
INSTITUT FÜR INFORMATIK

Sequentially Constructive Concurrency
A Conservative Extension of

the Synchronous Model of Computation

Reinhard von Hanxleden, Michael Mendler,
Joaquin Aguado, Björn Duderstadt, Insa Fuhrmann,

Christian Motika, Stephen Mercer, Owen O’Brien
and Partha Roop

Bericht Nr. 1308
August 2013

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Sequentially Constructive Concurrency
A Conservative Extension of

the Synchronous Model of Computation

Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado,
Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen

Mercer, Owen O’Brien and Partha Roop

Bericht Nr. 1308
August 2013

ISSN 2192-6247

R. von Hanxleden, B. Duderstadt, I. Fuhrmann, and C. Motika are with the
Department of Computer Science, Kiel University, Kiel, Germany.

E-mail: {rvh, bdu, ima, cmot}@informatik.uni-kiel.de
M. Mendler and J. Aguado are with Bamberg University, Germany.

E-mail: {michael.mendler, joaquin.aguado}@uni-bamberg.de
S. Mercer and O. O’Brien are with National Instruments, Austin, TX, USA.

E-mail: {stephen.mercer,owen.o’brien}@ni.com
P. Roop is with Auckland University, Auckland, New Zealand.

E-mail: p.roop@auckland.ac.nz

Parts of this report have appeared in the Proceedings of the Design,
Automation and Test in Europe Conference (DATE’13), Grenoble, France,

March 2013

Abstract

Synchronous languages ensure deterministic concurrency, but at the price of heavy re-
strictions on what programs are considered valid, or constructive. Meanwhile, sequential
languages such as C and Java offer an intuitive, familiar programming paradigm but pro-
vide no guarantees with regard to deterministic concurrency. The sequentially constructive
model of computation (SC MoC) presented here harnesses the synchronous execution model
to achieve deterministic concurrency while addressing concerns that synchronous languages
are unnecessarily restrictive and difficult to adopt.

In essence, the SC MoC extends the classical synchronous MoC by allowing variables to
be read and written in any order as long as sequentiality expressed in the program provides
sufficient scheduling information to rule out race conditions. This allows to use programming
patterns familiar from sequential programming, such as testing and later setting the value
of a variable, which are forbidden in the standard synchronous MoC. The SC MoC is a
conservative extension in that programs considered constructive in the common synchronous
MoC are also SC and retain the same semantics. In this paper, we identify classes of variable
accesses, define sequential constructiveness based on the concept of SC-admissible scheduling,
and present a priority-based scheduling algorithm for analyzing and compiling SC programs.

Keywords: Concurrency, synchronous languages, determinism, constructiveness.

iii

Contents

1 Introduction 1

2 Related Work 2

3 The SC Language and the SC Graph 4
3.1 The SC Language . 4
3.2 The Control Example . 6
3.3 The SC Graph . 8
3.4 Mapping SCL to an SCG . 8
3.5 Thread Terminology . 9
3.6 Thread Reincarnation—The Reinc Example . 10
3.7 Thread Trees—The Reinc2 Example . 11
3.8 Statement Reincarnation—The InstLoop Example 11
3.9 Macro Ticks, Micro Ticks, and the Thread Status 12
3.10 Concurrency of Node Instances . 14

4 “Free” Scheduling of SCGs 14
4.1 Continuations and Continuation Pool . 15
4.2 Configurations, Micro Step and Macro Step Scheduling 16
4.3 Sequentiality vs. concurrency . 20

5 Sequential Constructiveness 21
5.1 Types of writes . 21
5.2 SC-Admissible Scheduling . 23

6 Analyzing Sequential Constructiveness 27
6.1 Conservative approximations . 35
6.2 Determining SC schedules . 37
6.3 Computing priorities . 37

7 Variables vs. Signals 38
7.1 Emulating pure signals . 38
7.2 Emulating valued signals . 39
7.3 The pre operator . 39

8 SCCharts — Sequentially Constructive Statecharts 40

9 Alternative Notions of Constructiveness 41

10 Summary and Outlook 47

iv

List of Figures

1 The mapping between SCL statements and SCG subgraphs 2
2 The Control example . 5
3 The syntactical elements of the SC Graph (SCG) 7
4 The Reinc example, illustrating thread reincarnation 10
5 The Reinc2 example, a more elaborate example of thread concurrency and thread

reincarnation . 12
6 The InstLoop example, with an instantaneous loop that leads to statement rein-

carnation within a tick . 13
7 Execution states of a thread . 14
8 The XY example . 21
9 The InEffective examples illustrating non-deterministic responses despite ineffec-

tive out-of-order write accesses . 26
10 The NonDet example, illustrating multiple admissible runs and non-deterministic

outcome . 27
11 The SCL program Fail, which has a deterministic outcome, but no SC-admissible

schedule . 27
12 The GuardedA example, illustrating the data-dependent nature of SC-constructive-

ness . 33
13 SCL program SCDet . 35
14 Overview of SCCharts . 40
15 The ABSWO example, illustrating strong and weak preemption, and the function-

ally equivalent ABSWO-xp (“expanded”) example 42
16 Relationships of Statecharts classes . 43

v

List of definitions, propositions and theorems

1 Definition (SCG subgraphs) . 8
2 Definition (Ancestor/Subordinate/Concurrent Threads) 10
3 Definition (Ticks) . 13
4 Definition (Concurrent Node Instances) . 14
1 Proposition (Active continuations have sequential predecessors) 18
2 Proposition (Active and pausing continuations are concurrent) 18
5 Definition (Combination functions) . 21
6 Definition (Absolute/relative writes and reads) 22
7 Definition (Confluence of Nodes) . 23
8 Definition (Confluence of Node Instances) . 24
9 Definition (Scheduling Relation on Node Instances) 24
10 Definition (SC-Admissibility) . 25
11 Definition (Sequential Constructiveness) . 26
12 Definition (Valid SC-Schedule.) . 27
13 Definition (ASC Schedulability) . 28
1 Theorem (Sequential Constructiveness) . 28
14 Definition (Priorities) . 37
2 Theorem (Finite Priorities) . 37

iii

1 Introduction

One of the challenges of embedded system design is the deterministic handling of concur-
rency. The concurrent programming paradigm exemplified by languages such as Java and C
with Posix threads essentially adds unordered concurrent threads to a fundamentally sequential
model of computation. Combined with a shared address space, concurrent threads may gener-
ate write/write and write/read race conditions, which are problematic with regard to ensuring
deterministic behavior [1], as the run-time order of execution of a multi-threaded program de-
pends both on the actual time that each computation takes to execute and on the behavior of
an external scheduler beyond the programmer’s control .

As an alternative to this non-deterministic approach, the synchronous model of computation
(MoC), exemplified by languages such as Esterel, Lustre, Signal and SyncCharts [2], approaches
the matter from the concurrency side. The synchronous MoC divides time into discrete macro
ticks, or ticks for short. Within each tick, a synchronous program reads in inputs and calculates
outputs. The inputs to a synchronous program are assumed to be in synchrony with their out-
puts, and the time that computations take is abstracted away. Simultaneous threads still share
variables, where we use the term “variable” in a generic sense that also encompasses streams and
signals. However, race conditions are resolved by a deterministic, statically-determined schedul-
ing regime, which ensures that within a tick, a) reads occur after writes and b) each variable
is written only once. A program that cannot be scheduled according to these rules is rejected
at compile time as being not causal, or not constructive. This approach ensures that within
each tick, all variables can be assigned a unique value. This provides a sufficient condition for a
deterministic semantics, though, as we argue here, not a necessary condition.

