked its children, PARE calls the dispatcher, see line 5 in the program,
line 7 in the trace. This starts A1 (thread id 2), as it has the highest priority. A1 determines
A as present and emits signal B. The PRIO directive lowers A1’s priority to 2, specifies L0 as
continuation, and calls the dispatcher. Now A2 (id 3) is started, as it has the same priority as
A1, but a higher thread id. A2 determines B as present and hence emits C. Then the TERM
operator terminates C, meaning that it is deactivated (does not resume in the current tick)
and disabled (will not be resumed in the next tick). Therefore TERM calls the dispatcher,
without specifying a continuation label. The set of remaining enabled threads is encoded in a

9

bit vector, see line 13 of the trace. The vector octal 027, binary 10111, has bits 0 (rightmost
bit, indicating thread TickEnd), 1 (Main), 2 (A1) and 4 (A3) set.

In this fashion, control is passed back and forth between Parent’s children until they have
all have completed their tick, and the Main thread, running at priority 0, resumes; see line
23 of the trace. It determines that T is present, which corresponds in the original Esterel
program to a thrown exception (exit T), hence the program has to terminate. This is done
by first aborting Parent’s children with TRANS (in this case unnecessary, as they have all
terminated already), transferring control to label B, and then terminating Main.

As the trace indicates (line 26), a total of 23 SC instructions have been executed, and
solely the always-enabled TickEnd thread is still enabled. The trace also shows the signals
emitted by the reaction. In this example, the main function calling the tick function not only
sets the inputs (currently read in from an array), but also compares the generated output to
a reference output (“Outputs OK”). See the complete code in Listing B.5 for how this is done.

One last operator in grcbal3 not explained yet is the JOIN in line 29. Here the Main thread
checks whether all of its children have terminated. If so, then Main also terminates, according
to the semantics of SyncChart macrostates, and similarly Esterel’s concurrency operator || .

To summarize, grcbal3 illustrates how thread ids and priorities can be used to schedule
threads in an arbitrary fashion. In this case, we have used this to schedule threads such that
signal dependencies, imposed by the Esterel/SyncCharts semantics, are adhered to. This
semantics requires that within a tick all potential signal emitters run before a signal is tested.
This is similar to the situation in the producer-consumer example, just that in grcbal3 there
is not just one buffer to synchronize on, but four output signals.

This example is, admittedly, fairly intricate, as it has also been designed to illustrate the
scheduling challenges that Esterel poses to a compiler. For an inexperienced SC programmer
it may therefore be non-obvious how to assign priorities and thread ids properly such that
signal dependency rules are adhered to; see Sec. 3.2.4 for a full discussion. There are several
possible alternatives to unchecked manual priority/id assignment:

• one might relegate thread id and priority assignment to a separate analysis pass, similar
to an Esterel compiler (feasible, but it would require a separate tool);

• one might use SyncCharts—or Esterel—as entry language for SC, and do the signal
dependence analysis there (also possible, but this would lose the direct embedding in
C); or,

• one might add run-time checks to the SC operators that ensure that no signals that
have been tested already in a tick are emitted in a tick (a reasonable consistency check,
easy to implement—but it does not offer a guarantee as a static analysis would do).

However, one should also note that such intricate dependencies appear to be rather rare. We
can distinguish three types of programs:

Dynamically scheduled programs that require dynamic scheduling of threads, which en-
tails run-time alterations of thread priorities (via PRIO);

Statically scheduled programs that require just static scheduling, which can be handled
with thread id assignment; and

Unscheduled programs that do not impose scheduling constraints at all.

10

From the 10 benchmarks currently included in the SC distribution, most provided by Andé [2],
only grcbal3 and Exits belong to the first category.

11

Chapter 3

A Tour of SC

SC consists of a programming model, which is implemented with simulated multi-threading,
a set of SC operators, and a convention on how to structure an SC program. These concepts
are explained in the next sections.

3.1 The SC Programming Model

SC programs follow the synchronous programming model established in SyncCharts and other
synchronous programming languages. This programming model is characterized by two main
concepts explained in the following, the synchronous threading model and signals. The first
concept is essential to SC; the second one is also provided by SC, but can be regarded as
optional for the SC programmer.

3.1.1 Synchronous threading

The main concept that must be understood to program in SC is that of a logical tick, or
logical instant. An SC program conceptually consists of a number of concurrent threads,
whose concurrent execution is grouped (synchronized) by a progression of logical ticks. A tick
boundary of a thread is usually denoted by the PAUSE operator, which thus denotes implicit
synchronization points among thread; no thread can start the next tick, before all concurrent
threads have completed the current tick.

In Statecharts parlance, the tick boundaries (PAUSE operators) collectively reached by the
currently active threads form the configuration of a system. The system progresses from one
stable configuration to the next. The synchrony hypothesis states that the computation of a
reaction does not consume any time. In other words, the progression from one configuration
to the next configuration is considered to not consume physical time; physical time only
advances while the system rests in a stable configuration. This synchrony hypothesis is of
course an abstraction from reality, where computations of course do consume time, but this
abstraction allows a compositional, formally grounded semantics.

Program execution states

Figure 3.1 illustrates the execution states of the whole program, using the SyncChart formal-
ism. Upon program start, the main thread is enabled (forked), and the program is considered

12

Figure 3.1: The status of the whole program (from [17]).

Figure 3.2: Execution status of a single thread (from [17]).

running. Entering the tick state corresponds to a call to the tick function, described in
Section 3.4. The state is left (the tick function terminates) when no threads are active any-
more. If all threads have become disabled (all have terminated), the whole program becomes
terminated.

Note that the thread logic and the overall program logic of SC are very close to the Kiel
Esterel Processor [17]. A slight difference arises within the tick state: in the KEP, each
instruction cycle is started by a thread selection step, whereas in SC, threads run freely until
they encounter an SC operator that implies a call to the dispatcher and a possible thread
context switch. The operators in question that can thus possibly cause a thread context
switch are marked in Table 2.1.

Thread execution states

The execution status of a thread is illustrated in Figure 3.2. Two flags are needed to describe
the status of a thread. One flag indicates whether the thread is disabled or enabled. Initially,
only the main thread is enabled. Other threads become enabled whenever they are forked
(with PAR, see Section 3.3.1), and become disabled again when they terminate themselves
(TERM) or get aborted by a transition that leaves the parent state (using TRANS). The other
flag indicates whether the thread should still be scheduled within the current logical tick (the
thread is active) or not (inactive).

A thread is active if it still has work to do in the current tick, otherwise it is inactive. The
order of execution among active threads is statically determined by a thread id and a thread

13

priority. The thread dispatcher starts/resumes the active thread with the highest priority,
this thread then becomes executing. Threads that are active but not executing are considered
preempted.

Priorities can be shared among threads; if there are multiple threads with the same, high-
est priority, the thread with the highest id wins. To ensure that there is a unique thread to be
chosen, the thread ids must not be shared among threads that can be active concurrently. SC
requires each thread to be given a thread id and initial priority upon its creation (with PAR).
SC also provides an operator to change the priority of a running thread (PRIO). With these
mechanisms, the programmer can enforce arbitrary, deterministic thread schedules. For sim-
plicity, these schedules are usually determined statically; however, in terms of expressiveness
of the SC operators, it would also be possible to create dynamic schedules.

3.1.2 Signals

Another concept that is characteristic of synchronous languages is that of signals, which can
be used for broadcast communication among threads. SC programmers do not have to use
signals, they might achieve the same effect with the appropriate use of standard C variables.
However, the explicit use of signals for thread control, for example to trigger preemptions,
might help to clarify the interaction and synchronization patterns across thread boundaries.

Signals are absent per default. They become present for the current tick if a thread emits
the signal in this tick. Any thread (including the emitting thread) can test for the presence
of a signal and can change control flow accordingly, including not only conditional branches
but also various forms of preemption.

SC provides a full range of signal handling operators, including local, valued, and combined
signals, and tests for signal presence across tick boundaries (the PRE operator). SC assumes
that signals become visible within the tick they are emitted, and also, unlike some other
approaches [7], allows to test for signal absence in the current tick, not just in the next tick.

A word of caution: it is a common assumption of (strictly) synchronous programs that
signals have a unique, well-defined presence/absence status for the duration of a tick. This
effectively means that we must not test for the presence of a signal if it may still be emitted
within that tick; see also Sec. 3.2.4. In other words, all writes must be performed before
any reads are done. Compilers dedicated to synchronous languages perform a static signal
dependency analysis of the program and try to compute a—usually static—schedule that
orders threads (or thread segments) accordingly. A compiler rejects the program if it cannot
find such a schedule. As mentioned in Sec. 2.2, one could envisage an analysis tool that
performs a signal dependency analysis on an SC program and checks that the encoded schedule
respects all signal dependencies. In the presence of arbitrary C control flow, this analysis
would have to be conservative. If we were to use SC as intermediate language for synthesizing
code from a visual SyncCharts model, it would be the responsibility of the code synthesis tool
to perform a dependency analysis on the model and to schedule threads accordingly. Using
plain SC, as presented here, we do not perform such a compilation or analysis; we just use a
regular C compiler and C does not have a concept of signal dependencies and consistency. It
is thus the responsibility of the programmer to schedule threads accordingly, using thread ids
and priorities. On the other hand, this also provide the options to weaken the requirement
of strict synchrony, and to program with a signal model that corresponds e. g. to the original
Statecharts semantics. Note also that the program will in any case be deterministic, there
are no race conditions that can produce different outputs for the same inputs.

14

3.2 Multithreading Simulation

To simulate multi-threading, we must be able to keep track of the locus of control of each
thread, and we need a dispatcher that performs the context switches.

3.2.1 Coarse program counters

In a VM or hardware implementation of the SC operators, one could have direct access to a
program counter that denotes the locus of control. As we are working here at the C level, we
do not have that option. Instead, we annotate the C program with regular C labels, at all
possible thread continuation points. In a way, these denote thread-level “basic blocks,” but
unlike traditional basic blocks, they do not denote sequences of straight line code, but instead
they delineate sequences of code in which no thread context switch can happen.

Using gcc’s computed goto extension, we can store these program labels in an ordinary
C array. In SC, this array of coarse program counters is pc[idMax], declared in sc.h (see
Section 3.4.1).

Whenever a thread calls an SC operator that might result in a context switch to another
thread, we must save a continuation point for the thread in its program counter. In our
implementation, this operation is folded into the SC operators, so that it suffices to pass the
continuation point of the thread along as argument to the SC operator, which then performs
the book keeping.

Again, if we would implement the SC operators in a VM or as reactive processing ISA, we
could do away with that label parameter; indeed, the KEP ISA does not have such a label
parameter. However, passing this continuation label explicitly also gives some additional
freedom, i. e., optimization opportunities, as the passed label does not necessarily have to
point to the instruction immediately following the operator. This can often be used to save a
jump instruction. For example, the Esterel halt instruction can be implemented as simply l:
PAUSE(l), with some unique label l.

3.2.2 The dispatcher

As explained in Section 3.1.1, the dispatcher starts/resumes the active thread with the highest
priority; if there are multiple active threads with the same, highest priority, the thread with
the highest id wins.

As the dispatcher may be called rather frequently—namely, whenever we perform an SC
operator that can result in a context switch, see also Table 2.1—we should strive for an
efficient implementation of the dispatcher. The dispatcher should be as general as necessary
and as fast as possible. As the demands of SC programs on the dispatcher may vary—in
particular, they may or may not use priorities—SC provides different dispatchers, which can
be selected by the application, via a #define USEPRIO C preprocessor directive.

The dispatcher consists of two parts:

1. Computation of the current (to be dispatched) thread id, cid.

2. A jump to the corresponding program counter, stored in pc[cid].

15

Listing 3.1: selectCidPrio(): Computation of id of thread to be dispatched, considering prior-
ities (from sc.c)
1 // For enabled threads with highest prio , highest id ”wins”
2 void selectCidPrio () {
3 int id ;
4 int cprio = −1;
5

6 for (id = idHi; id >= 0; id−−) {
7 if (isActive (id) && (pr[id] > cprio)) {
8 cid = id;
9 cprio = pr[id];

10 }
11 }

The most general version for the computation of cid is implemented in selectCidPrio, see
Listing 3.1. A loop iterates through thread ids, starting from the highest id (given by idHi,
see Section 3.4.4) downwards to id 0. In the loop body, we check whether the currently
examined thread id is active, and if so, whether it has a higher priority than the highest
priority encountered so far. The run time of this implementation is linear in the number of
thread ids in use.

Listing 3.2: selectCidNoprio(): Computation of id of thread to be dispatched, without consid-
ering priorities (from sc.c)
1 // Which is actually faster depends on application
2 void selectCidNoprio () {
3 int act ;
4

5 act = active ;
6 for (cid = 0; act != 0; act >>= 1)
7 cid++;

As it turns out, many SC programs do not require the usage of priorities for proper thread
scheduling, that is, all priorities can be 0; if there are any scheduling constraints, they are
simple enough to be resolved via thread ids alone. In this case, the computation of cid
can be simplified to the implementation in selectCidNoprio, see Listing 3.2. This function
only considers whether a thread is active or not. In the current SC implementation, this
information is stored in a bit vector active. Hence it suffices to set cid to the position of the
highest set bit in active. The implementation of selectCidNoprio uses the obvious algorithm,
with a run time linear in the position of the highest bit. Note that there are also alternatives
that run logarithmic to bit vector size1. Which algorithm is actually faster depends on the
application.

Listing 3.3: dispatch(): Variable definitions for the dispatcher (from sc.h)
1 #ifdef USEPRIO
2 // Version 1: for arbitrary priorities
3 #define dispatch() selectCidPrio () ; \
4 goto ∗pc[cid]
5

6 #elif ((defined i386 || defined amd64 || defined x86 64) && defined GNUC)
7 // Version 2a: all priorities = 0, x86 + gcc available
8 // Use fast Bit Scan Reverse assembler instruction
9 #define dispatch() \

10 asm volatile (”bsrl %1,%0\n” \
11 : ”=r” (cid) \
12 : ”c” (active) \
13) ; \

1See eg http://graphics.stanford.edu/∼seander/bithacks.html#IntegerLog

16

http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog

14 goto ∗pc[cid]
15

16 #else
17 // Version 2b: all priorities = 0, x86 + gcc not available
18 #define dispatch() selectCidNoprio () ; \
19 goto ∗pc[cid]
20 #endif

Fortunately, many processor instruction sets provide an assembler instruction that does
exactly this, to detect the index of the highest set bit. The x86 does this with the Bit Scan
Reverse (BSR) instruction. Using the gcc assembler escape, we can embed this instruction
into C and thus obtain an even faster dispatcher. This consists of just a couple of instructions
and has constant run time. This dispatcher variant is not implemented as a separate function,
but instead as a macro, to be expanded/inlined by the preprocessor. This does not unduly
increase the code size, and saves the function call overhead at run time. It also alleviates the
need to link against sc.c that defines the alternative dispatcher functions (see Section 3.4.1).
Listing 3.3 shows how the dispatcher is defined.

Note that the current implementation of SC, based on bit vectors implemented as simple
integers, assumes that the number of concurrent threads does not exceed the word size.
The same limitation applies to signals, whose presence/absence status is also implemented
as integer-based bit vectors. Neither limitation has posed any problems in the applications
considered so far. However, it should be rather straightforward to lift either limitation, and
to use bit vectors of arbitrary size or some other unrestricted data structure.

3.2.3 Thread and label structuring

To illustrate how the thread structure is derived from a SyncChart, consider the ABRO ex-
ample in Fig. 3.3 [2, Fig. 5-12]. ABRO is arguably the “hello-world” program of synchronous
programming and has the following behavior: Two concurrent threads wait for signals A and
B; once these have occurred, in any order, output O is emitted. If R is present, the behavior
is reset. As the transition triggered by R is a strong abort, the transition takes priority over
the internal behavior of ABO: if R is present in a tick, ABO does not get to execute in that
tick.

A note on the SC implementation: as there is normal termination leaving ABO, there is
no need for a JOIN on thread AB.

Thread structure

Each macrostate of degree of concurrency n has n embedded threads. In ABRO:

• ABO has one embedded thread (AB), and

• AB has two embedded threads (WaitA and WaitB).

Naming threads and their initial label

• TickEnd is the thread returning from the tick function, at macro TICKEND. It must
have id 0, as it has to run after all other threads.

• Main is the main thread, activated in the initial tick upon entering the tick function.

17

(a) SyncChart

1 // Thread ids : AB=1, WaitB=2, WaitA=3, Main=4
2 TICKSTART(isInit);
3

4 ABO: PAR(0, AB, ids[AB]);
5 PARE(0, ABOmain, id2b(AB) | id2b(WaitA) | id2b(WaitB));
6

7 AB: PAR(0, WaitA, ids[WaitA]);
8 PAR(0, WaitB, ids[WaitB]);
9 PARE(0, ABmain, id2b(WaitA) | id2b(WaitB));

10

11 WaitA: PAUSE(L0);
12 L0: PRESENT(A, WaitA);
13 TERM;
14

15 WaitB: PAUSE(L1);
16 L1: PRESENT(B, WaitB);
17 TERM;
18

19 ABmain: JOIN(Done, ABmain);
20 Done: EMIT(O);
21 TERM;
22

23 ABOmain:PAUSE(L2);
24 L2: PRESENT(R, ABOmain);
25 TRANS(ABO);
26

27 TICKEND;

(b) SC tick function

Figure 3.3: The ABRO example.

• Other threads are named after their first state.

• The initial label of a thread is named after the thread.

Note that the last two rules are in most cases redundant. However, it can be the case that
a thread does not commence directly at its first state, in particular if the initial transition
has to perform some action; see for example the initial transition of thread S1 in PrimeFactor
(Fig. 4.8). In such cases, the recommended convention is:

• The thread and its entry point should still be named after its first state S, according to
the SyncChart diagram.

• However, the entry point of the state should be renamed to Ssurf.

The latter part is derived from the surface/depth distinction, elaborated on in the following.

Surface vs. depth

In SyncCharts, as well as in Esterel, one distinguishes

Immediate transitions which can potentially be taken in the same tick as their source
state is entered, and

Delayed transitions which will only become enabled from the next tick onwards.

18

(a) SyncChart, during simulation—also illustrating KIEL’s hori-
zontal/vertical layout.

1 // Thread ids : Main=1
2 TICKSTART(isInit);
3

4 GOTO(S0surf);
5

6 S0depth:PRESENT(A0, S0surf);
7 EMIT(U0);
8 GOTO(S1surf);
9 S0surf : PRESENT(B0, L0);

10 EMIT(V0);
11 GOTO(S1surf);
12 L0: PAUSE(S0depth);
13

14 S1surf : PRESENT(B1, L4);
15 GOTO(L2);
16 S1depth:PRESENT(A1, L1);
17 EMIT(U1);
18 GOTO(S2);
19 L1: PRESENT(B1, L3);
20 L2: EMIT(V1);
21 GOTO(S2);
22 L3: PRESENT(C1, L4);
23 EMIT(W1);
24 GOTO(S2);
25 L4: PAUSE(S1depth);
26

27 S2: PAUSE(S0surf);
28

29 TICKEND;

(b) SC tick function

Figure 3.4: The SurfDepth example.

Transitions are by default delayed; immediate transition triggers are indicated by a #-
mark (see also Fig. 2.2a).

One also distinguishes the

Surface of a statement, which is what is executed in the initial tick and which includes only
the immediate transitions, and the

Depth of a statement, which is where execution commences in subsequent ticks and which
includes immediate as well as delayed transitions.

Consider for example in PrimeFactor (Fig. 4.8b) state S1, which has an immediate tran-
sition triggered by B, and a delayed transition triggered by A. The former is tested in the
surface of S1, at label S1surf, as well as later at the depth (which is commenced at label
S1depth), whereas the latter transition is only tested at the depth.

It appears that in most cases code can be structured such that there is no need for code
duplication between surface and depth. However, this cannot always be avoided. Consider
the SurfDepth example in Fig. 3.4. The transitions from S0 to S1 can be ordered such that
the transition-number priority can be honored (test A0 before B0) as well as the immediate
(B0)/non-immediate (A0) distinction. However, this is not possible with the transitions from
S1 to S2. The only immediate transition, triggered by B1, has a transition number between

19

the two other, delayed transitions. Hence we must duplicate the test for B1, once at the
surface label S1surf, once in the depth code starting at S1depth.

Note that this duplication concerns not only the test of the transition trigger, but also
possible transition actions. In SurfDepth this applies to the emission of V1. We here chose
to minimize code size and to follow the write-things-once principle as much as possible, by
sharing one EMIT(V1)20 statement between the transition tests at lines 14 and 19, with the
GOTO(L2)15 statement. An alternative would be to have another EMIT(V1) directly after the
test at line 14, followed by a GOTO(S2). This increases the program size by one statement
(the EMIT(V1)), but saves one statement at run time (the GOTO(S2)).

Label naming

• The (surface) entry point of a macrostate S gets label S, or exceptionally (see above)
label Ssurf.

Example: label ABO.
Example: in PrimeFactor (Fig. 4.8), label S1surf.

• The depth entry point of a state S gets label Sdepth.

Example: in PrimeFactor (Fig. 4.8), label S1depth.

• For macrostate S, the entry point of the code that checks transitions attached to S gets
label Smain.

Examples: ABmain, ABOmain.

3.2.4 Thread scheduling

As SC is embedded into plain C, SC programs are deterministic, and there is no need for
classical synchronization among threads using semaphores or similar concepts. However, as
mentioned in Sec. 3.1.2, certain scheduling rules must be followed when encoding a specific
SyncChart in SC, to adhere to the original, synchronous semantics.

This is related to the scheduling problem that a compiler for synchronous languages faces,
and one might use similar concepts to address this. For example, one might transform a Sync-
Chart into something like a CKAG (Concurrent KEP Assembler Graph [17]) that expresses
scheduling constraints, and then transcribe this into an SC program. As we here—so far—
assume a human programmer that writes an SC program, we do not describe the scheduling
task in algorithmic terms, but instead give precedence constraints that must be fulfilled. As
stated in Sec. 2.2, this is a non-trivial problem in the general case; however, it appears that
most SC programs exhibit relatively few scheduling constraints.

Precedence of operations

Let Op1 and Op2 be two operations that must be performed in an SC program. For example,
in ABRO, let Op1 be the test for the presence of signal R of the Main thread in line 24,
abbreviated as Op1 = Main24,PRESENT(R), and let Op2 = WaitA12,PRESENT(A). In this case, Op1,
which corresponds to the strong abort transition on ABO, must be executed before Op2, which
is a transition nested within ABO. We say that Op1 has precedence over Op2, and write this
as Op1 ! Op2, in this example Main24,PRESENT(R) ! WaitA12,PRESENT(A).

20

In the following, we will use the terms statements and operations interchangeably. A note
on notation: we may use the line-number-in-subscript notation throughout the report to refer
to specific statements in a program. We may also abbreviate statements, for example by
omitting label arguments.

We are now ready to define the precedence constraints imposed by a SyncChart. It is
Op1 ! Op2 if

1. Op1 and Op2 can be executed in the same tick, and

2. one of the following conditions holds:

Outer-inner precedence Op1 tests the trigger of a strong abort or suspension associated
with a state S, and Op2 belongs to a descendant (inner state) of S.

Example: in ABRO, Main24,PRESENT(R) ! WaitA12,PRESENT(A).

Inner-outer precedence Op1 belongs to a descendant (inner state) of S, and Op2 tests for
normal termination or tests the trigger of a weak abort associated with a state S

Example: in ABRO, WaitA12,PRESENT(A) ! AB19,JOIN.

Transition-number precedence Op1 and Op2 are associated with transitions that are as-
sociated with the same state, and the transition Op1 is associated with has a higher
priority than Op2. Here, we refer to transition priorities indicated in the SyncChart
with numbers (increasing number for decreasing priority).

Note that SyncCharts already impose some ordering on the transition numbers within
the transitions associated with the same state. Highest priority (lowest number) have
strong aborts, followed by suspension, followed by weak aborts, followed by normal
termination.

Example: in Exits (Fig. 4.2), considering the transitions associated with state M10,
the strong abort has precedence over normal termination, i. e., M1027,PRESENT(A) !
M1020,JPPAUSE; note that the JOIN of the normal termination is folded in with PRIO
and PAUSE.

Write-read precedence Op1 writes (emits) a signal, which is read (tested for presence) by
Op2.

Here, with “signal” we refer to general shared variables for which writer-reader prece-
dence should be respected within a tick. This applies to signals in the sense of SyncCha-
rts or Esterel, operated on via the SC signal operators (Table 2.2), but also to shared
C variables, such as the buffer BUF in the PCO example (Fig. 2.1).

Example: in grcbal3 (Fig. 2.2b), A18,EMIT(B) ! A219,PRESENT(B).
Example: in PCO (Fig. 2.1c), Prod33,BUF=1 ! Cons39,tmp=BUF.

We summarily refer to the first three types of precedence constraints as structural con-
straints, whereas the last one is a signal constraint.

21

Fulfillment of precedence constraints

We also classify a precedence constraint Op1 ! Op2 as follows:

Intra-thread precedence Op1 and Op2 belong to the same thread.

In this case, the constraint must be fulfilled via the sequential ordering of the operations
within a thread.

Inter-thread precedence Op1 and Op2 belong to concurrent threads.

In this case, the constraint must be fulfilled via an appropriate assignment of static
thread ids and, if necessary, dynamic priorities.

Thread precedence

We can lift the notion of precedence from individual operations to the threads that they
belong to. For an operation Op, let thrd(Op) be the thread associated with Op. For example,
in ABRO, it is thrd(WaitA12,PRESENT(A)) = WaitA. Then, for Op1, Op2 with Op1 ! Op2

and t1 = thrd(Op1), t2 = thrd(Op2), this implies t1 ! t2. In ABRO, Main24,PRESENT(R) !
WaitA12,PRESENT(A) implies Main ! WaitA. In other words, Main should be scheduled before
WaitA.

In some cases it is convenient to use a mixed notation that orders an individual operation
with another thread. For example, Main24,PRESENT(R) ! WaitA expresses that the presence test
on R must run before thread WaitA.

Static vs. dynamic scheduling

For an SC program P derived from a SyncChart and a pair of operations in P , the SyncChart
either specifies a fixed order in which the operations must be performed, or it does not specify
an order at all. All precedence constraints on individual operations are static. In other words,
! is a partial order with respect to individual operations in P .

However, at the thread level, it may be the case that for a pair of threads T1 and T2 in P
there exist operations in T1 and T2 that induce T1 ! T2, and simultaneously other operations
that induce T2 ! T1. In other words, ! is not necessarily a partial order with respect to
threads in P .

If ! is a partial order in P at the thread level, then it is possible to schedule all threads
statically by just assigning them thread ids that respect !. There is no need for dynamic
priorities, all thread priorities can remain at 0. As noted in Sec. 2.2, it appears that most
programs belong to this category of statically schedulable programs.

If ! is not a partial order in P at the thread level, then one should still assign thread
ids in a way that static precedences between threads are met; however, one must use positive
thread priorities as well to resolve the remaining dynamic precedences.

Furthermore, immediate transitions must be properly distinguished from delayed transitions—
see also Sec. 3.2.3.

In the following, we will illustrate how precedence constraints are met in SC programs
with the examples introduced so far, ABRO, PCO, and grcbal3. Chapter 4 provides further
examples.

22

Precedence constraints in ABRO

In ABRO, there are the following structural inter-thread constraints at the thread level.

1. Strong abortion on ABO (outer-inner):

Main ! AB, Main ! WaitA, Main ! WaitB

2. Normal termination on AB (inner-outer):

WaitA ! AB, WaitB ! AB

This thread precedence relation induces a partial order, which can be fulfilled with the
following thread id assignment: AB = 1, WaitB = 2, WaitA = 3, Main = 4. We generally omit
stating explicitly the id of TickEnd, since it always must be 0; however, the program must
still declare the TickEnd thread and assign id 0 to it.

Note that the order between WaitB and WaitA could as well have been reversed. Here,
WaitA has been given the higher priority such that the order of execution between WaitA and
WaitB is consistent with the order in which they appear in the program, as an aid in helping to
understand the execution trace. Apart from this small consideration for the human observer,
it makes no difference in which order threads are executed that do not have a precedence
constraint between them. The order in which the threads appear in the program has no
semantic relevance.

Precedence constraints in PCO

In PCO (Fig. 2.1c, p. 4), there are the following inter-thread constraints at the thread level.

1. Weak abortions on Parent (inner-outer):

Prod ! Main, Cons ! Main, Obs ! Main

2. Writer on BUF before reader on BUF (write-read):

Prod ! Cons, Prod ! Obs

Note that the first constraint is again a structural constraint, but the second is a signal
constraint. Again, this precedence relation induces a partial order at the thread level, which
is observed by the following thread id assignment: Main = 1, Cons = 2, Obs = 3, Prod = 4.

Precedence constraints in grcbal3

As pointed out in Sec. 2.2, grcbal3 (Fig. 2.2) is a relatively complex example that requires
dynamic scheduling. In other words, ! is not a partial order at the thread level. We will
therefore use the mixed operation/thread notation to capture the constraints as concisely as
possible while still permitting an ordering, without contradictions.

1. Weak abortion and normal termination on macrostate (inner-outer):

A1 ! Main, A2 ! Main, A3 ! Main

This inter-thread structural constraint is met by assigning Main the thread id 1 (the
lowest possible, apart from the TickEnd thread) and priority 0.

23

2. Precedence of weak abortion over normal termination (transition-number):

Main27,PRESENT(T) ! Main29,JOIN

This intra-thread structural constraint is met by ordering the operations in the program
accordingly.

3. Communication via signal B (write-read):

A18,EMIT(B) ! A219,PRESENT(B)

This constraint is met by executing the first operation at priority 3, as induced by the
Main2,PAR(3,A1,ids[A1]) statement, and the second at priority 2.

4. Communication via signal C (write-read):

A220,EMIT(C) ! A110,PRESENT(C)

This constraint is met by executing both operations at priority 2, as induced by A19,PRIO(2)

and Main3,PAR(2,A2,ids[A2]), and assigning A2 a higher thread id than A1.

5. Communication via signal D (write-read):

A111,EMIT(D) ! A323,PRESENT(D)

This constraint is met by executing the first operation at priority 2 and the second at
priority 1.

6. Communication via signal E (write-read):

A324,EMIT(E) ! A113,PRESENT(E)

This constraint is met by executing both operations at priority 1 and assigning A3 a
higher thread id than A1.

3.3 SC Operators

There are three classes of SC operators: SC Thread Handling Operators, SC Signal Operators,
and SC Sequential Control Operators.

3.3.1 SC Thread Handling Operators

An overview of the SC Thread Handling Operators, which perform the multi-threading sim-
ulation and form the core of SC, is given in Table 2.1, p. 5.

Tick start and end

TICKSTART and TICKEND do some book keeping. For example, in the initial tick, TICK-
START initializes the TickEnd thread (see Section 3.4.3) and activates the Main thread; in
subsequent ticks, TICKSTART activates the enabled threads.

TICKEND determines whether there are still any enabled threads, apart from the never
disabled TickEnd thread.

24

Pausing, suspending, aborting and terminating a thread

PAUSE pauses the currently active thread. This entails setting the program counter of the
current thread to the label provided as argument, to deactivate the current thread, and to
call the dispatcher.

SUSPEND suspends (“freezes”, “steals the clock from”) the current thread and its de-
scendants for the current tick and calls the dispatcher. For an example, see Count2Suspend,
Fig. 4.1, p. 35.

Differences between PAUSE and SUSPEND:

• PAUSE deactivates just the current thread, whereas SUSPEND also deactivates its de-
scendants. The latter exploits that the PCs of the descendants must reside at tick
boundaries, i. e., there is nothing more to do for the descendants in the current tick.

• Unlike PAUSE, SUSPEND must do some signal handling in case local signals and pre are
used, as explained in Section 3.3.2.

TERM terminates the current thread by disabling it.
TRANS performs an abortion of the current thread and its descendants, by simply disabling

them, and transfers control to the specified label l. In SyncCharts, this corresponds to a (weak
or strong abort) transition from the current state to some other state.

Whether TRANS corresponds to a weak or strong abort is merely a question of whether
TRANS is executed before the descendant threads have computed the tick (strong abort)
or after the descendants have run (weak abort). See also the outer-inner vs. inner-outer
precedences discussed in Sec. 3.2.4. Again, this is an implication of the SyncChart semantics
and can be viewed as a (reasonable) convention. Nothing would prevent a programmer to
break with this convention and schedule a TRANS arbitrarily, in the middle of the execution
of the descendant. This would not break determinism (we still have a sequential C program),
but it would probably make the flow of the program more difficult to comprehend.

To summarize, a thread voluntarily relinquishes control for the remainder of the tick
via PAUSE, SUSPEND, or TERM. A thread may also be aborted when a (transitive) parent
performs a TRANS.

Fork and join

A sequence of PAR statements, followed by a PARE statement, together form a fork. Each
PAR creates a child thread by initializing its program counter and its priority and enabling
it. PARE then registers the descendant threads with the current (parent) thread and calls
the dispatcher. The parent thread must know about its descendant threads to detect their
termination, and also possibly to terminate them in case the parent is aborted. The set of
descendants includes the newly created child threads, and, in case these will possibly fork
threads as well, their descendants (transitively) as well. Note that the latter is necessary
for abortions, but not for normal termination, as normal termination should respect the
hierarchical ordering (grandchildren should terminate before children terminate normally).

JOIN performs the corresponding join operation, which checks whether all descendant
threads have terminated normally. If they have terminated, control transfers immediately
to the lthen label. This corresponds to a normal termination transition in SyncCharts. By
(reasonable) convention, normal termination transitions have the lowest priority, and there

25

can be only one such normal termination transition. See also the notes on transition-number
precedence, Sec. 3.2.4. This means that after performing an unsuccessful JOIN, there is
nothing else the current thread has to do for the current tick, and it pauses. We exploit this
by folding the PAUSE into the else-branch of the JOIN. That is, if the descendant threads
have not terminated, we execute a PAUSE(lelse).

Notes:

• One might also decide to break with the SyncChart convention of pausing after an
unsuccessful join, and to supply an SC JOIN variant that does not automatically pause.
This would be trivial to implement, but so far there has no need arisen to do so.

• A JOIN is only required if the corresponding SyncChart does have a normal termination
transition. If the parent thread never terminates, or if it is only terminated through
abortion (via TRANS), no JOIN is required.

• Normally, a fork spawns off child threads of the current thread, and the current thread
keeps executing, at the label specified by PARE. However, we may also construct a fork
without PARE, which just consists of a sequence of PAR statements that effectively create
sibling threads of the current thread. Here the current thread simply keeps executing
after the PAR statements. Since there is no PARE, the dispatcher will not be called, so
the current thread should be the one with the highest priority/thread id of the sibling
threads. See Shifter3 (Fig. 4.5) for an example.

Thread priority handling

The initial priority of a thread is assigned upon creation of the thread, as argument to PAR.
It may be necessary to change the priority of a thread later at run time. This is done with
the PRIO operator. Note that within a tick, it is only meaningful to lower the priority of a
thread, not to raise it, since if a thread is already executing, there is no effect when raising
its priority [17]. We can use priority lowering to yield to other threads. However, as thread
priorities are preserved across tick boundaries, we may want to raise a priority at the end of
a tick, to start the next tick with a higher priority.

The PRIO operator entails a call to the dispatcher, as now another active thread might
be the one with the highest priority, or at the same priority but with a higher thread id.
However, there are common situations where the next operator to be executed by the thread
that has just called PRIO is another operator that necessitates the dispatcher. For example,
in the aforementioned scenario where we raise a priority to start the next tick with a higher
priority, PRIO is followed immediately by PAUSE. In this case, the first call to the dispatcher
is superfluous. Therefore, there are two combined operators, PPAUSE and JPPAUSE, that
combine PRIO with other operators. These are not just syntactic sugar, but optimize per-
formance, and code size. For example, JPPAUSE combines PRIO with a JOIN and a PAUSE,
thus reducing three potential calls to the dispatcher to just one call.

3.3.2 SC signal operators

If an SC program wants to use signals (see Section 3.1.2), it can use the operators shown in
Table 2.2. Signals must be declared in the signaltype (see Section 3.4.3).

26

Global vs. local signals, reincarnation

We can classify signals as follows:

Global signals Signals get initialized once at the beginning of each tick. This is the default
in SC.

Local signals Signals can be declared for the scope of a SyncChart macrostate. This implies
that signals are initialized whenever the macrostate is entered. This is achieved with
the SIGNAL operator, see below.

An interesting aspect of local signals is the possibility of reincarnation, or schizophrenia.
A loop around the macrostate declaring a local signal may provoke the simultaneous existence
of two different “incarnations” of the local signal [2]. This is illustrated in the Reincarnation
example (see Figure 4.7).

Pure signals

As explained in Section 3.1.2, signals can be present or absent. Pure signals just have this
presence status, unlike valued signals, which also carry a value (see next section).

The SIGNAL operator initializes a local signal, as explained above, by setting its status to
absent.

The EMIT operator sets a signal present.
The PRESENT operator checks for the presence of a signal. If it is, control proceeds

normally to the next statement (then branch), otherwise it jumps to the specified label lelse
(else branch).

Valued signals

Valued signals carry a value of a certain type. So far, SC implements just integer valued
signals, extensions to other types (or a more generic typing mechanism) would be straight-
forward. The EMITINT operator emits a signal S (makes it present) and assigns it a value
val.

If an application uses valued integer signals, the signal declaration in signaltype (see Sec-
tion 3.4.3) has to order the valued signals before the pure signals. The number of valued
signals, say n, must be declared with a “#define valSigIntCnt n” directive.

The VAL operator retrieves the value of S and stores it in a register (an ordinary C
variable). In SyncCharts/Esterel, this is done with the ?S notation. It would also have been
straightforward to implement VAL as a function that returns the value directly, which might
seem a bit more natural from the C perspective. However, to stay in the spirit of operators
that could also be used for an ISA, VAL requests an explicit “destination register.”

Combine functions Adhering to the synchronous, deterministic SyncCharts semantics,
signals have a unique presence/absence status throughout a tick. This is no problem for
pure signals, in so far as the execution of multiple EMIT statements within one tick has no
further effect, we just set an already present statement to present again. For valued signals, the
situation is slightly more complicated, as valued signals are considered to carry a unique value
throughout a tick as well. This at first sight conflicts with the possibility of executing multiple
valued emissions within one tick, as these valued emissions might occur with different values.

27

But SyncCharts (as Esterel) offers an elegant way out of this dilemma, by way of combine
functions. These functions must be binary, commutative, associative functions that can be
used to combine multiple values into one uniquely determined value. For example, we may
use addition or max as combine functions. Subtraction would not be allowed, as it is not
associative, and we cannot, in general, make any assumptions on the order in which values
are supplied to the combine function.