Introducing global synchronization barriers and sequences of reaction cycles is a sound basis
for deterministic concurrency and applicable also for general programming languages commonly
used for embedded systems. Demanding unique variable values per tick not only limits expres-
siveness but also runs against the intuition of programmers versed in sequential programming,
and makes the task of producing a program free of “causality errors” more difficult than it needs
to be. For example, a simple programming pattern such as if (!done) { . . . ; done = true} cannot be
expressed in a synchronous tick because done must first be written to within the cycle before it
can be read. Another issue that prevents this program from compiling under a synchronous
interpretation is that done would possibly be both false and true within the same tick. However,
in this example, there is no race condition, nor even any concurrency that calls for a scheduler
in the first place. Thus, there is no reason to reject such a program in the interest of ensuring
deterministic concurrency.

Contributions. We propose the sequentially constructive model of computation (SC MoC), a
conservative extension to the synchronous MoC that accepts a strictly larger class of programs.
Specifically, the SC MoC permits variables to have multiple values per tick as long as these values
are either explicitly ordered by sequential statements within the source code or the compiler
can statically determine that the final value at the end of the tick is insensitive to the order
of operations. This extension still ensures deterministic concurrency, and is conservative in
the sense that programs that are accepted under the existing synchronous MoC have the same
meaning under the SC MoC. For example, all constructive Esterel programs are also sequentially
constructive (SC). However, there exist Esterel programs that are SC, but not constructive in
Berry’s sense [3]. E. g., all programs that do not use the concurrency operator are SC, though
they may be non-constructive in Esterel.

Outline. The next section discusses related work. Sec. 3 presents the SC language (SCL)
and the SC graph (SCG), which we use as a basis for the concept of sequential constructiveness.

1

Statement Program Assignment Sequence Conditional Label / Goto Parallel Pause

SCL s x = ex s1 ; s2 if (ex) s1 else s2 goto l . . . l : s fork s1 par s2 join pause

SCG

entry

s

exit

x = ex

s1

s2

if ex

s1

true

s2

goto

s

fork

entry entry

join

s1 s2

exit exit

surf

depth

Figure 1: The mapping between SCL statements and SCG subgraphs. Double circles are place
holders for SCG subgraphs. Solid arrows depict seq (sequential) edges, the dotted line indicates
a tick edge.

Sec. 4 presents the general scheduling problem, on which Sec. 5 builds to define sequential
constructiveness. Sec. 6 presents an approach to analyze whether programs are SC and to
compute a schedule for them. Sec. 7 discusses how Esterel/SyncChart-style signals can be
emulated with plain shared variables under the SC MoC. Sec. 8 presents SCCharts, a dialect
of Statecharts [4] that is inspired by SyncCharts [5] but harnesses the SC MoC to provide a
deterministic semantics to a larger class of Statecharts. Sec. 9 relates SC to other MoCs, such
as Pnueli and Shalev [6]. We summarize in Sec. 10.

2 Related Work

Edwards [7] and Potop-Butucaru et al. [8] provide good overviews of compilation challenges and
approaches for concurrent languages, including synchronous languages and classical work such
as Ferrante et al.’s Program Dependence Graph (PDG) [9]. The SC Graph introduced here can
be viewed as a traditional control flow graph enriched with data dependence information akin
to the PDG for analysis and scheduling purposes.

Esterel [10, 11] provides deterministic concurrency with shared signals. Signals can be written
(“emitted”) and read (“tested for presence”) concurrently. They are absent per default, and
become present in a tick whenever any thread chooses to emit them in the current tick. In
this sense, signals can be written to concurrently, but there is no write-write race, because
any signal emission just sets the signal present, and it does not matter which thread performs
this signal emission first or last. Furthermore, within each tick, any signal emissions must be
performed before any signal presence tests. Causal Esterel programs on pure signals satisfy a
strong scheduling invariant: they can be translated into constructive circuits which are delay-
insensitive [12] under the non-inertial delay model [13], which can be fully decided using ternary
Kleene algebra [14, 13]. The algebraic transformations proposed by Schneider et al. [15] increase
the class of programs considered constructive, but do not permit sequential writes within a
tick. The notion of sequential constructiveness introduced here is weaker regarding schedule
insensitivity, but more adequate for the sequential memory models available for imperative
languages.

Signals in Esterel may also be valued, in which case they do not only carry a presence status,
but also a value of some type. The emission of a valued signal sets a signal present and assigns
it a value. Concurrent emissions of a valued signal are allowed if the signal is associated with
a combination function. This function must be associative and commutative, which allows to
resolve write-write races and ensures a deterministic outcome irrespective of the order in which

2

the signal emissions are performed. E. g., consider a valued signal x of type int with combination
function + and some initial value x0; if at some tick two concurrent signal emissions emit x(ex1) and
emit x(ex2) are performed, which emit x with the values of the expressions ex1, ex2, respectively,
the resulting value for x will be x0 + ex1 + ex2, irrespective of the order in which the additions
(signal emissions) are performed. The SC MoC adopts this concept of a combination function,
and considers such assignments via a combination function as a relative write.

Finally, Esterel also has the concept of variables that can be modified sequentially within a
tick. However, they cannot be used for communication among threads, only concurrent reads
are allowed. The variable access mechanism of the SC MoC proposed here can be viewed as
a combination of Esterel’s signals and variables that is more liberal than either one, without
compromising determinism.

Lustre [16], like Signal [17], is a data-flow oriented language that uses a declarative, equation-
based style to perform variable (stream of values) assignments. Write-write races are ruled out
by the restriction to just one defining equation per variable. Write-read races are addressed by
the requirement that, within a tick, an expression is only computed after all variables referenced
by that expression have been computed. This requires that the write-read dependencies form
a partial order from which a schedule can be derived [18]. I. e., there must be no cyclic write-
read dependencies. A clock calculus takes account of the fact that not every stream variable is
evaluated in every tick. From the result of this schedulability analysis [19] imperative C or Java
code can be obtained. To generate this target code, an SC MoC semantics such as presented
here is needed.

Caspi et al. [20] have extended Lustre with a shared memory model. Similar to the admissi-
bility concept used in this paper, they defined a soundness criterion for scheduling policies that
rules out race conditions. However, they adhere to the current synchronous model of execution
in that they forbid multiple writes even when they are sequentially ordered.

Synchronous C, a.k.a. SyncCharts in C [21], augments C with synchronous, deterministic
concurrency and preemption. It provides a coroutine-like thread scheduling mechanism, with
thread priorities that have to be explicitly set by the programmer. The algorithm presented in
Sec. 6.2 can be used to automatically synthesize priorities for Synchronous C. PRET-C [22] also
provides deterministic reactive control flow, with static thread priorities.

SHIM [23] provides concurrent Kahn process networks with CSP-like rendezvous communi-
cation [24] and exception handling. SHIM has also been inspired by synchronous languages, but
it does not use the synchronous programming model, instead relying on communication channels
for synchronization.

The concept of sequential constructiveness not only applies to textual C/Java-like languages,
but also to a graphical formalism such as Statecharts [4]. In fact, the development of a semanti-
cally sound, yet flexible and intuitive Statechart dialect was the original motivation for develop-
ing the SC MoC. We have developed such a Statechart dialect, named Sequentially Constructive
Statecharts (SCCharts) [25], to be used for the development of safety-critical embedded systems
in an industrial setting.