So far, SC implements multiplication as combine function. EMITINTMUL emits an integer
signal, combined with multiplication. Again, it would be straightforward to extend this to
other combine functions, or to implement a generic mechanism.

As mentioned above in the context of signal reincarnation, it is possible that statements
are be executed multiple times within a macro tick. This can lead to interesting—but still
explainable and deterministic—behavior when using combined valued signals, as illustrated
in the PrimeFactor example (see Figure 4.8).

Crossing tick boundaries (PRE)

In general, we are interested in the presence status (and perhaps value) of a signal for the
current tick. However, to implement delays, or sometimes to break “dependency cycles,” we
may want to access the status/value of a signal in the previous tick. This functionality is
provided in SyncCharts/Esterel with the pre operator, and SC provides this functionality as
well.

If this functionality is used, SC has to do some further book keeping, and this has to be
indicated in the application with a #define usePRE directive.

PRESENTPRE is like present, but refers to the presence status of S not in the current tick,
but in the previous tick.

VALPRE is like VAL, but again refers to the previous tick.

Pre, suspend, and local signals There is an interesting interaction between pre, suspen-
sion, and local signal declaration. Recall that suspension “steals the clock” from a thread
(Section 3.3.1). If a thread has declared local signals and wants to access their status in the
previous tick (via PRESENTPRE or VALPRE), “stealing the clock” from a the thread means
that in the next tick when the thread is not suspended any more, the “previous tick” refers to
the previous tick in which the thread was not suspended yet. See the PreAndSuspend example
(Figure 4.6) for illustration.

To handle this case properly, the SC program has to do some bookkeeping. Specifically,
it must keep track of local signals of states that might be suspended. To let SC do this,
the application must provide a mapping from thread ids to lists of signals that are declared
local to the thread, or its descendants. This mapping must be given by the sigsDescs[] array,
see the complete listing of PreAndSuspend, Listing B.19, line 36. Whenever a thread i is
suspended, the signals given in sigsDescs[i] are added to a list of signals (sigsFreeze) whose
status is preserved into the next tick.

3.3.3 SC sequential control operators

The lower part of Table 2.2 lists further SC operators dedicated to sequential control. The
GOTO is just what it says, implemented directly as a C goto. It is listed as an SC operator
merely for completeness.

28

SyncCharts allow entry and exit actions to be associated with a state, these can also be
used in SC, as explained in the following.

Entry actions

An entry action associated with a state S is performed whenever S is entered. This can be
implemented in SC basically as a code sequence that immediately precedes the entry point
of S, and redirecting transitions to S to the beginning of the entry action. Hence, no special
SC operators are needed for entry actions.

Exit actions

An exit action is performed whenever the state is left. This also includes abortions, of the
state itself or one of its (transitive) parents. This makes exit actions more powerful than entry
actions, and their implementation does require specific SC operators.

An aborted thread does not regain control, so the aborting thread must ensure that any
exit actions associated with an aborted thread are still performed. Again, there is a clear rule
on what should happen when multiple exit actions might be performed: when macrostates
with exit actions are nested, the exit actions are executed in the innermost to outermost
order.

SC provides two operators for writing exit actions. CALL(l, lret) is an unconditional
function call to label l. As we do not have direct access to a program counter, we must also
explicitly specify the return address lret. CALL can be used whenever it is clear that the exit
action must be called. For an exit action associated with state S, this could be for example
at a regular exit point of S, or before S aborts and transfers to another state via TRANS.
It could also be at an abortion of a parent state T , if S must be active whenever T is, i. e.,
there are no sibling states of S.

The RET instruction returns from a function call, by transferring control to the lret label
supplied to the last call instruction. Note that since exit actions are not nested, there is no
need for a return address stack, it suffices to just remember one return address (implemented
as global variable returnAddress). However, should one want to use the SC call mechanism
also for nested calls, it would be straightforward to implement a stack instead of a simple
return address variable..

The interesting case, as already mentioned, are abortions. Consider the situation where S
has some sibling states, and the parent T gets aborted. When T gets aborted the exit action
of S must be performed if S is active; otherwise, when a sibling of S is active, the exit action
of S must not be performed. To implement this behavior, the ISAT(id, lstate, l) operator can
be used. It checks whether thread id is at state lstate; if this is the case, control proceeds to
the next instruction, which then commences the on exit function of associated with id at state
lstate. Else, control proceeds to label l.

SC also provides ISATCALL(id, lstate, laction, l) as a shorthand for ISAT(id, lstate, l);
CALL(laction, l). For example, in the Exits code (Fig. 4.2b), the ISATCALL at label L3, which
is reached upon normal termination of state M10, conditionally calls the exit action of M2.
An equivalent SC program that does not make use of this shorthand is shown in Fig. 4.3a.

29

1 int tick (int isInit)
2 {
3 // TICKSTART(isInit);
4 if (isInit) {
5 tickCnt = 0;
6 pc[TickEnd] = &&TickEndLabel;
7 pr [TickEnd] = 0;
8 enabled = (1 << ids[TickEnd]);
9 active = enabled;

10 cid = ids[Main];
11 enabled |= (1 << cid);
12 active |= (1 << cid);
13 } else { active = enabled;
14 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active)

);
15 goto ∗pc[cid];
16 }
17

18 // PAR(0, AB, ids[AB]);
19 ABO: pc[ids [AB]] = &&AB;
20 pr [ids [AB]] = 0;
21 enabled |= (1 << ids[AB]);
22 active |= (1 << ids[AB]);
23

24 // PARE(0, ABOmain, id2b(AB) | id2b(WaitA) | id2b(
WaitB));

25 pc[cid] = &&ABOmain;
26 pr [cid] = 0;
27 descs [cid] = (1 << ids[AB]) | (1 << ids[WaitA]) | (1

<< ids[WaitB]);
28 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
29 goto ∗pc[cid];
30

31

32 // PAR(0, WaitA, ids[WaitA]);
33 AB: pc[ids [WaitA]] = &&WaitA;
34 pr [ids [WaitA]] = 0;
35 enabled |= (1 << ids[WaitA]);
36 active |= (1 << ids[WaitA]);
37

38 // PAR(0, WaitB, ids[WaitB]);
39 pc[ids [WaitB]] = &&WaitB;
40 pr [ids [WaitB]] = 0;
41 enabled |= (1 << ids[WaitB]);
42 active |= (1 << ids[WaitB]);
43

44 // PARE(0, ABMain, id2b(WaitA) | id2b(WaitB));
45 pc[cid] = &&ABmain;
46 pr [cid] = 0;
47 descs [cid] = (1 << ids[WaitA]) | (1 << ids[WaitB]);
48 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
49 goto ∗pc[cid];
50

51 // PAUSE(L0);
52 WaitA:pc[cid] = &&L0;
53 active &= ˜(1 << cid);
54 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
55 goto ∗pc[cid];

57 // PRESENT(A, WaitA);
58 L0: if (!(signals & (1 << A))) goto WaitA;
59

60 // TERM;
61 enabled &= ˜(1 << cid);
62 active &= ˜(1 << cid);
63 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
64 goto ∗pc[cid];
65

66

67 // PAUSE(L1);
68 WaitB:pc[cid] = &&L1;
69 active &= ˜(1 << cid);
70 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
71 goto ∗pc[cid];
72

73 // PRESENT(B, WaitB);
74 L1: if (!(signals & (1 << B))) goto WaitB;
75

76 // TERM;
77 enabled &= ˜(1 << cid);
78 active &= ˜(1 << cid);
79 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
80 goto ∗pc[cid];
81

82 // JOIN(Done, ABmain);
83 ABmain: if (((enabled & descs[cid]) == 0)) goto Done;
84 pc[cid] = &&ABmain;
85 active &= ˜(1 << cid);
86 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
87 goto ∗pc[cid];
88

89 // EMIT(O);
90 Done: signals |= (1 << O);
91

92 // TERM;
93 enabled &= ˜(1 << cid);
94 active &= ˜(1 << cid);
95 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
96 goto ∗pc[cid];
97

98 // PAUSE(L2);
99 ABOmain:pc[cid] = &&L2;

100 active &= ˜(1 << cid);
101 asm volatile (”bsrl %1,%0\n”:”=r”(cid):”c”(active));
102 goto ∗pc[cid];
103

104 // PRESENT(R, ABOmain);
105 L2: if (!(signals & (1 << R))) goto ABOmain;
106

107 // TRANS(ABO);
108 enabled &= ˜descs[cid];
109 active &= ˜descs[cid];
110 goto ABO;
111

112 // TICKEND
113 TickEndLabel: return (enabled != (1 << ids[TickEnd]));
114 }

Figure 3.5: ABRO tick function after macro expansion (produced by gcc -E).

30

3.3.4 An example of expanded macros—ABRO

Fig. 3.3.4 shows the ABRO tick function from Fig. 3.3b after macro expansion. For better
readability, comments are added, extraneous braces and semicolons are removed, and line
breaks and indentation were reformatted.

3.4 SC Structure

3.4.1 Program files

There are two variants possible, the minimal variant that does not link in sc.c, and the
(extended variant) that does link it in.

The minimal files variant

An SC program consists of at least the following files:

sc.h A header file that defines a number of types, global variables and the SC macros.

APP .c A C file that defines an application APP (for example, ABRO.c). This must include
sc.h.

The above is sufficient, if no separate, alternative dispatcher routine is required, which in
turn requires that

1. the application does not depend on thread priorities, and

2. the dispatcher can be implemented with a Bit Scan Reverse (BSR) assembler instruction
embedded in the code. This instruction is accessible on x86 architectures when using
gcc.

In this minimal files version, the APP .c file must define a main function.
To produce an executable, it suffices to compile just APP .c. For example, “gcc PCO.c -o

PCO” produces an executable PCO.

The extended files variant

This variant should be used if

• an alternative dispatcher is required, because

– the application needs thread priorities, or

– BSR is not available,

• or if one wants the convenience of using a pre-defined main function that for example
compares the output of the tick function with a given sequence of reference outputs.

This extended files variant uses the following additional file:

31

sc.c A C file that contains the main function, alternative dispatcher functions (selectCidPrio
and selectCidNoprio), and an auxiliary function for tracing (vec2names) that converts a
bit vector to a string of thread or signal names.

Note that the main function assumes that signals are used, and hence calls signal-related
functions that must be provided by APP .c (see Section 3.4.2). This means that when the
extended files variant is used, for example, because the application uses thread priorities and
hence an alternative dispatcher function is needed, APP .c must define these signal-related
functions (which can be empty). This is slightly awkward and could be avoided for example by
spreading the functions in sc.c across several files. Another alternative would be to pre-define
alternative main functions (or rather functions called by main, which in turn can be selected
via a macro mechanism in APP .c, similar to the selection of the appropriate dispatcher).
However, to keep things simple, the functions are at this point all in sc.c.

To produce an executable, sc.c and APP .c must be compiled and linked. For example,
“gcc ABRO.c sc.c -o ABRO” produces an executable ABRO.

The files sc.c and sc.h are part of the SC software package, APP .c must be written by the
SC programmer.

3.4.2 Functions

Minimal files variant

In the minimal files variant, APP .c must not provide any specific function—except, as usual
in C, a main function. However, it is good practice to modularize the program by providing
the following function:

tick() This function is the top-level function that describes the behavior of the application.
One call to tick completes when all active threads have reached the end of a logical
tick (indicated by the PAUSE operator) or have terminated (indicated by TERM). The
main function, defined in sc.c, calls tick repeatedly, until all threads defined in tick have
terminated.

Extended files variant

If the main function provided by sc.c is used, the tick function, described in Section 3.4.2, is
not optional, but mandatory, as it is called by main defined in sc.c. In addition, main calls
the following functions, which therefore must be provided in APP .c:

getInputs() This function is called before tick is called and defines input signals. If no signals
are used, this function is empty.

checkOutputs() This function is called after the tick function and can be used to define
reference outputs. These are then compared with the outputs actually computed. If no
signals are used, this function is also empty.

printval(int id) A function to print valued signal, with index id. If no valued signals are used,
this function is empty.

32

3.4.3 Types

Minimal files variant and no signal usage

An SC program has to define the following type:

idtype An enumeration type that declares the thread names. This must contain the name
TickEnd.

TickEnd is a special, degenerated thread that does nothing but finish a tick. This is imple-
mented by assigning its program counter the label defined by the TICKEND operator (see Sec-
tion 3.3.1). The TickEnd thread should only execute when no other thread is active anymore.
It therefore must be assigned the lowest thread id (statically, in idtype, see Section 3.4.3), and
the lowest priority (at run time, by the TICKSTART operator, see Section 3.3.1).

We here exploit that C enumeration types correspond to a sequence of integers, starting
at 0 and increasing by 1. Thus idtype serves as a mapping from thread names, used in the
SC program, to thread identifiers. These identifiers in turn serve as indices to thread-related
information, in particular their thread id (via the ids array, see below). Thread identifiers are
unique to each thread occurring in the program, implicitly defined via the idtype. In contrast,
thread ids may be shared between threads, as long as these threads cannot be concurrent. In
other words, thread identifiers have to be unique at compile time (statically), whereas thread
ids may be shared, but have to be unique at run time (dynamically).

In the examples used here, there is no sharing of thread ids, as all threads used may be
concurrent. Furthermore, it is often (but not always) the case that the thread id is identical
to the thread identifier.

Extended files variant, or usage of signals

In the extended files variant, or if signals are used, APP .c also must define the following type:

signaltype An enumeration type that declares the signal names.

3.4.4 Variables

Minimal files variant and no signal usage

An SC program has to define the following variables:

idHi Defines the highest thread id in use.

ids Integer array that maps thread indices to ids. This must map thread TickEnd (to be
included in the idtype, see Section 3.4.3) to id 0.

id2threadname[] An array of strings that maps thread ids to thread names. This should
correspond to the idtype enumeration type (see Section 3.4.3).

Extended files variant, or usage of signals

In the extended files variant, or if signals are used, APP .c also must define the following
variable:

33

s2signame An array of strings that maps signal ids to signal names. This should correspond
to the defined signaltype enumeration.

Furthermore, in the extended files variant, APP .c must define the following variables,
which are used by main:

runMax The number of runs to be executed.

tickMax The maximal number of ticks to execute per run.

34

Chapter 4

Examples

This chapter contains a selection of further examples provided by Andé [2].

4.1 Count2Suspend

Count2Suspend [2, Fig. 8-5], shown in Fig. 4.1, illustrates the use of suspension. The 2-bit
counter in macrostate Cnt2 counts up whenever input signal T is present—except when inhib

 52

are simultaneously present, the strong abortion is taken, and the initial configuration is
reached ({Cnt2withSuspension, Cnt2, off1, off2}). Of course, a normal termination of a
state cannot occur when the state is suspended.

Figure 8-5: 2-bit Counter with Suspension and Reset.

As with abortion, a suspension is not effective when the state is entered: only a strict future
satisfaction of the trigger will suspend the state. This behavior can be changed by the
immediate modifier. In this case, the state is entered but its body is frozen.
Figure 8-6 is an example using immediate suspension. This example mimics a classical
interruption mechanism. irq is the signal that requests interruption of a complex behavior
encapsulated in the macrostate aTask. ISR is the Interrupt Service Routine. When the ISR
terminates (normal termination on the ISR macrostate) the activity of aTask resumes. If irq is
present when ISR terminates, then the ISR is instantaneously re-entered and aTask does not
resume. Note that there is no need for context saving when aTask is suspended: it is only
frozen.

(a) SyncChart

1 // Thread ids : Off1=1, Off0=2, Main=3
2 TICKSTART(isInit);
3

4 Cnt2: PAR(0, Off0, ids [Off0]) ;
5 PAR(0, Off1, ids [Off1]) ;
6 PARE(0, Cnt2Main, id2b(Off0) | id2b(Off1)) ;
7

8 Off0: PAUSE(L0);
9 L0: PRESENT(T, Off0);

10 On0: EMIT(B0);
11 PAUSE(L1);
12 L1: PRESENT(T, On0);
13 EMIT(C0);
14 GOTO(Off0);
15

16 Off1: PAUSE(L2);
17 L2: PRESENT(C0, Off1);
18 On1: EMIT(B1);
19 PAUSE(L3);
20 L3: PRESENT(C0, On1);
21 EMIT(C);
22 GOTO(Off1);
23

24 Cnt2Main:PAUSE(L4);
25 L4: PRESENT(reset, L5);
26 TRANS(Cnt2);
27 L5: PRESENT(inhib, Cnt2Main);
28 SUSPEND(L5);
29

30 TICKEND;

(b) SC tick function

Figure 4.1: The Count2Suspend example.

35

suspends (“freezes”) operation of Cnt2. The Main87,SUSPEND statement performs the according
control of the execution of Cnt2, see also p. 25.

Precedence constraints

1. Strong abort and suspension on Cnt2 (outer-inner):

Main ! Off0, Main ! Off1

2. Communication via a signal C0 (writer-reader):

Off0 ! Off1

These constraints induce a partial order, met by the thread id assignment in the SC code.

4.2 Exits

Exits [2, Fig. 8-8], shown in Fig. 4.2, illustrates the handling of exit actions. These are
implemented with the CALL operator, which calls exit actions unconditionally, and ISATCALL,
which calls exit actions if the corresponding state is active (and now gets aborted). See also
the descriptions of these operators on p. 29.

Alternative tick functions for Exits are shown in Fig. 4.3. The code shown in Fig. 4.3a
differs from Fig. 4.2b only in that the shorthand ISATCALL is expanded into separate ISAT
and CALL operations. The code in Fig. 4.3b inlines the exit actions. This violates the Write-
Things-Once principle, but in this case makes the code shorter, as the exit actions consist of
simple EMIT operations. However, rather surprisingly, this inlining actually degrades perfor-
mance, by about 10%.

Precedence constraints

1. Strong abort on M0 (outer-inner):

Main ! M10, Main ! M2, Main ! M11

We meet this by assigning Main the highest thread id (4). Furthermore, as thread M10,
a child of Main, will eventually raise its priority to 1, Main is also assigned this priority,
in Main6,PARE, after forking M10.

2. Strong abort on M10 (outer-inner):

M1027,PRESENT(A) ! M2

This is met by assigning M10 priority 1, with M1020,JPPAUSE(1,...), while M2 has priority
0. Note that this strong abort is not immediate, but delayed. Hence it is part of the
depth of M10 (see Sec. 3.2.3), and it is sufficient if M10 enters its depth with priority
1, but not its surface (label M10main).

3. Normal termination on M10 (inner-outer):

M2 ! M1020,JPPAUSE

36

M2

onExit: emit Y2

b/X2
M11

onExit: emit Z

M10

onExit: emit Y1

done

a/X10 /X111 2

onExit: emit Y0

M0

R/X0

Exits

Figure 8-8: Exit Actions.

Exit M2:
emit Y2

Microstep 1

R+

Microstep 2

Y2 Y1

Z Y0

Figure 8-9: Microsteps of a reaction with exit actions (1).

Microstep 3 Microstep 4

Exit M11:
emit Z

Exit M10:
emit Y1

Figure 8-10: Microsteps of a reaction with exit actions (2).

Semantics of SSM 55

(a) SyncChart

1 // Thread ids : M11=1, M10=2, M2=3, Main=4
2 TICKSTART(isInit);
3 M0: PAR(0, M10, ids[M10]);
4 PAR(0, M11, ids[M11]);
5 PARE(1, M0main, id2b(M10) | id2b(M11) | id2b(M2));
6

7 M10: PAR(0, M2, ids[M2]);
8 PARE(0, M10main, id2b(M2));
9

10 M2: PAUSE(M2depth);
11 M2depth:PRESENT(B, M2);
12 CALL(M2exit, L1);
13 M2exit: EMIT(Y2);
14 RET;
15 L1: EMIT(X2);
16 TERM;
17

18 L2: PRIO(0, M10main);
19 M10main:JPPAUSE(1, L3, M10depth);
20 L3: ISATCALL(ids[M2], M2depth, M2exit, L4);
21 L4: CALL(M10exit, L5);
22 M10exit:EMIT(Y1);
23 RET;
24 L5: EMIT(X11);
25 TRANS(Done);
26 M10depth:PRESENT(A, L2);
27 ISATCALL(ids[M2], M2depth, M2exit, L7);
28 L7: CALL(M10exit, L8);
29 L8: EMIT(X10);
30 TRANS(Done);
31 Done: PAUSE(Done);
32

33 M11: PAUSE(M11);
34 M11exit:EMIT(Z);
35 RET;
36

37 M0main: PAUSE(L9);
38 L9: PRESENT(R, M0main);
39 ISATCALL(ids[M2], M2depth, M2exit, L10);
40 L10: ISATCALL(ids[M10], M10depth, M10exit, L11);
41 L11: CALL(M11exit, L12);
42 L12: EMIT(Y0); // Only place to call exit action of M0
43 EMIT(X0);
44 TRANS(M0);
45

46 TICKEND;

(b) SC tick function

Figure 4.2: The Exits example.

37

1 // Thread ids : M11=1, M10=2, M2=3, Main=4
2 TICKSTART(isInit);
3 M0: PAR(0, M10, ids[M10]);
4 PAR(0, M11, ids[M11]);
5 PARE(1, M0main, id2b(M10) | id2b(M11) | id2b(

M2));
6

7 M10: PAR(0, M2, ids[M2]);
8 PARE(0, M10main, id2b(M2));
9

10 M2: PAUSE(M2depth);
11 M2depth:PRESENT(B, M2);
12 CALL(M2exit, L1);
13 M2exit: EMIT(Y2);
14 RET;
15 L1: EMIT(X2);
16 TERM;
17

18 L2: PRIO(0, M10main);
19 M10main:JPPAUSE(1, L3, M10depth);
20 L3: ISAT(ids[M2], M2depth, L4);
21 CALL(M2exit, L4);
22 L4: CALL(M10exit, L5);
23 M10exit:EMIT(Y1);
24 RET;
25 L5: EMIT(X11);
26 TRANS(Done);
27 M10depth:PRESENT(A, L2);
28 ISAT(ids[M2], M2depth, L7);
29 CALL(M2exit, L7);
30 L7: CALL(M10exit, L8);
31 L8: EMIT(X10);
32 TRANS(Done);
33 Done: PAUSE(Done);
34

35 M11: PAUSE(M11);
36 M11exit:EMIT(Z);
37 RET;
38

39 M0main: PAUSE(L9);
40 L9: PRESENT(R, M0main);
41 ISAT(ids[M2], M2depth, L10);
42 CALL(M2exit, L10);
43 L10: ISAT(ids[M10], M10depth, L11);
44 CALL(M10exit, L11);
45 L11: CALL(M11exit, L12);
46 L12: EMIT(Y0);
47 EMIT(X0);
48 TRANS(M0);
49

50 TICKEND;

(a) Tick function without ISATCALL

1 // Thread ids : M11=1, M10=2, M2=3, Main=4
2 TICKSTART(isInit);
3 M0: PAR(0, M10, ids[M10]);
4 PAR(0, M11, ids[M11]);
5 PARE(1, M0main, id2b(M10) | id2b(M11) | id2b(

M2));
6

7 M10: PAR(0, M2, ids[M2]);
8 PARE(0, M10main, id2b(M2));
9

10 M2: PAUSE(M2depth);
11 M2depth:PRESENT(B, M2);
12 EMIT(Y2);
13 EMIT(X2);
14 TERM;
15

16 L2: PRIO(0, M10main);
17 M10main:JPPAUSE(1, L3, M10depth);
18 L3: ISAT(ids[M2], M2depth, L4);
19 EMIT(Y2);
20 L4: EMIT(Y1);
21 EMIT(X11);
22 TRANS(Done);
23 M10depth:PRESENT(A, L2);
24 ISAT(ids[M2], M2depth, L7);
25 EMIT(Y2);
26 L7: EMIT(Y1);
27 EMIT(X10);
28 TRANS(Done);
29 Done: PAUSE(Done);
30

31 M11: PAUSE(M11);
32

33 M0main: PAUSE(L9);
34 L9: PRESENT(R, M0main);
35 ISAT(ids[M2], M2depth, L10);
36 EMIT(Y2);
37 L10: ISAT(ids[M10], M10depth, L11);
38 EMIT(Y1);
39 L11: EMIT(Z);
40 EMIT(Y0);
41 EMIT(X0);
42 TRANS(M0);
43

44 TICKEND;

(b) Tick function with inlined exit actions

Figure 4.3: Alternative variants for the SC tick function of the Exits example (Fig. 4.2).

38

 61

Figure 8-17: Microsteps in a Reaction of Pre.

Pre operators
Esterel in version 5.91 introduced new operators pre: pre(S) gives the presence status of
signal S at the previous instant; pre(?S) returns the value of S at the previous instant.
SyncCharts have adopted these operators whose implementation is more efficient than their
equivalent macrostate representation (Figure 8-15). When entering the scope of a signal S,
pre(S) is absent, and pre(?S) has the same value as S, if this value is defined, and ⊥
otherwise.

Examples with pre
FilteredSR (Figure 8-18) derives from a classical SR Flip-Flop. Its inputs are “filtered”: an
isolated presence of S or R is not sufficient to trigger a change of state: the presence must be
confirmed at the next instant. Thus, instead of a simple trigger S, the transition from state off
to state on is triggered by S and pre(S), that is, S is present and was present at the previous
instant.

Figure 8-18: Filtered SR Flip-Flop.

Shifter3 (Figure 8-19) is an example using pre with valued signals. Whenever the input signal
I:integer is present with a value v, signal O:integer will be emitted 3 instants later with value
v. An execution trace is given in Table 8-1. The value of the signal is written between
brackets, + denotes the presence, - the absence.

(a) SyncChart

1 // Thread ids : Main=1
2 TICKSTART(isInit);
3

4 Off: EMIT(OFF);
5 PAUSE(OffDepth);
6 OffDepth:PRESENT(S, Off);
7 PRESENTPRE(S, Off);
8

9 On: EMIT(ON);
10 PAUSE(OnDepth);
11 OnDepth:PRESENT(R, On);
12 PRESENTPRE(R, On);
13

14 GOTO(Off);
15

16 TICKEND;

(b) SC tick function

Figure 4.4: The FilteredSR example.

This is met by assigning M10 a lower id than M2, and executing both M2 and the test
for normal termination with priority 0. To ensure the latter, we set the priority of M10
at M109,PARE, for the test in the tick when M10 is entered, and at M1019,PRIO(0), for the
test in subsequent ticks.

4. Precedence of strong abortion over normal termination on M10 (transition-number):

M1027,PRESENT(A) ! M1020,JPPAUSE

This intra-thread structural constraint is met by ordering the operations in the program
accordingly.

4.3 FilteredSR

FilteredSR [2, Fig. 8-18], shown in Fig. 4.4), illustrates the use of PRE on pure signals.
We here use signal expressions, in this case signal conjunction. In full regular C, such

expressions can be built up the usual way with C’s logical operators (!, &&, ||). If we want
to restrict ourselves to plain SC operators, we can encode these expressions with control flow,
as is done here.

Precedence constraints As there is just the Main thread and each state has just one
outgoing transition, there are no precedence constraints.

4.4 Shifter3

Shifter3 [2, Fig. 8-19], shown in Fig. 4.5, illustrates the use of PRE on valued signals.
There are three top-level concurrent threads. There are two alternatives to implement

this:

39

 62

Figure 8-19: Shift Register.

instant 1 2 3 4 5 6 7 8

I (⊥)- (1)+ (2)+ (2)- (3)+ (3)- (3)- (4)+
s0 (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+ (3)- (3)-
s1 (⊥)- (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+ (3)-
O (⊥)- (⊥)- (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+

Table 8-1: An Execution Trace for Shifter3.

Local signal, pre and Suspension
Operators pre are sometimes misunderstood. pre(S) refers to the presence status of S in the
previous instant when the scope of the signal was active; this is not necessarily the previous
(absolute) instant. The syncChart in Figure 8-20 illustrates this situation.
Macrostate Mod3Cnt specifies the behavior of a modulo 3 binary counter. The carry signal C
triggers a delayed abortion of macrostate Cnt. Since transitions of the right-hand STG in Cnt
are trigger-less, the counter progresses at each instant. Suspending the evolutions of Mod3Cnt
when signal T is absent makes a counter driven by T. Note that, according to the semantics of
the suspension, Mod3Cnt executes at the first instant whatever the presence status of T.

Figure 8-20: Local Signal, Suspension, and pre.

(a) SyncChart

1 // Thread ids : Main=1, Shift1=2, ShiftO=3
2 int reg0;
3

4 TICKSTART(isInit);
5

6 PAR(0, Shift1, ids [Shift1]) ;
7 PAR(0, ShiftO, ids [ShiftO]) ;
8 GOTO(Shift0);
9

10 Shift0depth :PRESENTPRE(I, Shift0);
11 VALPRE(I, reg0);
12 EMITINT(S0, reg0);
13 Shift0 : PAUSE(Shift0depth);
14

15 Shift1depth :PRESENTPRE(S0, Shift1);
16 VALPRE(S0, reg0);
17 EMITINT(S1, reg0);
18 Shift1 : PAUSE(Shift1depth);
19

20 ShiftOdepth:PRESENTPRE(S1, ShiftO);
21 VALPRE(S1, reg0);
22 EMITINT(O, reg0);
23 ShiftO: PAUSE(ShiftOdepth);
24

25 TICKEND;

(b) SC tick function

Figure 4.5: The Shifter3 example.

1. The Main thread is interpreted as the top-level macrostate Shifter3. It spawns off three
children (Shift0, Shift1, ShiftO), and then terminates (with TERM), as it has nothing
more to do.

2. The Main thread is interpreted as one of the concurrent subthreads of macrostate
Shifter3, say Shift0. It spawns off two concurrent threads (Shift1, ShiftO); see also
the last note in Sec. 3.3.1.

We here implement the second alternative, as it reduces the number of required threads by
1. Further notes on this methods of spawning concurrent threads:

• This is a fork without a PARE, hence there is no call to the dispatcher before Main delves
into the code region implementing the Shift0 substate. In this case this is unproblematic,
as there are no precedence constraints to be obeyed (see below). In general, if we use
this technique of spawning concurrent threads (instead of child threads) and there is
a particular thread that must be executed next, we must make sure that the current
thread takes on the role this particular thread.

• If there are no precedence constraints, it is suggested to let the spawning thread continue
with the code region that follows after the fork, in this case Shift0. If the spawning thread
can start at the beginning of that code region, this saves a GOTO. In this example we
do not have this saving, as we still have to jump to the Shift0 label.

A further optimization implemented here: Starting the code fragment belonging to state
Shift0 with its depth (Shift0depth) allows to save a final GOTO by folding it into PAUSE(Shift0depth13.
Similarly for the other concurrent states.

40

 62

Figure 8-19: Shift Register.

instant 1 2 3 4 5 6 7 8

I (⊥)- (1)+ (2)+ (2)- (3)+ (3)- (3)- (4)+
s0 (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+ (3)- (3)-
s1 (⊥)- (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+ (3)-
O (⊥)- (⊥)- (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+

Table 8-1: An Execution Trace for Shifter3.

Local signal, pre and Suspension
Operators pre are sometimes misunderstood. pre(S) refers to the presence status of S in the
previous instant when the scope of the signal was active; this is not necessarily the previous
(absolute) instant. The syncChart in Figure 8-20 illustrates this situation.
Macrostate Mod3Cnt specifies the behavior of a modulo 3 binary counter. The carry signal C
triggers a delayed abortion of macrostate Cnt. Since transitions of the right-hand STG in Cnt
are trigger-less, the counter progresses at each instant. Suspending the evolutions of Mod3Cnt
when signal T is absent makes a counter driven by T. Note that, according to the semantics of
the suspension, Mod3Cnt executes at the first instant whatever the presence status of T.

Figure 8-20: Local Signal, Suspension, and pre. (a) SyncChart

 63

Table 8-2 contains an execution trace of the syncChart. C is local to macrostate Mod3Cnt.
When T is absent, the body of Reactive-Cell Mod3Cnt is not executed (see Figure 8-12), and
thus, time is frozen for signal C (Colored entries in the C row). Thus the absolute instant 6, is
only the fourth instant with respect to C, and pre(C) at the absolute instant 6 is the presence
status of C at the absolute instant 4 (i.e., present). Considering C absent at the absolute instant
5 will be a mistake, C just does not exit at this instant!

Instant 1 2 3 4 5 6 7 8 9 10 11 12 13
T - + - + - + - - + - + + -

B0 - + - - - - - - + - - - -
B1 - - - + - - - - - - + - -
C - - + - - + -

Table 8-2: An Execution Trace of PreAndSuspend.

8.9 Conditional Pseudo-state
Sometimes a common trigger is shared by several outgoing transitions. Figure 8-21-A shows
such a case. This syncChart is a variant of the Arbiter. It applies a turning priority policy: the
last user is given a lower priority. Consider state s1 active, which means that the resource is
granted to User1. There exist two transitions to exit this state, respectively triggered by Rl1
and Rq2, and Rl1. The former has priority over the latter. Both are triggered by Rl1, which
indicates that User1 has just released the resource. This event is the primary cause of the
preemption of state s1. The presence of Rq2, which is associated with a pending request from
User2, enables the former transition, whereas its absence enables the latter.
Figure 8-21-B introduces a new notation that clearly shows the trigger common to several
transitions (Rl1) and then the selecting triggers or guards. The intermediate node is a
conditional pseudo-state (a grey circle with an inscribed C). Since a pseudo-state is not a
state, it cannot be active. When a transition entering the pseudo-state is taken, there must
always be an enabled transition leaving the pseudo-state. A good practice is to use an
outgoing transition without trigger and guard as a “catch-all” transition. This transition is
given the lowest priority, and it is taken when all the other transitions are disabled.

Figure 8-21: Arbiter with Turning Priority.

(b) Sample execution trace [2]

1 // Thread ids : Off1=1, Off0=2, Cnt=3, Main=4
2 TICKSTART(isInit);
3

4 PAR(0, Cnt, ids [Cnt]) ;
5 PARE(0, Mod3CntMain, id2b(Cnt) | id2b(Off1) | id2b(Off0

));
6

7 Cnt: PAR(0, Off1, ids [Off1]) ;
8 PAR(0, Off0, ids [Off0]) ;
9 PARE(0, CntMain, id2b(Off1) | id2b(Off0)) ;

10

11 Off1: PAUSE(L0);
12 L0: PRESENT(C, Off1);
13

14 On1: EMIT(B1);
15 PAUSE(On1);
16

17 L1: EMIT(C);
18 Off0: PAUSE(On0);
19

20 On0: EMIT(B0);
21 PAUSE(L1);
22

23 CntDepth:PRESENTPRE(C, CntMain);
24 TRANS(Cnt);
25 CntMain:PAUSE(CntDepth);
26

27 Mod3CntMain:PAUSE(Mod3CntDepth);
28 Mod3CntDepth:PRESENT(T, L2);
29 GOTO(Mod3CntMain);
30 L2: SUSPEND(Mod3CntDepth);
31

32 TICKEND;

(c) SC tick function

Figure 4.6: The PreAndSuspend example.

Precedence constraints There are no precedence constraints, even though there is signal-
based communication via S0 and S1; all triggers are delayed (via PRE), hence any written
signals will not be read before the next tick.

4.5 PreAndSuspend

PreAndSuspend [2, Fig. 8-20], shown in Fig. 4.6, illustrates the proper handling of PRE in
conjunction with suspension and local signals. See also the execution trace in Fig. 4.6b.

For the signal C, declared locally at state Mod3Cnt, PRE(C) refers to the presence value
of C in the previous tick in which Mod3Cnt was active (not suspended).

Precedence constraints

1. Suspension of Mod3Cnt (outer-inner):

Main ! Cnt

2. Strong abort on Cnt (outer-inner):

41

The two ssms in Figure 8-21 have the same behavior. Conditional pseudo-states do not
increase the expressiveness of SSM. They only make some charts more readable.
Remark: possible triggers on transitions from a conditional pseudo-state are implicitly
immediate.

8.10 Reincarnation

A Simple Signal Reincarnation Example
A local signal has a well-defined scope: the macrostate in which it is declared. A loop may
provoke the simultaneous existence of two different “incarnations” of a local signal. Figure
8-22 illustrates this situation.
The only place where local signal S can be emitted is the transition from state q to state r.
This transition cannot be enabled at the initial instant, therefore S is absent. Macrostate
Reincarnation is entered and since S is absent, the transition leading to state q is taken. The
control stays in state q until a future occurrence of A. As soon as A is present the transition to
state r is taken, and signal S is emitted. Now, r being a final state, the normal termination is
taken and macrostate Reincarnation is re-entered. Instantaneously the presence of S is
checked to choose between the two outgoing transitions of the conditional pseudo-state.
Surprisingly, the transition to state p is not taken; the transition to q is taken instead. The
reason for this is that a fresh instance of S has been created when entering macrostate
Reincarnation. Since there is no way to emit signal S from the initial state, the new instance
of S is absent. This presence status is independent from the presence status of the former
instance. Figure 8-23 is a possible execution trace. Figure 8-24 contains the microsteps
executed during the third instant (reincarnation).

p

C

q

Reincarnation

A/ S

S 1 2

signal S r

/ gotS

Signal_Reincarnation

output gotS

Figure 8-22: Signal Reincarnation.

Instant 1 Instant 2 Instant 3

A

Figure 8-23: An execution trace of Signal_Reincarnation.

 Semantics of SSM 64

(a) SyncChart

1 // Thread ids : Main=1
2 TICKSTART(isInit);
3

4 Reinc: SIGNAL(S);
5 PRESENT(S, Q);
6 P: EMIT(gotS);
7 PAUSE(P);
8 Q: PAUSE(L0);
9 L0: PRESENT(A, Q);

10 EMIT(S);
11 GOTO(Reinc);
12

13 TICKEND;

(b) SC tick function

Figure 4.7: The Reincarnation example.

Cnt ! Off0, Cnt ! Off1

3. Communication via C (writer-reader)

Off0 ! Off1

These constraints induce a partial order, met by the thread id assignment in the SC code.

4.6 Reincarnation

Reincarnation [2, Fig. 8-22], shown in Fig. 4.7, illustrates the SIGNAL instruction to handle
signal reincarnation.

The canonical encoding in SC would have the Main thread spawn off an inner thread that
computes the behavior of the Reincarnation state. However, as the macrostate Reincarnation
only has a normal termination transition attached to it, all the Main thread does is to reenter
itself once Reincarnation has terminated. This can be streamlined by transferring control from
all terminating states within Reincarnation to the entry of Reincarnation. In this case, there
is just one such terminating state, namely r. Hence, there is no need anymore for a separate
parent thread that checks for termination. In other words, the Main thread can directly run
the Reincarnation state.

Precedence constraints

1. Normal termination of Reincarnation (inner -outer):

This gets folded into the sequential code of Main.