The core semantic concepts of SCCharts are analogous to André’s SyncCharts [5], which
can be viewed as a graphical variant of the synchronous language Esterel [10, 11]. In Es-
terel Studio, SyncCharts were introduced as Safe State Machines. The Safety Critical Appli-
cation Development Environment (SCADE) uses a variant of SyncCharts elements to augment
dataflow diagrams with reactive behavior, by extending boolean Clocks towards clocks that ex-
press state [26, 27]. The main differences between SCCharts and SyncCharts (including those
present in SCADE) are:

1. SCCharts are not restricted to constructiveness in Berry’s sense [3], but relax this require-

3

ment to sequential constructiveness. This makes a significantly larger class of Statecharts
acceptable without compromising determinism.

2. SCCharts do not introduce signals, but use shared variables. However signals can be fully
emulated with variables under SC scheduling. I. e., one can implement signal initialization
to “absent” as absolute write with false, potentially followed in the same tick by a signal
emission implemented as relative write that performs disjunction with true.

An interesting question is how SCCharts and the SC MoC domain relate to other Statecharts
dialects with respect to what class of programs are considered admissible. This opens up a
further line of investigations that we plan to persue in the future. Briefly, SC-scheduling is
not the only way to interpret the Synchrony Hypothesis, i. e., to execute concurrent threads
in a clock-synchronous fashion. What is considered constructively executable depends a lot on
the target execution architecture. The more scheduling choices there remain admissible in the
target, and thus out of control of the compiler, the more restrictive the compiler has to be in
admitting programs, in order to guarantee a deterministic and bounded macro-tick response. If
the compiler is permitted to resolve scheduling choices, by sequentializing statements in certain
coherent ways, e.g., as we do here, then fewer schedules are admissible. Thus, more programs
can execute constructively.

Various other approaches with their own admissible scheduling schemes have been considered
for Statecharts. Some are more restricted, some more generous and yet others incomparable
with SC admissibility and sequential constructiveness (S-constructiveness). The three most
prominent approaches are due to Pnueli and Shalev [6], Boussinot [28] and Berry and Shiple [29],
which we refer to as P, L, and B-constructiveness, respectively. We find that B-constructiveness
is most restrictive and strictly included in all the notions of {S, P, L}-constructiveness, while
the latter are incomparable with each other. We believe that S-constructive programs are more
practical than either P- and L-constructive programs. This gains substantial extra ground for
programming synchronous interactions compared to the existing imperative synchronous code
which is based on B-constructiveness. None of them considers sequential control flow as SC
does.

3 The SC Language and the SC Graph

To illustrate the SC MoC, we introduce a minimal SC Language (SCL), adopted from C/Java
and Esterel. The concurrent and sequential control flow of an SCL program is given by an
SC Graph (SCG), which acts as an internal representation for elaboration, analysis and code
generation. Fig. 1 presents an overview of the SCL and SCG elements and the mapping between
them.

3.1 The SC Language

SCL program constructs have the following abstract syntax of statements

s ::= x = ex | s ; s | if (ex) s else s | l : s | goto l | fork s par s join | pause

where x is a variable, ex is an expression and l ∈ L is a program label. The statements s
comprise the standard operations assignment, the sequence operator, conditional statements,
labelled commands and jumps. As a syntactical detail on the conditional, this, as is the practice
in C-like languages, does not use a then keyword, but we will still refer to the two branches as
then and else branches. In addition, the two statements introducing synchrony and concurrency

4

Request

checkReqreq

pend
freeDispatch

grant
Dispatch

Control

(a) The dataflow view

-

free = true
req = false

grant = false
pend = false

free = true
req = true

grant = true
pend = false

(b) The first two ticks of an ex-
ample trace, shown as tick time
line; inputs are above the time
line, outputs below

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

(c) The SC Graph (SCG), indicating sequen-
tial flow (continuous arrows), data dependen-
cies (dashed, red arrows), and the tick delim-
iter edges (dotted lines). The data dependency
edges are labeled with their type (here wr only)
and their weight (1); other edges have weight 0.
Nodes are labeled with node identifiers, which
here correspond to line numbers of the SCL pro-
gram, and priorities as computed by the algo-
rithm presented in Sec. 6.2.

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6

7 fork {
8 // Thread ”Request”
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }
19 par {
20 // Thread ”Dispatch”
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join ;
29 }

(d) The SCL program

Macro tick a 1 1 2 2
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13

Input free t t t t
vars req f f t t
Output grant ⊥ f f f f t t
vars pend ⊥ f f f f t f f
Local var checkReq ⊥ f f f t t

CRoot L0 L7 [L28] [L28] [L28] [L28]
Continuations CRequest ⊥ L8 L10 L11 L13 L14 L14 L14 L14 L14 L16s (L16s) L16d L10 L11 L12 L13 L14 L14 L14 L14 L14 L14 L15 L16s (L16s)

CDispatch ⊥ L20 L20 L20 L20 L20 L22 L23 L25s (L25s) (L25s) (L25s) L25d L25d L25d L25d L25d L25d L22 L23 L24 L25s (L25s) (L25s) (L25s) (L25s)
Scheduled nodes Ra

i L0 L7 L8 L10 L11 L13 L20 L22 L23 L25s L14 L16s L16d L10 L11 L12 L13 L25d L22 L23 L24 L25s L14 L15 L16s

(e) An admissible sequence of macro ticks. The values true and false are abbreviated as t and f . At tick granularity,
this run corresponds to the example trace. We see for each micro tick the current variable values, where ⊥ denotes
“uninitialized”. The input values provided by the environment and the output values visible to the environment
are shown in bold. To avoid cluttering the table, values that do not change from one micro tick to the next are
omitted, except at the end of a macro tick. Continuations denote for each thread the statement to be executed
next, as further explained in Sec. 4.1. Threads may be disabled (denoted ⊥), active, waiting (square brackets), or
pausing (parentheses).

Figure 2: The Control example.

are the pause statement, which deactivates a thread until the next tick commences, and par-
allel composition, which forks off two threads and terminates (joins) when both threads have
terminated. In Esterel, parallel composition is denoted ‖; we here use fork/par/join instead, to
provide additional structure and to avoid confusion with the logical or used in expressions. For
simplicity, we here only consider parallelism of degree two; larger numbers of concurrent threads
can be accommodated by nesting of parallel compositions, or by a straightforward extension of
syntax and semantics to support arbitrary numbers of concurrent threads directly.

5

A well-formed SCL program is one in which (i) expressions and variable assignments are
type correct, (ii) there are no duplicate or missing program labels and (iii) no goto jumps into
or out of a parallel composition.

To present SCL examples in concrete textual as opposed to abstract syntax, more syntac-
tic information is needed. E.g., we typically add braces for structuring the code, subject to
conventions regarding the binding strength of the operators (the conditional binds weaker than
the sequence). We may also omit empty else branches, or enhance the unstructured goto with
structured loops (for, while, etc.). Also, there may be comments and local variable declarations,
including their data types, initial values and input/output assignations. However, as our formal
development will be based on the internal representation of SCL programs as SC Graphs, we
may leave the concrete SCL syntax informal. An illustration of the concrete SCL syntax is the
Control example program shown in Fig. 2d and elaborated below.

SCL is a concurrent imperative language with shared variable communication. Variables
can be both written to and read from by concurrent threads. Reads and writes are collectively
referred to as variable accesses. The sublanguage of expressions ex used in assignments and
conditionals is not restricted. All we assume is a function eval to evaluate ex in a given memory
ρ and return a value v = eval(e, ρ) of the appropriate data type. However, we rule out side
effects when evaluating ex.

Esterel signals can be coded in SCL using variable accesses as described in Sec. 7. We are
also omitting Esterel’s abortions and traps, which can be emulated with variables, too; see the
ABSWO example discussed in Sec. 8.

3.2 The Control Example

Turning our attention again to the Control example from Fig. 2, we see that this program executes
two concurrent threads, named Request, and Dispatch. Together with the Root thread, which
always runs at the top level, this program thus consists of three threads. Strictly speaking,
we must distinguish threads and run-time thread instances, since in general one (static) thread
can be instantiated multiple times, even within one tick. But for now, this distinction is not
important, as in Control there is exactly one run-time instance of each thread.

The functionality of Control is inspired by Programmable Logic Controller software used in
the railway domain. It processes requests (as indicated by the input flag req) to a resource,
which may be free or not. As indicated in the dataflow/actor view in Fig. 2a, there are two
separate functional units, corresponding to the Request and Dispatch threads, which process the
requests and dispatch the resource. The output variables indicate whether the resource has been
granted or is still pending.

The execution of Control is broken into discrete reactions, the aforementioned (macro) ticks.
During each tick, the following sequence is performed:

1. read input variables from the environment,

2. execute all active (currently instantiated) threads until they either terminate or reach a
pause statement,

3. write output variables to the environment.

Only the output values emitted at the end of each macro tick are visible to the outside world. The
internal progression of variable values within a tick, i. e., while performing a sequence of micro
ticks (cf. Sec. 3.9), is not externally observable. Hence, when reasoning about deterministic
behavior, we only consider the outputs emitted at the end of each macro tick.

6

entry

L0

exit

L18

goto

L16

x = ex

L2

if ex

L4 L5

true

fork

L7 L8

join

L11

surf

depth

L13

L17 L14 L15 L1 L3 L6 L9 L10 L12

(a) Node types, with control flow and tick boundary edges (weight 0)

x = ... x += ...1
wi

... = ... x ...1

wr

... x ...1wr

1
ir
1

ir

(b) Data dependency edges (weight 1)

x = ... x = ...ww

(c) Write-Write conflict

Figure 3: The syntactical elements of the SC Graph (SCG)

The execution of Control begins with a fork that spawns off Request and Dispatch. These two
threads then progress on their own. Were they Java threads, a scheduler of some run time system
could now switch back and forth between them arbitrarily, until both of them had finished.
Under the SC MoC, their progression and the context switches between them are disciplined
by a scheduling regime that prohibits race conditions. Determinism in Control is achieved by
demanding that in any pair of concurrent write/read accesses to a shared variable, the write
must be scheduled before the read. For example, the write to checkReq in node L13 of the SCG
(Fig. 2c), corresponding to line 13 of the SCL program (Fig. 2d), is in a different concurrent
thread, relative to the read of checkReq (L23). Hence thread Request must be scheduled such
that it executes L13 before Dispatch executes L23.

A common means to visualize program traces in synchronous languages is a tick time line,
as shown in Fig. 2b. As can be seen there, in the first tick, the inputs free = true, req = false
produce the outputs grant = pend = false, under the concurrent write-before-read scheduling
sketched above.

An interesting characteristic of Control is that the concurrent threads not only share vari-
ables, but also modify them sequentially. E. g., Dispatch first initializes grant with false, and
then, in the same tick, might set it to true. Similarly, Request might assign to pend the se-
quence false/true/false. Due to the prescribed sequential ordering of these assignments, this
does not induce any non-determinism. However, this would not be permitted under the strict
synchronous model of computation, which requires unique variable values per tick. Similarly,
pend is read (L14) and subsequently written to (L15); this (sequential) write-after-read is again
harmless, although forbidden under the existing synchronous MoC. However, because it is pos-
sible to schedule Control such that all concurrent write-before-read requirements are met and
all such schedules lead to the same result, we consider Control sequentially constructive. The
rest of this paper consists of making this notion precise, and describing a practical strategy to
analyze sequential constructiveness and to implement schedules that adhere to the SC model of
computation. One building block is the graph abstraction presented in the next section.

7

3.3 The SC Graph

The SCG syntactical elements are presented in Fig. 3. The SCG for the Control example is shown
in Fig. 2c. An SCG is a labelled graph G = (N,E) whose statement nodes N correspond to
the statements of the program, and whose edges E reflect the sequential execution ordering and
data dependencies between the statements. Every edge e ∈ E connects a source e.src ∈ N with
a target node e.tgt ∈ N . Nodes and edges are further described by various attributes.

A node n is labelled by the statement type n.st that it represents, viz. n.st ∈ {entry, exit,
goto, x = ex, if (ex), fork, join, surf, depth}, where x is some variable and ex is some expression.1

Nodes labelled with x = ex are referred to as assignment nodes, those with if ex as condition
nodes, those with surf as surface nodes; all other nodes are referred by their statement type
(entry nodes, exit nodes, etc.). As illustrated in Fig. 3, in the graphical representations of the
SCG the shape of a node indicates the statement type, except for entry/exit/goto nodes, which
all are shown as ovals; they share the characteristic that they mainly serve to structure the SCG
and could be eliminated without changing the meaning of an SCG. The statement types of SCG
nodes are closely related, but not identical to the primitive statements of the SCL language
presented in Sec. 3.1; how these statements relate to each other is elaborated in Sec. 3.4.

Every edge e has a type e.type ∈ {seq, tick, wr, wi, ir, ww} that specifies the nature of
the particular ordering constraint expressed by e. We write e.src →α e.tgt , pronounced “e.src
α-precedes e.tgt,” if e.type = α.

Edges of the form n1 →seq n2 and n1 →tick n2 are induced directly from the source program.
In the former case the two nodes n1 and n2 are sequential successors, and in the latter case tick
successors. Collectively they are referred to as flow successors, and edges of type seq or tick are
referred to as flow edges. A path consisting exclusively of flow edges is referred to as flow path.
We use �seq for the reflexive and transitive closure of →seq.

Informally, n1 →seq n2 holds if the statements may execute in the same tick, and a sequential
control flow enforces n1 to be executed immediately before n2. In other words, the program order
never generates a situation in which the scheduler is free to choose between n1 or n2. Note that
n1 →seq n2 does not necessarily mean that there is a fixed run-time ordering between n1 and
n2. For example, when n1 and n2 are enclosed in a loop, there might be an execution sequence
n1, n2, n1, n2 within the same tick.

The relationship n1 →tick n2 says that there is a tick border between n1 and n2, i. e., the
control flow passes from n1 to n2 not instantaneously in the same tick, as with n1 →seq n2, but
only upon a global clock tick. All other types of edges n1 →α n2 for α ∈ {wr,wi, ir, ww} are
derived for the purpose of scheduling analysis and discussed later in Sec. 6.

3.4 Mapping SCL to an SCG

Fig. 1 gives a schematic overview of how the SCL statements introduced in Sec. 3.1 correspond
to an SCG. This is formally described in the following.

To handle compound statements, we need the concept of an SCG subgraph.