2. There is also the conditional pseudo state with two outgoing transitions, which in prin-
ciple constitutes a transition-number precedence. In this case, this corresponds to a
simple if-then-else branch, encoded in PRESENT(S, Q)5.

42

(a) SyncChart

1 // Thread ids : Main=1, S1=2
2 TICKSTART(isInit);
3

4 S0: PAR(0, S1, ids [S1]) ;
5 PARE(0, S0main, id2b(S1));
6

7 S1: EMITINTMUL(V, 2);
8

9 S1surf : PRESENT(B, S1depth);
10 EMITINTMUL(V, 5);
11 GOTO(S2);
12 S1depth:PAUSE(L0);
13 L0: PRESENT(A, S1surf);
14 EMITINTMUL(V, 3);
15 GOTO(S1surf);
16

17 S2: PAUSE(S2);
18

19 S0main: PRESENT(D, S0depth);
20 EMITINTMUL(V, 11);
21 TRANS(S3);
22 S0depth:PAUSE(L1);
23 L1: PRESENT(C, S0main);
24 EMITINTMUL(V, 7);
25 TRANS(S0);
26

27 S3: PAUSE(S3);
28 TICKEND;

(b) SC tick function

Figure 4.8: The PrimeFactor example.

4.7 PrimeFactor

PrimeFactor [2, Fig. 8-25], shown in Fig. 4.8, illustrates the use of valued signals and the
proper handling of reincarnation/schizophrenia.

• S0 needs no JOIN, as it never terminates normally.

• S2: PAUSE(S2) encodes a final, but non-terminating state; this corresponds to Esterel’s
halt.

Precedence constraints

1. Normal termination transitions of S0 (inner -outer):

S1 ! Main

This is met by thread id assignment.

2. Ordering of transitions of S0 (transition-number):

Main23,PRESENT(C) ! Main19,PRESENT(D)

This is met by statement ordering.

43

3. Ordering of transitions of S1 (transition-number):

S113,PRESENT(A) ! S19,PRESENT(B)

This is also met by statement ordering.

To summarize, all scheduling constraints are handled by proper ordering of the transition
predicate tests, and by the fact that the id of the inner state (S0, id 1) is higher than the
priority of the surrounding root thread.

44

Chapter 5

Related Work

Statechart variants Since the original Statecharts proposal [13], numerous dialects of
Statecharts have been developed and Statecharts have also been incorporated into the Uni-
fied Modeling Language (UML). Statecharts are supported by a multitude of modeling tools;
the first commercial tool was Statemate [13], other established tools today are SCADE/Esterel
Studio (Esterel Technologies), Matlab/Simulink/Stateflow (The Mathworks), ASCET (ETAS),
or Rational Rose (IBM). These tools all implement the fundamental Statechart concepts of
concurrency, hierarchy, and signal broadcast. However, their underlying MoCs also have some
subtle, but important differences, in particular regarding their handling of concurrency. In
fact, while the visual syntax of Statecharts appears fairly simple and straightforward, it is
not at all obvious what their semantics should be [5].

Most Statechart dialects in use today, including UML Statecharts, have the limitation that
they do not offer deterministic concurrency. Concurrent states are often implemented as con-
current threads, thus inheriting the non-determinism associated with thread scheduling [16].
This can be alleviated by adopting a strictly synchronous semantics, which precisely states
how computations should proceed [6]. The synchronous MoC implements the synchrony hy-
pothesis, which abstracts from concrete run-time behavior by assuming that the computation
of a reaction does not take any time. The strict interpretation of synchrony also adopts a
fixed point semantics, which means that the status of events (sometimes also referred to as
signals) must be consistent throughout a reaction. Strictly synchronous Statechart dialects
are Argos [19] and SyncCharts [2], also known as Safe State Machines (SSMs). There is also
the loose interpretation of synchrony, which does assume that physical time does not progress
during a reaction, but does not require that the system progresses along fixed points. In-
stead, it allows the presence/absence status of events to change during a reaction. This is
less restrictive than strict synchrony, but degrades compositionality and may lead to infinite
computations. The original Statechart proposal implemented loose synchrony.

Expressing Statecharts in C/C++ As mentioned in the introduction, it is already com-
mon practice to express Statecharts in a classical programming language. Samek describes
how to express UML Statecharts in C/C++ [27]. As in UML Statecharts, this approach does
not provide deterministic concurrency. Wagner et al. describe how to implement FSMs in
C [31], but these are flat automata without any concurrency.

45

Synchronous language extensions There have been several proposals to extend tradi-
tional programming languages by synchronous constructs. Reactive C [10] is an extension of C
inspired by Esterel. It employs the concepts of computational instants (ticks) and preemtions,
but does not provide true concurrency; Reactive C’s merge operator emulates concurrency by
running threads sequentially, in their textual order.

FairThreads [7] extend this by true concurrency, implemented via native threads. They
also offer macros to express automata. SC does not use native threads, but does its own,
light-weight thread book keeping. Another difference is that the signal mechanism provided
by FairThreads does not allow reaction to signal absence, whereas SC does allow this (see
grcbal3).

The Esterel-C Language (ECL) [15] is another proposal to extend C by Esterel-like con-
structs. A C program is annotated with Esterel-like constructs for signal handling and reactive
control flow, and from this program the ECL compiler derives an Esterel part and a purely
sequential C part. SC is in the same spirit of annotating C with synchronous operators, but
differs from ECL in that it does not resort to a separate language (Esterel).

Another recent proposal for a synchronous extension of C is Precision Timed C (PRET-
C) [25]. PRET-C focuses on temporal predictability and assumes a target architecture with
specific support for thread scheduling and abort handling. PRET-C provides a minimal set
of C extensions, namely a concurrency operator, which runs threads with static priorities, a
delayed abortion operator, and an EOT operator that delineates ticks. An associated compiler
produces a corresponding intermediate format, the Timed Concurrent Control Flow Graph,
where each thread at each EOT tests whether it is aborted or not with Checkabort nodes.

Lusteral, presented by Mendler and Pouzet [20], also tries to capture the essence of syn-
chronous programming in a small number of operators. It combines elements of the syn-
chronous languages Lustre, Esterel and Signal and embeds them in Haskell. As this is a
functional language, it allows to express the semantics of the Lusteral operators nicely as
higher-order functions.

Compiling synchronous programs As SC expresses synchronous, control-oriented con-
currency by means of a—ultimately sequential—C program, executing an SC program raises
similar issues as they arise when synthesizing a synchronous language into sequential code.
There have been numerous proposals for this, in particular for the Esterel language [22,9]. It
is a common procedure to translate an Esterel program into a C program, but the resulting
C program usually bears little resemblance to the original Esterel program. For example, the
C code might be a flat automaton, or it might simulate a hardware circuit.

Probably the closest in spirit to SC is the BAL virtual machine [9], which proposes a high-
level ISA that captures the Esterel semantics as closely as possible; see also the comparison
done in Chapter 6.

Another interesting approach is the dynamic list code generation [9], which produces C
code that executes concurrently running threads by dispatching small groups of instructions
that can run without a context switch. These blocks are dispatched by a scheduler that
uses linked lists of pointers to code blocks that will be executed in the current cycle. While
the fundamentals of that code generation are very different from the SC approach, their use
of pointers and gcc’s computed gotos has inspired the label-based “coarse grain program
counter” approach presented here.

46

The PRET and SHIM programming models As discussed in Sec. 2.1, SC is also related
to the programming model proposed for the Precision Timed Architecture (PRET) proposed
by Edwards and Lee [18], but does not rely on low-level timing for synchronization.

Another related programming model is SHIM [29], proposed for software/hardware in-
tegration, which provides Kahn process networks with CSP-like rendezvous communication
and exception handling. It uses a separate compiler to convert a SHIM program into se-
quential C code. SHIM, like SC, has been inspired by synchronous languages, but it does
not use a synchronous programming model, instead relying on communication channels for
synchronization.

Code generation from Statecharts/SyncCharts As SC can be used as a target format
when synthesizing Statecharts into a sequential program, this work also relates to code gener-
ation from Statecharts. Three different methods of compiling Statecharts are common: com-
pilation into an object oriented language using the state pattern [1], dynamic simulation [32],
and flattening into finite state machines. Since flattening can suffer from state explosion,
often a combination of flattening and dynamic simulation is used. All of these methods incur
relatively high overhead and typically make use of a run time system to achieve concurrency,
and usually the result is not deterministic.

For SyncCharts, it is also possible to translate the Statechart model into an equivalent
textual Esterel program [11]. Such a translation was proposed by André [3] together with
the initial definition of SyncCharts and their semantics. This transformation, with additional
unpublished optimizations, is implemented in Esterel Studio. The resulting Esterel program
can then be translated into software or hardware [22]. As discussed in Chapter 6, this path via
Esterel to C is here used for experimental comparison. A drawback of this approach is that
the original structure of SyncCharts cannot always be preserved in the Esterel code, as Esterel
does not allow the arbitrary control flow that can be expressed by SyncChart transitions; this
also can induce the need for additional signals, to encode the next active state. This structure
is even less preserved in a C program compiled from the Esterel program.

Compilation for reactive processors One approach to synthesize SyncCharts into a tex-
tual program that does preserve the original structure is to generate code directly for a reactive
processor [30], as done by the state machine to KEP compiler (smakc!) [28]. Unlike the in-
struction set architecture (ISA) of traditional processors, which provide only sequential control
flow operators such as branches and jumps, the ISA of reactive processors directly expresses
concurrency and preemption. The smakc! compiler targets the Kiel Esterel Processor [17],
which implements synchronous concurrency via multi-threading. This multi-threading ap-
proach, which is also realized for example in the StarPro processor [33], has the advantage of
allowing high degrees of concurrency without excessive resource requirements.

The SC operators have been inspired by the KEP ISA, and adopt the KEP’s mechanism
of priority-based multi-threading. However, the SC operators have been developed with Sync-
Charts in mind, rather than Esterel, and they make minimal assumptions on the execution
platform. The main resulting differences between SC and the KEP ISA are:

• SC provides a TRANS operator that implements an arbitrary state transition;

• SC does not provide Esterel’s exception handling via traps;

• SC does not rely on special watcher units to implement aborts.

47

A motivation for the KEP’s watcher units was to avoid Checkabort instructions [26, 25], as
these introduce an overhead—both in terms of code size as execution speed—at each tick, in
all threads, proportional to the abort nesting depth. Interestingly, SC needs neither watchers
nor Checkaborts, by giving parent threads the power to abort their descendants with the
TRANS operator.

48

Chapter 6

Experimental results

6.1 Conciseness of SC, Code Size

The main goal in developing SC was to develop a concise embedding of SyncChart behavior
into C. It is difficult to measure “conciseness” precisely, as this compares a visual language
against a textual one. A better point of reference might be Esterel code. For example, grcbal3
in Esterel takes 25 lines (see Fig. 2.2a); in SC, it takes 28 lines (Fig. 2.2b). This indicates a
comparable level of conciseness, which is remarkable in that the SC operators are embedded
in the imperative, sequential programming model of C.

Another interesting point of comparison is the BAL VM instruction set, as it has been
designed specifically to encode Esterel programs in as little memory as possible [9]. To encode
grcbal3, BAL uses 74 instructions, of complexity comparable to the SC operators. The SC
version makes do with 28 instructions, and these are also arguably easier to relate to an Esterel
program or a SyncChart than the BAL assembler. This makes SC an attractive alternative
candidate for a VM instruction set.

Fig. 6.1a compares the size of the SC tick functions for a number of benchmarks, taken
from Andé [2], with the size of the C code generated by EsterelStudio. Two synthesis variants
are considered, one based on circuit simulation, the other based on GRC. As can be seen, SC
is often less than half the size of the synthesized C code.

Fig. 6.1b compares sizes of object code for the tick function. Here, the SC code is larger on
average, just in two cases it is slightly better than both E-Studio results. However, considering
the sizes of the executable on an x86 architecture, shown in Fig. 6.1c, SC is ahead again. All
results were obtained with gcc -O3.

6.2 SC Performance

The development of SC has not been motivated primarily by performance concerns, but still
it is interesting to see how it compares. On the negative side, SC basically just interprets
a SyncChart, it cannot perform any global optimizations or partial evaluations at compile
time, as do for example the EsterelStudio synthesis tools. On the positive side, SC code
has no scalability problems, neither in terms of code size (like the flat automaton synthesis
approach) nor in terms of run time. It only does work that needs to be done, in the sense
that no unnecessary code regions are executed. This is different than for example the widely

49

!"#$%%$&

'$()$*&

+,-.%$* *'/ *01/*

2/3* 45 &56 67

89:#"%4* 4& 76 &;6

55 <= 66

:,.>)5?.?@$>-* 56 &&A 7<

=& AB 5BA

&= =< <&

5< ;4 ;;

54 &46 A<

&B 57 =A

?C(D)$94* &7 ;5 =6

EFG1E0G 5=H5 75HA A5H5

&HBBGIBBB 45 &56 67

4& 76 &;6

55 <= 66

56 &&A 7<

=& AB 5BA

&= =< <&

5< ;4 ;;

54 &46 A<

&B 57 =A

&7 ;5 =6

/(9:.()

"#9,*

$J()?*

D(%)9-'1*

@9$E>-'.?@$>-*

@9(K$L":),9*

9$(>:"9>")(,>*

2/3*

89:#"%4*

"#9,*

:,.>)5?.?@$>-*

$J()?*

D(%)9-'1*

@9$E>-'.?@$>-*

@9(K$L":),9*

9$(>:"9>")(,>*

?C(D)$94*

EFG1E0G

B <B &BB &<B 5BB 5<B

*'/

/(9:.()

01/

(a) Size of tick function in C source code, line count
without empty lines and comments

!"#$%%$&

'$()$*&

+,-.%$* *'/ *01/*

2/3* 4567 4544 4544

89:#"%;* 45< 45&& 456=

45<> &56& &5<7

:,.?)4@.@A$?-* 45= 45>B 454B

;5B< 45>& 456B

&56; 45C> &5<<

;54 45&B 454;

45BB 45<4 45<B

&5=< &5< &5<4

@D(E)$9;* 4576 454> 45;

FGH1F0H 45=& 4544 45;;

&5CCHICC; 46>< 444C 44&B

4<C> 4&C< 46B<

4<>C &6&4 &<><

4=CC 4>B> 44BC

;B=B 4>C< 467B

&64< 4C;B &<<>

;4C> 4&B> 444<

4BB> 4<4C 4<BC

&=<> &<C> &<4>

47<< 44>> 4;C>

/(9:.()

"#9,*

$J()@*

E(%)9-'1*

A9$F?-'.@A$?-*

A9(K$L":),9*

9$(?:"9?")(,?*

2/3*

89:#"%;*

"#9,*

:,.?)4@.@A$?-*

$J()@*

E(%)9-'1*

A9$F?-'.@A$?-*

A9(K$L":),9*

9$(?:"9?")(,?*

@D(E)$9;*

FGH1F0H

C C57 & &57 4 457 ; ;57 >

*'/

/(9:.()

01/

(b) Size of tick function object code, in Kbytes

!"#$%%$&

'$()$*&

+,-.%$* *'/ *01/*

2/3* 4546 &7567 &7567

89:#"%;* &<5&& &756= &754=

&<5>7 &754 &756?

:,.@)>A.AB$@-* &<5>? &?5>& &?5<=

&<5>C &?5&7 &?5<=

&<5>4 &<544 &<566

&<5;= &?5>& &?5&>

&<5&4 &?5<6 &754=

&<5<6 &<5=? &<5=7

AD(E)$9;* &<5?C &?5?> &?577

FGH1F0H &<5>; &75>? &75&4

&5<<HI<<; 446< &767> &76;=

&<&&7 &76=< &74=7

&<>;4 &7644 &767?

&<>76 &?>&; &?<CC

&<>C7 &?&;4 &?<=>

&<>66 &<46= &<6=?

&<;C? &?>&& &?&&6

&<&6= &?<=6 &74=;

&<<6< &<=?< &<=7<

&<?C7 &??>& &?7;4

/(9:.()

"#9,*

$J()A*

E(%)9-'1*

B9$F@-'.AB$@-*

B9(K$L":),9*

9$(@:"9@")(,@*

2/3*

89:#"%;*

"#9,*

:,.@)>A.AB$@-*

$J()A*

E(%)9-'1*

B9$F@-'.AB$@-*

B9(K$L":),9*

9$(@:"9@")(,@*

AD(E)$9;*

FGH1F0H

< > 7 C 6 &< &> &7 &C &6

*'/

/(9:.()

01/

(c) Size of executable, in Kbytes

Tabelle1

Seite 1

Module SC GRC

PCO 1,56 1,54 1,12

grcbal3 1,04 0,5 0,43

1,28 0,99 0,85

count2suspend 0,97 1,15 0,82

2,62 0,99 1,37

0,82 0,83 0,71

1,42 1,27 1,03

0,51 0,77 0,51

0,32 0,3 0,28

shifter3 2,14 1,35 1,35

AVERAGE 1,27 0,97 0,85

1 0,76 0,67

1,00E-003 1557 1539 1116

1035 504 432

1278 990 846

972 1152 819

2619 990 1368

819 828 711

1422 1269 1026

513 774 513

324 297 279

2142 1350 1350

PCO 1062 1044 774

 Circuit

abro

exits

filteredSR

preAndSuspend

primeFactor

reincarnation

Factor

SC with exits inlined: approx. 2850

SC with exits not inlined, ISAT+CALL: approx. 2600

SC with exits not inlined, CHKCALL: approx. 2600

Mit Server,exits wto (no inlining)

PCO

grcbal3

abro

count2suspend

exits

filteredSR

preAndSuspend

primeFactor

reincarnation

shifter3

AVERAGE

0 0,5 1 1,5 2 2,5 3

 SC

 Circuit

 GRC

(d) Accumulated run times of tick function, in
thousands of clock cycles

Tabelle1

Seite 1

Module SC GRC

PCO 1,56 1,54 1,12 Module

grcbal3 1,04 0,5 0,43 grcbal3 40 25,88

1,28 0,99 0,85 83 15,4

count2suspend 0,97 1,15 0,82 count2suspend 66 14,73

2,62 0,99 1,37 111 23,59

0,82 0,83 0,71 30 27,3

1,42 1,27 1,03 81 17,56

0,51 0,77 0,51 43 11,93

0,32 0,3 0,28 13 24,92

shifter3 2,14 1,35 1,35 shifter3 108 19,83

AVERAGE 1,27 0,97 0,85 AVERAGE 20,13

1 0,76 0,67

1,00E-003 1557 1539 1116

1035 504 432

1278 990 846

972 1152 819

2619 990 1368

819 828 711

1422 1269 1026

513 774 513

324 297 279

2142 1350 1350

PCO 1062 1044 774

grcbal3 1026 333 288

927 792 531

count2suspend 576 864 567

3114 801 783

522 684 468

1098 846 657

360 495 342

198 207 162

shifter3 1188 855 855

AVERAGE 1007,1 692,1 542,7

1 0,69 0,54

PCO 1557 1539 1116

grcbal3 1035 504 432

1278 990 846

count2suspend 972 1152 819

2619 990 1368

819 828 711

1422 1269 1026

513 774 513

324 297 279

shifter3 2142 1350 1350

AVERAGE 1268,1 969,3 846

1 0,76 0,67

 Circuit

SC Op count Ratio cycles/Ops

abro abro

exits exits

filteredSR filteredSR

preAndSuspend preAndSuspend

primeFactor primeFactor

reincarnation reincarnation

Factor

SC with exits inlined: approx. 2850

SC with exits not inlined, ISAT+CALL: approx. 2600

SC with exits not inlined, CHKCALL: approx. 2600

Mit Server,exits wto (no inlining)

abro

exits

filteredSR

preAndSuspend

primeFactor

reincarnation

Factor

Exits wto (no inlining)

abro

exits

filteredSR

preAndSuspend

primeFactor

reincarnation

Factor

PCO

grcbal3

abro

count2suspend

exits

filteredSR

preAndSuspend

primeFactor

reincarnation

shifter3

AVERAGE

0 0,5 1 1,5 2 2,5 3

 SC

 Circuit

 GRC

grcbal3

abro

count2suspend

exits

filteredSR

preAndSuspend

primeFactor

reincarnation

shifter3

AVERAGE

0 20 40 60 80 100 120

SC Op count

Ratio cycles/
Ops

(e) SC operations count, ratio to clock cycles

Figure 6.1: Comparison of SC with two code synthesis variants of Esterel Studio.

50

used circuit simulation approach, where always the whole circuit is simulated, irrespective
of which regions are active. Furthermore, the SC context switches are very light weight, as
1) each thread requires very little information (see Sec. 2.1), and 2) the dispatcher is fast in
typical scenarios (see Sec. 3.2.2). Therefore, SC certainly requires less overhead than a tradi-
tional thread-based implementation, where a context switch itself already takes thousands of
instructions.

A more challenging point of reference are the monolithic C functions synthesized from
SyncCharts. Figure 6.1d compares the run times of the tick functions, on an Intel Core 2
Duo architecture. For the measurements, a representative input trace was executed, outputs
were compared against a reference trace, and the execution times of the individual calls to
the tick functions were accumulated. Timings were done in numbers of processor cycles,
using the x86 rdtsc (Read Time Stamp Counter) instruction. The machine runs at 2.4 GHz,
so most of the runs took less than 1 µs. As to be expected, SC does not beat any of the
advanced synthesis techniques. In the exits example, which makes heavy use of exit actions,
modularized into separate procedure calls rather than inlining (and possibly duplicating)
them, the performance is even 2–2.5x worse. Overall, however, SC is roughly comparable,
and in four of the ten benchmarks it is faster than the Circuit approach. As applications
get larger, one should expect that SC stays comparable (at least), as again it does not have
scalability problems. Also, one should expect that in practice, the run time of SC programs
is dominated by regular C operations, not the SC operators.

A last statistic is shown in Figure 6.1e, which counts the SC operations executed, as listed
in the output traces in the appendix. It also shows the ratio to the clock cycles from Fig. 6.1d.
The ratio varies somewhat, but on average twenty clock cycles are needed to perform one SC
operation.

51

Chapter 7

Conclusions and Outlook

SyncCharts in C are a light-weight approach to embed deterministic reactive control flow
constructs into a widely used programming language. With a relatively small number of
primitives it is possible to cover the complete SyncCharts language. The multi-threaded,
priority-based approach has been inspired by synchronous reactive processing; hence, origi-
nally, this approach required a special compiler and a special architecture to implement. For
example, the KEP has watchers that check for preemption in parallel to normal operation, a
reactive processing unit that resolves control priorities on the fly, and a dispatcher that selects
the next thread for execution at the beginning of each instruction cycle. Therefore, it was
not obvious from the onset that it would be possible to achieve the same behavior by isolated
SC operators, embedded in regular imperative sequential code, on a standard architecture, at
a competitive performance. As it turns out, standard architectures already provide features
that can be used to advantage, even if they are not directly available on the C level, such as
the x86 bsr instruction that can be used for fast dispatching. A number of issues that pose
challenges in implementing synchronous programs, such as schizophrenia or reaction to signal
absence, are also unproblematic.

Considering the formal semantics of SC, as it is expressed in terms of C, one might take
the stance that the semantics of the SC operators is expressed by the C statements they
consist of, none of which touch on any of the many semantic uncertainties of C. In terms of
mental complexity, this should not be as daunting as one might think; as of SC version 1.2,
the file sc.h that defines all SC operators (except the general versions of the dispatcher, which
are defined as functions in sc.c), is 567 lines long (see Listing A.1), of which 173 lines are
comments, 49 lines are related to tracing, and 127 lines are empty. This leaves 218 lines of
C code that explain what the 12 SC thread operators, 11 signal operators, and 5 sequential
control operators do. Still, it should be worthwhile to formalize the semantics at a more
abstract level, to allow formal reasoning about them.

SC is freely available, and can be used as is for writing reactive applications in C. However,
there are a number of interesting further projects that should be pursued. As already men-
tioned, SC seems a viable candidate for synthesizing visual SyncCharts into code, especially
if traceability is required, or as input language for PRET architectures. It would also be an
interesting exercise to add something like a DEAD timing primitive [18] to SC. Unlike PRET
architectures, traditional architectures probably cannot do this cycle-accurate; however, using
something like nanosleep or the x86 rtsc instruction, it should be possible to get fairly close.
One might use this to pad calls of the tick function to reduce the reaction jitter, replacing
for example the crude call to sleep in PCO (Fig. 2.1c, line 15). A related issue is the WCRT

52

analysis for SC, which could build on earlier work [21,25]. Another question not addressed at
all so far is how the SC approach could be used to extract true parallelism from a program,
e. g. for programming multi-core processors. This should be feasible, e. g. by an alternative
thread id/priority assignment scheme that expresses when things can be run in parallel; but
it is an interesting question how to make this fast and how to minimize global synchronization
overheads.

Acknowledgments

Numerous discussions have helped shape SC and this report. I would like to thank in particular
Alain Girault, Michael Mendler, Partha Roop, Robert de Simone and Claus Traulsen.

Christian Schneider has conducted the experiments reported on in Chapter 6.

53

Bibliography

[1] J. Ali and J. Tanaka. Converting Statecharts into Java code. In Proceedings of the Fourth
World Conference on Integrated Design and Process Technology (IDPT ’99), Dallas,
Texas, June 2000. Society for Design and Process Science (SDPS).

[2] C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR–2003–24–FR, I3S
Laboratory, Sophia-Antipolis, France, April 2003.

[3] C. André. Computing SyncCharts reactions. In SLAP 2003: Synchronous Languages,
Applications and Programming, A Satellite Workshop of ECRST 2003, volume 88, pages
3 – 19, 2004.

[4] A. W. Appel. Compiling with Continuations. Cambridge University Press, 2007.

[5] M. v. d. Beeck. A comparison of Statecharts variants. In H. Langmaack, W. P. de Roever,
and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 863 of Lecture Notes in Computer Science, pages 128–148. Springer-Verlag, 1994.

[6] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone.
The Synchronous Languages Twelve Years Later. In Proceedings of the IEEE, Special
Issue on Embedded Systems, volume 91, pages 64–83, Jan. 2003.

[7] F. Boussinot. Fairthreads: mixing cooperative and preemptive threads in C. Concurrency
and Computation: Practice and Experience, 18(5):445–469, Apr. 2006.

[8] M. E. Conway. Design of a separable transition-diagram compiler. Communications of
the ACM, 6(7):396–408, 1963.

[9] S. A. Edwards and J. Zeng. Code generation in the Columbia Esterel Compiler.
EURASIP Journal on Embedded Systems, Article ID 52651, 31 pages, 2007.

[10] Frederic Boussinot. Reactive C: An extension of C to program reactive systems. Software
Practice and Experience, 21(4):401–428, 1991.

[11] S. M. G. Berry and J.-P. Rigault. Esterel: Towards a synchronous and semantically sound
high-level language for real-time applications. In IEEE Real-Time Systems Symposium,
pages 30–40, 1983. IEEE Catalog 83CH1941-4.

[12] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

54

[13] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,
and M. Trakhtenbrot. Statemate: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414, Apr. 1990.

[14] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In IFIP
Congress, pages 993–998, 1977.

[15] L. Lavagno and E. Sentovich. ECL: a specification environment for system-level design.
In DAC ’99: Proceedings of the 36th ACM/IEEE conference on Design automation, pages
511–516, New York, NY, USA, 1999. ACM Press.

[16] E. A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.

[17] X. Li, M. Boldt, and R. von Hanxleden. Mapping Esterel onto a multi-threaded em-
bedded processor. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’06), San Jose,
CA, October 21–25 2006.

[18] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee. Predictable pro-
gramming on a precision timed architecture. In Proceedings of Compilers, Architectures,
and Synthesis of Embedded Systems (CASES’08), Atlanta, USA, Oct. 2008.

[19] F. Maraninchi and Y. Rémond. Argos: An automaton-based synchronous language.
Computer Languages, 27(27):61–92, 2001.

[20] M. Mendler and M. Pouzet. Uniform and modular composition of data-flow & control-flow
in the lazy λ-calculus. Presentation at the International Open Workshop on Synchronous
Programming (SYNCHRON’08), Aussois, France, Dec. 2008.

[21] M. Mendler, R. von Hanxleden, and C. Traulsen. Wcrt algebra and interfaces for esterel-
style synchronous processing. In Proceedings of the Design, Automation and Test in
Europe (DATE’09), Nice, France, Apr. 2009.

[22] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel. Springer, May
2007.

[23] S. Prochnow, C. Traulsen, and R. von Hanxleden. Synthesizing Safe State Machines
from Esterel. In Proceedings of ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa, Canada, June 2006.

[24] S. Prochnow and R. von Hanxleden. Statechart development beyond WYSIWYG. In Pro-
ceedings of the ACM/IEEE 10th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’07), Nashville, TN, USA, Oct. 2007.

[25] P. S. Roop, S. Andalam, R. von Hanxleden, S. Yuan, and C. Traulsen. Tight WCRT anal-
ysis of synchronous C programs. Technical Report 0912, Christian-Albrechts-Universität
Kiel, Department of Computer Science, May 2009.

[26] P. S. Roop, Z. Salcic, and M. W. S. Dayaratne. Towards Direct Execution of Esterel
Programs on Reactive Processors. In 4th ACM International Conference on Embedded
Software (EMSOFT 04), Pisa, Italy, Sept. 2004.

55

[27] M. Samek. Practical UML Statecharts in C/C++Event-Driven Programming for Embed-
ded Systems. Newnes, 2008.

[28] F. Starke, C. Traulsen, and R. von Hanxleden. Executing Safe State Machines on a reac-
tive processor. Technical Report 0907, Christian-Albrechts-Universität Kiel, Department
of Computer Science, Kiel, Germany, Mar. 2009.

[29] O. Tardieu and S. A. Edwards. Scheduling-independent threads and exceptions in SHIM.
In Proceedings of the Proceedings of the International Conference on Embedded Software
(EMSOFT’06), Seoul, Korea, Oct. 2006.

[30] R. von Hanxleden, X. Li, P. Roop, Z. Salcic, and L. H. Yoong. Reactive processing for
reactive systems. ERCIM News, 66:28–29, Oct. 2006.

[31] F. Wagner, R. Schmuki, P. Wolstenholme, and T. W. Thomas. Modeling Software with
Finite State Machines: A Practical Approach. Auerbach Publications, 2006.

[32] A. Wasowski. On efficient program synthesis from Statecharts. In Proceedings of the 2003
ACM SIGPLAN Conference on Language, Compilers, and Tools for Embedded Systems
(LCTES’03), volume 38, issue 7, June 2003. ACM SIGPLAN Notices.

[33] S. Yuan, S. Andalam, L. H. Yoong, P. S. Roop, and Z. Salcic. STARPro—a new multi-
threaded direct execution platform for Esterel. In Proceedings of Model Driven High-Level
Programming of Embedded Systems (SLA++P’08), Budapest, Hungary, Apr. 2008.

56

Appendix A

The SC files

The complete SC package consists of two
files:

sc.h The header file, to be included by each
application 〈application〉.c

sc.c The file including the main program, to
be linked with 〈application〉.o

This section also includes the Makefile and
a run of calling make.

Listing A.1: The header file sc.h
1 // Definition of SyncChart C macros
2 // Header file included by ksmp.c and <application>.c
3
4 // See http://www.informatik.uni−kiel.de/rtsys/sc/ for further
5 // information , including licensing
6
7 // Release 1.2
8 // Reinhard v. Hanxleden
9 // rvh@informatik .uni−kiel.de

10 // Initial version : 5 March 2009
11 // Current version : 20 May 2009
12
13 #include <stdio.h>
14
15 // ================================
16 // Instruction couting/Tracing
17
18 // Check whether externflags has been defined (eg from gcc command line)
19 // If so, suppress tracing and instruction counting
20 // This then results in compact macro−expanded source code and executable
21 #ifndef externflags
22 // Comment the following line out to surpress detailed tracing .
23 #define mytrace
24 #define instrCnt
25 #endif
26
27
28 // Increment/decrement SC instruction counter
29 // Decrement is needed in some places to avoid duplicate counting
30 #ifdef instrCnt
31 #define instrCntIncr tickInstrCnt ++;
32 #define instrCntDecr tickInstrCnt−−;
33 #else
34 #define instrCntIncr
35 #define instrCntDecr
36 #endif
37
38
39 // If tracing is turned on, print trace string
40 #ifdef mytrace
41 #define trace0(f) printf (f) ;
42 #define trace1(f , a) printf (f , a) ;
43 #define trace2(f , a, b) printf (f , a, b);
44 #define trace3(f , a, b, c) printf (f , a, b, c) ;
45 #define trace4(f , a, b, c, d) printf (f , a, b, c, d);
46 #else

47 #define trace0(f)
48 #define trace1(f , a)
49 #define trace2(f , a, b)
50 #define trace3(f , a, b, c)
51 #define trace4(f , a, b, c, d)
52 #endif
53
54
55 // Count instruction (optionally) , print trace string prefix (optionally)
56 // Trace string prefix takes a string s (typically denoting the instruction

)
57 // and identifies the executing thread, both by name and thread id
58 #define traceThread(s) \
59 instrCntIncr \
60 trace4(”%−9s%−6s (id %d, prio %d) ”, s, id2threadname[cid], cid, pr[cid])
61
62
63 // Print trace prefix + suffix
64 // s is string denoting instruction (eg, ”PAUSE:”)
65 // f is format string for trace suffix
66 // a, b, ... are arguments for format string
67 #define trace0t(s , f) traceThread(s) trace0(f) ;
68 #define trace1t(s , f , a) traceThread(s) trace1(f , a) ;
69 #define trace2t(s , f , a, b) traceThread(s) trace2(f , a, b);
70 #define trace3t(s , f , a, b, c) traceThread(s) trace3(f , a, b, c) ;
71 #define trace4t(s , f , a, b, c, d) traceThread(s) trace4(f , a, b, c, d);
72
73
74
75 // ================================
76 // Type definitions
77
78 typedef void ∗ labeltype ; // Computed goto − a la gcc
79 typedef unsigned int bitvector ; // 32 bits on IA32
80 typedef bitvector signalvector ; // 32 signals on IA32
81 typedef bitvector threadvector ; // 32 threads on IA32
82
83
84 // ================================
85 // Global variables
86
87 signalvector signals ; // Bit mask for signals
88 threadvector enabled; // Bit mask for enabled threads
89 threadvector active ; // Bit mask for active threads
90
91 #define idMax 8∗sizeof(threadvector) // Number of threads
92
93 int runCnt; // Counts program runs
94 int cid ; // Id of current thread
95 int tickCnt ; // Counts program ticks
96 int tickInstrCnt ; // Instructions in one tick
97 labeltype pc[idMax]; // Pseudo program counters
98 int pr [idMax]; // Priorities
99 threadvector descs [idMax]; // Descendants of thread

100 labeltype TickEndLabel; // Label to stop program
101 labeltype returnAddress ; // For function calls (eg Exit Actions

)
102
103
104 // ================================
105 // Declarations of constants and variables
106
107 // Constants defined in <application>.c
108 int idHi ; // Highest thread id in use
109 int runMax; // # of runs to execute
110 int tickMax; // # of ticks to execute
111
112 // Note: the mapping from thread ids to names (labels) is not

57

113 // necessarily unique, as we may want to reuse thread ids for threads
114 // that cannot be active concurrently .
115 // We here adopt the convention to use the label of the thread that
116 // has the given id and appears first in the given program.
117 // Note: because of this possible thread id sharing , ids (declared in
118 // <application>.c) is an array , instead of just an enumerated type.
119 extern const char ∗id2threadname[]; // Names of threads
120 extern const char ∗s2signame[]; // Names of signals
121
122
123 // ================================
124 // Declarations of functions defined in <application>.c:
125
126 // Initialize signals to inputs for one tick
127 void getInputs () ;
128
129 // Set reference outputs and check valued signals , if there are any
130 int checkOutputs(signalvector ∗tickOutputs);
131
132 // Print value of a signal , if it has one
133 void printVal (int id) ;
134
135 // Compute one tick.
136 // Returns 1 if some thread is still active in current tick
137 int tick (int isInit) ;
138
139 // Functions defined in ksmp.c
140 void selectCidPrio () ;
141 void selectCidNoprio () ;
142
143
144 // ================================
145 // Dispatcher
146
147 #ifdef USEPRIO
148 // Version 1: for arbitrary priorities
149 #define dispatch() selectCidPrio () ; \
150 goto ∗pc[cid]
151
152 #elif ((defined i386 || defined amd64 || defined x86 64) &&

defined GNUC)
153 // Version 2a: all priorities = 0, x86 + gcc available
154 // Use fast Bit Scan Reverse assembler instruction
155 #define dispatch() \
156 asm volatile (”bsrl %1,%0\n” \
157 : ”=r” (cid) \
158 : ”c” (active) \
159) ; \
160 goto ∗pc[cid]
161
162 #else
163 // Version 2b: all priorities = 0, x86 + gcc not available
164 #define dispatch() selectCidNoprio () ; \
165 goto ∗pc[cid]
166 #endif
167
168
169 // ================================
170 // Low−level routines
171
172 // Encoding of signal /thread <u> (some non−negative int) in bitvector.
173 // This implementation is fast and simple , BUT limits the max thread
174 // ID and max signal ID to the word width of the machine (eg 32).
175 #define u2b(u) (1 << u)
176
177 // Mapping thread id <id> (of enumeration type idtype) to bitvector .
178 #define id2b(id) u2b(ids [id])
179
180
181 // ================================
182 // Keeping track of the thread status
183
184 // Thread enabling/ disabling
185 #define enable(id) \
186 enabled |= u2b(id); \
187 active |= u2b(id)
188
189 #define enableInit (id) \
190 enabled = u2b(id); \
191 active = enabled
192
193 #define disable(id) \
194 enabled &= ˜u2b(id); \
195 active &= ˜u2b(id)
196
197 #define disableSet(idset) \
198 enabled &= ˜idset; \
199 active &= ˜idset
200