Definition 1 (SCG subgraphs). For an SCG G = (N,E), an SCG subgraph Gsub = (Nsub, Esub,
in,Out) consists of a set of statement nodes Nsub ⊆ N , a set of edges Esub ⊆ N×N , an incoming

1Strictly speaking, “x = ex” and “if (ex)” each denote a multitude of statements, ranging over all variables x
and expressions ex. However, to not make the notation unnecessarily heavy, we here treat them like the other
statements that are not parameterized.

8

node in ∈ Nsub, and a set of outgoing nodes Out ⊆ Nsub. These elements are also referred to
as Gsub.Nsub, etc.

The SCG subgraph corresponding to an SCL statement s is denoted SCG(s).

• An SCL program s corresponds to an SCG consisting of the nodes and edges of SCG(s),
plus an entry node ne, an exit node nx, a seq-edge from ne to SCG(s).in, and seq-edges
from all n ∈ SCG(s).Out to nx.

• For s being an assignment x = ex, we stipulate SCG(s) = ({n}, ∅, n, {n}), where n is an
assignment node with n.st = “x = ex.”

• For s being a sequence s1 ; s2, we have SCG(s) = {SCG(s1).Nsub] SCG(s2).Nsub,
SCG(s1).Esub]SCG(s2).Esub]E′, SCG(s1).in, SCG(s2).Out}, where] is disjoint union
and E′ consists of seq-edges from the nodes in SCG(s1).Out to SCG(s2).in.

• If s is a conditional if (ex) s1 else s2, then SCG(s) = {SCG(s1).Nsub] SCG(s2).Nsub]
{n}, SCG(s1).Esub] SCG(s2).Esub] E′, n, SCG(s1).Out ∪ SCG(s2).Out}, where n is a
conditional node with n.st = “if ex,” and E′ contains edges n →seq true(n) and n →seq

false(n), in which true(n) := SCG(s1).in and false(n) := SCG(s2).in are the two uniquely
defined true and false branch nodes of the conditional.

• For s being a goto l statement that jumps to a labeled statement l : s′, it is SCG(s) =
{{n}, {e}, n, ∅)}, where n is a goto node, i. e., n.st = goto, and e an edge n→seq SCG(s′).in.

• For s being a parallel statement fork s1 par s2 join, it is SCG(s) = {SCG(s1).Nsub]
SCG(s2).Nsub] {nf , nj , ne1, ne2, nx1, nx2}, SCG(s1).Esub] SCG(s2).Esub]E′, nf , {nj}},
where nf is a fork node and nj a join node; furthermore, ne1, ne2 are entry nodes and nx1,
nx2 exit nodes for each created thread that are connected to the fork and join node, respec-
tively, and to SCG(s1) and SCG(s2) as indicated in Fig. 1. Observe that the join node nj
is uniquely associated with the fork nf , which can be expressed by writing nj = join(nf).
As noted earlier, for simplicity we here only consider parallelism of degree two, but an
extension to higher degrees would be straightforward.

• For s being a pause statement, it is SCG(s) = {{ns, nd}, {e}, ns, {nd}}, where ns is a
surface node and nd a depth node, and e is a tick -edge from ns to nd. This models the
fact that the statement can be active at the end of a tick and at the beginning of the
subsequent tick. In a well-formed SCG nd is the unique tick successor tick(ns) = nd of ns.
i. e., whenever n.st = surf then n→tick tick(n) and tick(n).st = depth.

3.5 Thread Terminology

We distinguish the concept of a static thread, which relates to the structure of a program, from
a dynamic thread instance (see Sec. 3.10), which relates to a program in execution. We here
define our notion of (static) threads, building on the SCG program representation G = (N,E)
with statement nodes N and control flow edges E.

Let T denote the set of threads of G. Each thread t ∈ T , including the top-level Root thread,
is associated with unique entry and exit nodes t.en, t.ex ∈ N with statement types t.en.st = entry
and t.ex .st = exit.

Each n ∈ N belongs to a thread th(n), defined as the immediately enclosing thread t ∈ T
such that there is a flow path to n (as defined in Sec. 3.3) that originates in t.en and that does

9

1 module Reinc
2 output int x, y;
3 {
4 loop:
5 fork
6 // Thread T1
7 x = 1;
8

9 par
10 // Thread T2
11 pause;
12 x = 2;
13

14 join ;
15 goto loop;
16 }

(a) The SCL program

�� ��

�����

����

�������

��������

(b) The SCG

Figure 4: The Reinc example, illustrating thread reincarnation. The assignments to x are both
executed in the same tick, yet are sequentialized.

not traverse any other entry node t′.en, unless that flow path subsequently traverses t′.ex also.
For each thread t we define sts(t) as the set of statement nodes n ∈ N such that th(n) = t. For
example, the Control program (Fig. 2) consists of the threads T = {Root, Request, Dispatch}, and
the Root thread consists of the statement nodes sts(Root) = {L0, L7, L28, L29}. The remaining
statement nodes of N are partitioned into sts(Dispatch) and sts(Request), as indicated in Fig. 2c.

We define fork(t) to be the fork node that immediately precedes t.en. Every thread t 6= Root
has an immediate parent thread p(t), defined as th(fork(t)). In the Control example, p(Request)
= p(Dispatch) = Root.

We are now ready to define (static) thread concurrency and subordination:

Definition 2 (Ancestor/Subordinate/Concurrent Threads). Let t, t1, t2 be threads in T .

1. The set of ancestor threads of t is recursively defined as p∗(t) = {t, p(t), p(p(t)), . . . ,Root}.

2. t1 is subordinate to t2, written t1 ≺ t2, if t1 6= t2 and t1 ∈ p∗(t2).

3. t1 and t2 are concurrent, denoted t1 || t2, iff they are descendants of distinct threads
sharing a common fork node, i. e., iff there exist t′1 ∈ p∗(t1), t′2 ∈ p∗(t2) with t′1 6= t′2 and
fork(t′1) = fork(t′2). We then refer to this fork node as the least common ancestor fork,
denoted lcafork(t1, t2). This is lifted to nodes, i. e., if th(n1) || th(n2) then lcafork(n1, n2) =
lcafork(th(n1), th(n2)).

In Control, it is Root ≺ Request and Root ≺ Dispatch. It is also Request || Dispatch, whereas Root
is not concurrent with any thread. Note that concurrency on threads, in contrast to concurrency
on node instances (Def. 4), is purely static and can be checked with a simple, syntactic analysis
of the program structure.

3.6 Thread Reincarnation—The Reinc Example

The Reinc example shown in Fig. 4 illustrates that static thread concurrency is not sufficient to
capture whether individual statements are run-time concurrent, in the sense that it would be

10

up to the discretion of a scheduler how they should be ordered. Consider the assignments x =
1 (L7) and x = 2 (L12). These are in the concurrent threads T1 and T2, and can be activated in
the same tick, but they are still sequentially ordered and thus not run-time concurrent. This is
due to the reincarnation of T2, which takes place as follows.

In the initial tick, T1 executes L7 and terminates, and T2 rests at L11 (pause). Thus there
is one instance of each thread that executes in the initial tick. In subsequent ticks, first T2
continues with L12 and terminates, which enables the join (L14) and, after the loop, both T1
and T2 get started again, in a second instance during the same tick, and as in the initial tick, T1
executes L7 and terminates, and T2 rests at L11. Thus, L12 gets executed in the first instance
of T2, but it is the second instance of T2 that is concurrent to the execution of L7. As a result,
the concurrent writes to x in L12 and L7 are cleanly separated through the sequential loop, and
the deterministic result for x at the end of each tick is the value 1.