201 #define isEnabled(id) (enabled & u2b(id))
202
203 #define isEnabledNotOnly(id) (enabled != id2b(id))
204
205 #define isEnabledNoneOf(idset) ((enabled & idset) == 0)
206
207 // Thread (de−)activation
208 #define activate(id) active |= u2b(id)
209
210 #define deactivate(id) active &= ˜u2b(id)
211
212 #define isActive (id) (active & u2b(id))
213
214
215 // ================================
216 // Tick start and end
217
218 // Start a tick (an instant) .
219 // IF this is the initial tick (< isIni> is set) ,
220 // THEN initialize things and continue with following instruction ,
221 // ELSE call dispatcher to resume where we left off
222 #define TICKSTART(isIni) \
223 freezePreClear \
224 if (isIni) { \
225 tickCnt = 0; \
226 pc[TickEnd] = &&TickEndLabel; \
227 pr [TickEnd] = 0; \
228 enableInit (ids [TickEnd]); \
229 cid = ids[Main]; \
230 enable(cid) ; \
231 setPreInit \
232 setValInit \
233 } else { \
234 active = enabled; \
235 dispatch () ; \
236 }
237
238
239 // Complete a tick .
240 // Return 0 iff computation has terminated
241 #define TICKEND \
242 TickEndLabel: setPre \
243 return isEnabledNotOnly(TickEnd);
244
245
246 // ================================
247 // Pausing, suspending, aborting and terminating a thread}
248
249 // Pause a thread.
250 // <label> typically points to instruction to be executed after pause
251 // stmt. Therefore , this argument should be superfluous in low−level ISA.
252 // HOWEVER, supplying the label explicitly may save a subsequent GOTO.
253 // For example, <label>: pause(<label>) can be used as shorthand for
254 // HALT, which corresponds to a final , but non−terminating state. (A
255 // terminating state would be encoded by TERM).
256 #define PAUSE(label) { \
257 trace1t (”PAUSE:”, ”pauses, active = 0%o\n”, active) \
258 pc[cid] = &&label; \
259 deactivate (cid) ; \
260 dispatch () ; }
261
262
263 // Suspend current thread, continue at label
264 // Note: suspension is implemented by deactivating the current thread
265 // as well as its descendants. This exploits that the PCs of the

descendants
266 // must reside at tick boundaries .
267 #define SUSPEND(label) { \
268 trace1t (”SUSPEND:”, ”suspends itself and descendants 0%o\n”, descs[cid])

\
269 active &= ˜descs[cid]; \
270 freezePre \
271 instrCntDecr \
272 PAUSE(label) }
273
274
275 // Transition to <label>, kill descendant threads (implements abortion)
276 #define TRANS(label) { \
277 disableSet (descs [cid]) ; \
278 trace1t (”TRANS:”, ”transfers, enabled = 0%o\n”, enabled) \
279 goto label ; }
280
281
282 // Terminate a thread.
283 // Note: a HALT would be implemented as <label>: PAUSE(<label>)
284 #define TERM { \
285 disable (cid) ; \
286 trace1t (”TERM:”, ”terminates, enabled = 0%o\n”, enabled) \
287 dispatch () ; }

58

288
289
290 // ================================
291 // Handling concurrency
292
293 // Spawn a thread of priority <p>, starting at <label>, with id <id>
294 #define PAR(p, label, id) { \
295 trace3t (”PAR:”, ”forks %s (%d) with prio %d\n”, id2threadname[id], id, p)

\
296 pc[id] = &&label; \
297 pr [id] = p; \
298 enable(id) ; }
299
300 // Denote parent thread, starting at <label>
301 // Current thread gets priority <p>, continues at <label>, has descendants

<d>
302 // Descendants are used
303 // − to check for termination (with JOIN)
304 // − to be disabled upon abortion (with TRANS)
305 #define PARE(p, label, d) { \
306 trace1t (”PARE:”, ”has descendants 0%o\n”, d) \
307 pc[cid] = &&label; \
308 pr [cid] = p; \
309 descs [cid] = d; \
310 dispatch () ; }
311
312
313 // Join completed child threads .
314 // IF all descendants have terminated,
315 // THEN jump to <thenlabel>,
316 // ELSE jump to <elselabel>
317 #define JOIN(thenlabel, elselabel) { \
318 trace1t (”JOIN:”, ”%s\n”, \
319 isEnabledNoneOf(descs[cid]) ? ” joins ” : ”does not join”) \
320 if (isEnabledNoneOf(descs[cid])) \
321 goto thenlabel ; \
322 instrCntDecr \
323 PAUSE(elselabel); }
324
325
326 // Set priority of a thread.
327 // <label> points to instruction after prio stmt
328 // This argument should be superfluous in low−level ISA
329 #define PRIO(p, label) { \
330 trace1t (”PRIO:”, ”set to priority %d\n”, p) \
331 pr [cid] = p; \
332 pc[cid] = &&label; \
333 dispatch () ; }
334
335
336 // ================================
337 // Efficient shorthands for thread handling
338
339 // Set a priority , then pause (this sets ”prionext”).
340 // The is a more efficient alternative to
341 // PRIO(p, label1) ; label1 : PAUSE(label)
342 // as no context switch is needed immediately before the PAUSE
343 #define PPAUSE(p, label) { \
344 trace1t (”PPAUSE:”, ”sets prio to %d\n”, p) \
345 pr [cid] = p; \
346 instrCntDecr \
347 PAUSE(label) }
348
349
350 // IF all descendants have terminated,
351 // THEN jump to <thenlabel>,
352 // ELSE set priority , pause, and continue at <elselabel>
353 // The is a more efficient alternative to
354 // JOIN(thenlabel, label1) ; label1 : PPAUSE(p, elselabel)
355 // as no context switch is needed immediately before the PAUSE
356 #define JPPAUSE(p, thenlabel, elselabel) { \
357 trace1t (”JPPAUSE:”, ”%s\n”, \
358 isEnabledNoneOf(descs[cid]) ? ” joins ” : ”does not join”) \
359 if (isEnabledNoneOf(descs[cid])) \
360 goto thenlabel ; \
361 instrCntDecr \
362 PPAUSE(p, elselabel) }
363
364
365 // ================================
366 // Signal initialization , emission and testing
367
368 // Initialize a local signal (handles reincarnation)
369 #define SIGNAL(s) { \
370 trace2t (”SIGNAL:”, ” initializes %s (%d)\n”, s2signame[s], s) \
371 signals &= ˜u2b(s); }
372
373
374 // Emission of a pure signal <s>

375 #define EMIT(s) { \
376 trace2t (”EMIT:”, ”emits %s (%d)\n”, s2signame[s], s) \
377 signals |= u2b(s); }
378
379
380 // Test for presence of signal .
381 // IF <s> is present,
382 // THEN proceed to next instruction ,
383 // ELSE jump to <label>
384 #define PRESENT(s, label) { \
385 trace3t (”PRESENT:”, ”determines %s (%d) as %s\n”, \
386 s2signame[s], s , (signals & u2b(s)) ? ”present” : ”absent”) \
387 if (!(signals & u2b(s))) \
388 goto label ; }
389
390
391 // ================================
392 // Handling valued signals
393 // The following is compiled conditionally depending on valSigIntCnt
394 // <application>.c must define valSigIntCnt if valued signals are used
395
396 #ifdef valSigIntCnt
397 int i ; // Counter for looping through valued sigs
398
399 // At beginning of initial tick :
400 // Initialize valued signals (−1 is for ”undefined”)
401 #define setValInit \
402 for (i = 0; i < valSigIntCnt; i++) \
403 valSigInt [i] = −1;
404
405 #else // #ifdef valSigIntCnt
406 #define setValInit
407 #endif
408
409 // Emission of a valued signal <s>, type integer
410 #define EMITINT(s, val) { \
411 valSigInt [s] = val; \
412 trace3t (”EMITInt:”, ”emits %s (%d), value %d\n”, \
413 s2signame[s], s , val) \
414 signals |= u2b(s); }
415
416
417 // Emission of a valued signal <s>, type integer, combined with ∗
418 #define EMITINTMUL(s, val) { \
419 valSigIntMult [s] ∗= val; \
420 trace4t (”EMITInt∗:”, ”emits %s (%d), value %d, result %d\n”, \
421 s2signame[s], s , val , valSigIntMult [s]) \
422 signals |= u2b(s); }
423
424
425 // Retrieve value of signal <s> into <reg>
426 #define VAL(s, reg) { \
427 trace3t (”VAL:”, ”determines value of %s (%d) as %d\n”, \
428 s2signame[s], s , valSigInt [s]) \
429 reg = valSigInt [s]; }
430
431
432 // ================================
433 // Handling PRE
434 // The following is compiled conditionally depending on usePRE
435 // <application>.c must define usePRE if PRE is used
436
437 #ifdef usePRE
438 signalvector sigsPre ; // Signals from previous tick
439 signalvector sigsFreeze ; // Signals that are frozen , due to suspension
440
441 // At beginning of initial tick :
442 // Initialize previous signals
443 #define setPreInit \
444 sigsPre = 0; \
445 setPreValInit ;
446
447 // At end of tick :
448 // Copy current signals (unless frozen) to previous signals
449 #define setPre \
450 sigsPre = (sigsPre & sigsFreeze) | (signals & ˜sigsFreeze) ; \
451 setPreVal
452
453 // When suspending current thread:
454 // Add signals local to current thread or its descendants
455 // to list of signals to freeze
456 #define freezePre \
457 sigsFreeze |= sigsDescs[cid];
458
459 // At beginning of tick :
460 // Clear list of signals to freeze
461 #define freezePreClear \
462 sigsFreeze = 0;
463

59

464 #else // #ifdef usePRE
465 #define setPreInit
466 #define setPre
467 #define freezePre
468 #define freezePreClear
469 #endif // #ifdef usePRE
470
471
472 // Test for presence of signal in previous tick .
473 // IF <s> was present in previous tick ,
474 // THEN proceed to next instruction ,
475 // ELSE jump to <label>
476 #define PRESENTPRE(s, label) { \
477 trace3t (”PRESENTPRE:”, ”determines previous %s (%d) as %s\n”, \
478 s2signame[s], s , (sigsPre & u2b(s)) ? ”present” : ”absent”) \
479 if (!(sigsPre & u2b(s))) \
480 goto label ; }
481
482
483 // ================================
484 // Handling valued signals in conjunction with PRE
485
486 #ifdef usePRE
487 #ifdef valSigIntCnt
488 // At beginning of initial tick :
489 // Initialize previous signal values
490 #define setPreValInit \
491 for (i = 0; i < valSigIntCnt; i++) \
492 valSigIntPre [i] = −1;
493
494 // At end of tick :
495 // Copy values of current signals (unless frozen) to previous signals
496 #define setPreVal \
497 for (i = 0; i < valSigIntCnt; i++) \
498 if (!(sigsFreeze & u2b(i))) \
499 valSigIntPre [i] = valSigInt [i];
500
501 #else // #ifdef valSigIntCnt
502 #define setPreValInit
503 #define setPreVal
504 #endif // #ifdef valSigIntCnt
505 #endif // #ifdef usePRE
506
507
508 // Retrieve previous value of signal <s> into <reg>
509 #define VALPRE(s, reg) { \
510 trace3t (”VALPRE:”, ”determines value of %s (%d) as %d\n”, \
511 s2signame[s], s , valSigIntPre [s]) \
512 reg = valSigIntPre [s]; }
513
514
515 // ================================
516 // Control flow : jumps
517
518 // Just a goto that also gets counted as instruction
519 #define GOTO(label) { \
520 instrCntIncr \
521 goto label ; }
522
523
524 // ================================
525 // Support for Exit Actions
526
527 // IF thread <id> is active and at state <statelabel>,
528 // THEN proceed to next instruction ,
529 // ELSE jump to <label>
530 // Can use this if an Exit Action may have to be performed
531 #define ISAT(id, statelabel , label) { \
532 if (isEnabled(id) && (pc[id] == &&statelabel)) { \
533 trace0t (”ISAT:”, ” is at probed label\n”) \
534 } else { \
535 trace0t (”ISAT:”, ” is not at probed label\n”) \
536 goto label ; \
537 }}
538
539
540 // Call a function at <label>, return to <retlabel>
541 // Use this if an Exit Action must be performed
542 #define CALL(label, retlabel) { \
543 trace0t (”CALL:”, ”calls function\n”) \
544 returnAddress = &&retlabel; \
545 goto label ; }
546
547
548 // Return from a function call
549 #define RET { \
550 trace0t (”RET:”, ”returns from function\n”) \
551 goto ∗returnAddress; }
552

553
554 // Conditionally call a function .
555 // IF thread <id> is active and at state <statelabel>,
556 // THEN call function at <label>;
557 // Return to <retlabel>
558 // Use this if an Exit Action may have to be performed
559 // Shorthand for ISAT(id, statelabel , retlabel) ; CALL(label, retlabel) ;
560 #define ISATCALL(id, statelabel, label , retlabel) { \
561 if (isEnabled(id) && (pc[id] == &&statelabel)) { \
562 trace0t (”ISATCALL:”, ” does call function\n”) \
563 returnAddress = &&retlabel; \
564 goto label ; \
565 } \
566 trace0t (”ISATCALL:”, ”does not call function\n”) \
567 goto retlabel ; }

Listing A.2: The main program file sc.c
1 // Main file for using SyncChart C macros
2 // This should be linked with <application>.o
3
4 // See http://www.informatik.uni−kiel.de/rtsys/sc/ for further
5 // information , including licensing
6
7 // Release 1.2
8 // Reinhard v. Hanxleden
9 // rvh@informatik .uni−kiel.de

10 // Initial version : 5 March 2009
11 // Current version : 20 May 2009
12
13 #include ”sc.h”
14
15 // ================================
16 // Computing the id of next thread to be dispatched
17 // Version 1: for arbitrary priorities
18 // For enabled threads with highest prio , highest id ”wins”
19 void selectCidPrio () {
20 int id ;
21 int cprio = −1;
22
23 for (id = idHi; id >= 0; id−−) {
24 if (isActive (id) && (pr[id] > cprio)) {
25 cid = id;
26 cprio = pr[id];
27 }
28 }
29 }
30
31 // ================================
32 // Computing the id of next thread to be dispatched
33 // Version 2b: all priorities = 0, x86 + gcc not available
34 // Uses obvious algorithm , run time linear in position of highest bit
35 // Note that there are also alternatives that run logarithmic to bit vector

size
36 // See eg http://graphics . stanford .edu/˜seander/bithacks.html#IntegerLog
37 // Which is actually faster depends on application
38 void selectCidNoprio () {
39 int act ;
40
41 act = active ;
42 for (cid = 0; act != 0; act >>= 1)
43 cid++;
44 }
45
46
47 // ================================
48 // Tracing routines
49 void vec2names(char ∗prefix, bitvector ids , const char ∗names[], char∗

suffix)
50 {
51 #ifdef mytrace
52 int id = 0;
53 int first = 1;
54
55 printf (”%s”, prefix) ;
56 while (ids) {
57 if (ids & 1) {
58 if (first) {
59 first = 0;
60 } else {
61 printf (”, ”);
62 }
63 printf (”%s”, names[id]) ;
64 if (names == s2signame)
65 printVal (id) ;
66 printf (” (%d)”, id) ;
67 }
68 ids >>= 1;

60

69 id++;
70 }
71
72 if (first) {
73 printf (”<none>”);
74 }
75
76 printf (”%s”, suffix) ;
77 #endif
78 }
79
80
81 // ================================
82 // The main program
83 // Returns 0 iff outputs generated by program match reference trace
84 int main()
85 {
86 int runInstrCnt ; // Instructions in one run
87 int runsInstrCnt = 0; // Instructions accumulated over all runs
88 int outputsOK = 1; // Outputs of simulation correct ?
89 int notDone; // Current run not done yet?
90 int init ; // Is initial tick?
91 signalvector tickInputs ; // Input values for a tick
92 signalvector tickOutputs; // Reference output values for a tick
93 signalvector tickSignals ; // Reference signal values for a tick
94
95 // Execute all runs
96 for (runCnt = 0; (runCnt < runMax) && outputsOK; runCnt++) {
97 printf (”#### RUN %d STARTS #############\n”,
98 runCnt);
99

100 runInstrCnt = 0;
101 tickCnt = 0;
102 init = 1;
103 enabled = 0;
104
105 do { // Execute all ticks of one run
106 tickInstrCnt = 0;
107 getInputs () ;
108 tickInputs = signals ;
109
110 trace3(”==== TICK %d STARTS, inputs = 0%o, enabled = 0%o\n

”,
111 tickCnt , tickInputs , enabled) ;
112 vec2names(”==== Inputs: ”, tickInputs, s2signame, ”\n”);
113 vec2names(”==== Enabled: ”, enabled, id2threadname, ”\n”);
114
115 notDone = tick(init) ; // Call automaton function
116 init = 0;
117
118 runInstrCnt += tickInstrCnt;
119 trace3(”==== TICK %d terminates after %d instructions, enabled =

0%o.\n”,
120 tickCnt , tickInstrCnt , enabled) ;
121 vec2names(”==== Resulting signals: ”, signals, s2signame, ””);
122 outputsOK = checkOutputs(&tickOutputs);
123 if (outputsOK) {
124 tickSignals = tickInputs | tickOutputs;
125 if (signals == tickSignals) {
126 trace0(”, Outputs OK.\n\n”);
127 } else {
128 vec2names(”, Outputs NOT OK − expected signals ”,
129 tickSignals , s2signame, ”!!\n\n”);
130 outputsOK = 0;
131 }
132 } else {
133 notDone = 0;
134 }
135
136 tickCnt++;
137 if (tickCnt >= tickMax) {
138 printf (”==== Executed tickMax = %d ticks!\n”, tickMax);
139 notDone = 0;
140 }
141
142 } while (notDone && outputsOK);
143
144 printf (”#### RUN %d terminates after %d instructions\n\n”,
145 runCnt, runInstrCnt) ;
146 runsInstrCnt += runInstrCnt;
147 };
148
149 printf (”#### All runs terminate, after %d instructions\n\n”,

runsInstrCnt);
150 return !outputsOK;
151 }

Listing A.3: The Makefile
1 progs := ABRO Count2Suspend Exits Exits−no−isatcall Exits−inlined

FilteredSR grcbal3 \
2 PreAndSuspend PrimeFactor Reincarnation Shifter3 SurfDepth PCO
3
4 downloads := Makefile make.trace sc .c sc .h $(progs:=.c) $(progs:=.out)
5
6 CCFLAGS := −Wall
7
8 all : $(progs:=.out)
9

10 allprogs : $(progs)
11
12 PCO: PCO.c sc.h Makefile
13 gcc $(CCFLAGS) PCO.c −o PCO
14
15 # Want to compile ABRO−C without tracing, to not interfere with kbd input
16 ABRO−C: ABRO−C.c sc.c sc.h Makefile
17 gcc $(CCFLAGS) −D externflags −D instrCnt ABRO−C.c sc.c −o $@
18
19 %.out2: %.c sc.c sc .h Makefile
20 gcc $(CCFLAGS) $∗.c sc.c −o $∗
21 $∗ > $@
22
23 %.out: % %.c
24 $∗ > $@
25
26 %−expanded.c: %.c
27 gcc $(CCFLAGS) −D externflags −E $∗.c > $@
28
29 %−expanded−flags.c: %.c
30 gcc $(CCFLAGS) −E $∗.c > $@
31
32 %.s: %.c sc.h Makefile
33 gcc $(CCFLAGS) −D externflags −O3 −S $∗.c
34
35 %−unopt.s: %.c sc.h Makefile
36 gcc $(CCFLAGS) −o $@ −D externflags −S $∗.c
37
38 %.o: %.c sc.h Makefile
39 gcc $(CCFLAGS) −D externflags −O3 −c −o $∗.o $∗.c
40
41 %.asm: %.o
42 #objdump −d $∗.o > $@
43 otool −tv $∗.o > $@
44
45 %−linked.asm: %.c sc.c sc.h Makefile
46 gcc $(CCFLAGS) −D externflags −O3 $∗.c sc.c −o $∗
47 #objdump −d $∗.exe > $@
48 otool −tv $∗ > $@
49
50 %: %.c sc.c sc .h Makefile
51 gcc $(CCFLAGS) $∗.c sc.c −o $∗
52
53 make.trace:
54 (time make) >& $@
55
56 # Example to match either or expression :
57 # grep −E ’trace|\”’ sc.h
58 %.stats :
59 echo ”Line count of $∗:”
60 wc $∗
61 echo ”Comment line count of $∗:”
62 grep −c ”ˆ ∗//” $∗
63 echo ”Empty line count of $∗:”
64 grep −c ”ˆ$$” $∗
65 echo ”Trace related line count of $∗, discouting multi−line trace

commands (9), counting again comments (4):”
66 grep −c ”trace” $∗
67
68 sc . tar .gz: $(downloads)
69 tar −cf sc. tar $(downloads)
70 gzip −f sc. tar
71 ls −l $@
72
73 BIBLIO REMOTEPATH=biblio@rtsys.informatik.uni−kiel.de:/home/biblio/

public html/downloads
74
75 %p: %
76 scp $ˆ $(BIBLIO REMOTEPATH)/
77
78 clean :
79 −rm ∗˜ ∗−expanded.c ∗.stackdump ∗.o
80
81 realclean : clean
82 −rm ∗.exe ∗.out

61

Listing A.4: make.trace: a run of make
1 make[1]: Entering directory ‘/ cygdrive/c/Dokumente und Einstellungen/rvh/

Eigene Dateien/shared/papers/scc’
2 gcc abro.c scc .c −o abro
3 abro > abro.out
4 gcc count2suspend.c scc .c −o count2suspend
5 count2suspend > count2suspend.out
6 gcc exits .c scc .c −o exits
7 exits > exits .out
8 gcc filteredSR .c scc .c −o filteredSR
9 filteredSR > filteredSR.out

10 gcc grcbal3 .c scc .c −o grcbal3
11 grcbal3 > grcbal3.out
12 gcc preAndSuspend.c scc.c −o preAndSuspend
13 preAndSuspend > preAndSuspend.out
14 gcc primeFactor.c scc .c −o primeFactor
15 primeFactor > primeFactor.out
16 gcc reincarnation .c scc .c −o reincarnation
17 reincarnation > reincarnation .out
18 gcc shifter3 .c scc .c −o shifter3
19 shifter3 > shifter3 .out
20 make[1]: Leaving directory ‘/ cygdrive/c/Dokumente und Einstellungen/rvh/

Eigene Dateien/shared/papers/scc’
21
22 real 0m5.718s
23 user 0m3.210s
24 sys 0m1.690s

62

Appendix B

Complete Examples

B.1 ABRO

Listing B.1: ABRO.c
1 // ABRO − the ”hello world” for SSMs
2 // Example from Charles Andr , Semantics of SyncCharts,
3 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 5−12
4 //
5 // rvh, 17 mar 2009
6 #include ”sc.h”
7
8 #define RUNMAX 2 // # of runs to execute
9 #define TICKMAX 5 // # of ticks to execute

10
11 int runMax = RUNMAX; // # of runs to execute
12 int tickMax = TICKMAX; // # of ticks to execute
13
14
15 // ======================================
16 // Program−specific definitions
17
18 // Signals
19 typedef enum {A, B, R, O} signaltype;
20 const char ∗s2signame[] = {”A”, ”B”, ”R”, ”O”};
21
22 // Thread ids
23 // Note: WaitA gets a higher id than WaitB (rather than the other way
24 // around) simply to let WaitA execute first , to make the trace match
25 // the syntactical flow of the program
26 int idHi = 4; // Highest thread id in use
27 typedef enum { TickEnd, AB, WaitB, WaitA, Main } idtype;
28 const int ids [] = { 0, 1, 2, 3, 4 };
29 const char ∗id2threadname[] = { ”TickEnd”, ”AB”, ”WaitB”, ”WaitA”, ”Main

” };
30
31 // Inputs for RUNMAX runs of TICKMAX ticks
32 signalvector inputs [RUNMAX][TICKMAX] =
33 {{0, u2b(A), u2b(B), u2b(R), 0},
34 {u2b(A) | u2b(B), u2b(A) | u2b(B), 0, u2b(R), u2b(A) | u2b(B) | u2b(R)

}};
35
36 // Expected outputs
37 signalvector outputs[RUNMAX][TICKMAX] =
38 {{0, 0, u2b(O), 0, 0},
39 {0, u2b(O), 0, 0, 0}};
40
41 void getInputs ()
42 {
43 signals = inputs[runCnt][tickCnt];
44 }
45
46 // Set reference outputs and check valued signals , if there are any.
47 // Return 1 unless valued signal outputs are wrong.
48 // No valued signals here , therefore always return 1.
49 int checkOutputs(signalvector ∗tickOutputs)
50 {
51 ∗tickOutputs = outputs[runCnt][tickCnt];
52 return 1;
53 }
54
55 // No valued signals to print
56 void printVal (int id)
57 {
58 }
59
60 // Returns 1 if some thread is still active in current tick

61 // Note: No JOIN on thread embedded in Main
62 int tick (int isInit)
63 {
64 // Thread ids : AB=1, WaitB=2, WaitA=3, Main=4
65 TICKSTART(isInit);
66
67 ABO: PAR(0, AB, ids[AB]);
68 PARE(0, ABOmain, id2b(AB) | id2b(WaitA) | id2b(WaitB));
69
70 AB: PAR(0, WaitA, ids[WaitA]);
71 PAR(0, WaitB, ids[WaitB]);
72 PARE(0, ABmain, id2b(WaitA) | id2b(WaitB));
73
74 WaitA: PAUSE(L0);
75 L0: PRESENT(A, WaitA);
76 TERM;
77
78 WaitB: PAUSE(L1);
79 L1: PRESENT(B, WaitB);
80 TERM;
81
82 ABmain: JOIN(Done, ABmain);
83 Done: EMIT(O);
84 TERM;
85
86 ABOmain:PAUSE(L2);
87 L2: PRESENT(R, ABOmain);
88 TRANS(ABO);
89
90 TICKEND;
91 }
92
93 // Local Variables :
94 // compile−command: ”make ABRO; ABRO”
95 // End:

Listing B.2: ABRO.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 4, prio 0) forks AB (1) with prio 0
6 PARE: Main (id 4, prio 0) has descendants 016
7 PAUSE: Main (id 4, prio 0) pauses, active = 023
8 PAR: AB (id 1, prio 0) forks WaitA (3) with prio 0
9 PAR: AB (id 1, prio 0) forks WaitB (2) with prio 0

10 PARE: AB (id 1, prio 0) has descendants 014
11 PAUSE: WaitA (id 3, prio 0) pauses, active = 017
12 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
13 JOIN: AB (id 1, prio 0) does not join
14 PAUSE: AB (id 1, prio 0) pauses, active = 03
15 ==== TICK 0 terminates after 9 instructions, enabled = 037.
16 ==== Resulting signals: <none>, Outputs OK.
17
18 ==== TICK 1 STARTS, inputs = 01, enabled = 037
19 ==== Inputs: A (0)
20 ==== Enabled: TickEnd (0), AB (1), WaitB (2), WaitA (3), Main (4)
21 PRESENT: Main (id 4, prio 0) determines R (2) as absent
22 PAUSE: Main (id 4, prio 0) pauses, active = 037
23 PRESENT: WaitA (id 3, prio 0) determines A (0) as present
24 TERM: WaitA (id 3, prio 0) terminates , enabled = 027
25 PRESENT: WaitB (id 2, prio 0) determines B (1) as absent
26 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
27 JOIN: AB (id 1, prio 0) does not join
28 PAUSE: AB (id 1, prio 0) pauses, active = 03

63

29 ==== TICK 1 terminates after 7 instructions, enabled = 027.
30 ==== Resulting signals: A (0), Outputs OK.
31
32 ==== TICK 2 STARTS, inputs = 02, enabled = 027
33 ==== Inputs: B (1)
34 ==== Enabled: TickEnd (0), AB (1), WaitB (2), Main (4)
35 PRESENT: Main (id 4, prio 0) determines R (2) as absent
36 PAUSE: Main (id 4, prio 0) pauses, active = 027
37 PRESENT: WaitB (id 2, prio 0) determines B (1) as present
38 TERM: WaitB (id 2, prio 0) terminates , enabled = 023
39 JOIN: AB (id 1, prio 0) joins
40 EMIT: AB (id 1, prio 0) emits O (3)
41 TERM: AB (id 1, prio 0) terminates , enabled = 021
42 ==== TICK 2 terminates after 7 instructions, enabled = 021.
43 ==== Resulting signals: B (1), O (3), Outputs OK.
44
45 ==== TICK 3 STARTS, inputs = 04, enabled = 021
46 ==== Inputs: R (2)
47 ==== Enabled: TickEnd (0), Main (4)
48 PRESENT: Main (id 4, prio 0) determines R (2) as present
49 TRANS: Main (id 4, prio 0) transfers , enabled = 021
50 PAR: Main (id 4, prio 0) forks AB (1) with prio 0
51 PARE: Main (id 4, prio 0) has descendants 016
52 PAUSE: Main (id 4, prio 0) pauses, active = 023
53 PAR: AB (id 1, prio 0) forks WaitA (3) with prio 0
54 PAR: AB (id 1, prio 0) forks WaitB (2) with prio 0
55 PARE: AB (id 1, prio 0) has descendants 014
56 PAUSE: WaitA (id 3, prio 0) pauses, active = 017
57 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
58 JOIN: AB (id 1, prio 0) does not join
59 PAUSE: AB (id 1, prio 0) pauses, active = 03
60 ==== TICK 3 terminates after 11 instructions, enabled = 037.
61 ==== Resulting signals: R (2), Outputs OK.
62
63 ==== TICK 4 STARTS, inputs = 00, enabled = 037
64 ==== Inputs: <none>
65 ==== Enabled: TickEnd (0), AB (1), WaitB (2), WaitA (3), Main (4)
66 PRESENT: Main (id 4, prio 0) determines R (2) as absent
67 PAUSE: Main (id 4, prio 0) pauses, active = 037
68 PRESENT: WaitA (id 3, prio 0) determines A (0) as absent
69 PAUSE: WaitA (id 3, prio 0) pauses, active = 017
70 PRESENT: WaitB (id 2, prio 0) determines B (1) as absent
71 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
72 JOIN: AB (id 1, prio 0) does not join
73 PAUSE: AB (id 1, prio 0) pauses, active = 03
74 ==== TICK 4 terminates after 7 instructions, enabled = 037.
75 ==== Resulting signals: <none>, Outputs OK.
76
77 ==== Executed tickMax = 5 ticks!
78 #### RUN 0 terminates after 41 instructions
79
80 #### RUN 1 STARTS #############
81 ==== TICK 0 STARTS, inputs = 03, enabled = 00
82 ==== Inputs: A (0), B (1)
83 ==== Enabled: <none>
84 PAR: Main (id 4, prio 0) forks AB (1) with prio 0
85 PARE: Main (id 4, prio 0) has descendants 016
86 PAUSE: Main (id 4, prio 0) pauses, active = 023
87 PAR: AB (id 1, prio 0) forks WaitA (3) with prio 0
88 PAR: AB (id 1, prio 0) forks WaitB (2) with prio 0
89 PARE: AB (id 1, prio 0) has descendants 014
90 PAUSE: WaitA (id 3, prio 0) pauses, active = 017
91 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
92 JOIN: AB (id 1, prio 0) does not join
93 PAUSE: AB (id 1, prio 0) pauses, active = 03
94 ==== TICK 0 terminates after 9 instructions, enabled = 037.
95 ==== Resulting signals: A (0), B (1), Outputs OK.
96
97 ==== TICK 1 STARTS, inputs = 03, enabled = 037
98 ==== Inputs: A (0), B (1)
99 ==== Enabled: TickEnd (0), AB (1), WaitB (2), WaitA (3), Main (4)

100 PRESENT: Main (id 4, prio 0) determines R (2) as absent
101 PAUSE: Main (id 4, prio 0) pauses, active = 037
102 PRESENT: WaitA (id 3, prio 0) determines A (0) as present
103 TERM: WaitA (id 3, prio 0) terminates , enabled = 027
104 PRESENT: WaitB (id 2, prio 0) determines B (1) as present
105 TERM: WaitB (id 2, prio 0) terminates , enabled = 023
106 JOIN: AB (id 1, prio 0) joins
107 EMIT: AB (id 1, prio 0) emits O (3)
108 TERM: AB (id 1, prio 0) terminates , enabled = 021
109 ==== TICK 1 terminates after 9 instructions, enabled = 021.
110 ==== Resulting signals: A (0), B (1), O (3), Outputs OK.
111
112 ==== TICK 2 STARTS, inputs = 00, enabled = 021
113 ==== Inputs: <none>
114 ==== Enabled: TickEnd (0), Main (4)
115 PRESENT: Main (id 4, prio 0) determines R (2) as absent
116 PAUSE: Main (id 4, prio 0) pauses, active = 021
117 ==== TICK 2 terminates after 2 instructions, enabled = 021.

118 ==== Resulting signals: <none>, Outputs OK.
119
120 ==== TICK 3 STARTS, inputs = 04, enabled = 021
121 ==== Inputs: R (2)
122 ==== Enabled: TickEnd (0), Main (4)
123 PRESENT: Main (id 4, prio 0) determines R (2) as present
124 TRANS: Main (id 4, prio 0) transfers , enabled = 021
125 PAR: Main (id 4, prio 0) forks AB (1) with prio 0
126 PARE: Main (id 4, prio 0) has descendants 016
127 PAUSE: Main (id 4, prio 0) pauses, active = 023
128 PAR: AB (id 1, prio 0) forks WaitA (3) with prio 0
129 PAR: AB (id 1, prio 0) forks WaitB (2) with prio 0
130 PARE: AB (id 1, prio 0) has descendants 014
131 PAUSE: WaitA (id 3, prio 0) pauses, active = 017
132 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
133 JOIN: AB (id 1, prio 0) does not join
134 PAUSE: AB (id 1, prio 0) pauses, active = 03
135 ==== TICK 3 terminates after 11 instructions, enabled = 037.
136 ==== Resulting signals: R (2), Outputs OK.
137
138 ==== TICK 4 STARTS, inputs = 07, enabled = 037
139 ==== Inputs: A (0), B (1), R (2)
140 ==== Enabled: TickEnd (0), AB (1), WaitB (2), WaitA (3), Main (4)
141 PRESENT: Main (id 4, prio 0) determines R (2) as present
142 TRANS: Main (id 4, prio 0) transfers , enabled = 021
143 PAR: Main (id 4, prio 0) forks AB (1) with prio 0
144 PARE: Main (id 4, prio 0) has descendants 016
145 PAUSE: Main (id 4, prio 0) pauses, active = 023
146 PAR: AB (id 1, prio 0) forks WaitA (3) with prio 0
147 PAR: AB (id 1, prio 0) forks WaitB (2) with prio 0
148 PARE: AB (id 1, prio 0) has descendants 014
149 PAUSE: WaitA (id 3, prio 0) pauses, active = 017
150 PAUSE: WaitB (id 2, prio 0) pauses, active = 07
151 JOIN: AB (id 1, prio 0) does not join
152 PAUSE: AB (id 1, prio 0) pauses, active = 03
153 ==== TICK 4 terminates after 11 instructions, enabled = 037.
154 ==== Resulting signals: A (0), B (1), R (2), Outputs OK.
155
156 ==== Executed tickMax = 5 ticks!
157 #### RUN 1 terminates after 42 instructions
158
159 #### All runs terminate, after 83 instructions

Listing B.3: Assembler generated from ABRO
tick function (see Fig. 3.3b and Fig. 3.3.4)
without optimizations (plain gcc), before link-
ing
1 tick :
2 pushl %ebp
3 movl %esp, %ebp
4 pushl %esi
5 pushl %ebx
6 subl $16, %esp
7 call L31
8 ”L00000000003$pb”:
9 L31:

10 popl %ebx
11 cmpl $0, 8(%ebp)
12 je L10
13 leal L tickCnt$non lazy ptr−”L00000000003$pb”(%ebx), %eax
14 movl (%eax), %eax
15 movl $0, (%eax)
16 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
17 movl (%eax), %eax
18 leal L12−”L00000000003$pb”(%ebx), %edx
19 movl %edx, (%eax)
20 leal L pr$non lazy ptr−”L00000000003$pb”(%ebx), %eax
21 movl (%eax), %eax
22 movl $0, (%eax)
23 leal ids−”L00000000003$pb”(%ebx), %eax
24 movl (%eax), %ecx
25 movl $1, %eax
26 sall %cl, %eax
27 movl %eax, %edx
28 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
29 movl (%eax), %eax
30 movl %edx, (%eax)
31 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
32 movl (%eax), %eax
33 movl (%eax), %edx
34 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
35 movl (%eax), %eax
36 movl %edx, (%eax)
37 leal ids−”L00000000003$pb”(%ebx), %eax

64

38 movl 16(%eax), %edx
39 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
40 movl (%eax), %eax
41 movl %edx, (%eax)
42 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
43 movl (%eax), %eax
44 movl (%eax), %ecx
45 movl $1, %eax
46 sall %cl, %eax
47 movl %eax, %edx
48 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
49 movl (%eax), %eax
50 movl (%eax), %eax
51 orl %eax, %edx
52 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
53 movl (%eax), %eax
54 movl %edx, (%eax)
55 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
56 movl (%eax), %eax
57 movl (%eax), %ecx
58 movl $1, %eax
59 sall %cl, %eax
60 movl %eax, %edx
61 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
62 movl (%eax), %eax
63 movl (%eax), %eax
64 orl %eax, %edx
65 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
66 movl (%eax), %eax
67 movl %edx, (%eax)
68 L13:
69 leal ids−”L00000000003$pb”(%ebx), %eax
70 movl 4(%eax), %ecx
71 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
72 movl (%eax), %eax
73 leal L15−”L00000000003$pb”(%ebx), %edx
74 movl %edx, (%eax,%ecx,4)
75 leal ids−”L00000000003$pb”(%ebx), %eax
76 movl 4(%eax), %edx
77 leal L pr$non lazy ptr−”L00000000003$pb”(%ebx), %eax
78 movl (%eax), %eax
79 movl $0, (%eax,%edx,4)
80 leal ids−”L00000000003$pb”(%ebx), %eax
81 movl 4(%eax), %ecx
82 movl $1, %eax
83 sall %cl, %eax
84 movl %eax, %edx
85 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
86 movl (%eax), %eax
87 movl (%eax), %eax
88 orl %eax, %edx
89 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
90 movl (%eax), %eax
91 movl %edx, (%eax)
92 leal ids−”L00000000003$pb”(%ebx), %eax
93 movl 4(%eax), %ecx
94 movl $1, %eax
95 sall %cl, %eax
96 movl %eax, %edx
97 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
98 movl (%eax), %eax
99 movl (%eax), %eax

100 orl %eax, %edx
101 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
102 movl (%eax), %eax
103 movl %edx, (%eax)
104 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
105 movl (%eax), %eax
106 movl (%eax), %ecx
107 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
108 movl (%eax), %eax
109 leal L16−”L00000000003$pb”(%ebx), %edx
110 movl %edx, (%eax,%ecx,4)
111 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
112 movl (%eax), %eax
113 movl (%eax), %edx
114 leal L pr$non lazy ptr−”L00000000003$pb”(%ebx), %eax
115 movl (%eax), %eax
116 movl $0, (%eax,%edx,4)
117 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
118 movl (%eax), %eax
119 movl (%eax), %esi
120 leal ids−”L00000000003$pb”(%ebx), %eax
121 movl 4(%eax), %ecx
122 movl $1, %eax
123 movl %eax, %edx
124 sall %cl, %edx
125 leal ids−”L00000000003$pb”(%ebx), %eax
126 movl 12(%eax), %ecx

127 movl $1, %eax
128 sall %cl, %eax
129 orl %eax, %edx
130 leal ids−”L00000000003$pb”(%ebx), %eax
131 movl 8(%eax), %ecx
132 movl $1, %eax
133 sall %cl, %eax
134 orl %edx, %eax
135 movl %eax, %edx
136 leal L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
137 movl (%eax), %eax
138 movl %edx, (%eax,%esi,4)
139 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
140 movl (%eax), %eax
141 movl (%eax), %ecx
142 bsrl %ecx,%edx
143
144 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
145 movl (%eax), %eax
146 movl %edx, (%eax)
147 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
148 movl (%eax), %eax
149 movl (%eax), %edx
150 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
151 movl (%eax), %eax
152 movl (%eax,%edx,4), %eax
153 movl %eax, −12(%ebp)
154 jmp L29
155 L10:
156 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
157 movl (%eax), %eax
158 movl (%eax), %edx
159 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
160 movl (%eax), %eax
161 movl %edx, (%eax)
162 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
163 movl (%eax), %eax
164 movl (%eax), %ecx
165 bsrl %ecx,%edx
166
167 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
168 movl (%eax), %eax
169 movl %edx, (%eax)
170 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
171 movl (%eax), %eax
172 movl (%eax), %edx
173 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
174 movl (%eax), %eax
175 movl (%eax,%edx,4), %eax
176 movl %eax, −12(%ebp)
177 jmp L29
178 L14:
179 jmp L30
180 L29:
181 L30:
182 jmp ∗−12(%ebp)
183 L15:
184 leal ids−”L00000000003$pb”(%ebx), %eax
185 movl 12(%eax), %ecx
186 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
187 movl (%eax), %eax
188 leal L17−”L00000000003$pb”(%ebx), %edx
189 movl %edx, (%eax,%ecx,4)
190 leal ids−”L00000000003$pb”(%ebx), %eax
191 movl 12(%eax), %edx
192 leal L pr$non lazy ptr−”L00000000003$pb”(%ebx), %eax
193 movl (%eax), %eax
194 movl $0, (%eax,%edx,4)
195 leal ids−”L00000000003$pb”(%ebx), %eax
196 movl 12(%eax), %ecx
197 movl $1, %eax
198 sall %cl, %eax
199 movl %eax, %edx
200 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
201 movl (%eax), %eax
202 movl (%eax), %eax
203 orl %eax, %edx
204 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
205 movl (%eax), %eax
206 movl %edx, (%eax)
207 leal ids−”L00000000003$pb”(%ebx), %eax
208 movl 12(%eax), %ecx
209 movl $1, %eax
210 sall %cl, %eax
211 movl %eax, %edx
212 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
213 movl (%eax), %eax
214 movl (%eax), %eax
215 orl %eax, %edx

65

216 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
217 movl (%eax), %eax
218 movl %edx, (%eax)
219 leal ids−”L00000000003$pb”(%ebx), %eax
220 movl 8(%eax), %ecx
221 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
222 movl (%eax), %eax
223 leal L18−”L00000000003$pb”(%ebx), %edx
224 movl %edx, (%eax,%ecx,4)
225 leal ids−”L00000000003$pb”(%ebx), %eax
226 movl 8(%eax), %edx
227 leal L pr$non lazy ptr−”L00000000003$pb”(%ebx), %eax
228 movl (%eax), %eax
229 movl $0, (%eax,%edx,4)
230 leal ids−”L00000000003$pb”(%ebx), %eax
231 movl 8(%eax), %ecx
232 movl $1, %eax
233 sall %cl, %eax
234 movl %eax, %edx
235 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
236 movl (%eax), %eax
237 movl (%eax), %eax
238 orl %eax, %edx
239 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
240 movl (%eax), %eax
241 movl %edx, (%eax)
242 leal ids−”L00000000003$pb”(%ebx), %eax
243 movl 8(%eax), %ecx
244 movl $1, %eax
245 sall %cl, %eax
246 movl %eax, %edx
247 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
248 movl (%eax), %eax
249 movl (%eax), %eax
250 orl %eax, %edx
251 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
252 movl (%eax), %eax
253 movl %edx, (%eax)
254 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
255 movl (%eax), %eax
256 movl (%eax), %ecx
257 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
258 movl (%eax), %eax
259 leal L19−”L00000000003$pb”(%ebx), %edx
260 movl %edx, (%eax,%ecx,4)
261 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
262 movl (%eax), %eax
263 movl (%eax), %edx
264 leal L pr$non lazy ptr−”L00000000003$pb”(%ebx), %eax
265 movl (%eax), %eax
266 movl $0, (%eax,%edx,4)
267 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
268 movl (%eax), %eax
269 movl (%eax), %esi
270 leal ids−”L00000000003$pb”(%ebx), %eax
271 movl 12(%eax), %ecx
272 movl $1, %eax
273 movl %eax, %edx
274 sall %cl, %edx
275 leal ids−”L00000000003$pb”(%ebx), %eax
276 movl 8(%eax), %ecx
277 movl $1, %eax
278 sall %cl, %eax
279 orl %edx, %eax
280 movl %eax, %edx
281 leal L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
282 movl (%eax), %eax
283 movl %edx, (%eax,%esi,4)
284 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
285 movl (%eax), %eax
286 movl (%eax), %ecx
287 bsrl %ecx,%edx
288
289 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
290 movl (%eax), %eax
291 movl %edx, (%eax)
292 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
293 movl (%eax), %eax
294 movl (%eax), %edx
295 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
296 movl (%eax), %eax
297 movl (%eax,%edx,4), %eax
298 movl %eax, −12(%ebp)
299 jmp L14
300 L17:
301 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
302 movl (%eax), %eax
303 movl (%eax), %ecx
304 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax

305 movl (%eax), %eax
306 leal L20−”L00000000003$pb”(%ebx), %edx
307 movl %edx, (%eax,%ecx,4)
308 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
309 movl (%eax), %eax
310 movl (%eax), %ecx
311 movl $1, %eax
312 sall %cl, %eax
313 notl %eax
314 movl %eax, %edx
315 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
316 movl (%eax), %eax
317 movl (%eax), %eax
318 andl %eax, %edx
319 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
320 movl (%eax), %eax
321 movl %edx, (%eax)
322 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
323 movl (%eax), %eax
324 movl (%eax), %ecx
325 bsrl %ecx,%edx
326
327 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
328 movl (%eax), %eax
329 movl %edx, (%eax)
330 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
331 movl (%eax), %eax
332 movl (%eax), %edx
333 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
334 movl (%eax), %eax
335 movl (%eax,%edx,4), %eax
336 movl %eax, −12(%ebp)
337 jmp L14
338 L20:
339 leal L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
340 movl (%eax), %eax
341 movl (%eax), %eax
342 andl $1, %eax
343 testl %eax, %eax
344 je L17
345 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
346 movl (%eax), %eax
347 movl (%eax), %ecx
348 movl $1, %eax
349 sall %cl, %eax
350 notl %eax
351 movl %eax, %edx
352 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
353 movl (%eax), %eax
354 movl (%eax), %eax
355 andl %eax, %edx
356 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
357 movl (%eax), %eax
358 movl %edx, (%eax)
359 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
360 movl (%eax), %eax
361 movl (%eax), %ecx
362 movl $1, %eax
363 sall %cl, %eax
364 notl %eax
365 movl %eax, %edx
366 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
367 movl (%eax), %eax
368 movl (%eax), %eax
369 andl %eax, %edx
370 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
371 movl (%eax), %eax
372 movl %edx, (%eax)
373 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
374 movl (%eax), %eax
375 movl (%eax), %ecx
376 bsrl %ecx,%edx
377
378 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
379 movl (%eax), %eax
380 movl %edx, (%eax)
381 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
382 movl (%eax), %eax
383 movl (%eax), %edx
384 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
385 movl (%eax), %eax
386 movl (%eax,%edx,4), %eax
387 movl %eax, −12(%ebp)
388 jmp L14
389 L18:
390 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
391 movl (%eax), %eax
392 movl (%eax), %ecx
393 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax

66

394 movl (%eax), %eax
395 leal L22−”L00000000003$pb”(%ebx), %edx
396 movl %edx, (%eax,%ecx,4)
397 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
398 movl (%eax), %eax
399 movl (%eax), %ecx
400 movl $1, %eax
401 sall %cl, %eax
402 notl %eax
403 movl %eax, %edx
404 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
405 movl (%eax), %eax
406 movl (%eax), %eax
407 andl %eax, %edx
408 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
409 movl (%eax), %eax
410 movl %edx, (%eax)
411 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
412 movl (%eax), %eax
413 movl (%eax), %ecx
414 bsrl %ecx,%edx
415
416 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
417 movl (%eax), %eax
418 movl %edx, (%eax)
419 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
420 movl (%eax), %eax
421 movl (%eax), %edx
422 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
423 movl (%eax), %eax
424 movl (%eax,%edx,4), %eax
425 movl %eax, −12(%ebp)
426 jmp L14
427 L22:
428 leal L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
429 movl (%eax), %eax
430 movl (%eax), %eax
431 shrl %eax
432 andl $1, %eax
433 testl %eax, %eax
434 je L18
435 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
436 movl (%eax), %eax
437 movl (%eax), %ecx
438 movl $1, %eax
439 sall %cl, %eax
440 notl %eax
441 movl %eax, %edx
442 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
443 movl (%eax), %eax
444 movl (%eax), %eax
445 andl %eax, %edx
446 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
447 movl (%eax), %eax
448 movl %edx, (%eax)
449 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
450 movl (%eax), %eax
451 movl (%eax), %ecx
452 movl $1, %eax
453 sall %cl, %eax
454 notl %eax
455 movl %eax, %edx
456 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
457 movl (%eax), %eax
458 movl (%eax), %eax
459 andl %eax, %edx
460 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
461 movl (%eax), %eax
462 movl %edx, (%eax)
463 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
464 movl (%eax), %eax
465 movl (%eax), %ecx
466 bsrl %ecx,%edx
467
468 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
469 movl (%eax), %eax
470 movl %edx, (%eax)
471 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
472 movl (%eax), %eax
473 movl (%eax), %edx
474 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
475 movl (%eax), %eax
476 movl (%eax,%edx,4), %eax
477 movl %eax, −12(%ebp)
478 jmp L14
479 L19:
480 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
481 movl (%eax), %eax
482 movl (%eax), %edx

483 leal L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
484 movl (%eax), %eax
485 movl (%eax,%edx,4), %edx
486 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
487 movl (%eax), %eax
488 movl (%eax), %eax
489 andl %edx, %eax
490 testl %eax, %eax
491 je L24
492 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
493 movl (%eax), %eax
494 movl (%eax), %ecx
495 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
496 movl (%eax), %eax
497 leal L19−”L00000000003$pb”(%ebx), %edx
498 movl %edx, (%eax,%ecx,4)
499 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
500 movl (%eax), %eax
501 movl (%eax), %ecx
502 movl $1, %eax
503 sall %cl, %eax
504 notl %eax
505 movl %eax, %edx
506 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
507 movl (%eax), %eax
508 movl (%eax), %eax
509 andl %eax, %edx
510 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
511 movl (%eax), %eax
512 movl %edx, (%eax)
513 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
514 movl (%eax), %eax
515 movl (%eax), %ecx
516 bsrl %ecx,%edx
517
518 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
519 movl (%eax), %eax
520 movl %edx, (%eax)
521 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
522 movl (%eax), %eax
523 movl (%eax), %edx
524 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
525 movl (%eax), %eax
526 movl (%eax,%edx,4), %eax
527 movl %eax, −12(%ebp)
528 jmp L14
529 L24:
530 leal L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
531 movl (%eax), %eax
532 movl (%eax), %eax
533 movl %eax, %edx
534 orl $8, %edx
535 leal L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
536 movl (%eax), %eax
537 movl %edx, (%eax)
538 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
539 movl (%eax), %eax
540 movl (%eax), %ecx
541 movl $1, %eax
542 sall %cl, %eax
543 notl %eax
544 movl %eax, %edx
545 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
546 movl (%eax), %eax
547 movl (%eax), %eax
548 andl %eax, %edx
549 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
550 movl (%eax), %eax
551 movl %edx, (%eax)
552 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
553 movl (%eax), %eax
554 movl (%eax), %ecx
555 movl $1, %eax
556 sall %cl, %eax
557 notl %eax
558 movl %eax, %edx
559 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
560 movl (%eax), %eax
561 movl (%eax), %eax
562 andl %eax, %edx
563 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
564 movl (%eax), %eax
565 movl %edx, (%eax)
566 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
567 movl (%eax), %eax
568 movl (%eax), %ecx
569 bsrl %ecx,%edx
570
571 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax

67

572 movl (%eax), %eax
573 movl %edx, (%eax)
574 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
575 movl (%eax), %eax
576 movl (%eax), %edx
577 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
578 movl (%eax), %eax
579 movl (%eax,%edx,4), %eax
580 movl %eax, −12(%ebp)
581 jmp L14
582 L16:
583 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
584 movl (%eax), %eax
585 movl (%eax), %ecx
586 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
587 movl (%eax), %eax
588 leal L26−”L00000000003$pb”(%ebx), %edx
589 movl %edx, (%eax,%ecx,4)
590 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
591 movl (%eax), %eax
592 movl (%eax), %ecx
593 movl $1, %eax
594 sall %cl, %eax
595 notl %eax
596 movl %eax, %edx
597 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
598 movl (%eax), %eax
599 movl (%eax), %eax
600 andl %eax, %edx
601 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
602 movl (%eax), %eax
603 movl %edx, (%eax)
604 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
605 movl (%eax), %eax
606 movl (%eax), %ecx
607 bsrl %ecx,%edx
608
609 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
610 movl (%eax), %eax
611 movl %edx, (%eax)
612 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
613 movl (%eax), %eax
614 movl (%eax), %edx
615 leal L pc$non lazy ptr−”L00000000003$pb”(%ebx), %eax
616 movl (%eax), %eax
617 movl (%eax,%edx,4), %eax
618 movl %eax, −12(%ebp)
619 jmp L14
620 L26:
621 leal L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
622 movl (%eax), %eax
623 movl (%eax), %eax
624 shrl $2, %eax
625 andl $1, %eax
626 testl %eax, %eax
627 je L16
628 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
629 movl (%eax), %eax
630 movl (%eax), %edx
631 leal L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
632 movl (%eax), %eax
633 movl (%eax,%edx,4), %eax
634 movl %eax, %edx
635 notl %edx
636 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
637 movl (%eax), %eax
638 movl (%eax), %eax
639 andl %eax, %edx
640 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
641 movl (%eax), %eax
642 movl %edx, (%eax)
643 leal L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
644 movl (%eax), %eax
645 movl (%eax), %edx
646 leal L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
647 movl (%eax), %eax
648 movl (%eax,%edx,4), %eax
649 movl %eax, %edx
650 notl %edx
651 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
652 movl (%eax), %eax
653 movl (%eax), %eax
654 andl %eax, %edx
655 leal L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
656 movl (%eax), %eax
657 movl %edx, (%eax)
658 jmp L13
659 L12:
660 leal ids−”L00000000003$pb”(%ebx), %eax

661 movl (%eax), %ecx
662 movl $1, %eax
663 sall %cl, %eax
664 movl %eax, %edx
665 leal L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
666 movl (%eax), %eax
667 movl (%eax), %eax
668 cmpl %eax, %edx
669 setne %al
670 movzbl %al, %eax
671 addl $16, %esp
672 popl %ebx
673 popl %esi
674 leave
675 ret

Listing B.4: Assembler of ABRO tick function
with optimizations (gcc -O3), before linking
1 tick :
2 pushl %ebp
3 movl %esp, %ebp
4 pushl %edi
5 pushl %esi
6 pushl %ebx
7 subl $12, %esp
8 movl 8(%ebp), %eax
9 call L39

10 ”L00000000003$pb”:
11 L39:
12 popl %ebx
13 testl %eax, %eax
14 je L10
15 movl L tickCnt$non lazy ptr−”L00000000003$pb”(%ebx), %eax
16 movl L pc$non lazy ptr−”L00000000003$pb”(%ebx), %edi
17 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %edx
18 movl L pr$non lazy ptr−”L00000000003$pb”(%ebx), %esi
19 movl $0, (%eax)
20 leal L12−”L00000000003$pb”(%ebx), %eax
21 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
22 movl %eax, (%edi)
23 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
24 movl $1, (%edx)
25 movl $0, (%esi)
26 movl $4, (%ecx)
27 movl $1, (%eax)
28 movl $17, (%edx)
29 movl $17, (%eax)
30 L13:
31 movl (%edx), %ecx
32 leal L17−”L00000000003$pb”(%ebx), %eax
33 movl %eax, 4(%edi)
34 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
35 movl $0, 4(%esi)
36 orl $2, %ecx
37 movl %ecx, (%edx)
38 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
39 orl $2, (%eax)
40 movl (%edx), %eax
41 leal L18−”L00000000003$pb”(%ebx), %edx
42 movl %edx, (%edi,%eax,4)
43 movl L descs$non lazy ptr−”L00000000003$pb”(%ebx), %edx
44 movl $0, (%esi,%eax,4)
45 movl $14, (%edx,%eax,4)
46 bsrl %ecx,%ecx
47
48 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
49 movl %ecx, (%eax)
50 movl (%edi,%ecx,4), %eax
51 . align 4,0x90
52 L36:
53 jmp ∗%eax
54 . align 4,0x90
55 L28:
56 movl L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
57 testb $4, (%eax)
58 jne L38
59 L18:
60 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
61 leal L28−”L00000000003$pb”(%ebx), %eax
62 movl $−2, %esi
63 movl (%ecx), %edx
64 movl %eax, (%edi,%edx,4)
65 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
66 movl %edx, %ecx
67 roll %cl, %esi
68 andl (%eax), %esi

68

69 movl %esi, (%eax)
70 movl %esi, %ecx
71 bsrl %ecx,%edx
72
73 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
74 movl %edx, (%eax)
75 movl (%edi,%edx,4), %eax
76 jmp ∗%eax
77 . align 4,0x90
78 L19:
79 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
80 leal L22−”L00000000003$pb”(%ebx), %eax
81 movl $−2, %esi
82 movl (%ecx), %edx
83 movl %eax, (%edi,%edx,4)
84 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
85 movl %edx, %ecx
86 roll %cl, %esi
87 andl (%eax), %esi
88 movl %esi, (%eax)
89 movl %esi, %ecx
90 bsrl %ecx,%edx
91
92 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
93 movl %edx, (%eax)
94 movl (%edi,%edx,4), %eax
95 jmp ∗%eax
96 . align 4,0x90
97 L20:
98 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
99 leal L24−”L00000000003$pb”(%ebx), %eax

100 movl $−2, %esi
101 movl (%ecx), %edx
102 movl %eax, (%edi,%edx,4)
103 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
104 movl %edx, %ecx
105 roll %cl, %esi
106 andl (%eax), %esi
107 movl %esi, (%eax)
108 movl %esi, %ecx
109 bsrl %ecx,%edx
110
111 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
112 movl %edx, (%eax)
113 movl (%edi,%edx,4), %eax
114 jmp ∗%eax
115 . align 4,0x90
116 L10:
117 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %edx
118 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
119 movl (%edx), %ecx
120 movl %ecx, (%eax)
121 bsrl %ecx,%ecx
122
123 movl L pc$non lazy ptr−”L00000000003$pb”(%ebx), %edi
124 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
125 movl (%edi,%ecx,4), %eax
126 movl %ecx, (%edx)
127 jmp ∗%eax
128 . align 4,0x90
129 L17:
130 leal L19−”L00000000003$pb”(%ebx), %eax
131 movl $3, %ecx
132 movl L pr$non lazy ptr−”L00000000003$pb”(%ebx), %esi
133 movl %eax, (%edi,%ecx,4)
134 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
135 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %edx
136 movl $0, (%esi,%ecx,4)
137 movl (%eax), %eax
138 movl %eax, −24(%ebp)
139 leal L20−”L00000000003$pb”(%ebx), %eax
140 movl (%edx), %ecx
141 movl $2, %edx
142 movl %eax, (%edi,%edx,4)
143 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
144 movl $0, (%esi,%edx,4)
145 orl $12, −24(%ebp)
146 orl $12, %ecx
147 movl −24(%ebp), %edx
148 movl %edx, (%eax)
149 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
150 movl %ecx, (%eax)
151 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
152 movl (%eax), %edx
153 leal L21−”L00000000003$pb”(%ebx), %eax
154 movl %eax, (%edi,%edx,4)
155 movl L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
156 movl $0, (%esi,%edx,4)
157 movl $12, (%eax,%edx,4)

158 bsrl %ecx,%ecx
159
160 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
161 movl (%edi,%ecx,4), %eax
162 movl %ecx, (%edx)
163 jmp ∗%eax
164 . align 4,0x90
165 L22:
166 movl L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
167 testb $1, (%eax)
168 je L19
169 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
170 movl (%edx), %eax
171 movl $−2, %edx
172 movl %eax, %ecx
173 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
174 roll %cl, %edx
175 movl %edx, %ecx
176 andl %edx, (%eax)
177 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
178 andl (%eax), %ecx
179 movl %ecx, (%eax)
180 bsrl %ecx,%ecx
181
182 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
183 movl (%edi,%ecx,4), %eax
184 movl %ecx, (%edx)
185 jmp ∗%eax
186 . align 4,0x90
187 L24:
188 movl L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
189 testb $2, (%eax)
190 je L20
191 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
192 movl (%edx), %eax
193 movl $−2, %edx
194 movl %eax, %ecx
195 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
196 roll %cl, %edx
197 movl %edx, %ecx
198 andl %edx, (%eax)
199 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
200 andl (%eax), %ecx
201 movl %ecx, (%eax)
202 bsrl %ecx,%ecx
203
204 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
205 movl (%edi,%ecx,4), %eax
206 movl %ecx, (%edx)
207 jmp ∗%eax
208 . align 4,0x90
209 L21:
210 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
211 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
212 movl (%eax), %edx
213 movl (%ecx), %esi
214 movl L descs$non lazy ptr−”L00000000003$pb”(%ebx), %eax
215 testl %edx, (%eax,%esi,4)
216 je L26
217 leal L21−”L00000000003$pb”(%ebx), %eax
218 movl %esi, %ecx
219 movl %eax, (%edi,%esi,4)
220 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %eax
221 movl $−2, %edx
222 roll %cl, %edx
223 andl (%eax), %edx
224 movl %edx, (%eax)
225 movl %edx, %ecx
226 bsrl %ecx,%edx
227
228 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
229 movl %edx, (%eax)
230 movl (%edi,%edx,4), %eax
231 jmp ∗%eax
232 . align 4,0x90
233 L12:
234 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
235 cmpl $1, (%eax)
236 setne %al
237 addl $12, %esp
238 popl %ebx
239 movzbl %al, %eax
240 popl %esi
241 popl %edi
242 leave
243 ret
244 L26:
245 movl L signals$non lazy ptr −”L00000000003$pb”(%ebx), %eax
246 movl %esi, %ecx

69

247 movl $−2, −16(%ebp)
248 roll %cl, −16(%ebp)
249 andl −16(%ebp), %edx
250 orl $8, (%eax)
251 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %eax
252 movl −16(%ebp), %ecx
253 movl %edx, (%eax)
254 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %edx
255 andl (%edx), %ecx
256 movl %ecx, (%edx)
257 bsrl %ecx,%ecx
258
259 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %eax
260 movl %ecx, (%eax)
261 movl (%edi,%ecx,4), %eax
262 jmp ∗%eax
263 L38:
264 movl L cid$non lazy ptr−”L00000000003$pb”(%ebx), %edx
265 movl L descs$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
266 movl L pr$non lazy ptr−”L00000000003$pb”(%ebx), %esi
267 movl (%edx), %eax
268 movl L enabled$non lazy ptr−”L00000000003$pb”(%ebx), %edx
269 movl (%ecx,%eax,4), %eax
270 movl L active$non lazy ptr−”L00000000003$pb”(%ebx), %ecx
271 notl %eax
272 andl %eax, (%edx)
273 movl %ecx, %edx
274 andl %eax, (%ecx)
275 jmp L13

B.2 grcbal3

Listing B.5: grcbal3.c
1 // Example from Figure 1a in Stephen A. Edwards and Jia Zeng,
2 // Code Generation in the Columbia Esterel Compiler,
3 // EURASIP Journal on Embedded Systems, Volume 2007,
4 // Article ID 52651, 31 pages, doi:10.1155/2007/52651
5 //
6 // rvh, 5 mar 2009
7
8
9 // This program illustrates the usage of priorities /thread ids to

10 // handle signal dependencies among concurrent threads.
11 // It is encoded in 28 instructions ; BAL uses 74 instructions .
12 // (cf . Figure 8b in Edwards/Zeng’07).
13
14 // Binary on IA32:
15 // After linking : 1045 Bytes unoptimized, 586 optimized
16
17 #define USEPRIO // Select appropriate dispatcher
18 #include ”sc.h”
19
20 // ================================
21 // Program−specific definitions
22
23 #define RUNMAX 2 // # of runs to execute
24 #define TICKMAX 2 // # of ticks to execute
25
26 int runMax = RUNMAX; // # of runs to execute
27 int tickMax = TICKMAX; // # of ticks to execute
28
29 // Signals
30 typedef enum {A, B, C, D, E, T } signaltype;
31 const char ∗s2signame[] = {”A”, ”B”, ”C”, ”D”, ”E”, ”T ”};
32
33 // Thread ids
34 int idHi = 4; // Highest thread id in use
35 typedef enum { TickEnd, Main, A1, A2, A3 } idtype;
36 const int ids [] = { 0, 1, 2, 3, 4 };
37 const char ∗id2threadname[] = { ”TickEnd”, ”Main”, ”A1”, ”A2”, ”A3” };
38
39 // Inputs for RUNMAX runs of TICKMAX ticks
40 signalvector inputs [RUNMAX][TICKMAX] =
41 {{u2b(A), 0},
42 {0, 0}};
43
44 // Expected outputs
45 signalvector outputs[RUNMAX][TICKMAX] =
46 {{u2b(B) | u2b(C) | u2b(D) | u2b(E) | u2b(T), 0},
47 {0, u2b(B)}};
48
49 void getInputs ()
50 {
51 signals = inputs[runCnt][tickCnt];

52 }
53
54 // Set reference outputs and check valued signals , if there are any.
55 // Return 1 unless valued signal outputs are wrong.
56 // No valued signals here , therefore always return 1.
57 int checkOutputs(signalvector ∗tickOutputs)
58 {
59 ∗tickOutputs = outputs[runCnt][tickCnt];
60 return 1;
61 }
62
63 // No valued signals to print
64 void printVal (int id)
65 {
66 }
67
68 // Returns 1 if some thread is still active in current tick
69 int tick (int isInit)
70 {
71 TICKSTART(isInit); // Main thread has id 1
72 PAR(3, A1, ids[A1]); // A1 has id 2
73 PAR(2, A2, ids[A2]); // A2 has id 3
74 PAR(1, A3, ids[A3]); // A3 had id 4
75 PARE(0, AMain, id2b(A1) | id2b(A2) | id2b(A3));
76
77 A1: PRESENT(A, A1B);
78 EMIT(B);
79 PRIO(2, L0);
80 L0: PRESENT(C, A1A);
81 EMIT(D);
82 A1A: PRIO(1, L1);
83 L1: PRESENT(E, A1B);
84 EMIT(T);
85 GOTO(A1C);
86 A1B: PAUSE(L2);
87 L2: EMIT(B);
88 A1C: TERM;
89 A2: PRESENT(B, A2A);
90 EMIT(C);
91 A2A: TERM;
92
93 A3: PRESENT(D, A3A);
94 EMIT(E);
95 A3A: TERM;
96
97 AMain: PRESENT(T , AJoin);
98 TRANS(B);
99 AJoin: JOIN(B, AMain);

100
101 B: TERM;
102 TICKEND;
103 }
104
105 // Local Variables :
106 // compile−command: ”make grcbal3; grcbal3”
107 // End:

Listing B.6: grcbal3.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 01, enabled = 00
3 ==== Inputs: A (0)
4 ==== Enabled: <none>
5 PAR: Main (id 1, prio 0) forks A1 (2) with prio 3
6 PAR: Main (id 1, prio 0) forks A2 (3) with prio 2
7 PAR: Main (id 1, prio 0) forks A3 (4) with prio 1
8 PARE: Main (id 1, prio 0) has descendants 034
9 PRESENT: A1 (id 2, prio 3) determines A (0) as present

10 EMIT: A1 (id 2, prio 3) emits B (1)
11 PRIO: A1 (id 2, prio 3) set to priority 2
12 PRESENT: A2 (id 3, prio 2) determines B (1) as present
13 EMIT: A2 (id 3, prio 2) emits C (2)
14 TERM: A2 (id 3, prio 2) terminates , enabled = 027
15 PRESENT: A1 (id 2, prio 2) determines C (2) as present
16 EMIT: A1 (id 2, prio 2) emits D (3)
17 PRIO: A1 (id 2, prio 2) set to priority 1
18 PRESENT: A3 (id 4, prio 1) determines D (3) as present
19 EMIT: A3 (id 4, prio 1) emits E (4)
20 TERM: A3 (id 4, prio 1) terminates , enabled = 07
21 PRESENT: A1 (id 2, prio 1) determines E (4) as present
22 EMIT: A1 (id 2, prio 1) emits T (5)
23 TERM: A1 (id 2, prio 1) terminates , enabled = 03
24 PRESENT: Main (id 1, prio 0) determines T (5) as present
25 TRANS: Main (id 1, prio 0) transfers , enabled = 03
26 TERM: Main (id 1, prio 0) terminates , enabled = 01
27 ==== TICK 0 terminates after 23 instructions, enabled = 01.
28 ==== Resulting signals: A (0), B (1), C (2), D (3), E (4), T (5) , Outputs

OK.

70

29
30 #### RUN 0 terminates after 23 instructions
31
32 #### RUN 1 STARTS #############
33 ==== TICK 0 STARTS, inputs = 00, enabled = 00
34 ==== Inputs: <none>
35 ==== Enabled: <none>
36 PAR: Main (id 1, prio 0) forks A1 (2) with prio 3
37 PAR: Main (id 1, prio 0) forks A2 (3) with prio 2
38 PAR: Main (id 1, prio 0) forks A3 (4) with prio 1
39 PARE: Main (id 1, prio 0) has descendants 034
40 PRESENT: A1 (id 2, prio 3) determines A (0) as absent
41 PAUSE: A1 (id 2, prio 3) pauses, active = 037
42 PRESENT: A2 (id 3, prio 2) determines B (1) as absent
43 TERM: A2 (id 3, prio 2) terminates , enabled = 027
44 PRESENT: A3 (id 4, prio 1) determines D (3) as absent
45 TERM: A3 (id 4, prio 1) terminates , enabled = 07
46 PRESENT: Main (id 1, prio 0) determines T (5) as absent
47 JOIN: Main (id 1, prio 0) does not join
48 PAUSE: Main (id 1, prio 0) pauses, active = 03
49 ==== TICK 0 terminates after 12 instructions, enabled = 07.
50 ==== Resulting signals: <none>, Outputs OK.
51
52 ==== TICK 1 STARTS, inputs = 00, enabled = 07
53 ==== Inputs: <none>
54 ==== Enabled: TickEnd (0), Main (1), A1 (2)
55 EMIT: A1 (id 2, prio 3) emits B (1)
56 TERM: A1 (id 2, prio 3) terminates , enabled = 03
57 PRESENT: Main (id 1, prio 0) determines T (5) as absent
58 JOIN: Main (id 1, prio 0) joins
59 TERM: Main (id 1, prio 0) terminates , enabled = 01
60 ==== TICK 1 terminates after 5 instructions, enabled = 01.
61 ==== Resulting signals: B (1), Outputs OK.
62
63 ==== Executed tickMax = 2 ticks!
64 #### RUN 1 terminates after 17 instructions
65
66 #### All runs terminate, after 40 instructions

B.3 PCO

Listing B.7: PCO.c
1 #include ”sc.h”
2
3 int BUF, fd, i , j , k = 0, tmp, arr [8], idHi = 4;
4 typedef enum { TickEnd, Main, Cons, Obs, Prod } idtype;
5 const int ids [] = { 0, 1, 2, 3, 4 };
6 const char ∗id2threadname[] = { ”TickEnd”, ”Main”, ”Cons”, ”Obs”, ”Prod”

};
7
8 // ====== MAIN FUNCTION ======
9 int main()

10 {
11 int notDone, init = 1;
12
13 do {
14 notDone = tick(init) ; // Call tick function
15 //sleep(1) ; // Slow down by 1 sec
16 init = 0;
17 } while (notDone);
18 return 0;
19 }
20
21 // ====== TICK FUNCTION ======
22 int tick (int isInit)
23 {
24 TICKSTART(isInit); // Main thread
25
26 PCO: PAR(0, Prod, ids [Prod]);
27 PAR(0, Cons, ids[Cons]);
28 PAR(0, Obs, ids[Obs]);
29 PARE(0, Parent, id2b(Prod) | id2b(Cons) | id2b(Obs));
30
31 Prod: for (i = 0; ; i++) { // Producer
32 PAUSE(L0);
33 L0: BUF = i; }
34
35 Cons: for (j = 0; j < 8; j++) // Consumer
36 arr [j] = 0;
37 for (j = 0; ; j++) {
38 PAUSE(L1);
39 L1: tmp = BUF;
40 arr [j % 8] = tmp; }
41

42 Obs: for (; ;) { // Observer
43 PAUSE(L2);
44 L2: fd = BUF;
45 k++; }
46
47 Parent: PAUSE(L3); // Main (cont’d)
48 L3: if (k == 20) // IF iteration limit
49 TRANS(Done); // THEN terminate
50 if (BUF == 10) // IF buffer = 10
51 TRANS(PCO); // THEN restart PCO
52 goto Parent; // ELSE continue
53
54 Done: TERM;
55 TICKEND;
56 }
57
58 // Local Variables :
59 // compile−command: ”make prod−cons; prod−cons”
60 // End:

Listing B.8: PCO.out
1 PAR: Main (id 1, prio 0) forks Prod (4) with prio 0
2 PAR: Main (id 1, prio 0) forks Cons (2) with prio 0
3 PAR: Main (id 1, prio 0) forks Obs (3) with prio 0
4 PARE: Main (id 1, prio 0) has descendants 034
5 PAUSE: Prod (id 4, prio 0) pauses, active = 037
6 PAUSE: Obs (id 3, prio 0) pauses, active = 017
7 PAUSE: Cons (id 2, prio 0) pauses, active = 07
8 PAUSE: Main (id 1, prio 0) pauses, active = 03
9 PAUSE: Prod (id 4, prio 0) pauses, active = 037

10 PAUSE: Obs (id 3, prio 0) pauses, active = 017
11 PAUSE: Cons (id 2, prio 0) pauses, active = 07
12 PAUSE: Main (id 1, prio 0) pauses, active = 03
13 PAUSE: Prod (id 4, prio 0) pauses, active = 037
14 PAUSE: Obs (id 3, prio 0) pauses, active = 017
15 PAUSE: Cons (id 2, prio 0) pauses, active = 07
16 PAUSE: Main (id 1, prio 0) pauses, active = 03
17 PAUSE: Prod (id 4, prio 0) pauses, active = 037
18 PAUSE: Obs (id 3, prio 0) pauses, active = 017
19 PAUSE: Cons (id 2, prio 0) pauses, active = 07
20 PAUSE: Main (id 1, prio 0) pauses, active = 03
21 PAUSE: Prod (id 4, prio 0) pauses, active = 037
22 PAUSE: Obs (id 3, prio 0) pauses, active = 017
23 PAUSE: Cons (id 2, prio 0) pauses, active = 07
24 PAUSE: Main (id 1, prio 0) pauses, active = 03
25 PAUSE: Prod (id 4, prio 0) pauses, active = 037
26 PAUSE: Obs (id 3, prio 0) pauses, active = 017
27 PAUSE: Cons (id 2, prio 0) pauses, active = 07
28 PAUSE: Main (id 1, prio 0) pauses, active = 03
29 PAUSE: Prod (id 4, prio 0) pauses, active = 037
30 PAUSE: Obs (id 3, prio 0) pauses, active = 017
31 PAUSE: Cons (id 2, prio 0) pauses, active = 07
32 PAUSE: Main (id 1, prio 0) pauses, active = 03
33 PAUSE: Prod (id 4, prio 0) pauses, active = 037
34 PAUSE: Obs (id 3, prio 0) pauses, active = 017
35 PAUSE: Cons (id 2, prio 0) pauses, active = 07
36 PAUSE: Main (id 1, prio 0) pauses, active = 03
37 PAUSE: Prod (id 4, prio 0) pauses, active = 037
38 PAUSE: Obs (id 3, prio 0) pauses, active = 017
39 PAUSE: Cons (id 2, prio 0) pauses, active = 07
40 PAUSE: Main (id 1, prio 0) pauses, active = 03
41 PAUSE: Prod (id 4, prio 0) pauses, active = 037
42 PAUSE: Obs (id 3, prio 0) pauses, active = 017
43 PAUSE: Cons (id 2, prio 0) pauses, active = 07
44 PAUSE: Main (id 1, prio 0) pauses, active = 03
45 PAUSE: Prod (id 4, prio 0) pauses, active = 037
46 PAUSE: Obs (id 3, prio 0) pauses, active = 017
47 PAUSE: Cons (id 2, prio 0) pauses, active = 07
48 PAUSE: Main (id 1, prio 0) pauses, active = 03
49 PAUSE: Prod (id 4, prio 0) pauses, active = 037
50 PAUSE: Obs (id 3, prio 0) pauses, active = 017
51 PAUSE: Cons (id 2, prio 0) pauses, active = 07
52 TRANS: Main (id 1, prio 0) transfers , enabled = 03
53 PAR: Main (id 1, prio 0) forks Prod (4) with prio 0
54 PAR: Main (id 1, prio 0) forks Cons (2) with prio 0
55 PAR: Main (id 1, prio 0) forks Obs (3) with prio 0
56 PARE: Main (id 1, prio 0) has descendants 034
57 PAUSE: Prod (id 4, prio 0) pauses, active = 037
58 PAUSE: Obs (id 3, prio 0) pauses, active = 017
59 PAUSE: Cons (id 2, prio 0) pauses, active = 07
60 PAUSE: Main (id 1, prio 0) pauses, active = 03
61 PAUSE: Prod (id 4, prio 0) pauses, active = 037
62 PAUSE: Obs (id 3, prio 0) pauses, active = 017
63 PAUSE: Cons (id 2, prio 0) pauses, active = 07
64 PAUSE: Main (id 1, prio 0) pauses, active = 03
65 PAUSE: Prod (id 4, prio 0) pauses, active = 037
66 PAUSE: Obs (id 3, prio 0) pauses, active = 017