The definition of the least common ancestor fork (Def. 2) helps to capture this. The fact that
L12 and L7 are not run-time concurrent is because their executions go back to different executions
of lcafork(L12, L7) = L5. L12 is executed in an instance of T2 that was forked off by an execution
of L5 in the previous tick, whereas L7 is executed in an instance of T1 forked off by an execution
of L5 in the current tick. Thus our definition of run-time concurrency of two statements n1, n2,
provided in the following, also refers to instances (executions) of lcafork(n1, n2).

3.7 Thread Trees—The Reinc2 Example

The Reinc2 example shown in Fig. 5 is a more elaborate variant of Reinc that illustrates a more
complex thread structure. Specifically, we have T21 || T22, T23 || T24, and T1 || t for all t ∈ {T2,
T21, T22, T23, T24}.

The thread tree, shown in Fig. 5c, is a means to visualize the thread relationships. It contains
a subset of the SCG nodes, namely the thread entry nodes, labeled with the names of their
threads, and the fork nodes, which are attached to the entry nodes of their threads. Threads
are concurrent iff their least common ancestor (lca) in the thread tree is a fork node. E. g.,
T21 and T23 are not concurrent, because their lca is the thread entry node T2, meaning that
T21 and T23 are sequential within T2. The thread tree is conceptually similar to the AND/OR
tree used to illustrate state relationships in Statecharts [4]; fork nodes correspond to AND
states, denoting concurrency, whereas the thread entry nodes correspond to OR states, denoting
exclusive/sequential behavior.

3.8 Statement Reincarnation—The InstLoop Example

The InstLoop example shown in Fig. 6 illustrates the issue of statement reincarnation. In par-
ticular, the statically concurrent accesses to x in L7 and L11 are executed twice within a tick,
because the loop iterates two times. Because of the data dependency on x, L7 must be scheduled
before L11—but only within the same loop iteration.

Traditional synchronous programming would consider such a loop that does not separate
iterations by pause statements to be instantaneous, and hence reject this program, on the justi-
fication that the instantaneous loop might potentially run forever. However, the SC MoC does
not have a problem with this program, as it is still deterministic. The loop in InstLoop also
happens to be executed only two times. Of course, one might still want to ensure that a pro-
gram always terminates, but this issue is orthogonal to determinism and having a well-defined
semantics.

As this example highlights, it is not enough to impose an order on the program statements.
To capture precisely the concept of sequential constructiveness, we need to distinguish statement

11

1 module Reinc2
2 output int x, y;
3 {
4 loop:
5 fork
6 // Thread T1
7 x = 1;
8

9 par
10 // Thread T2
11 fork
12 // Thread T21
13 y = 1;
14

15 par
16 // Thread T22
17 pause;
18 y = 2;
19

20 join ;
21 fork
22 // Thread T23
23 y = 3;
24

25 par
26 // Thread T24
27 x = 2;
28

29 join
30

31 join ;
32 goto loop;
33 }

(a) The SCL program

T1 T2

T21 T22

T23 T24

entry

exit

L7: x=1

L13: y=1

L18: y=2

L23: y=3 L27: x=2

(b) The SC Graph (SCG)

Root

L5

T1 T2

L11 L21

T21 T22 T23 T24

(c) The thread tree

Figure 5: The Reinc2 example, a more elaborate example of thread concurrency and thread
reincarnation

instances. The key here is again the least common ancestor fork; the specific executions of L7
and L11 that go back to the same execution of lcafork(L7, L11) = L5 must be ordered.

3.9 Macro Ticks, Micro Ticks, and the Thread Status

As already described, the externally observable execution of a synchronous program consists of
a sequence of macro ticks. Internally, however, one typically breaks down a macro tick into a
series of micro ticks, both for describing the semantics and for a concrete implementation. We
call this series of micro ticks a run, whereas a trace describes only the externally visible output

12

1 module InstLoop
2 output int x = 0, y = 0;
3 {
4 loop:
5 fork
6 // Thread T1
7 x += 1;
8

9 par
10 // Thread T2
11 y = x;
12

13 join ;
14 if (y < 2)
15 goto loop;
16 }

(a) The SCL program

T1 T2

entry

x = 0; y = 0

exit

L14: y < 2

L7: x += 1 L11: y = x
1

ir

true

(b) The SC Graph
(SCG).

Figure 6: The InstLoop example, with an instantaneous loop that leads to statement reincarnation
within a tick

values emitted at each macro tick.

Definition 3 (Ticks). For an SCG G = (N,E), a (macro) tick R, of length len(R) ∈ N≥1, is a
mapping from micro tick indices 1 ≤ j ≤ len(R), to nodes R(j) ∈ N . A run of G is a sequence
of macro ticks Ra, indexed by a ∈ N≥1.

Another way to look at a macro tick is as a linearly ordered set of node instances, viz. pairs
ni = (n, i) consisting of a statement node n ∈ N and a micro tick count i ∈ N. Concretely,
each R can be identified with the set {(n, i) | 1 ≤ i ≤ len(R), n = R(i)}. A special case is the
empty macro tick with len(R) = 0 and R = ∅. Sometimes it is convenient to view macro ticks
as sequences of nodes R = n1, n2, . . . , nk where k = len(R) and ni = R(i) for all 1 ≤ i ≤ k.

One possible run of the Control example is illustrated in Fig. 2e. We also see for each micro
tick the node that is scheduled next for execution. An assignment results in an update of the
written variable, reflected by the variable values of the subsequent micro tick. The continuations,
explained further in Sec. 4, denote the current state of each thread, i. e., the node (statement)
that should be executed next, similar to a program counter. In addition, a continuation denotes
what execution state a thread is in. Fig. 7 illustrates the possible states using a SyncChart
notation. Threads other than the Root thread are initially disabled, with a status denoted by
⊥. When a thread gets forked by its parent, it becomes enabled. Enabled threads are initially
active, i. e., eligible for execution, with a status denoted by the node to be executed next. When
an active thread forks off some child threads, it becomes waiting, denoted by the node to be
executed next in square brackets, until the child threads join and the parent becomes active
again. An active thread that executes a pause statement and thus finishes its current tick
becomes pausing, denoted in parentheses, until the next tick is started and it becomes active
again.

13

Figure 7: Execution states of a thread

3.10 Concurrency of Node Instances

For a macro tick R, an index 1 ≤ i ≤ len(R), and a node n ∈ N , last(n, i) = max{j | j ≤
i, R(j) = n} retrieves the last occurrence of n in R at or before index i. If it does not exist,
last(n, i) = 0.2 The function last(n, i) is instrumental to define concurrency of node instances
as discussed above in Secs. 3.6 and 3.8.

Definition 4 (Concurrent Node Instances). For a macro tick R, i1, i2 ∈ N≤len(R), and n1, n2 ∈
N , two node instances ni1 = (n1, i1) and ni2 = (n2, i2) are concurrent in R, denoted ni1 |R ni2,
iff

1. they appear in the micro ticks of R, i. e., n1 = R(i1) and n2 = R(i2),

2. they belong to statically concurrent threads, i. e., th(n1) || th(n2), and

3. their threads have been instantiated by the same instance of the associated least common
ancestor fork, i. e., last(n, i1) = last(n, i2) where n = lcafork(n1, n2).

In the Control example of Fig. 2e, the variable accesses that are concurrent involve checkReq
and grant. We call this particular run admissible because all concurrent variable accesses follow
certain admissibility rules, defined in detail later (Sec. 5.2, pages 5.2 ff). The run here is
admissible because the write to checkReq (L13) is scheduled before the corresponding read (L23),
and similarly the writes to grant (L22 and potentially L24) are scheduled before the read (L14).

4 “Free” Scheduling of SCGs

With the above preliminaries in place, we now come to discuss the semantics of SCL. We do
this by looking at the execution and scheduling of a fixed SCG G = (N,E) associated with
some arbitrary program. We begin by considering the “free execution” of G based on the
program orders →seq and →tick. Our notion of sequential constructiveness will then arise from
a further restriction of the “free” schedules guided by additional sequentiality orders →α for
α ∈ {wr,wi, ir, ww}.

Traditional schedulers work at machine instruction granularity. This means that thread
context switches can basically occur anywhere within any statement. In principle, we could

2Strictly, last(n, i) should be written last(R,n, i) as it depends on the macro tick R, not only on n and i. For
notational compactness, we leave this implicit, however.

14

allow this flexibility also for the SC MoC. For simplicity, we restrict ourselves to scheduling at
the statement level. In particular, the evaluation of expressions and the update of variables in
assignments happens atomically. On the other hand, a conditional statement if (ex) s1 else s2
sequentially separates the decision based on the (atomic) evaluation of ex from the execution of
the appropriate branching command si.

4.1 Continuations and Continuation Pool

Our simulation semantics is based on continuations which are instances of program nodes from
the SCG enriched with information about the run-time context in which the nodes are executed.
In general imperative languages this may comprise explicit thread identification, instance num-
bers, local memory, reference to stack frames and other scheduling information. For the simple
SCL language considered in this paper and for the “free” scheduling to be defined in this section,
only few data are needed. It suffices to let continuations contain the currently running node
in the SCG and a scheduling status to indicate whether the continuation is active, waiting or
pausing.

Formally, a continuation c has a node c.node ∈ N and a status c.status ∈ {active,waiting,
pausing}. We refrain from identifying continuations with the pairs (c.node, c.status) in order
to allow for other attributes in enriched versions of the semantics. Instead, we write c[s :: n]
when s = c.status and n = c.node, or to express that the status and node of a continuation c
are updated to be s and n, respectively. The waiting status is derivable from subordination of
threads: If th(c′.node) ≺ th(c.node), then c′ runs in a proper ancestor thread of c and thus c′

must wait for c. We overload notation and write c′ ≺ c in this case.
The statuses of continuations (defined here) and threads (introduced in Sec. 3.9) are closely

related, but not identical concepts. For a thread that is enabled and hence has a continuation,
the status of the thread is the status of its continuation; however, there is no disabled status for
continuations, and disabled threads do not have a continuation associated with them.

At every micro tick of an execution run, the scheduler picks an active continuation from a
pool of continuations and executes it. A continuation pool may be modelled simply as a finite set
C of continuations, subject to some constraints outlined below, since all information is contained
in the attributes of its elements.

Initially, C only contains the main program Root activated at its entry node Root.en. Then,
every time an active fork node is executed the corresponding join node is installed in the same
thread as the fork. This thread is subordinate to the threads of the children spawned by the
fork which thus block the execution of the continuation in the parent thread. In this fashion,
the join node of the parent thread starts with status waiting until the children are terminated, at
which point its status becomes active. The switching between active and pausing happens in the
execution of the pause statement. When an active surf node is scheduled, its status changes to
pausing, thereby suspending it for the current macro tick. When the execution switches to the
next macro tick, the thread is re-activated at the uniquely associated depth node.

Looking back at the execution run of Fig. 2b we can see the thread pool Cai in micro tick i
of macro tick a being made up of the entries in the rows CRoot, CRequest and CDispatch at column
index i. The entries show the continuations’ nodes and status. Nodes in square brackets [n] are
waiting, those in brackets (n) are pausing and all othere are active.

Continuation pools satisfy some coherence properties. The waiting continuations c[waiting ::
n] ∈ C are precisely those continuations in C that are not ≺-maximal in C and they must
always be join nodes, i. e., n.st = join. All ≺-maximal continuations have status active or

15

pausing. Of those, the pausing continuations c[pausing :: n] ∈ C must be surface nodes, i. e.,
n.st = surf. Moreover, the threads appearing in a continuation pool preserve the tree struc-
ture. For each c ∈ C such that th(c.node) 6= Root, there is a unique parent c′ ∈ C such that
p(th(c.node)) = th(c′.node). By construction, the parent continuation always corresponds to
a waiting join statement, i. e., c′.node.st = join and c′.status = waiting. A continuation pool
satisfying these constraints is called valid.

4.2 Configurations, Micro Step and Macro Step Scheduling

A configuration is a pair (C, ρ) where C is a pool of continuations and ρ is a memory assigning
values to the variables accessed by G. A configuration is called valid if C is valid. We wish to
perform a single scheduling step to move from the current configuration (Ccur , ρcur) to the next
configuration (Cnxt , ρnxt). In general, this involves the execution of one or more continuations
from Ccur . Our “free” schedule is restricted (i) to execute only ≺-maximal threads and (ii) to
do so in an interleaving fashion:

1. Micro Step. If there is at least one continuation in Ccur , then there also is a ≺-maximal
one, because of the finiteness of the continuation pool. The “free” schedule is permitted
to pick any one of the ≺-maximal continuations c ∈ Ccur with c.status = active and
execute it in the current memory ρcur . This yields a new memory ρnxt = upd(c, ρcur)
and a (possibly empty) set of new continuations nxt(c, ρcur) by which c is replaced, i. e.,
Cnxt = Ccur \ {c}∪nxt(c, ρcur). Note that in Cnxt the status flags are automatically set to
active for all continuations that become ≺-maximal by the elimination of c from the pool
in case nxt(c, ρcur) = ∅.
The actions upd and nxt depend on the statement c.node.st to be executed and will be de-
fined shortly. A micro step (a transition between two micro ticks) is written (Ccur , ρcur)

c→µs

(Cnxt , ρnxt), where c is the continuation that is selected for execution. Since (Cnxt , ρnxt)
is uniquely determined by the executed continuation c we may write it as (Cnxt , ρnxt) =
c(Ccur , ρcur).

2. Clock Step. When there is no active continuation in C, then all continuations in C are
pausing or waiting. We call this a quiescent configuration. In the special situation where
C = ∅ the main program has terminated. Otherwise, and only then, the scheduler can
perform a global clock step, i. e., a transition between the last micro tick of the current
macro tick to the first micro tick of the subsequent macro tick. This is done by letting
all pausing continuations of C advance from their surf node to the associated depth node.
More precisely,

Cnxt = {c[active :: tick(n)] | c[pausing :: n] ∈ Ccur} ∪ {c[waiting :: n] | c[waiting :: n] ∈ Ccur}.
Let I = {x1, x2, . . . , xn} be the designated input variables of the SCG, including in-
put/output variables. Then the memory is updated by a new set of external input values
α = [x1 = v1, . . . , xn = vn] for the next macro tick. All other memory locations persist
unchanged into the next macro tick. Formally,

ρnxt(x) =

{
vi, if x = xi ∈ I,

ρcur (x), if x 6∈ I.

A clock step is denoted (Ccur , ρcur)
α→tick (Cnxt , ρnxt), where α is the external input.

Observe that since the set of inputs I is assumed to be fixed globally, both α and ρnxt can
be derived from each other and from ρcur .