71

67 PAUSE: Cons (id 2, prio 0) pauses, active = 07
68 PAUSE: Main (id 1, prio 0) pauses, active = 03
69 PAUSE: Prod (id 4, prio 0) pauses, active = 037
70 PAUSE: Obs (id 3, prio 0) pauses, active = 017
71 PAUSE: Cons (id 2, prio 0) pauses, active = 07
72 PAUSE: Main (id 1, prio 0) pauses, active = 03
73 PAUSE: Prod (id 4, prio 0) pauses, active = 037
74 PAUSE: Obs (id 3, prio 0) pauses, active = 017
75 PAUSE: Cons (id 2, prio 0) pauses, active = 07
76 PAUSE: Main (id 1, prio 0) pauses, active = 03
77 PAUSE: Prod (id 4, prio 0) pauses, active = 037
78 PAUSE: Obs (id 3, prio 0) pauses, active = 017
79 PAUSE: Cons (id 2, prio 0) pauses, active = 07
80 PAUSE: Main (id 1, prio 0) pauses, active = 03
81 PAUSE: Prod (id 4, prio 0) pauses, active = 037
82 PAUSE: Obs (id 3, prio 0) pauses, active = 017
83 PAUSE: Cons (id 2, prio 0) pauses, active = 07
84 PAUSE: Main (id 1, prio 0) pauses, active = 03
85 PAUSE: Prod (id 4, prio 0) pauses, active = 037
86 PAUSE: Obs (id 3, prio 0) pauses, active = 017
87 PAUSE: Cons (id 2, prio 0) pauses, active = 07
88 PAUSE: Main (id 1, prio 0) pauses, active = 03
89 PAUSE: Prod (id 4, prio 0) pauses, active = 037
90 PAUSE: Obs (id 3, prio 0) pauses, active = 017
91 PAUSE: Cons (id 2, prio 0) pauses, active = 07
92 PAUSE: Main (id 1, prio 0) pauses, active = 03
93 PAUSE: Prod (id 4, prio 0) pauses, active = 037
94 PAUSE: Obs (id 3, prio 0) pauses, active = 017
95 PAUSE: Cons (id 2, prio 0) pauses, active = 07
96 TRANS: Main (id 1, prio 0) transfers , enabled = 03
97 TERM: Main (id 1, prio 0) terminates , enabled = 01

B.4 Count2Suspend

Listing B.9: Count2Suspend.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−5
3 //
4 // rvh, 19 mar 2009
5 #include ”sc.h”
6
7 #define RUNMAX 1 // # of runs to execute
8 #define TICKMAX 10 // # of ticks to execute
9

10 int runMax = RUNMAX; // # of runs to execute
11 int tickMax = TICKMAX; // # of ticks to execute
12
13
14 // ================================
15 // Program−specific definitions
16
17 // Signals
18 typedef enum {T, inhib, reset , B0, B1, C, C0} signaltype ;
19 const char ∗s2signame[] = {”T”, ”inhib”, ”reset”, ”B0”, ”B1”, ”C”, ”C0”};
20
21 // Thread ids
22 // Note: Off0 gets a higher id than Off1 (rather than the other way
23 // around) simply to let Off0 execute first , to make the trace match
24 // the syntactical flow of the program
25 int idHi = 3; // Highest thread id in use
26 typedef enum { TickEnd, Off1, Off0, Main } idtype;
27 const int ids [] = { 0, 1, 2, 3 };
28 const char ∗id2threadname[] = { ”TickEnd”, ”Off1”, ”Off0”, ”Main” };
29
30 // Inputs for RUNMAX runs of TICKMAX ticks
31 signalvector inputs [RUNMAX][TICKMAX] =
32 {{u2b(T), 0, u2b(T), u2b(T) | u2b(inhib) , 0,
33 u2b(T) | u2b(reset) , 0, u2b(T), u2b(T) | u2b(inhib) , u2b(T)}
34 };
35
36 // Expected outputs
37 signalvector outputs[RUNMAX][TICKMAX] =
38 {{0, 0, u2b(B0), 0, u2b(B0),
39 0, 0, u2b(B0), 0, u2b(B1) | u2b(C0)}};
40
41 void getInputs ()
42 {
43 signals = inputs[runCnt][tickCnt];
44 }
45
46 // Set reference outputs and check valued signals , if there are any.
47 // Return 1 unless valued signal outputs are wrong.
48 // No valued signals here , therefore always return 1.
49 int checkOutputs(signalvector ∗tickOutputs)

50 {
51 ∗tickOutputs = outputs[runCnt][tickCnt];
52 return 1;
53 }
54
55 // No valued signals to print
56 void printVal (int id)
57 {
58 }
59
60 // Returns 1 if some thread is still active in current tick
61 int tick (int isInit)
62 {
63 // Thread ids : Off1=1, Off0=2, Main=3
64 TICKSTART(isInit);
65
66 Cnt2: PAR(0, Off0, ids [Off0]) ;
67 PAR(0, Off1, ids [Off1]) ;
68 PARE(0, Cnt2Main, id2b(Off0) | id2b(Off1)) ;
69
70 Off0: PAUSE(L0);
71 L0: PRESENT(T, Off0);
72 On0: EMIT(B0);
73 PAUSE(L1);
74 L1: PRESENT(T, On0);
75 EMIT(C0);
76 GOTO(Off0);
77
78 Off1: PAUSE(L2);
79 L2: PRESENT(C0, Off1);
80 On1: EMIT(B1);
81 PAUSE(L3);
82 L3: PRESENT(C0, On1);
83 EMIT(C);
84 GOTO(Off1);
85
86 Cnt2Main:PAUSE(L4);
87 L4: PRESENT(reset, L5);
88 TRANS(Cnt2);
89 L5: PRESENT(inhib, Cnt2Main);
90 SUSPEND(L5);
91
92 TICKEND;
93 }
94
95 // Local Variables :
96 // compile−command: ”make count2suspend; count2suspend”
97 // End:

Listing B.10: Count2Suspend.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 01, enabled = 00
3 ==== Inputs: T (0)
4 ==== Enabled: <none>
5 PAR: Main (id 3, prio 0) forks Off0 (2) with prio 0
6 PAR: Main (id 3, prio 0) forks Off1 (1) with prio 0
7 PARE: Main (id 3, prio 0) has descendants 06
8 PAUSE: Main (id 3, prio 0) pauses, active = 017
9 PAUSE: Off0 (id 2, prio 0) pauses, active = 07

10 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
11 ==== TICK 0 terminates after 6 instructions, enabled = 017.
12 ==== Resulting signals: T (0), Outputs OK.
13
14 ==== TICK 1 STARTS, inputs = 00, enabled = 017
15 ==== Inputs: <none>
16 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
17 PRESENT: Main (id 3, prio 0) determines reset (2) as absent
18 PRESENT: Main (id 3, prio 0) determines inhib (1) as absent
19 PAUSE: Main (id 3, prio 0) pauses, active = 017
20 PRESENT: Off0 (id 2, prio 0) determines T (0) as absent
21 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
22 PRESENT: Off1 (id 1, prio 0) determines C0 (6) as absent
23 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
24 ==== TICK 1 terminates after 7 instructions, enabled = 017.
25 ==== Resulting signals: <none>, Outputs OK.
26
27 ==== TICK 2 STARTS, inputs = 01, enabled = 017
28 ==== Inputs: T (0)
29 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
30 PRESENT: Main (id 3, prio 0) determines reset (2) as absent
31 PRESENT: Main (id 3, prio 0) determines inhib (1) as absent
32 PAUSE: Main (id 3, prio 0) pauses, active = 017
33 PRESENT: Off0 (id 2, prio 0) determines T (0) as present
34 EMIT: Off0 (id 2, prio 0) emits B0 (3)
35 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
36 PRESENT: Off1 (id 1, prio 0) determines C0 (6) as absent
37 PAUSE: Off1 (id 1, prio 0) pauses, active = 03

72

38 ==== TICK 2 terminates after 8 instructions, enabled = 017.
39 ==== Resulting signals: T (0), B0 (3), Outputs OK.
40
41 ==== TICK 3 STARTS, inputs = 03, enabled = 017
42 ==== Inputs: T (0), inhib (1)
43 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
44 PRESENT: Main (id 3, prio 0) determines reset (2) as absent
45 PRESENT: Main (id 3, prio 0) determines inhib (1) as present
46 SUSPEND: Main (id 3, prio 0) suspends itself and descendants 06
47 PAUSE: Main (id 3, prio 0) pauses, active = 011
48 ==== TICK 3 terminates after 3 instructions, enabled = 017.
49 ==== Resulting signals: T (0), inhib (1) , Outputs OK.
50
51 ==== TICK 4 STARTS, inputs = 00, enabled = 017
52 ==== Inputs: <none>
53 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
54 PRESENT: Main (id 3, prio 0) determines inhib (1) as absent
55 PAUSE: Main (id 3, prio 0) pauses, active = 017
56 PRESENT: Off0 (id 2, prio 0) determines T (0) as absent
57 EMIT: Off0 (id 2, prio 0) emits B0 (3)
58 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
59 PRESENT: Off1 (id 1, prio 0) determines C0 (6) as absent
60 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
61 ==== TICK 4 terminates after 7 instructions, enabled = 017.
62 ==== Resulting signals: B0 (3), Outputs OK.
63
64 ==== TICK 5 STARTS, inputs = 05, enabled = 017
65 ==== Inputs: T (0), reset (2)
66 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
67 PRESENT: Main (id 3, prio 0) determines reset (2) as present
68 TRANS: Main (id 3, prio 0) transfers , enabled = 011
69 PAR: Main (id 3, prio 0) forks Off0 (2) with prio 0
70 PAR: Main (id 3, prio 0) forks Off1 (1) with prio 0
71 PARE: Main (id 3, prio 0) has descendants 06
72 PAUSE: Main (id 3, prio 0) pauses, active = 017
73 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
74 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
75 ==== TICK 5 terminates after 8 instructions, enabled = 017.
76 ==== Resulting signals: T (0), reset (2) , Outputs OK.
77
78 ==== TICK 6 STARTS, inputs = 00, enabled = 017
79 ==== Inputs: <none>
80 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
81 PRESENT: Main (id 3, prio 0) determines reset (2) as absent
82 PRESENT: Main (id 3, prio 0) determines inhib (1) as absent
83 PAUSE: Main (id 3, prio 0) pauses, active = 017
84 PRESENT: Off0 (id 2, prio 0) determines T (0) as absent
85 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
86 PRESENT: Off1 (id 1, prio 0) determines C0 (6) as absent
87 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
88 ==== TICK 6 terminates after 7 instructions, enabled = 017.
89 ==== Resulting signals: <none>, Outputs OK.
90
91 ==== TICK 7 STARTS, inputs = 01, enabled = 017
92 ==== Inputs: T (0)
93 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
94 PRESENT: Main (id 3, prio 0) determines reset (2) as absent
95 PRESENT: Main (id 3, prio 0) determines inhib (1) as absent
96 PAUSE: Main (id 3, prio 0) pauses, active = 017
97 PRESENT: Off0 (id 2, prio 0) determines T (0) as present
98 EMIT: Off0 (id 2, prio 0) emits B0 (3)
99 PAUSE: Off0 (id 2, prio 0) pauses, active = 07

100 PRESENT: Off1 (id 1, prio 0) determines C0 (6) as absent
101 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
102 ==== TICK 7 terminates after 8 instructions, enabled = 017.
103 ==== Resulting signals: T (0), B0 (3), Outputs OK.
104
105 ==== TICK 8 STARTS, inputs = 03, enabled = 017
106 ==== Inputs: T (0), inhib (1)
107 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
108 PRESENT: Main (id 3, prio 0) determines reset (2) as absent
109 PRESENT: Main (id 3, prio 0) determines inhib (1) as present
110 SUSPEND: Main (id 3, prio 0) suspends itself and descendants 06
111 PAUSE: Main (id 3, prio 0) pauses, active = 011
112 ==== TICK 8 terminates after 3 instructions, enabled = 017.
113 ==== Resulting signals: T (0), inhib (1) , Outputs OK.
114
115 ==== TICK 9 STARTS, inputs = 01, enabled = 017
116 ==== Inputs: T (0)
117 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Main (3)
118 PRESENT: Main (id 3, prio 0) determines inhib (1) as absent
119 PAUSE: Main (id 3, prio 0) pauses, active = 017
120 PRESENT: Off0 (id 2, prio 0) determines T (0) as present
121 EMIT: Off0 (id 2, prio 0) emits C0 (6)
122 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
123 PRESENT: Off1 (id 1, prio 0) determines C0 (6) as present
124 EMIT: Off1 (id 1, prio 0) emits B1 (4)
125 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
126 ==== TICK 9 terminates after 9 instructions, enabled = 017.

127 ==== Resulting signals: T (0), B1 (4), C0 (6), Outputs OK.
128
129 ==== Executed tickMax = 10 ticks!
130 #### RUN 0 terminates after 66 instructions
131
132 #### All runs terminate, after 66 instructions

B.5 Exits

Listing B.11: Exits.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−8
3 //
4 // rvh, 20 mar 2009
5
6 // This example demonstrates how to implement Exit Actions
7
8 #define USEPRIO // Select appropriate dispatcher
9 #include ”sc.h”

10
11 #define RUNMAX 2 // # of runs to execute
12 #define TICKMAX 4 // # of ticks to execute
13
14 int runMax = RUNMAX; // # of runs to execute
15 int tickMax = TICKMAX; // # of ticks to execute
16
17
18 // ================================
19 // Program−specific definitions
20
21 // Signals
22 typedef enum {A, B, R, X0, X2, X10, X11, Y0, Y1, Y2, Z} signaltype;
23 const char ∗s2signame[] = {”A”, ”B”, ”R”, ”X0”, ”X2”, ”X10”, ”X11”,
24 ”Y0”, ”Y1”, ”Y2”, ”Z”};
25
26 // Thread ids
27 int idHi = 4; // Highest thread id in use
28 typedef enum { TickEnd, M11, M10, M2, Main } idtype;
29 const int ids [] = { 0, 1, 2, 3, 4 };
30 const char ∗id2threadname[] = { ”TickEnd”, ”M11”, ”M10”, ”M2”, ”Main” };
31
32 // Inputs for RUNMAX runs of TICKMAX ticks
33 signalvector inputs [RUNMAX][TICKMAX] =
34 {{0, u2b(B), u2b(R), u2b(A)},
35 {0, u2b(R), 0, u2b(A) | u2b(B)}};
36
37 // Expected outputs
38 signalvector outputs[RUNMAX][TICKMAX] =
39 {{0, u2b(Y2) | u2b(X2) | u2b(Y1) | u2b(X11),
40 u2b(Z) | u2b(Y0) | u2b(X0), u2b(Y2) | u2b(Y1) | u2b(X10)},
41 {0, u2b(Y2) | u2b(Z) | u2b(Y1) | u2b(Y0) | u2b(X0), 0, u2b(Y2) | u2b(Y1)

| u2b(X10)}};
42
43 void getInputs ()
44 {
45 signals = inputs[runCnt][tickCnt];
46 }
47
48 // Set reference outputs and check valued signals , if there are any.
49 // Return 1 unless valued signal outputs are wrong.
50 // No valued signals here , therefore always return 1.
51 int checkOutputs(signalvector ∗tickOutputs)
52 {
53 ∗tickOutputs = outputs[runCnt][tickCnt];
54 return 1;
55 }
56
57 // No valued signals to print
58 void printVal (int id)
59 {
60 }
61
62
63 // Returns 1 if some thread is still active in current tick
64 // Notes:
65 // − CALL calls exit actions unconditionally
66 // − ISATCALL calls exit actions if the corresponding state is active
67 // (and now gets aborted)
68 // − At L2, we set the priority low (0) for M10main, so that
69 // it executes the \codefont{JOIN} at the end of a tick .
70 // − At M10main, we set the priority high (1) for M10depth, so that it
71 // checks for a strong abort at the beginning of a tick .
72 int tick (int isInit)
73 {

73

74 // Thread ids : M11=1, M10=2, M2=3, Main=4
75 TICKSTART(isInit);
76 M0: PAR(0, M10, ids[M10]);
77 PAR(0, M11, ids[M11]);
78 PARE(1, M0main, id2b(M10) | id2b(M11) | id2b(M2));
79
80 M10: PAR(0, M2, ids[M2]);
81 PARE(0, M10main, id2b(M2));
82
83 M2: PAUSE(M2depth);
84 M2depth:PRESENT(B, M2);
85 CALL(M2exit, L1);
86 M2exit: EMIT(Y2);
87 RET;
88 L1: EMIT(X2);
89 TERM;
90
91 L2: PRIO(0, M10main);
92 M10main:JPPAUSE(1, L3, M10depth);
93 L3: ISATCALL(ids[M2], M2depth, M2exit, L4);
94 L4: CALL(M10exit, L5);
95 M10exit:EMIT(Y1);
96 RET;
97 L5: EMIT(X11);
98 TRANS(Done);
99 M10depth:PRESENT(A, L2);

100 ISATCALL(ids[M2], M2depth, M2exit, L7);
101 L7: CALL(M10exit, L8);
102 L8: EMIT(X10);
103 TRANS(Done);
104 Done: PAUSE(Done);
105
106 M11: PAUSE(M11);
107 M11exit:EMIT(Z);
108 RET;
109
110 M0main: PAUSE(L9);
111 L9: PRESENT(R, M0main);
112 ISATCALL(ids[M2], M2depth, M2exit, L10);
113 L10: ISATCALL(ids[M10], M10depth, M10exit, L11);
114 L11: CALL(M11exit, L12);
115 L12: EMIT(Y0); // Only place to call exit action of M0
116 EMIT(X0);
117 TRANS(M0);
118
119 TICKEND;
120 }
121
122 // Local Variables :
123 // compile−command: ”make exits; exits”
124 // End:

Listing B.12: Exits.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 4, prio 0) forks M10 (2) with prio 0
6 PAR: Main (id 4, prio 0) forks M11 (1) with prio 0
7 PARE: Main (id 4, prio 0) has descendants 016
8 PAUSE: Main (id 4, prio 1) pauses, active = 027
9 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0

10 PARE: M10 (id 2, prio 0) has descendants 010
11 PAUSE: M2 (id 3, prio 0) pauses, active = 017
12 JPPAUSE: M10 (id 2, prio 0) does not join
13 PPAUSE: M10 (id 2, prio 0) sets prio to 1
14 PAUSE: M10 (id 2, prio 1) pauses, active = 07
15 PAUSE: M11 (id 1, prio 0) pauses, active = 03
16 ==== TICK 0 terminates after 9 instructions, enabled = 037.
17 ==== Resulting signals: <none>, Outputs OK.
18
19 ==== TICK 1 STARTS, inputs = 02, enabled = 037
20 ==== Inputs: B (1)
21 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
22 PRESENT: Main (id 4, prio 1) determines R (2) as absent
23 PAUSE: Main (id 4, prio 1) pauses, active = 037
24 PRESENT: M10 (id 2, prio 1) determines A (0) as absent
25 PRIO: M10 (id 2, prio 1) set to priority 0
26 PRESENT: M2 (id 3, prio 0) determines B (1) as present
27 CALL: M2 (id 3, prio 0) calls function
28 EMIT: M2 (id 3, prio 0) emits Y2 (9)
29 RET: M2 (id 3, prio 0) returns from function
30 EMIT: M2 (id 3, prio 0) emits X2 (4)
31 TERM: M2 (id 3, prio 0) terminates , enabled = 027
32 JPPAUSE: M10 (id 2, prio 0) joins
33 ISATCALL:M10 (id 2, prio 0) does not call function
34 CALL: M10 (id 2, prio 0) calls function

35 EMIT: M10 (id 2, prio 0) emits Y1 (8)
36 RET: M10 (id 2, prio 0) returns from function
37 EMIT: M10 (id 2, prio 0) emits X11 (6)
38 TRANS: M10 (id 2, prio 0) transfers , enabled = 027
39 PAUSE: M10 (id 2, prio 0) pauses, active = 07
40 PAUSE: M11 (id 1, prio 0) pauses, active = 03
41 ==== TICK 1 terminates after 19 instructions, enabled = 027.
42 ==== Resulting signals: B (1), X2 (4), X11 (6), Y1 (8), Y2 (9), Outputs OK

.
43
44 ==== TICK 2 STARTS, inputs = 04, enabled = 027
45 ==== Inputs: R (2)
46 ==== Enabled: TickEnd (0), M11 (1), M10 (2), Main (4)
47 PRESENT: Main (id 4, prio 1) determines R (2) as present
48 ISATCALL:Main (id 4, prio 1) does not call function
49 ISATCALL:Main (id 4, prio 1) does not call function
50 CALL: Main (id 4, prio 1) calls function
51 EMIT: Main (id 4, prio 1) emits Z (10)
52 RET: Main (id 4, prio 1) returns from function
53 EMIT: Main (id 4, prio 1) emits Y0 (7)
54 EMIT: Main (id 4, prio 1) emits X0 (3)
55 TRANS: Main (id 4, prio 1) transfers , enabled = 021
56 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
57 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
58 PARE: Main (id 4, prio 1) has descendants 016
59 PAUSE: Main (id 4, prio 1) pauses, active = 027
60 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
61 PARE: M10 (id 2, prio 0) has descendants 010
62 PAUSE: M2 (id 3, prio 0) pauses, active = 017
63 JPPAUSE: M10 (id 2, prio 0) does not join
64 PPAUSE: M10 (id 2, prio 0) sets prio to 1
65 PAUSE: M10 (id 2, prio 1) pauses, active = 07
66 PAUSE: M11 (id 1, prio 0) pauses, active = 03
67 ==== TICK 2 terminates after 18 instructions, enabled = 037.
68 ==== Resulting signals: R (2), X0 (3), Y0 (7), Z (10), Outputs OK.
69
70 ==== TICK 3 STARTS, inputs = 01, enabled = 037
71 ==== Inputs: A (0)
72 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
73 PRESENT: Main (id 4, prio 1) determines R (2) as absent
74 PAUSE: Main (id 4, prio 1) pauses, active = 037
75 PRESENT: M10 (id 2, prio 1) determines A (0) as present
76 ISATCALL:M10 (id 2, prio 1) does call function
77 EMIT: M10 (id 2, prio 1) emits Y2 (9)
78 RET: M10 (id 2, prio 1) returns from function
79 CALL: M10 (id 2, prio 1) calls function
80 EMIT: M10 (id 2, prio 1) emits Y1 (8)
81 RET: M10 (id 2, prio 1) returns from function
82 EMIT: M10 (id 2, prio 1) emits X10 (5)
83 TRANS: M10 (id 2, prio 1) transfers , enabled = 027
84 PAUSE: M10 (id 2, prio 1) pauses, active = 07
85 PAUSE: M11 (id 1, prio 0) pauses, active = 03
86 ==== TICK 3 terminates after 13 instructions, enabled = 027.
87 ==== Resulting signals: A (0), X10 (5), Y1 (8), Y2 (9), Outputs OK.
88
89 ==== Executed tickMax = 4 ticks!
90 #### RUN 0 terminates after 59 instructions
91
92 #### RUN 1 STARTS #############
93 ==== TICK 0 STARTS, inputs = 00, enabled = 00
94 ==== Inputs: <none>
95 ==== Enabled: <none>
96 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
97 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
98 PARE: Main (id 4, prio 1) has descendants 016
99 PAUSE: Main (id 4, prio 1) pauses, active = 027

100 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
101 PARE: M10 (id 2, prio 0) has descendants 010
102 PAUSE: M2 (id 3, prio 0) pauses, active = 017
103 JPPAUSE: M10 (id 2, prio 0) does not join
104 PPAUSE: M10 (id 2, prio 0) sets prio to 1
105 PAUSE: M10 (id 2, prio 1) pauses, active = 07
106 PAUSE: M11 (id 1, prio 0) pauses, active = 03
107 ==== TICK 0 terminates after 9 instructions, enabled = 037.
108 ==== Resulting signals: <none>, Outputs OK.
109
110 ==== TICK 1 STARTS, inputs = 04, enabled = 037
111 ==== Inputs: R (2)
112 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
113 PRESENT: Main (id 4, prio 1) determines R (2) as present
114 ISATCALL:Main (id 4, prio 1) does call function
115 EMIT: Main (id 4, prio 1) emits Y2 (9)
116 RET: Main (id 4, prio 1) returns from function
117 ISATCALL:Main (id 4, prio 1) does call function
118 EMIT: Main (id 4, prio 1) emits Y1 (8)
119 RET: Main (id 4, prio 1) returns from function
120 CALL: Main (id 4, prio 1) calls function
121 EMIT: Main (id 4, prio 1) emits Z (10)
122 RET: Main (id 4, prio 1) returns from function

74

123 EMIT: Main (id 4, prio 1) emits Y0 (7)
124 EMIT: Main (id 4, prio 1) emits X0 (3)
125 TRANS: Main (id 4, prio 1) transfers , enabled = 021
126 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
127 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
128 PARE: Main (id 4, prio 1) has descendants 016
129 PAUSE: Main (id 4, prio 1) pauses, active = 027
130 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
131 PARE: M10 (id 2, prio 0) has descendants 010
132 PAUSE: M2 (id 3, prio 0) pauses, active = 017
133 JPPAUSE: M10 (id 2, prio 0) does not join
134 PPAUSE: M10 (id 2, prio 0) sets prio to 1
135 PAUSE: M10 (id 2, prio 1) pauses, active = 07
136 PAUSE: M11 (id 1, prio 0) pauses, active = 03
137 ==== TICK 1 terminates after 22 instructions, enabled = 037.
138 ==== Resulting signals: R (2), X0 (3), Y0 (7), Y1 (8), Y2 (9), Z (10),

Outputs OK.
139
140 ==== TICK 2 STARTS, inputs = 00, enabled = 037
141 ==== Inputs: <none>
142 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
143 PRESENT: Main (id 4, prio 1) determines R (2) as absent
144 PAUSE: Main (id 4, prio 1) pauses, active = 037
145 PRESENT: M10 (id 2, prio 1) determines A (0) as absent
146 PRIO: M10 (id 2, prio 1) set to priority 0
147 PRESENT: M2 (id 3, prio 0) determines B (1) as absent
148 PAUSE: M2 (id 3, prio 0) pauses, active = 017
149 JPPAUSE: M10 (id 2, prio 0) does not join
150 PPAUSE: M10 (id 2, prio 0) sets prio to 1
151 PAUSE: M10 (id 2, prio 1) pauses, active = 07
152 PAUSE: M11 (id 1, prio 0) pauses, active = 03
153 ==== TICK 2 terminates after 8 instructions, enabled = 037.
154 ==== Resulting signals: <none>, Outputs OK.
155
156 ==== TICK 3 STARTS, inputs = 03, enabled = 037
157 ==== Inputs: A (0), B (1)
158 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
159 PRESENT: Main (id 4, prio 1) determines R (2) as absent
160 PAUSE: Main (id 4, prio 1) pauses, active = 037
161 PRESENT: M10 (id 2, prio 1) determines A (0) as present
162 ISATCALL:M10 (id 2, prio 1) does call function
163 EMIT: M10 (id 2, prio 1) emits Y2 (9)
164 RET: M10 (id 2, prio 1) returns from function
165 CALL: M10 (id 2, prio 1) calls function
166 EMIT: M10 (id 2, prio 1) emits Y1 (8)
167 RET: M10 (id 2, prio 1) returns from function
168 EMIT: M10 (id 2, prio 1) emits X10 (5)
169 TRANS: M10 (id 2, prio 1) transfers , enabled = 027
170 PAUSE: M10 (id 2, prio 1) pauses, active = 07
171 PAUSE: M11 (id 1, prio 0) pauses, active = 03
172 ==== TICK 3 terminates after 13 instructions, enabled = 027.
173 ==== Resulting signals: A (0), B (1), X10 (5), Y1 (8), Y2 (9), Outputs OK.
174
175 ==== Executed tickMax = 4 ticks!
176 #### RUN 1 terminates after 52 instructions
177
178 #### All runs terminate, after 111 instructions

B.6 Exits-no-isatcall

Listing B.13: Exits-no-isatcall.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−8
3 //
4 // rvh, 20 mar 2009
5
6 // This example demonstrates how to implement Exit Actions
7
8 #define USEPRIO // Select appropriate dispatcher
9 #include ”sc.h”

10
11 #define RUNMAX 2 // # of runs to execute
12 #define TICKMAX 4 // # of ticks to execute
13
14 int runMax = RUNMAX; // # of runs to execute
15 int tickMax = TICKMAX; // # of ticks to execute
16
17
18 // ================================
19 // Program−specific definitions
20
21 // Signals
22 typedef enum {A, B, R, X0, X2, X10, X11, Y0, Y1, Y2, Z} signaltype;
23 const char ∗s2signame[] = {”A”, ”B”, ”R”, ”X0”, ”X2”, ”X10”, ”X11”,

24 ”Y0”, ”Y1”, ”Y2”, ”Z”};
25
26 // Thread ids
27 int idHi = 4; // Highest thread id in use
28 typedef enum { TickEnd, M11, M10, M2, Main } idtype;
29 const int ids [] = { 0, 1, 2, 3, 4 };
30 const char ∗id2threadname[] = { ”TickEnd”, ”M11”, ”M10”, ”M2”, ”Main” };
31
32 // Inputs for RUNMAX runs of TICKMAX ticks
33 signalvector inputs [RUNMAX][TICKMAX] =
34 {{0, u2b(B), u2b(R), u2b(A)},
35 {0, u2b(R), 0, u2b(A) | u2b(B)}};
36
37 // Expected outputs
38 signalvector outputs[RUNMAX][TICKMAX] =
39 {{0, u2b(Y2) | u2b(X2) | u2b(Y1) | u2b(X11),
40 u2b(Z) | u2b(Y0) | u2b(X0), u2b(Y2) | u2b(Y1) | u2b(X10)},
41 {0, u2b(Y2) | u2b(Z) | u2b(Y1) | u2b(Y0) | u2b(X0), 0, u2b(Y2) | u2b(Y1)

| u2b(X10)}};
42
43 void getInputs ()
44 {
45 signals = inputs[runCnt][tickCnt];
46 }
47
48 // Set reference outputs and check valued signals , if there are any.
49 // Return 1 unless valued signal outputs are wrong.
50 // No valued signals here , therefore always return 1.
51 int checkOutputs(signalvector ∗tickOutputs)
52 {
53 ∗tickOutputs = outputs[runCnt][tickCnt];
54 return 1;
55 }
56
57 // No valued signals to print
58 void printVal (int id)
59 {
60 }
61
62 // Returns 1 if some thread is still active in current tick
63 // Notes:
64 // − CALL calls exit actions unconditionally
65 // − CHKCALL calls exit actions if the corresponding state is active
66 // (and now gets aborted)
67 // − At L2, we set the priority low (0) for M10main, so that
68 // it executes the \codefont{JOIN} at the end of a tick .
69 // − At M10main, we set the priority high (1) for M10depth, so that it
70 // checks for a strong abort at the beginning of a tick .
71 int tick (int isInit)
72 {
73 // Thread ids : M11=1, M10=2, M2=3, Main=4
74 TICKSTART(isInit);
75 M0: PAR(0, M10, ids[M10]);
76 PAR(0, M11, ids[M11]);
77 PARE(1, M0main, id2b(M10) | id2b(M11) | id2b(M2));
78
79 M10: PAR(0, M2, ids[M2]);
80 PARE(0, M10main, id2b(M2));
81
82 M2: PAUSE(M2depth);
83 M2depth:PRESENT(B, M2);
84 CALL(M2exit, L1);
85 M2exit: EMIT(Y2);
86 RET;
87 L1: EMIT(X2);
88 TERM;
89
90 L2: PRIO(0, M10main);
91 M10main:JPPAUSE(1, L3, M10depth);
92 L3: ISAT(ids[M2], M2depth, L4);
93 CALL(M2exit, L4);
94 L4: CALL(M10exit, L5);
95 M10exit:EMIT(Y1);
96 RET;
97 L5: EMIT(X11);
98 TRANS(Done);
99 M10depth:PRESENT(A, L2);

100 ISAT(ids[M2], M2depth, L7);
101 CALL(M2exit, L7);
102 L7: CALL(M10exit, L8);
103 L8: EMIT(X10);
104 TRANS(Done);
105 Done: PAUSE(Done);
106
107 M11: PAUSE(M11);
108 M11exit:EMIT(Z);
109 RET;
110
111 M0main: PAUSE(L9);

75

112 L9: PRESENT(R, M0main);
113 ISAT(ids[M2], M2depth, L10);
114 CALL(M2exit, L10);
115 L10: ISAT(ids[M10], M10depth, L11);
116 CALL(M10exit, L11);
117 L11: CALL(M11exit, L12);
118 L12: EMIT(Y0);
119 EMIT(X0);
120 TRANS(M0);
121
122 TICKEND;
123 }
124
125 // Local Variables :
126 // compile−command: ”make exits; exits”
127 // End:

Listing B.14: Exits-no-isatcall.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 4, prio 0) forks M10 (2) with prio 0
6 PAR: Main (id 4, prio 0) forks M11 (1) with prio 0
7 PARE: Main (id 4, prio 0) has descendants 016
8 PAUSE: Main (id 4, prio 1) pauses, active = 027
9 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0

10 PARE: M10 (id 2, prio 0) has descendants 010
11 PAUSE: M2 (id 3, prio 0) pauses, active = 017
12 JPPAUSE: M10 (id 2, prio 0) does not join
13 PPAUSE: M10 (id 2, prio 0) sets prio to 1
14 PAUSE: M10 (id 2, prio 1) pauses, active = 07
15 PAUSE: M11 (id 1, prio 0) pauses, active = 03
16 ==== TICK 0 terminates after 9 instructions, enabled = 037.
17 ==== Resulting signals: <none>, Outputs OK.
18
19 ==== TICK 1 STARTS, inputs = 02, enabled = 037
20 ==== Inputs: B (1)
21 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
22 PRESENT: Main (id 4, prio 1) determines R (2) as absent
23 PAUSE: Main (id 4, prio 1) pauses, active = 037
24 PRESENT: M10 (id 2, prio 1) determines A (0) as absent
25 PRIO: M10 (id 2, prio 1) set to priority 0
26 PRESENT: M2 (id 3, prio 0) determines B (1) as present
27 CALL: M2 (id 3, prio 0) calls function
28 EMIT: M2 (id 3, prio 0) emits Y2 (9)
29 RET: M2 (id 3, prio 0) returns from function
30 EMIT: M2 (id 3, prio 0) emits X2 (4)
31 TERM: M2 (id 3, prio 0) terminates , enabled = 027
32 JPPAUSE: M10 (id 2, prio 0) joins
33 ISAT: M10 (id 2, prio 0) is not at probed label
34 CALL: M10 (id 2, prio 0) calls function
35 EMIT: M10 (id 2, prio 0) emits Y1 (8)
36 RET: M10 (id 2, prio 0) returns from function
37 EMIT: M10 (id 2, prio 0) emits X11 (6)
38 TRANS: M10 (id 2, prio 0) transfers , enabled = 027
39 PAUSE: M10 (id 2, prio 0) pauses, active = 07
40 PAUSE: M11 (id 1, prio 0) pauses, active = 03
41 ==== TICK 1 terminates after 19 instructions, enabled = 027.
42 ==== Resulting signals: B (1), X2 (4), X11 (6), Y1 (8), Y2 (9), Outputs OK

.
43
44 ==== TICK 2 STARTS, inputs = 04, enabled = 027
45 ==== Inputs: R (2)
46 ==== Enabled: TickEnd (0), M11 (1), M10 (2), Main (4)
47 PRESENT: Main (id 4, prio 1) determines R (2) as present
48 ISAT: Main (id 4, prio 1) is not at probed label
49 ISAT: Main (id 4, prio 1) is not at probed label
50 CALL: Main (id 4, prio 1) calls function
51 EMIT: Main (id 4, prio 1) emits Z (10)
52 RET: Main (id 4, prio 1) returns from function
53 EMIT: Main (id 4, prio 1) emits Y0 (7)
54 EMIT: Main (id 4, prio 1) emits X0 (3)
55 TRANS: Main (id 4, prio 1) transfers , enabled = 021
56 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
57 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
58 PARE: Main (id 4, prio 1) has descendants 016
59 PAUSE: Main (id 4, prio 1) pauses, active = 027
60 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
61 PARE: M10 (id 2, prio 0) has descendants 010
62 PAUSE: M2 (id 3, prio 0) pauses, active = 017
63 JPPAUSE: M10 (id 2, prio 0) does not join
64 PPAUSE: M10 (id 2, prio 0) sets prio to 1
65 PAUSE: M10 (id 2, prio 1) pauses, active = 07
66 PAUSE: M11 (id 1, prio 0) pauses, active = 03
67 ==== TICK 2 terminates after 18 instructions, enabled = 037.
68 ==== Resulting signals: R (2), X0 (3), Y0 (7), Z (10), Outputs OK.

69
70 ==== TICK 3 STARTS, inputs = 01, enabled = 037
71 ==== Inputs: A (0)
72 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
73 PRESENT: Main (id 4, prio 1) determines R (2) as absent
74 PAUSE: Main (id 4, prio 1) pauses, active = 037
75 PRESENT: M10 (id 2, prio 1) determines A (0) as present
76 ISAT: M10 (id 2, prio 1) is at probed label
77 CALL: M10 (id 2, prio 1) calls function
78 EMIT: M10 (id 2, prio 1) emits Y2 (9)
79 RET: M10 (id 2, prio 1) returns from function
80 CALL: M10 (id 2, prio 1) calls function
81 EMIT: M10 (id 2, prio 1) emits Y1 (8)
82 RET: M10 (id 2, prio 1) returns from function
83 EMIT: M10 (id 2, prio 1) emits X10 (5)
84 TRANS: M10 (id 2, prio 1) transfers , enabled = 027
85 PAUSE: M10 (id 2, prio 1) pauses, active = 07
86 PAUSE: M11 (id 1, prio 0) pauses, active = 03
87 ==== TICK 3 terminates after 14 instructions, enabled = 027.
88 ==== Resulting signals: A (0), X10 (5), Y1 (8), Y2 (9), Outputs OK.
89
90 ==== Executed tickMax = 4 ticks!
91 #### RUN 0 terminates after 60 instructions
92
93 #### RUN 1 STARTS #############
94 ==== TICK 0 STARTS, inputs = 00, enabled = 00
95 ==== Inputs: <none>
96 ==== Enabled: <none>
97 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
98 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
99 PARE: Main (id 4, prio 1) has descendants 016

100 PAUSE: Main (id 4, prio 1) pauses, active = 027
101 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
102 PARE: M10 (id 2, prio 0) has descendants 010
103 PAUSE: M2 (id 3, prio 0) pauses, active = 017
104 JPPAUSE: M10 (id 2, prio 0) does not join
105 PPAUSE: M10 (id 2, prio 0) sets prio to 1
106 PAUSE: M10 (id 2, prio 1) pauses, active = 07
107 PAUSE: M11 (id 1, prio 0) pauses, active = 03
108 ==== TICK 0 terminates after 9 instructions, enabled = 037.
109 ==== Resulting signals: <none>, Outputs OK.
110
111 ==== TICK 1 STARTS, inputs = 04, enabled = 037
112 ==== Inputs: R (2)
113 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
114 PRESENT: Main (id 4, prio 1) determines R (2) as present
115 ISAT: Main (id 4, prio 1) is at probed label
116 CALL: Main (id 4, prio 1) calls function
117 EMIT: Main (id 4, prio 1) emits Y2 (9)
118 RET: Main (id 4, prio 1) returns from function
119 ISAT: Main (id 4, prio 1) is at probed label
120 CALL: Main (id 4, prio 1) calls function
121 EMIT: Main (id 4, prio 1) emits Y1 (8)
122 RET: Main (id 4, prio 1) returns from function
123 CALL: Main (id 4, prio 1) calls function
124 EMIT: Main (id 4, prio 1) emits Z (10)
125 RET: Main (id 4, prio 1) returns from function
126 EMIT: Main (id 4, prio 1) emits Y0 (7)
127 EMIT: Main (id 4, prio 1) emits X0 (3)
128 TRANS: Main (id 4, prio 1) transfers , enabled = 021
129 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
130 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
131 PARE: Main (id 4, prio 1) has descendants 016
132 PAUSE: Main (id 4, prio 1) pauses, active = 027
133 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
134 PARE: M10 (id 2, prio 0) has descendants 010
135 PAUSE: M2 (id 3, prio 0) pauses, active = 017
136 JPPAUSE: M10 (id 2, prio 0) does not join
137 PPAUSE: M10 (id 2, prio 0) sets prio to 1
138 PAUSE: M10 (id 2, prio 1) pauses, active = 07
139 PAUSE: M11 (id 1, prio 0) pauses, active = 03
140 ==== TICK 1 terminates after 24 instructions, enabled = 037.
141 ==== Resulting signals: R (2), X0 (3), Y0 (7), Y1 (8), Y2 (9), Z (10),

Outputs OK.
142
143 ==== TICK 2 STARTS, inputs = 00, enabled = 037
144 ==== Inputs: <none>
145 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
146 PRESENT: Main (id 4, prio 1) determines R (2) as absent
147 PAUSE: Main (id 4, prio 1) pauses, active = 037
148 PRESENT: M10 (id 2, prio 1) determines A (0) as absent
149 PRIO: M10 (id 2, prio 1) set to priority 0
150 PRESENT: M2 (id 3, prio 0) determines B (1) as absent
151 PAUSE: M2 (id 3, prio 0) pauses, active = 017
152 JPPAUSE: M10 (id 2, prio 0) does not join
153 PPAUSE: M10 (id 2, prio 0) sets prio to 1
154 PAUSE: M10 (id 2, prio 1) pauses, active = 07
155 PAUSE: M11 (id 1, prio 0) pauses, active = 03
156 ==== TICK 2 terminates after 8 instructions, enabled = 037.

76

157 ==== Resulting signals: <none>, Outputs OK.
158
159 ==== TICK 3 STARTS, inputs = 03, enabled = 037
160 ==== Inputs: A (0), B (1)
161 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
162 PRESENT: Main (id 4, prio 1) determines R (2) as absent
163 PAUSE: Main (id 4, prio 1) pauses, active = 037
164 PRESENT: M10 (id 2, prio 1) determines A (0) as present
165 ISAT: M10 (id 2, prio 1) is at probed label
166 CALL: M10 (id 2, prio 1) calls function
167 EMIT: M10 (id 2, prio 1) emits Y2 (9)
168 RET: M10 (id 2, prio 1) returns from function
169 CALL: M10 (id 2, prio 1) calls function
170 EMIT: M10 (id 2, prio 1) emits Y1 (8)
171 RET: M10 (id 2, prio 1) returns from function
172 EMIT: M10 (id 2, prio 1) emits X10 (5)
173 TRANS: M10 (id 2, prio 1) transfers , enabled = 027
174 PAUSE: M10 (id 2, prio 1) pauses, active = 07
175 PAUSE: M11 (id 1, prio 0) pauses, active = 03
176 ==== TICK 3 terminates after 14 instructions, enabled = 027.
177 ==== Resulting signals: A (0), B (1), X10 (5), Y1 (8), Y2 (9), Outputs OK.
178
179 ==== Executed tickMax = 4 ticks!
180 #### RUN 1 terminates after 55 instructions
181
182 #### All runs terminate, after 115 instructions

B.7 Exits-inlined

Listing B.15: Exits-inlined.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−8
3 //
4 // rvh, 20 mar 2009
5
6 // This example demonstrates how to implement Exit Actions
7
8 #define USEPRIO // Select appropriate dispatcher
9 #include ”sc.h”

10
11 #define RUNMAX 2 // # of runs to execute
12 #define TICKMAX 4 // # of ticks to execute
13
14 int runMax = RUNMAX; // # of runs to execute
15 int tickMax = TICKMAX; // # of ticks to execute
16
17
18 // ================================
19 // Program−specific definitions
20
21 // Signals
22 typedef enum {A, B, R, X0, X2, X10, X11, Y0, Y1, Y2, Z} signaltype;
23 const char ∗s2signame[] = {”A”, ”B”, ”R”, ”X0”, ”X2”, ”X10”, ”X11”,
24 ”Y0”, ”Y1”, ”Y2”, ”Z”};
25
26 // Thread ids
27 int idHi = 4; // Highest thread id in use
28 typedef enum { TickEnd, M11, M10, M2, Main } idtype;
29 const int ids [] = { 0, 1, 2, 3, 4 };
30 const char ∗id2threadname[] = { ”TickEnd”, ”M11”, ”M10”, ”M2”, ”Main” };
31
32 // Inputs for RUNMAX runs of TICKMAX ticks
33 signalvector inputs [RUNMAX][TICKMAX] =
34 {{0, u2b(B), u2b(R), u2b(A)},
35 {0, u2b(R), 0, u2b(A) | u2b(B)}};
36
37 // Expected outputs
38 signalvector outputs[RUNMAX][TICKMAX] =
39 {{0, u2b(Y2) | u2b(X2) | u2b(Y1) | u2b(X11),
40 u2b(Z) | u2b(Y0) | u2b(X0), u2b(Y2) | u2b(Y1) | u2b(X10)},
41 {0, u2b(Y2) | u2b(Z) | u2b(Y1) | u2b(Y0) | u2b(X0), 0, u2b(Y2) | u2b(Y1)

| u2b(X10)}};
42
43 void getInputs ()
44 {
45 signals = inputs[runCnt][tickCnt];
46 }
47
48 // Set reference outputs and check valued signals , if there are any.
49 // Return 1 unless valued signal outputs are wrong.
50 // No valued signals here , therefore always return 1.
51 int checkOutputs(signalvector ∗tickOutputs)
52 {
53 ∗tickOutputs = outputs[runCnt][tickCnt];

54 return 1;
55 }
56
57 // No valued signals to print
58 void printVal (int id)
59 {
60 }
61
62 // Returns 1 if some thread is still active in current tick
63 // Notes:
64 // − At L2, we set the priority low (0) for M10main, so that
65 // it executes the \codefont{JOIN} at the end of a tick .
66 // − At M10main, we set the priority high (1) for M10depth, so that it
67 // checks for a strong abort at the beginning of a tick .
68 // − Could save ”Done: PAUSE(Done)” by changing ”TRANS(Done)” to ”

TRANS(M11)”
69 int tick (int isInit)
70 {
71 // Thread ids : M11=1, M10=2, M2=3, Main=4
72 TICKSTART(isInit);
73 M0: PAR(0, M10, ids[M10]);
74 PAR(0, M11, ids[M11]);
75 PARE(1, M0main, id2b(M10) | id2b(M11) | id2b(M2));
76
77 M10: PAR(0, M2, ids[M2]);
78 PARE(0, M10main, id2b(M2));
79
80 M2: PAUSE(M2depth);
81 M2depth:PRESENT(B, M2);
82 EMIT(Y2);
83 EMIT(X2);
84 TERM;
85
86 L2: PRIO(0, M10main);
87 M10main:JPPAUSE(1, L3, M10depth);
88 L3: ISAT(ids[M2], M2depth, L4);
89 EMIT(Y2);
90 L4: EMIT(Y1);
91 EMIT(X11);
92 TRANS(Done);
93 M10depth:PRESENT(A, L2);
94 ISAT(ids[M2], M2depth, L7);
95 EMIT(Y2);
96 L7: EMIT(Y1);
97 EMIT(X10);
98 TRANS(Done);
99 Done: PAUSE(Done);

100
101 M11: PAUSE(M11);
102
103 M0main: PAUSE(L9);
104 L9: PRESENT(R, M0main);
105 ISAT(ids[M2], M2depth, L10);
106 EMIT(Y2);
107 L10: ISAT(ids[M10], M10depth, L11);
108 EMIT(Y1);
109 L11: EMIT(Z);
110 EMIT(Y0);
111 EMIT(X0);
112 TRANS(M0);
113
114 TICKEND;
115 }
116
117 // Local Variables :
118 // compile−command: ”make exits; exits”
119 // End:

Listing B.16: Exits-inlined.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 4, prio 0) forks M10 (2) with prio 0
6 PAR: Main (id 4, prio 0) forks M11 (1) with prio 0
7 PARE: Main (id 4, prio 0) has descendants 016
8 PAUSE: Main (id 4, prio 1) pauses, active = 027
9 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0

10 PARE: M10 (id 2, prio 0) has descendants 010
11 PAUSE: M2 (id 3, prio 0) pauses, active = 017
12 JPPAUSE: M10 (id 2, prio 0) does not join
13 PPAUSE: M10 (id 2, prio 0) sets prio to 1
14 PAUSE: M10 (id 2, prio 1) pauses, active = 07
15 PAUSE: M11 (id 1, prio 0) pauses, active = 03
16 ==== TICK 0 terminates after 9 instructions, enabled = 037.
17 ==== Resulting signals: <none>, Outputs OK.
18

77

19 ==== TICK 1 STARTS, inputs = 02, enabled = 037
20 ==== Inputs: B (1)
21 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
22 PRESENT: Main (id 4, prio 1) determines R (2) as absent
23 PAUSE: Main (id 4, prio 1) pauses, active = 037
24 PRESENT: M10 (id 2, prio 1) determines A (0) as absent
25 PRIO: M10 (id 2, prio 1) set to priority 0
26 PRESENT: M2 (id 3, prio 0) determines B (1) as present
27 EMIT: M2 (id 3, prio 0) emits Y2 (9)
28 EMIT: M2 (id 3, prio 0) emits X2 (4)
29 TERM: M2 (id 3, prio 0) terminates , enabled = 027
30 JPPAUSE: M10 (id 2, prio 0) joins
31 ISAT: M10 (id 2, prio 0) is not at probed label
32 EMIT: M10 (id 2, prio 0) emits Y1 (8)
33 EMIT: M10 (id 2, prio 0) emits X11 (6)
34 TRANS: M10 (id 2, prio 0) transfers , enabled = 027
35 PAUSE: M10 (id 2, prio 0) pauses, active = 07
36 PAUSE: M11 (id 1, prio 0) pauses, active = 03
37 ==== TICK 1 terminates after 15 instructions, enabled = 027.
38 ==== Resulting signals: B (1), X2 (4), X11 (6), Y1 (8), Y2 (9), Outputs OK

.
39
40 ==== TICK 2 STARTS, inputs = 04, enabled = 027
41 ==== Inputs: R (2)
42 ==== Enabled: TickEnd (0), M11 (1), M10 (2), Main (4)
43 PRESENT: Main (id 4, prio 1) determines R (2) as present
44 ISAT: Main (id 4, prio 1) is not at probed label
45 ISAT: Main (id 4, prio 1) is not at probed label
46 EMIT: Main (id 4, prio 1) emits Z (10)
47 EMIT: Main (id 4, prio 1) emits Y0 (7)
48 EMIT: Main (id 4, prio 1) emits X0 (3)
49 TRANS: Main (id 4, prio 1) transfers , enabled = 021
50 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
51 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
52 PARE: Main (id 4, prio 1) has descendants 016
53 PAUSE: Main (id 4, prio 1) pauses, active = 027
54 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
55 PARE: M10 (id 2, prio 0) has descendants 010
56 PAUSE: M2 (id 3, prio 0) pauses, active = 017
57 JPPAUSE: M10 (id 2, prio 0) does not join
58 PPAUSE: M10 (id 2, prio 0) sets prio to 1
59 PAUSE: M10 (id 2, prio 1) pauses, active = 07
60 PAUSE: M11 (id 1, prio 0) pauses, active = 03
61 ==== TICK 2 terminates after 16 instructions, enabled = 037.
62 ==== Resulting signals: R (2), X0 (3), Y0 (7), Z (10), Outputs OK.
63
64 ==== TICK 3 STARTS, inputs = 01, enabled = 037
65 ==== Inputs: A (0)
66 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
67 PRESENT: Main (id 4, prio 1) determines R (2) as absent
68 PAUSE: Main (id 4, prio 1) pauses, active = 037
69 PRESENT: M10 (id 2, prio 1) determines A (0) as present
70 ISAT: M10 (id 2, prio 1) is at probed label
71 EMIT: M10 (id 2, prio 1) emits Y2 (9)
72 EMIT: M10 (id 2, prio 1) emits Y1 (8)
73 EMIT: M10 (id 2, prio 1) emits X10 (5)
74 TRANS: M10 (id 2, prio 1) transfers , enabled = 027
75 PAUSE: M10 (id 2, prio 1) pauses, active = 07
76 PAUSE: M11 (id 1, prio 0) pauses, active = 03
77 ==== TICK 3 terminates after 10 instructions, enabled = 027.
78 ==== Resulting signals: A (0), X10 (5), Y1 (8), Y2 (9), Outputs OK.
79
80 ==== Executed tickMax = 4 ticks!
81 #### RUN 0 terminates after 50 instructions
82
83 #### RUN 1 STARTS #############
84 ==== TICK 0 STARTS, inputs = 00, enabled = 00
85 ==== Inputs: <none>
86 ==== Enabled: <none>
87 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
88 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
89 PARE: Main (id 4, prio 1) has descendants 016
90 PAUSE: Main (id 4, prio 1) pauses, active = 027
91 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
92 PARE: M10 (id 2, prio 0) has descendants 010
93 PAUSE: M2 (id 3, prio 0) pauses, active = 017
94 JPPAUSE: M10 (id 2, prio 0) does not join
95 PPAUSE: M10 (id 2, prio 0) sets prio to 1
96 PAUSE: M10 (id 2, prio 1) pauses, active = 07
97 PAUSE: M11 (id 1, prio 0) pauses, active = 03
98 ==== TICK 0 terminates after 9 instructions, enabled = 037.
99 ==== Resulting signals: <none>, Outputs OK.

100
101 ==== TICK 1 STARTS, inputs = 04, enabled = 037
102 ==== Inputs: R (2)
103 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
104 PRESENT: Main (id 4, prio 1) determines R (2) as present
105 ISAT: Main (id 4, prio 1) is at probed label
106 EMIT: Main (id 4, prio 1) emits Y2 (9)

107 ISAT: Main (id 4, prio 1) is at probed label
108 EMIT: Main (id 4, prio 1) emits Y1 (8)
109 EMIT: Main (id 4, prio 1) emits Z (10)
110 EMIT: Main (id 4, prio 1) emits Y0 (7)
111 EMIT: Main (id 4, prio 1) emits X0 (3)
112 TRANS: Main (id 4, prio 1) transfers , enabled = 021
113 PAR: Main (id 4, prio 1) forks M10 (2) with prio 0
114 PAR: Main (id 4, prio 1) forks M11 (1) with prio 0
115 PARE: Main (id 4, prio 1) has descendants 016
116 PAUSE: Main (id 4, prio 1) pauses, active = 027
117 PAR: M10 (id 2, prio 0) forks M2 (3) with prio 0
118 PARE: M10 (id 2, prio 0) has descendants 010
119 PAUSE: M2 (id 3, prio 0) pauses, active = 017
120 JPPAUSE: M10 (id 2, prio 0) does not join
121 PPAUSE: M10 (id 2, prio 0) sets prio to 1
122 PAUSE: M10 (id 2, prio 1) pauses, active = 07
123 PAUSE: M11 (id 1, prio 0) pauses, active = 03
124 ==== TICK 1 terminates after 18 instructions, enabled = 037.
125 ==== Resulting signals: R (2), X0 (3), Y0 (7), Y1 (8), Y2 (9), Z (10),

Outputs OK.
126
127 ==== TICK 2 STARTS, inputs = 00, enabled = 037
128 ==== Inputs: <none>
129 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
130 PRESENT: Main (id 4, prio 1) determines R (2) as absent
131 PAUSE: Main (id 4, prio 1) pauses, active = 037
132 PRESENT: M10 (id 2, prio 1) determines A (0) as absent
133 PRIO: M10 (id 2, prio 1) set to priority 0
134 PRESENT: M2 (id 3, prio 0) determines B (1) as absent
135 PAUSE: M2 (id 3, prio 0) pauses, active = 017
136 JPPAUSE: M10 (id 2, prio 0) does not join
137 PPAUSE: M10 (id 2, prio 0) sets prio to 1
138 PAUSE: M10 (id 2, prio 1) pauses, active = 07
139 PAUSE: M11 (id 1, prio 0) pauses, active = 03
140 ==== TICK 2 terminates after 8 instructions, enabled = 037.
141 ==== Resulting signals: <none>, Outputs OK.
142
143 ==== TICK 3 STARTS, inputs = 03, enabled = 037
144 ==== Inputs: A (0), B (1)
145 ==== Enabled: TickEnd (0), M11 (1), M10 (2), M2 (3), Main (4)
146 PRESENT: Main (id 4, prio 1) determines R (2) as absent
147 PAUSE: Main (id 4, prio 1) pauses, active = 037
148 PRESENT: M10 (id 2, prio 1) determines A (0) as present
149 ISAT: M10 (id 2, prio 1) is at probed label
150 EMIT: M10 (id 2, prio 1) emits Y2 (9)
151 EMIT: M10 (id 2, prio 1) emits Y1 (8)
152 EMIT: M10 (id 2, prio 1) emits X10 (5)
153 TRANS: M10 (id 2, prio 1) transfers , enabled = 027
154 PAUSE: M10 (id 2, prio 1) pauses, active = 07
155 PAUSE: M11 (id 1, prio 0) pauses, active = 03
156 ==== TICK 3 terminates after 10 instructions, enabled = 027.
157 ==== Resulting signals: A (0), B (1), X10 (5), Y1 (8), Y2 (9), Outputs OK.
158
159 ==== Executed tickMax = 4 ticks!
160 #### RUN 1 terminates after 45 instructions
161
162 #### All runs terminate, after 95 instructions

B.8 FilteredSR

Listing B.17: FilteredSR.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−18
3 //
4 // rvh, 25 mar 2009
5
6 // This example illustrates the use of PRE on pure signals , and also
7 // how to encode signal conjunction (eg the check for ”S and pre(S)”)
8 // via control flow .
9

10 // Use PRE operator − must define this before including sc .h
11 #define usePRE
12 #include ”sc.h”
13
14 #define RUNMAX 1 // # of runs to execute
15 #define TICKMAX 9 // # of ticks to execute
16
17 int runMax = RUNMAX; // # of runs to execute
18 int tickMax = TICKMAX; // # of ticks to execute
19
20
21 // ================================
22 // Program−specific definitions
23

78

24 // Signals
25 typedef enum {S, R, ON, OFF} signaltype;
26 const char ∗s2signame[] = {”S”, ”R”, ”ON”, ”OFF”};
27
28 // Thread ids
29 // Note: WaitA gets a higher id than WaitB (rather than the other way
30 // around) simply to let WaitA execute first , to make the trace match
31 // the syntactical flow of the program
32 int idHi = 1; // Highest thread id in use
33 typedef enum { TickEnd, Main } idtype;
34 const int ids [] = { 0, 1 };
35 const char ∗id2threadname[] = { ”TickEnd”, ”Main” };
36
37 // Inputs for RUNMAX runs of TICKMAX ticks
38 signalvector inputs [RUNMAX][TICKMAX] =
39 {{u2b(S), u2b(S), u2b(S), u2b(S), 0, u2b(R), u2b(R), u2b(R), 0}};
40
41 // Expected outputs
42 signalvector outputs[RUNMAX][TICKMAX] =
43 {{u2b(OFF), u2b(ON), u2b(ON), u2b(ON), u2b(ON), u2b(ON), u2b(OFF),

u2b(OFF), u2b(OFF)}};
44
45 void getInputs ()
46 {
47 signals = inputs[runCnt][tickCnt];
48 }
49
50 // Set reference outputs and check valued signals , if there are any.
51 // Return 1 unless valued signal outputs are wrong.
52 // No valued signals here , therefore always return 1.
53 int checkOutputs(signalvector ∗tickOutputs)
54 {
55 ∗tickOutputs = outputs[runCnt][tickCnt];
56 return 1;
57 }
58
59 // No valued signals to print
60 void printVal (int id)
61 {
62 }
63
64 // Returns 1 if some thread is still active in current tick
65 int tick (int isInit)
66 {
67 // Thread ids : Main=1
68 TICKSTART(isInit);
69
70 Off: EMIT(OFF);
71 PAUSE(OffDepth);
72 OffDepth:PRESENT(S, Off);
73 PRESENTPRE(S, Off);
74
75 On: EMIT(ON);
76 PAUSE(OnDepth);
77 OnDepth:PRESENT(R, On);
78 PRESENTPRE(R, On);
79
80 GOTO(Off);
81
82 TICKEND;
83 }
84
85 // Local Variables :
86 // compile−command: ”make filteredSR; filteredSR”
87 // End:

Listing B.18: FilteredSR.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 01, enabled = 00
3 ==== Inputs: S (0)
4 ==== Enabled: <none>
5 EMIT: Main (id 1, prio 0) emits OFF (3)
6 PAUSE: Main (id 1, prio 0) pauses, active = 03
7 ==== TICK 0 terminates after 2 instructions, enabled = 03.
8 ==== Resulting signals: S (0), OFF (3), Outputs OK.
9

10 ==== TICK 1 STARTS, inputs = 01, enabled = 03
11 ==== Inputs: S (0)
12 ==== Enabled: TickEnd (0), Main (1)
13 PRESENT: Main (id 1, prio 0) determines S (0) as present
14 PRESENTPRE:Main (id 1, prio 0) determines previous S (0) as present
15 EMIT: Main (id 1, prio 0) emits ON (2)
16 PAUSE: Main (id 1, prio 0) pauses, active = 03
17 ==== TICK 1 terminates after 4 instructions, enabled = 03.
18 ==== Resulting signals: S (0), ON (2), Outputs OK.
19
20 ==== TICK 2 STARTS, inputs = 01, enabled = 03

21 ==== Inputs: S (0)
22 ==== Enabled: TickEnd (0), Main (1)
23 PRESENT: Main (id 1, prio 0) determines R (1) as absent
24 EMIT: Main (id 1, prio 0) emits ON (2)
25 PAUSE: Main (id 1, prio 0) pauses, active = 03
26 ==== TICK 2 terminates after 3 instructions, enabled = 03.
27 ==== Resulting signals: S (0), ON (2), Outputs OK.
28
29 ==== TICK 3 STARTS, inputs = 01, enabled = 03
30 ==== Inputs: S (0)
31 ==== Enabled: TickEnd (0), Main (1)
32 PRESENT: Main (id 1, prio 0) determines R (1) as absent
33 EMIT: Main (id 1, prio 0) emits ON (2)
34 PAUSE: Main (id 1, prio 0) pauses, active = 03
35 ==== TICK 3 terminates after 3 instructions, enabled = 03.
36 ==== Resulting signals: S (0), ON (2), Outputs OK.
37
38 ==== TICK 4 STARTS, inputs = 00, enabled = 03
39 ==== Inputs: <none>
40 ==== Enabled: TickEnd (0), Main (1)
41 PRESENT: Main (id 1, prio 0) determines R (1) as absent
42 EMIT: Main (id 1, prio 0) emits ON (2)
43 PAUSE: Main (id 1, prio 0) pauses, active = 03
44 ==== TICK 4 terminates after 3 instructions, enabled = 03.
45 ==== Resulting signals: ON (2), Outputs OK.
46
47 ==== TICK 5 STARTS, inputs = 02, enabled = 03
48 ==== Inputs: R (1)
49 ==== Enabled: TickEnd (0), Main (1)
50 PRESENT: Main (id 1, prio 0) determines R (1) as present
51 PRESENTPRE:Main (id 1, prio 0) determines previous R (1) as absent
52 EMIT: Main (id 1, prio 0) emits ON (2)
53 PAUSE: Main (id 1, prio 0) pauses, active = 03
54 ==== TICK 5 terminates after 4 instructions, enabled = 03.
55 ==== Resulting signals: R (1), ON (2), Outputs OK.
56
57 ==== TICK 6 STARTS, inputs = 02, enabled = 03
58 ==== Inputs: R (1)
59 ==== Enabled: TickEnd (0), Main (1)
60 PRESENT: Main (id 1, prio 0) determines R (1) as present
61 PRESENTPRE:Main (id 1, prio 0) determines previous R (1) as present
62 EMIT: Main (id 1, prio 0) emits OFF (3)
63 PAUSE: Main (id 1, prio 0) pauses, active = 03
64 ==== TICK 6 terminates after 5 instructions, enabled = 03.
65 ==== Resulting signals: R (1), OFF (3), Outputs OK.
66
67 ==== TICK 7 STARTS, inputs = 02, enabled = 03
68 ==== Inputs: R (1)
69 ==== Enabled: TickEnd (0), Main (1)
70 PRESENT: Main (id 1, prio 0) determines S (0) as absent
71 EMIT: Main (id 1, prio 0) emits OFF (3)
72 PAUSE: Main (id 1, prio 0) pauses, active = 03
73 ==== TICK 7 terminates after 3 instructions, enabled = 03.
74 ==== Resulting signals: R (1), OFF (3), Outputs OK.
75
76 ==== TICK 8 STARTS, inputs = 00, enabled = 03
77 ==== Inputs: <none>
78 ==== Enabled: TickEnd (0), Main (1)
79 PRESENT: Main (id 1, prio 0) determines S (0) as absent
80 EMIT: Main (id 1, prio 0) emits OFF (3)
81 PAUSE: Main (id 1, prio 0) pauses, active = 03
82 ==== TICK 8 terminates after 3 instructions, enabled = 03.
83 ==== Resulting signals: OFF (3), Outputs OK.
84
85 ==== Executed tickMax = 9 ticks!
86 #### RUN 0 terminates after 30 instructions
87
88 #### All runs terminate, after 30 instructions

B.9 PreAndSuspend

Listing B.19: PreAndSuspend.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−20
3 //
4 // rvh, 5 mar 2009
5
6 // This example illustrates the use of valued signals and PRE
7
8 // Must define the following before including sc .h
9 #define usePRE // Use PRE operator

10
11 #include ”sc.h”
12

79

13 // ================================
14 // Program−specific definitions
15
16 #define RUNMAX 1 // # of runs to execute
17 int runMax = RUNMAX;
18
19 #define TICKMAX 13 // # of ticks to execute
20 int tickMax = TICKMAX;
21
22 // Signals
23 // Valued signals come first , as their index is used to index value arrays
24 // If multiple types are used, can use appropriate offset for indexing

arrays
25 typedef enum { T, B0, B1, C } signaltype;
26 const char ∗s2signame[] = { ”T”, ”B0”, ”B1”, ”C” };
27
28 // Thread ids
29 int idHi = 4; // Highest thread id in use
30 typedef enum { TickEnd, Off1, Off0, Cnt, Main } idtype;
31 const int ids [] = { 0, 1, 2, 3, 4 };
32 const char ∗id2threadname[] = { ”TickEnd”, ”Off1”, ”Off0”, ”Cnt”, ”Main” };
33
34 // Locally declared signals − to handle suspension properly
35 // Here, indicate that C is declared locally to Main (state Mod3Cnt in

Andr03)
36 signalvector sigsDescs [] = { 0, 0, 0, 0, u2b(C) };
37
38 // Inputs for RUNMAX runs of TICKMAX ticks
39 // See Table 8−2 from C. Andr
40 signalvector inputs [RUNMAX][TICKMAX] =
41 {{0, u2b(T), 0, u2b(T), 0,
42 u2b(T), 0, 0, u2b(T), 0,
43 u2b(T), u2b(T), 0}};
44
45 // Expected outputs
46 signalvector outputs[RUNMAX][TICKMAX] =
47 {{0, u2b(B0), 0, u2b(B1) | u2b(C), 0,
48 0, 0, 0, u2b(B0), 0,
49 u2b(B1) | u2b(C), 0, 0}};
50
51 void getInputs ()
52 {
53 signals = inputs[runCnt][tickCnt];
54 }
55
56 // Set reference outputs and check valued signals , if there are any
57 // Return 1 unless valued signal outputs are wrong
58 int checkOutputs(signalvector ∗tickOutputs)
59 {
60 ∗tickOutputs = outputs[runCnt][tickCnt];
61 return 1;
62 }
63
64 // Print value of a signal , if it has one
65 void printVal (int id)
66 {
67 }
68
69
70 // Returns 1 if some thread is still active in current tick
71 int tick (int isInit)
72 {
73 // Thread ids : Off1=1, Off0=2, Cnt=3, Main=4
74 TICKSTART(isInit);
75
76 PAR(0, Cnt, ids [Cnt]) ;
77 PARE(0, Mod3CntMain, id2b(Cnt) | id2b(Off1) | id2b(Off0));
78
79 Cnt: PAR(0, Off1, ids [Off1]) ;
80 PAR(0, Off0, ids [Off0]) ;
81 PARE(0, CntMain, id2b(Off1) | id2b(Off0)) ;
82
83 Off1: PAUSE(L0);
84 L0: PRESENT(C, Off1);
85
86 On1: EMIT(B1);
87 PAUSE(On1);
88
89 L1: EMIT(C);
90 Off0: PAUSE(On0);
91
92 On0: EMIT(B0);
93 PAUSE(L1);
94
95 CntDepth:PRESENTPRE(C, CntMain);
96 TRANS(Cnt);
97 CntMain:PAUSE(CntDepth);
98
99 Mod3CntMain:PAUSE(Mod3CntDepth);

100 Mod3CntDepth:PRESENT(T, L2);
101 GOTO(Mod3CntMain);
102 L2: SUSPEND(Mod3CntDepth);
103
104 TICKEND;
105 }
106
107 // Local Variables :
108 // compile−command: ”make preAndSuspend; preAndSuspend”
109 // End:

Listing B.20: PreAndSuspend.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 4, prio 0) forks Cnt (3) with prio 0
6 PARE: Main (id 4, prio 0) has descendants 016
7 PAUSE: Main (id 4, prio 0) pauses, active = 031
8 PAR: Cnt (id 3, prio 0) forks Off1 (1) with prio 0
9 PAR: Cnt (id 3, prio 0) forks Off0 (2) with prio 0

10 PARE: Cnt (id 3, prio 0) has descendants 06
11 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
12 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
13 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
14 ==== TICK 0 terminates after 9 instructions, enabled = 037.
15 ==== Resulting signals: <none>, Outputs OK.
16
17 ==== TICK 1 STARTS, inputs = 01, enabled = 037
18 ==== Inputs: T (0)
19 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
20 PRESENT: Main (id 4, prio 0) determines T (0) as present
21 PAUSE: Main (id 4, prio 0) pauses, active = 037
22 PRESENTPRE:Cnt (id 3, prio 0) determines previous C (3) as absent
23 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
24 EMIT: Off0 (id 2, prio 0) emits B0 (1)
25 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
26 PRESENT: Off1 (id 1, prio 0) determines C (3) as absent
27 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
28 ==== TICK 1 terminates after 9 instructions, enabled = 037.
29 ==== Resulting signals: T (0), B0 (1), Outputs OK.
30
31 ==== TICK 2 STARTS, inputs = 00, enabled = 037
32 ==== Inputs: <none>
33 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
34 PRESENT: Main (id 4, prio 0) determines T (0) as absent
35 SUSPEND: Main (id 4, prio 0) suspends itself and descendants 016
36 PAUSE: Main (id 4, prio 0) pauses, active = 021
37 ==== TICK 2 terminates after 2 instructions, enabled = 037.
38 ==== Resulting signals: <none>, Outputs OK.
39
40 ==== TICK 3 STARTS, inputs = 01, enabled = 037
41 ==== Inputs: T (0)
42 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
43 PRESENT: Main (id 4, prio 0) determines T (0) as present
44 PAUSE: Main (id 4, prio 0) pauses, active = 037
45 PRESENTPRE:Cnt (id 3, prio 0) determines previous C (3) as absent
46 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
47 EMIT: Off0 (id 2, prio 0) emits C (3)
48 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
49 PRESENT: Off1 (id 1, prio 0) determines C (3) as present
50 EMIT: Off1 (id 1, prio 0) emits B1 (2)
51 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
52 ==== TICK 3 terminates after 10 instructions, enabled = 037.
53 ==== Resulting signals: T (0), B1 (2), C (3), Outputs OK.
54
55 ==== TICK 4 STARTS, inputs = 00, enabled = 037
56 ==== Inputs: <none>
57 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
58 PRESENT: Main (id 4, prio 0) determines T (0) as absent
59 SUSPEND: Main (id 4, prio 0) suspends itself and descendants 016
60 PAUSE: Main (id 4, prio 0) pauses, active = 021
61 ==== TICK 4 terminates after 2 instructions, enabled = 037.
62 ==== Resulting signals: <none>, Outputs OK.
63
64 ==== TICK 5 STARTS, inputs = 01, enabled = 037
65 ==== Inputs: T (0)
66 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
67 PRESENT: Main (id 4, prio 0) determines T (0) as present
68 PAUSE: Main (id 4, prio 0) pauses, active = 037
69 PRESENTPRE:Cnt (id 3, prio 0) determines previous C (3) as present
70 TRANS: Cnt (id 3, prio 0) transfers , enabled = 031
71 PAR: Cnt (id 3, prio 0) forks Off1 (1) with prio 0
72 PAR: Cnt (id 3, prio 0) forks Off0 (2) with prio 0
73 PARE: Cnt (id 3, prio 0) has descendants 06
74 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
75 PAUSE: Off0 (id 2, prio 0) pauses, active = 07

80

76 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
77 ==== TICK 5 terminates after 11 instructions, enabled = 037.
78 ==== Resulting signals: T (0), Outputs OK.
79
80 ==== TICK 6 STARTS, inputs = 00, enabled = 037
81 ==== Inputs: <none>
82 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
83 PRESENT: Main (id 4, prio 0) determines T (0) as absent
84 SUSPEND: Main (id 4, prio 0) suspends itself and descendants 016
85 PAUSE: Main (id 4, prio 0) pauses, active = 021
86 ==== TICK 6 terminates after 2 instructions, enabled = 037.
87 ==== Resulting signals: <none>, Outputs OK.
88
89 ==== TICK 7 STARTS, inputs = 00, enabled = 037
90 ==== Inputs: <none>
91 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
92 PRESENT: Main (id 4, prio 0) determines T (0) as absent
93 SUSPEND: Main (id 4, prio 0) suspends itself and descendants 016
94 PAUSE: Main (id 4, prio 0) pauses, active = 021
95 ==== TICK 7 terminates after 2 instructions, enabled = 037.
96 ==== Resulting signals: <none>, Outputs OK.
97
98 ==== TICK 8 STARTS, inputs = 01, enabled = 037
99 ==== Inputs: T (0)

100 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
101 PRESENT: Main (id 4, prio 0) determines T (0) as present
102 PAUSE: Main (id 4, prio 0) pauses, active = 037
103 PRESENTPRE:Cnt (id 3, prio 0) determines previous C (3) as absent
104 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
105 EMIT: Off0 (id 2, prio 0) emits B0 (1)
106 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
107 PRESENT: Off1 (id 1, prio 0) determines C (3) as absent
108 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
109 ==== TICK 8 terminates after 9 instructions, enabled = 037.
110 ==== Resulting signals: T (0), B0 (1), Outputs OK.
111
112 ==== TICK 9 STARTS, inputs = 00, enabled = 037
113 ==== Inputs: <none>
114 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
115 PRESENT: Main (id 4, prio 0) determines T (0) as absent
116 SUSPEND: Main (id 4, prio 0) suspends itself and descendants 016
117 PAUSE: Main (id 4, prio 0) pauses, active = 021
118 ==== TICK 9 terminates after 2 instructions, enabled = 037.
119 ==== Resulting signals: <none>, Outputs OK.
120
121 ==== TICK 10 STARTS, inputs = 01, enabled = 037
122 ==== Inputs: T (0)
123 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
124 PRESENT: Main (id 4, prio 0) determines T (0) as present
125 PAUSE: Main (id 4, prio 0) pauses, active = 037
126 PRESENTPRE:Cnt (id 3, prio 0) determines previous C (3) as absent
127 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
128 EMIT: Off0 (id 2, prio 0) emits C (3)
129 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
130 PRESENT: Off1 (id 1, prio 0) determines C (3) as present
131 EMIT: Off1 (id 1, prio 0) emits B1 (2)
132 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
133 ==== TICK 10 terminates after 10 instructions, enabled = 037.
134 ==== Resulting signals: T (0), B1 (2), C (3), Outputs OK.
135
136 ==== TICK 11 STARTS, inputs = 01, enabled = 037
137 ==== Inputs: T (0)
138 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
139 PRESENT: Main (id 4, prio 0) determines T (0) as present
140 PAUSE: Main (id 4, prio 0) pauses, active = 037
141 PRESENTPRE:Cnt (id 3, prio 0) determines previous C (3) as present
142 TRANS: Cnt (id 3, prio 0) transfers , enabled = 031
143 PAR: Cnt (id 3, prio 0) forks Off1 (1) with prio 0
144 PAR: Cnt (id 3, prio 0) forks Off0 (2) with prio 0
145 PARE: Cnt (id 3, prio 0) has descendants 06
146 PAUSE: Cnt (id 3, prio 0) pauses, active = 017
147 PAUSE: Off0 (id 2, prio 0) pauses, active = 07
148 PAUSE: Off1 (id 1, prio 0) pauses, active = 03
149 ==== TICK 11 terminates after 11 instructions, enabled = 037.
150 ==== Resulting signals: T (0), Outputs OK.
151
152 ==== TICK 12 STARTS, inputs = 00, enabled = 037
153 ==== Inputs: <none>
154 ==== Enabled: TickEnd (0), Off1 (1), Off0 (2), Cnt (3), Main (4)
155 PRESENT: Main (id 4, prio 0) determines T (0) as absent
156 SUSPEND: Main (id 4, prio 0) suspends itself and descendants 016
157 PAUSE: Main (id 4, prio 0) pauses, active = 021
158 ==== TICK 12 terminates after 2 instructions, enabled = 037.
159 ==== Resulting signals: <none>, Outputs OK.
160
161 ==== Executed tickMax = 13 ticks!
162 #### RUN 0 terminates after 81 instructions
163
164 #### All runs terminate, after 81 instructions

B.10 PrimeFactor

Listing B.21: PrimeFactor.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−25
3 //
4 // rvh, 5 mar 2009
5
6 // This example illustrates the use of valued signals and the proper
7 // handling of reincarnation /schizophrenia .
8 //
9 // Remarkably, all scheduling constraints are handled by proper

10 // ordering of the transition predicate tests , and by the fact that
11 // the id of the inner state (S0, id 1) is higher than the priority of
12 // the surrounding root thread.
13
14 #include ”sc.h”
15
16 // ================================
17 // Program−specific definitions
18
19 #define RUNMAX 2 // # of runs to execute
20 #define TICKMAX 2 // # of ticks to execute
21
22 int runMax = RUNMAX; // # of runs to execute
23 int tickMax = TICKMAX; // # of ticks to execute
24
25 // Signals
26 // Valued signals come first , as their index is used to index value arrays
27 // If multiple types are used, can use appropriate offset for indexing

arrays
28 typedef enum {V, A, B, C, D} signaltype;
29 const char ∗s2signame[] = {”V”, ”A”, ”B”, ”C”, ”D”};
30
31 // Define valued int signals , combined with ∗ (signal ”V”)
32 #define valSigIntMultCnt 1 // Number of signals
33 int valSigIntMult [valSigIntMultCnt]; // Values
34
35 // Thread ids
36 int idHi = 2; // Highest thread id in use
37 typedef enum { TickEnd, Main, S1 } idtype;
38 const int ids [] = { 0, 1, 2 };
39 const char ∗id2threadname[] = {”TickEnd”, ”Main”, ”S1”};
40
41 // Inputs for RUNMAX runs of TICKMAX ticks
42 signalvector inputs [RUNMAX][TICKMAX] =
43 {{0, u2b(B)},
44 {0, u2b(A)|u2b(B)|u2b(C)|u2b(D)}};
45
46 // Expected outputs
47 signalvector outputs[RUNMAX][TICKMAX] =
48 {{u2b(V), u2b(V)},
49 {u2b(V), u2b(V)}};
50
51 int outputValues V[RUNMAX][TICKMAX] =
52 {{2, 5},
53 {2, 11550}};
54
55 void getInputs ()
56 {
57 signals = inputs[runCnt][tickCnt];
58 valSigIntMult [0] = 1;
59 }
60
61 // Set reference outputs and check valued signals , if there are any
62 // Return 1 unless valued signal outputs are wrong
63 int checkOutputs(signalvector ∗tickOutputs)
64 {
65 int isOk;
66
67 ∗tickOutputs = outputs[runCnt][tickCnt];
68 isOk = (valSigIntMult [V] == outputValues V[runCnt][tickCnt]);
69
70 if (! isOk)
71 printf (”\nERROR: Value of V is %d, should be %d!!\n”,
72 valSigIntMult [V], outputValues V[runCnt][tickCnt]) ;
73
74 return isOk;
75 }
76
77
78 // No valued signals to print
79 void printVal (int id)
80 {
81 }
82

81

83 // Returns 1 if some thread is still active in current tick
84 // Notes:
85 // − S0 needs no join, as it never terminates normally
86 // − ”S2: PAUSE(S2)” encodes final, but non−terminating state (HALT)
87 int tick (int isInit)
88 {
89 // Thread ids : Main=1, S1=2
90 TICKSTART(isInit);
91
92 S0: PAR(0, S1, ids [S1]) ;
93 PARE(0, S0main, id2b(S1));
94
95 S1: EMITINTMUL(V, 2);
96
97 S1surf : PRESENT(B, S1depth);
98 EMITINTMUL(V, 5);
99 GOTO(S2);

100 S1depth:PAUSE(L0);
101 L0: PRESENT(A, S1surf);
102 EMITINTMUL(V, 3);
103 GOTO(S1surf);
104
105 S2: PAUSE(S2);
106
107 S0main: PRESENT(D, S0depth);
108 EMITINTMUL(V, 11);
109 TRANS(S3);
110 S0depth:PAUSE(L1);
111 L1: PRESENT(C, S0main);
112 EMITINTMUL(V, 7);
113 TRANS(S0);
114
115 S3: PAUSE(S3);
116 TICKEND;
117 }
118
119 // Local Variables :
120 // compile−command: ”make PrimeFactor; PrimeFactor”
121 // End:

Listing B.22: PrimeFactor.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 1, prio 0) forks S1 (2) with prio 0
6 PARE: Main (id 1, prio 0) has descendants 04
7 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 2, result 2
8 PRESENT: S1 (id 2, prio 0) determines B (2) as absent
9 PAUSE: S1 (id 2, prio 0) pauses, active = 07

10 PRESENT: Main (id 1, prio 0) determines D (4) as absent
11 PAUSE: Main (id 1, prio 0) pauses, active = 03
12 ==== TICK 0 terminates after 7 instructions, enabled = 07.
13 ==== Resulting signals: V (0), Outputs OK.
14
15 ==== TICK 1 STARTS, inputs = 04, enabled = 07
16 ==== Inputs: B (2)
17 ==== Enabled: TickEnd (0), Main (1), S1 (2)
18 PRESENT: S1 (id 2, prio 0) determines A (1) as absent
19 PRESENT: S1 (id 2, prio 0) determines B (2) as present
20 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 5, result 5
21 PAUSE: S1 (id 2, prio 0) pauses, active = 07
22 PRESENT: Main (id 1, prio 0) determines C (3) as absent
23 PRESENT: Main (id 1, prio 0) determines D (4) as absent
24 PAUSE: Main (id 1, prio 0) pauses, active = 03
25 ==== TICK 1 terminates after 8 instructions, enabled = 07.
26 ==== Resulting signals: V (0), B (2), Outputs OK.
27
28 ==== Executed tickMax = 2 ticks!
29 #### RUN 0 terminates after 15 instructions
30
31 #### RUN 1 STARTS #############
32 ==== TICK 0 STARTS, inputs = 00, enabled = 00
33 ==== Inputs: <none>
34 ==== Enabled: <none>
35 PAR: Main (id 1, prio 0) forks S1 (2) with prio 0
36 PARE: Main (id 1, prio 0) has descendants 04
37 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 2, result 2
38 PRESENT: S1 (id 2, prio 0) determines B (2) as absent
39 PAUSE: S1 (id 2, prio 0) pauses, active = 07
40 PRESENT: Main (id 1, prio 0) determines D (4) as absent
41 PAUSE: Main (id 1, prio 0) pauses, active = 03
42 ==== TICK 0 terminates after 7 instructions, enabled = 07.
43 ==== Resulting signals: V (0), Outputs OK.
44
45 ==== TICK 1 STARTS, inputs = 036, enabled = 07
46 ==== Inputs: A (1), B (2), C (3), D (4)

47 ==== Enabled: TickEnd (0), Main (1), S1 (2)
48 PRESENT: S1 (id 2, prio 0) determines A (1) as present
49 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 3, result 3
50 PRESENT: S1 (id 2, prio 0) determines B (2) as present
51 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 5, result 15
52 PAUSE: S1 (id 2, prio 0) pauses, active = 07
53 PRESENT: Main (id 1, prio 0) determines C (3) as present
54 EMITInt∗:Main (id 1, prio 0) emits V (0), value 7, result 105
55 TRANS: Main (id 1, prio 0) transfers , enabled = 03
56 PAR: Main (id 1, prio 0) forks S1 (2) with prio 0
57 PARE: Main (id 1, prio 0) has descendants 04
58 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 2, result 210
59 PRESENT: S1 (id 2, prio 0) determines B (2) as present
60 EMITInt∗:S1 (id 2, prio 0) emits V (0), value 5, result 1050
61 PAUSE: S1 (id 2, prio 0) pauses, active = 07
62 PRESENT: Main (id 1, prio 0) determines D (4) as present
63 EMITInt∗:Main (id 1, prio 0) emits V (0), value 11, result 11550
64 TRANS: Main (id 1, prio 0) transfers , enabled = 03
65 PAUSE: Main (id 1, prio 0) pauses, active = 03
66 ==== TICK 1 terminates after 21 instructions, enabled = 03.
67 ==== Resulting signals: V (0), A (1), B (2), C (3), D (4), Outputs OK.
68
69 ==== Executed tickMax = 2 ticks!
70 #### RUN 1 terminates after 28 instructions
71
72 #### All runs terminate, after 43 instructions

B.11 Reincarnation

Listing B.23: Reincarnation.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−22
3 //
4 // rvh, 20 mar 2009
5
6 // This program illustrates the SIGNAL instruction to handle signal
7 // reincarnation .
8
9 #include ”sc.h”

10
11 #define RUNMAX 1 // # of runs to execute
12 #define TICKMAX 4 // # of ticks to execute
13
14 int runMax = RUNMAX; // # of runs to execute
15 int tickMax = TICKMAX; // # of ticks to execute
16
17
18 // ================================
19 // Program−specific definitions
20
21 // Signals
22 typedef enum {A, gotS, S} signaltype;
23 const char ∗s2signame[] = {”A”, ”gotS”, ”S”};
24
25 // Thread ids
26 int idHi = 1; // Highest thread id in use
27 typedef enum { TickEnd, Main } idtype;
28 const int ids [] = { 0, 1 };
29 const char ∗id2threadname[] = { ”TickEnd”, ”Main” };
30
31
32 // Inputs for RUNMAX runs of TICKMAX ticks
33 signalvector inputs [RUNMAX][TICKMAX] =
34 {{u2b(A), 0, u2b(A), 0}};
35
36 // Expected outputs
37 signalvector outputs[RUNMAX][TICKMAX] =
38 {{0, 0, 0, 0}};
39
40 void getInputs ()
41 {
42 signals = inputs[runCnt][tickCnt];
43 }
44
45 // Set reference outputs and check valued signals , if there are any.
46 // Return 1 unless valued signal outputs are wrong.
47 // No valued signals here , therefore always return 1.
48 int checkOutputs(signalvector ∗tickOutputs)
49 {
50 ∗tickOutputs = outputs[runCnt][tickCnt];
51 return 1;
52 }
53
54 // No valued signals to print

82

55 void printVal (int id)
56 {
57 }
58
59 // Returns 1 if some thread is still active in current tick
60 int tick (int isInit)
61 {
62 // Thread ids : Main=1
63 TICKSTART(isInit);
64
65 Reinc: SIGNAL(S);
66 PRESENT(S, Q);
67 P: EMIT(gotS);
68 PAUSE(P);
69 Q: PAUSE(L0);
70 L0: PRESENT(A, Q);
71 EMIT(S);
72 GOTO(Reinc);
73
74 TICKEND;
75 }
76
77 // Local Variables :
78 // compile−command: ”make reincarnation; reincarnation”
79 // End:

Listing B.24: Reincarnation.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 01, enabled = 00
3 ==== Inputs: A (0)
4 ==== Enabled: <none>
5 SIGNAL: Main (id 1, prio 0) initializes S (2)
6 PRESENT: Main (id 1, prio 0) determines S (2) as absent
7 PAUSE: Main (id 1, prio 0) pauses, active = 03
8 ==== TICK 0 terminates after 3 instructions, enabled = 03.
9 ==== Resulting signals: A (0), Outputs OK.

10
11 ==== TICK 1 STARTS, inputs = 00, enabled = 03
12 ==== Inputs: <none>
13 ==== Enabled: TickEnd (0), Main (1)
14 PRESENT: Main (id 1, prio 0) determines A (0) as absent
15 PAUSE: Main (id 1, prio 0) pauses, active = 03
16 ==== TICK 1 terminates after 2 instructions, enabled = 03.
17 ==== Resulting signals: <none>, Outputs OK.
18
19 ==== TICK 2 STARTS, inputs = 01, enabled = 03
20 ==== Inputs: A (0)
21 ==== Enabled: TickEnd (0), Main (1)
22 PRESENT: Main (id 1, prio 0) determines A (0) as present
23 EMIT: Main (id 1, prio 0) emits S (2)
24 SIGNAL: Main (id 1, prio 0) initializes S (2)
25 PRESENT: Main (id 1, prio 0) determines S (2) as absent
26 PAUSE: Main (id 1, prio 0) pauses, active = 03
27 ==== TICK 2 terminates after 6 instructions, enabled = 03.
28 ==== Resulting signals: A (0), Outputs OK.
29
30 ==== TICK 3 STARTS, inputs = 00, enabled = 03
31 ==== Inputs: <none>
32 ==== Enabled: TickEnd (0), Main (1)
33 PRESENT: Main (id 1, prio 0) determines A (0) as absent
34 PAUSE: Main (id 1, prio 0) pauses, active = 03
35 ==== TICK 3 terminates after 2 instructions, enabled = 03.
36 ==== Resulting signals: <none>, Outputs OK.
37
38 ==== Executed tickMax = 4 ticks!
39 #### RUN 0 terminates after 13 instructions
40
41 #### All runs terminate, after 13 instructions

B.12 Shifter3

Listing B.25: Shifter3.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−19
3 //
4 // rvh, 5 mar 2009
5
6 // This example illustrates the use of valued signals and PRE
7
8 // Must define the following before including sc .h
9 #define usePRE // Use PRE operator

10 #define valSigIntCnt 4 // Number of valued signals

11
12 #include ”sc.h”
13
14 // ================================
15 // Program−specific definitions
16
17 #define RUNMAX 1 // # of runs to execute
18 int runMax = RUNMAX;
19
20 #define TICKMAX 12 // # of ticks to execute
21 int tickMax = TICKMAX;
22
23 // Signals
24 // Valued signals come first , as their index is used to index value arrays
25 // If multiple types are used, can use appropriate offset for indexing

arrays
26 typedef enum { S0, S1, O, I } signaltype ;
27 const char ∗s2signame[] = { ”S0”, ”S1”, ”O”, ”I” };
28
29 // Define valued int signals
30 int valSigInt [valSigIntCnt]; // Values
31 int valSigIntPre [valSigIntCnt]; // Previous values
32
33 // Thread ids
34 int idHi = 3; // Highest thread id in use
35 typedef enum { TickEnd, Main, Shift1, ShiftO } idtype ;
36 const int ids [] = { 0, 1, 2, 3 };
37 const char ∗id2threadname[] = { ”TickEnd”, ”Main”, ”Shift1”, ”ShiftO” };
38
39 // Inputs for RUNMAX runs of TICKMAX ticks
40 signalvector inputs [RUNMAX][TICKMAX] =
41 {{0, u2b(I) , 0, u2b(I) ,
42 0, u2b(I) , 0, u2b(I) ,
43 u2b(I) , u2b(I) , u2b(I) , u2b(I)}};
44
45 // Expected outputs
46 signalvector outputs[RUNMAX][TICKMAX] =
47 {{0, 0, u2b(S0), u2b(S1),
48 u2b(S0) | u2b(O), u2b(S1), u2b(S0) | u2b(O), u2b(S1),
49 u2b(S0) | u2b(O), u2b(S0) | u2b(S1), u2b(S0) | u2b(S1) | u2b(O), u2b(S0

) | u2b(S1) | u2b(O)}};
50
51 // Expected values for signals S0, S1, O
52 // Recall that valued sigs preserve value even if absent
53 int outputValues [][RUNMAX][TICKMAX] =
54 {{{−1, −1, 1, 1,
55 3, 3, 5, 5,
56 7, 8, 9, 10}},
57 {{−1, −1, −1, 1,
58 1, 3, 3, 5,
59 5, 7, 8, 9}},
60 {{−1, −1, −1, −1,
61 1, 1, 3, 3,
62 5, 5, 7, 8}}};
63
64 void getInputs ()
65 {
66 signals = inputs[runCnt][tickCnt];
67 valSigInt [I] = tickCnt;
68 }
69
70 // Set reference outputs and check valued signals , if there are any
71 // Return 1 unless valued signal outputs are wrong
72 int checkOutputs(signalvector ∗tickOutputs)
73 {
74 int s ;
75
76 ∗tickOutputs = outputs[runCnt][tickCnt];
77
78 for (s = S0; s <= O; s++)
79 if (valSigInt [s] != outputValues[s][runCnt][tickCnt]) {
80 printf (”\nERROR: Value of %s is %d, should be %d!!\n”,
81 s2signame[s], valSigInt [s], outputValues[s][runCnt][tickCnt]) ;
82 return 0;
83 }
84
85 return 1;
86 }
87
88 // Print value of a signal , if it has one
89 void printVal (int id)
90 {
91 if (id < valSigIntCnt)
92 printf (”=%d”, valSigInt[id]) ;
93 }
94
95
96 // Returns 1 if some thread is still active in current tick
97 // Notes:

83

98
99 // − As the top−level thread has nothing to do after spawning the

100 // subthreads, it takes on the role of one of the concurrent
101 // subthreads. Or, put another way, the Main thread is one of the
102 // concurrent subthreads (Shift0) , and performs two PAR statements to
103 // spawn off the concurrent subthreads.
104 // − Starting with state Shift0 Shift0depth allows to save final GOTO
105 // by folding it into PAUSE
106 int tick (int isInit)
107 {
108 // Thread ids : Main=1, Shift1=2, ShiftO=3
109 int reg0;
110
111 TICKSTART(isInit);
112
113 PAR(0, Shift1, ids [Shift1]) ;
114 PAR(0, ShiftO, ids [ShiftO]) ;
115 GOTO(Shift0);
116
117 Shift0depth :PRESENTPRE(I, Shift0);
118 VALPRE(I, reg0);
119 EMITINT(S0, reg0);
120 Shift0 : PAUSE(Shift0depth);
121
122 Shift1depth :PRESENTPRE(S0, Shift1);
123 VALPRE(S0, reg0);
124 EMITINT(S1, reg0);
125 Shift1 : PAUSE(Shift1depth);
126
127 ShiftOdepth:PRESENTPRE(S1, ShiftO);
128 VALPRE(S1, reg0);
129 EMITINT(O, reg0);
130 ShiftO: PAUSE(ShiftOdepth);
131
132 TICKEND;
133 }
134
135 // Local Variables :
136 // compile−command: ”make shifter3; shifter3”
137 // End:

Listing B.26: Shifter3.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 00, enabled = 00
3 ==== Inputs: <none>
4 ==== Enabled: <none>
5 PAR: Main (id 1, prio 0) forks Shift1 (2) with prio 0
6 PAR: Main (id 1, prio 0) forks ShiftO (3) with prio 0
7 PAUSE: Main (id 1, prio 0) pauses, active = 017
8 PAUSE: ShiftO (id 3, prio 0) pauses, active = 015
9 PAUSE: Shift1 (id 2, prio 0) pauses, active = 05

10 ==== TICK 0 terminates after 6 instructions, enabled = 017.
11 ==== Resulting signals: <none>, Outputs OK.
12
13 ==== TICK 1 STARTS, inputs = 010, enabled = 017
14 ==== Inputs: I=1 (3)
15 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
16 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as absent
17 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
18 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as absent
19 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
20 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as absent
21 PAUSE: Main (id 1, prio 0) pauses, active = 03
22 ==== TICK 1 terminates after 6 instructions, enabled = 017.
23 ==== Resulting signals: I=1 (3), Outputs OK.
24
25 ==== TICK 2 STARTS, inputs = 00, enabled = 017
26 ==== Inputs: <none>
27 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
28 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as absent
29 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
30 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as absent
31 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
32 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
33 VALPRE: Main (id 1, prio 0) determines value of I (3) as 1
34 EMITInt: Main (id 1, prio 0) emits S0 (0), value 1
35 PAUSE: Main (id 1, prio 0) pauses, active = 03
36 ==== TICK 2 terminates after 8 instructions, enabled = 017.
37 ==== Resulting signals: S0=1 (0), Outputs OK.
38
39 ==== TICK 3 STARTS, inputs = 010, enabled = 017
40 ==== Inputs: I=3 (3)
41 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
42 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as absent
43 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
44 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as present
45 VALPRE: Shift1 (id 2, prio 0) determines value of S0 (0) as 1

46 EMITInt: Shift1 (id 2, prio 0) emits S1 (1), value 1
47 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
48 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as absent
49 PAUSE: Main (id 1, prio 0) pauses, active = 03
50 ==== TICK 3 terminates after 8 instructions, enabled = 017.
51 ==== Resulting signals: S1=1 (1), I=3 (3), Outputs OK.
52
53 ==== TICK 4 STARTS, inputs = 00, enabled = 017
54 ==== Inputs: <none>
55 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
56 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as present
57 VALPRE: ShiftO (id 3, prio 0) determines value of S1 (1) as 1
58 EMITInt: ShiftO (id 3, prio 0) emits O (2), value 1
59 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
60 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as absent
61 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
62 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
63 VALPRE: Main (id 1, prio 0) determines value of I (3) as 3
64 EMITInt: Main (id 1, prio 0) emits S0 (0), value 3
65 PAUSE: Main (id 1, prio 0) pauses, active = 03
66 ==== TICK 4 terminates after 10 instructions, enabled = 017.
67 ==== Resulting signals: S0=3 (0), O=1 (2), Outputs OK.
68
69 ==== TICK 5 STARTS, inputs = 010, enabled = 017
70 ==== Inputs: I=5 (3)
71 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
72 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as absent
73 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
74 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as present
75 VALPRE: Shift1 (id 2, prio 0) determines value of S0 (0) as 3
76 EMITInt: Shift1 (id 2, prio 0) emits S1 (1), value 3
77 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
78 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as absent
79 PAUSE: Main (id 1, prio 0) pauses, active = 03
80 ==== TICK 5 terminates after 8 instructions, enabled = 017.
81 ==== Resulting signals: S1=3 (1), I=5 (3), Outputs OK.
82
83 ==== TICK 6 STARTS, inputs = 00, enabled = 017
84 ==== Inputs: <none>
85 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
86 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as present
87 VALPRE: ShiftO (id 3, prio 0) determines value of S1 (1) as 3
88 EMITInt: ShiftO (id 3, prio 0) emits O (2), value 3
89 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
90 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as absent
91 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
92 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
93 VALPRE: Main (id 1, prio 0) determines value of I (3) as 5
94 EMITInt: Main (id 1, prio 0) emits S0 (0), value 5
95 PAUSE: Main (id 1, prio 0) pauses, active = 03
96 ==== TICK 6 terminates after 10 instructions, enabled = 017.
97 ==== Resulting signals: S0=5 (0), O=3 (2), Outputs OK.
98
99 ==== TICK 7 STARTS, inputs = 010, enabled = 017

100 ==== Inputs: I=7 (3)
101 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
102 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as absent
103 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
104 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as present
105 VALPRE: Shift1 (id 2, prio 0) determines value of S0 (0) as 5
106 EMITInt: Shift1 (id 2, prio 0) emits S1 (1), value 5
107 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
108 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as absent
109 PAUSE: Main (id 1, prio 0) pauses, active = 03
110 ==== TICK 7 terminates after 8 instructions, enabled = 017.
111 ==== Resulting signals: S1=5 (1), I=7 (3), Outputs OK.
112
113 ==== TICK 8 STARTS, inputs = 010, enabled = 017
114 ==== Inputs: I=8 (3)
115 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
116 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as present
117 VALPRE: ShiftO (id 3, prio 0) determines value of S1 (1) as 5
118 EMITInt: ShiftO (id 3, prio 0) emits O (2), value 5
119 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
120 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as absent
121 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
122 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
123 VALPRE: Main (id 1, prio 0) determines value of I (3) as 7
124 EMITInt: Main (id 1, prio 0) emits S0 (0), value 7
125 PAUSE: Main (id 1, prio 0) pauses, active = 03
126 ==== TICK 8 terminates after 10 instructions, enabled = 017.
127 ==== Resulting signals: S0=7 (0), O=5 (2), I=8 (3), Outputs OK.
128
129 ==== TICK 9 STARTS, inputs = 010, enabled = 017
130 ==== Inputs: I=9 (3)
131 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
132 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as absent
133 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
134 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as present

84

135 VALPRE: Shift1 (id 2, prio 0) determines value of S0 (0) as 7
136 EMITInt: Shift1 (id 2, prio 0) emits S1 (1), value 7
137 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
138 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
139 VALPRE: Main (id 1, prio 0) determines value of I (3) as 8
140 EMITInt: Main (id 1, prio 0) emits S0 (0), value 8
141 PAUSE: Main (id 1, prio 0) pauses, active = 03
142 ==== TICK 9 terminates after 10 instructions, enabled = 017.
143 ==== Resulting signals: S0=8 (0), S1=7 (1), I=9 (3), Outputs OK.
144
145 ==== TICK 10 STARTS, inputs = 010, enabled = 017
146 ==== Inputs: I=10 (3)
147 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
148 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as present
149 VALPRE: ShiftO (id 3, prio 0) determines value of S1 (1) as 7
150 EMITInt: ShiftO (id 3, prio 0) emits O (2), value 7
151 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
152 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as present
153 VALPRE: Shift1 (id 2, prio 0) determines value of S0 (0) as 8
154 EMITInt: Shift1 (id 2, prio 0) emits S1 (1), value 8
155 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
156 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
157 VALPRE: Main (id 1, prio 0) determines value of I (3) as 9
158 EMITInt: Main (id 1, prio 0) emits S0 (0), value 9
159 PAUSE: Main (id 1, prio 0) pauses, active = 03
160 ==== TICK 10 terminates after 12 instructions, enabled = 017.
161 ==== Resulting signals: S0=9 (0), S1=8 (1), O=7 (2), I=10 (3), Outputs OK.
162
163 ==== TICK 11 STARTS, inputs = 010, enabled = 017
164 ==== Inputs: I=11 (3)
165 ==== Enabled: TickEnd (0), Main (1), Shift1 (2), ShiftO (3)
166 PRESENTPRE:ShiftO (id 3, prio 0) determines previous S1 (1) as present
167 VALPRE: ShiftO (id 3, prio 0) determines value of S1 (1) as 8
168 EMITInt: ShiftO (id 3, prio 0) emits O (2), value 8
169 PAUSE: ShiftO (id 3, prio 0) pauses, active = 017
170 PRESENTPRE:Shift1 (id 2, prio 0) determines previous S0 (0) as present
171 VALPRE: Shift1 (id 2, prio 0) determines value of S0 (0) as 9
172 EMITInt: Shift1 (id 2, prio 0) emits S1 (1), value 9
173 PAUSE: Shift1 (id 2, prio 0) pauses, active = 07
174 PRESENTPRE:Main (id 1, prio 0) determines previous I (3) as present
175 VALPRE: Main (id 1, prio 0) determines value of I (3) as 10
176 EMITInt: Main (id 1, prio 0) emits S0 (0), value 10
177 PAUSE: Main (id 1, prio 0) pauses, active = 03
178 ==== TICK 11 terminates after 12 instructions, enabled = 017.
179 ==== Resulting signals: S0=10 (0), S1=9 (1), O=8 (2), I=11 (3), Outputs

OK.
180
181 ==== Executed tickMax = 12 ticks!
182 #### RUN 0 terminates after 108 instructions
183
184 #### All runs terminate, after 108 instructions

B.13 SurfDepth

Listing B.27: SurfDepth.c
1 // Example from Charles Andr , Semantics of SyncCharts,
2 // ISRN I3S/RR−2003−24−FR, April 2003, Figure 8−5
3 //
4 // rvh, 19 mar 2009
5 #include ”sc.h”
6
7 #define RUNMAX 2 // # of runs to execute
8 #define TICKMAX 5 // # of ticks to execute
9

10 int runMax = RUNMAX; // # of runs to execute
11 int tickMax = TICKMAX; // # of ticks to execute
12
13
14 // ================================
15 // Program−specific definitions
16
17 // Signals
18 typedef enum {A0, A1, B0, B1, C1, U0, U1, V0, V1, W1} signaltype;
19 const char ∗s2signame[] = {”A0”, ”A1”, ”B0”, ”B1”, ”C1”, ”U0”, ”U1”, ”V0”

, ”V1”, ”W1”};
20
21 // Thread ids
22 int idHi = 1; // Highest thread id in use
23 typedef enum { TickEnd, Main } idtype;
24 const int ids [] = { 0, 1 };
25 const char ∗id2threadname[] = { ”TickEnd”, ”Main” };
26
27 // Inputs for RUNMAX runs of TICKMAX ticks
28 signalvector inputs [RUNMAX][TICKMAX] =

29 {{ u2b(A0) | u2b(A1), u2b(A0) | u2b(A1), u2b(A0) | u2b(A1), u2b(A0) |
u2b(A1), u2b(A0) | u2b(A1) },

30 { u2b(B0) | u2b(B1), u2b(B0) | u2b(B1), u2b(B0) | u2b(C1), u2b(B0) | u2b
(C1), u2b(B0) | u2b(C1) }};

31
32 // Expected outputsS
33 signalvector outputs[RUNMAX][TICKMAX] =
34 {{ 0, u2b(U0), u2b(U1), 0, u2b(U0) },
35 { u2b(V0) | u2b(V1), u2b(V0) | u2b(V1), u2b(V0), u2b(W1), u2b(V0) }};
36
37 void getInputs ()
38 {
39 signals = inputs[runCnt][tickCnt];
40 }
41
42 // Set reference outputs and check valued signals , if there are any.
43 // Return 1 unless valued signal outputs are wrong.
44 // No valued signals here , therefore always return 1.
45 int checkOutputs(signalvector ∗tickOutputs)
46 {
47 ∗tickOutputs = outputs[runCnt][tickCnt];
48 return 1;
49 }
50
51 // No valued signals to print
52 void printVal (int id)
53 {
54 }
55
56 // Returns 1 if some thread is still active in current tick
57 int tick (int isInit)
58 {
59 // Thread ids : Main=1
60 TICKSTART(isInit);
61
62 GOTO(S0surf);
63
64 S0depth:PRESENT(A0, S0surf);
65 EMIT(U0);
66 GOTO(S1surf);
67 S0surf : PRESENT(B0, L0);
68 EMIT(V0);
69 GOTO(S1surf);
70 L0: PAUSE(S0depth);
71
72 S1surf : PRESENT(B1, L4);
73 GOTO(L2);
74 S1depth:PRESENT(A1, L1);
75 EMIT(U1);
76 GOTO(S2);
77 L1: PRESENT(B1, L3);
78 L2: EMIT(V1);
79 GOTO(S2);
80 L3: PRESENT(C1, L4);
81 EMIT(W1);
82 GOTO(S2);
83 L4: PAUSE(S1depth);
84
85 S2: PAUSE(S0surf);
86
87 TICKEND;
88 }
89
90 // Local Variables :
91 // compile−command: ”make SurfDepth; SurfDepth”
92 // End:

Listing B.28: SurfDepth.out
1 #### RUN 0 STARTS #############
2 ==== TICK 0 STARTS, inputs = 03, enabled = 00
3 ==== Inputs: A0 (0), A1 (1)
4 ==== Enabled: <none>
5 PRESENT: Main (id 1, prio 0) determines B0 (2) as absent
6 PAUSE: Main (id 1, prio 0) pauses, active = 03
7 ==== TICK 0 terminates after 3 instructions, enabled = 03.
8 ==== Resulting signals: A0 (0), A1 (1), Outputs OK.
9

10 ==== TICK 1 STARTS, inputs = 03, enabled = 03
11 ==== Inputs: A0 (0), A1 (1)
12 ==== Enabled: TickEnd (0), Main (1)
13 PRESENT: Main (id 1, prio 0) determines A0 (0) as present
14 EMIT: Main (id 1, prio 0) emits U0 (5)
15 PRESENT: Main (id 1, prio 0) determines B1 (3) as absent
16 PAUSE: Main (id 1, prio 0) pauses, active = 03
17 ==== TICK 1 terminates after 5 instructions, enabled = 03.
18 ==== Resulting signals: A0 (0), A1 (1), U0 (5), Outputs OK.
19

85

20 ==== TICK 2 STARTS, inputs = 03, enabled = 03
21 ==== Inputs: A0 (0), A1 (1)
22 ==== Enabled: TickEnd (0), Main (1)
23 PRESENT: Main (id 1, prio 0) determines A1 (1) as present
24 EMIT: Main (id 1, prio 0) emits U1 (6)
25 PAUSE: Main (id 1, prio 0) pauses, active = 03
26 ==== TICK 2 terminates after 4 instructions, enabled = 03.
27 ==== Resulting signals: A0 (0), A1 (1), U1 (6), Outputs OK.
28
29 ==== TICK 3 STARTS, inputs = 03, enabled = 03
30 ==== Inputs: A0 (0), A1 (1)
31 ==== Enabled: TickEnd (0), Main (1)
32 PRESENT: Main (id 1, prio 0) determines B0 (2) as absent
33 PAUSE: Main (id 1, prio 0) pauses, active = 03
34 ==== TICK 3 terminates after 2 instructions, enabled = 03.
35 ==== Resulting signals: A0 (0), A1 (1), Outputs OK.
36
37 ==== TICK 4 STARTS, inputs = 03, enabled = 03
38 ==== Inputs: A0 (0), A1 (1)
39 ==== Enabled: TickEnd (0), Main (1)
40 PRESENT: Main (id 1, prio 0) determines A0 (0) as present
41 EMIT: Main (id 1, prio 0) emits U0 (5)
42 PRESENT: Main (id 1, prio 0) determines B1 (3) as absent
43 PAUSE: Main (id 1, prio 0) pauses, active = 03
44 ==== TICK 4 terminates after 5 instructions, enabled = 03.
45 ==== Resulting signals: A0 (0), A1 (1), U0 (5), Outputs OK.
46
47 ==== Executed tickMax = 5 ticks!
48 #### RUN 0 terminates after 19 instructions
49
50 #### RUN 1 STARTS #############
51 ==== TICK 0 STARTS, inputs = 014, enabled = 00
52 ==== Inputs: B0 (2), B1 (3)
53 ==== Enabled: <none>
54 PRESENT: Main (id 1, prio 0) determines B0 (2) as present
55 EMIT: Main (id 1, prio 0) emits V0 (7)
56 PRESENT: Main (id 1, prio 0) determines B1 (3) as present
57 EMIT: Main (id 1, prio 0) emits V1 (8)
58 PAUSE: Main (id 1, prio 0) pauses, active = 03
59 ==== TICK 0 terminates after 9 instructions, enabled = 03.
60 ==== Resulting signals: B0 (2), B1 (3), V0 (7), V1 (8), Outputs OK.
61
62 ==== TICK 1 STARTS, inputs = 014, enabled = 03
63 ==== Inputs: B0 (2), B1 (3)
64 ==== Enabled: TickEnd (0), Main (1)
65 PRESENT: Main (id 1, prio 0) determines B0 (2) as present
66 EMIT: Main (id 1, prio 0) emits V0 (7)
67 PRESENT: Main (id 1, prio 0) determines B1 (3) as present
68 EMIT: Main (id 1, prio 0) emits V1 (8)
69 PAUSE: Main (id 1, prio 0) pauses, active = 03
70 ==== TICK 1 terminates after 8 instructions, enabled = 03.
71 ==== Resulting signals: B0 (2), B1 (3), V0 (7), V1 (8), Outputs OK.
72
73 ==== TICK 2 STARTS, inputs = 024, enabled = 03
74 ==== Inputs: B0 (2), C1 (4)
75 ==== Enabled: TickEnd (0), Main (1)
76 PRESENT: Main (id 1, prio 0) determines B0 (2) as present
77 EMIT: Main (id 1, prio 0) emits V0 (7)
78 PRESENT: Main (id 1, prio 0) determines B1 (3) as absent
79 PAUSE: Main (id 1, prio 0) pauses, active = 03
80 ==== TICK 2 terminates after 5 instructions, enabled = 03.
81 ==== Resulting signals: B0 (2), C1 (4), V0 (7), Outputs OK.
82
83 ==== TICK 3 STARTS, inputs = 024, enabled = 03
84 ==== Inputs: B0 (2), C1 (4)
85 ==== Enabled: TickEnd (0), Main (1)
86 PRESENT: Main (id 1, prio 0) determines A1 (1) as absent
87 PRESENT: Main (id 1, prio 0) determines B1 (3) as absent
88 PRESENT: Main (id 1, prio 0) determines C1 (4) as present
89 EMIT: Main (id 1, prio 0) emits W1 (9)
90 PAUSE: Main (id 1, prio 0) pauses, active = 03
91 ==== TICK 3 terminates after 6 instructions, enabled = 03.
92 ==== Resulting signals: B0 (2), C1 (4), W1 (9), Outputs OK.
93
94 ==== TICK 4 STARTS, inputs = 024, enabled = 03
95 ==== Inputs: B0 (2), C1 (4)
96 ==== Enabled: TickEnd (0), Main (1)
97 PRESENT: Main (id 1, prio 0) determines B0 (2) as present
98 EMIT: Main (id 1, prio 0) emits V0 (7)
99 PRESENT: Main (id 1, prio 0) determines B1 (3) as absent

100 PAUSE: Main (id 1, prio 0) pauses, active = 03
101 ==== TICK 4 terminates after 5 instructions, enabled = 03.
102 ==== Resulting signals: B0 (2), C1 (4), V0 (7), Outputs OK.
103
104 ==== Executed tickMax = 5 ticks!
105 #### RUN 1 terminates after 33 instructions
106
107 #### All runs terminate, after 52 instructions

86

	Introduction
	Introductory Examples
	Reactive Control in SC---The PCO Example
	Signals in SC---The grcbal3 Example

	A Tour of SC
	The SC Programming Model
	Synchronous threading
	Signals

	Multithreading Simulation
	Coarse program counters
	The dispatcher
	Thread and label structuring
	Thread scheduling

	SC Operators
	SC Thread Handling Operators
	SC signal operators
	SC sequential control operators
	An example of expanded macros---ABRO

	SC Structure
	Program files
	Functions
	Types
	Variables

	Examples
	Count2Suspend
	Exits
	FilteredSR
	Shifter3
	PreAndSuspend
	Reincarnation
	PrimeFactor

	Related Work
	Experimental results
	Conciseness of SC, Code Size
	SC Performance

	Conclusions and Outlook
	The SC files
	Complete Examples
	ABRO
	grcbal3
	PCO
	Count2Suspend
	Exits
	Exits-no-isatcall
	Exits-inlined
	FilteredSR
	PreAndSuspend
	PrimeFactor
	Reincarnation
	Shifter3
	SurfDepth