16

A synchronous instant, or macro tick, of the SCG G is a maximal sequence of micro steps
of G. More concretely, the scheduler runs through a sequence

(Ca0 , ρ
a
0)

ca1→µs (Ca1 , ρ
a
1)

ca2→µs · · ·
ca
k(a)→ µs (Cak(a), ρ

a
k(a)) (1)

of micro steps obtained from the interleaving of active continuations, to reach a final quies-
cent configuration (Cak(a), ρ

a
k(a)), in which all continuations are pausing or waiting. We write

(Ca0 , ρ
a
0) �µs (Cai , ρ

a
i) to express that there exists a sequence of micro steps, not necessarily

maximal, from configuration (Ca0 , ρ
a
0) to (Cai , ρ

a
i), dropping the information on continuations.

The complete sequence (1) from start to end is the macro tick, abbreviated

(Ca0 , ρ
a
0)

αa/Ra

=⇒ (Cak(a), ρ
a
k(a)), (2)

where the label αa projects the initial input, i. e., αa(x) = ρa0(x) for x ∈ I. The final memory
state ρak(a) of the quiescent configuration is the response of the macro tick a. The label Ra is
the sequence of statement nodes executed during the macro tick as described in Def. 3. More
precisely, len(Ra) = k(a) is the length of the macro tick and Ra the function mapping each
micro tick index 1 ≤ j ≤ k(a) to the node Ra(j) = caj .node executed at index j. For example,
in the execution run shown in Fig. 2b, the (doubly indexed) node sequence Ra(j) is given by
the last row named “Scheduled nodes.”

Note that in (2) the input label αa may be dropped since it can be derived from I and ρ0.
Moreover, given Ra, the final quiescent configuration is functionally determined, provided no two
distinct continuations can share the same statement node. We may thus write (Cak(a), ρ

a
k(a)) =

Ra(Ca0 , ρ
a
0). When the memory state and scheduling information is not needed it is convenient

to identify a macro tick with Ra as its abstraction. It can be viewed, alternatively, as a set of node
instances Ra = {(cai .node, i) | 1 ≤ i ≤ k(a)} or a sequence Ra = ca1.node, ca2.node, . . . , cak(a).node.

We call the end points of a macro tick (2) macro (tick) configuration, while all other in-
termediate configurations (Cai , ρ

a
i), 0 < i < k(a) seen in (1) are micro (tick) configurations.

According to the Synchrony Hypothesis we assume that only macro configurations are observ-
able externally (in fact, only the memory component of those). Hence, it suffices to ensure that
the sequence of macro ticks =⇒ is deterministic, while the micro tick behavior→µs may well be
non-deterministic. Formally, for any two given sequences of (reachable) macro configurations

(Ca0 , ρ
a
0)

αa/Ra

=⇒ (Cak(a), ρ
a
k(a))→tick (Ca+1

0 , ρa+1
0)

and

(C ′a0 , ρ
′a
0)

α′a/R′a
=⇒ (C ′ak′(a), ρ

′a
k′(a))→tick (C ′a+1

0 , ρ′a+1
0),

if the initial continuation pool and memory are the same, C0
0 = C ′00 , ρ00 = ρ′00 and if also the

input sequences are the same, i. e., for all macro ticks a, αa = α′a, then the sequence of responses
is identical, too, i. e., ρak(a) = ρ′ak′(a) for all a.

It remains to define the actions upd and nxt exercised by active continuations on memory
ρ and continuation pool C, respectively. The former is easy to specify. The only statement
c.node.st to affect the memory is the assignment statement x = ex. In this case variable x is
updated by the value of ex. Formally, upd(c, ρ)(x) = eval(ex, ρ) and upd(c, ρ)(y) = ρ(y) for
y 6= x. In all other cases, if c.node.st is not an assignment, we have upd(c, ρ) = ρ.

The action of a continuation on the continuation pool is only slightly more involved. For
c[active :: n] ∈ C the set nxt(c, ρ) is given thus:

17

• For n.st ∈ {entry, goto, x = ex, depth, join} the continuation c passes on control to its im-
mediate sequential successor, i. e., nxt(c, ρ) = {c[active :: n1]}, where n1 with n→seq n1 is
uniquely determined.

• At an exit node n.st = exit we have reached the end of the continuation, which terminates
and disappears from the pool, i. e., nxt(c, ρ) = ∅.

• When n.st = surf, then we set the continuation pausing to wait at this node for the next
synchronous tick. i. e., nxt(c, ρ) = {c[pausing :: n]}.

• Consider a conditional statement n.st = if (ex) with the uniquely determined successor
nodes n1 = true(n) ∈ N and n2 = false(n) ∈ N for its true and false branch, respectively.
The execution of n takes one of the branches according to the boolean value of ex, so that
nxt(c, ρ) = {c[active :: ni]}, where i = 1 if eval(ex, ρ) = true and i = 2 if eval(ex, ρ) = false.
Note that in each case n→seq ni.

• Finally, suppose c instantiates a fork statement with edges n→seq n1 and n→seq n2 leading
to the two entry nodes n1, n2 ∈ N of its concurrent child threads. Let n3 = join(n) ∈ N
be the join node uniquely associated with n. Then, nxt(c, ρ) = {c[active :: n1], c[active ::
n2], c[waiting :: n3]}. Hence the “free” scheduler may execute n1 or n2 in any order, but
both have to terminate before the join statement n3 can resume.

The following two technical observations are useful to derive further facts about the oper-
ational semantics of SCGs, such as our main Thm. 1 in Sec. 6. Informally, Prop. 1, the first
observation, states that for each active continuation c′, there is a sequential predecessor c, and
that nodes that are sequentially related cannot be active simultaneously.

Proposition 1 (Active continuations have sequential predecessors). Let (C, ρ) �µs (C ′, ρ′) be
a micro tick sequence and c′ ∈ C ′ an active continuation. Then there exists an active c ∈ C
such that c.node �seq c

′.node.

Proof. We proceed by induction on the length of the micro tick sequence (C, ρ) �µs (C ′, ρ′). If
the length is zero, (C, ρ) = (C ′, ρ′), and the claim follows trivially by reflexivity of �seq. For
the inductive step assume a sequence of length greater than zero, say

(C, ρ) �µs (C ′′, ρ′′)
c→µs (C ′, ρ′)

and c′ ∈ C ′ is active, i. e., c′ = c′[active :: n′] where n′ = c′.node.
If c′ ∈ C ′′, then the claim follows by induction hypothesis, directly. If c′ 6∈ C ′′ then con-

tinuation c′ has entered the pool C ′ as a result of executing the active continuation c′′ from
(C ′′, ρ′′), i. e., c′ ∈ nxt(c′′, ρ′′) with c′′ = c′′[active :: n] and n = c′′.node. A simple case analysis
on the statement type n.st and the definition of →µs shows that n →seq n

′. Informally, since
c′ ∈ nxt(c′′, ρ′′) is active, its node n′ cannot be a surf statement, which would be pausing nor
a join statement, which would be waiting. All the remaining cases produce nodes n′ which are
sequential successors of n. Since c′′ is active in C ′′ we have c′′ ∈ C ′′. Applying the induction hy-
pothesis to c′′ yields an active continuation c ∈ C with c.node �seq c

′′.node = n. By transitivity
of �µs this implies c.node �seq n

′ = c′.node.

Proposition 2 (Active and pausing continuations are concurrent). Let (C, ρ) be a reachable
(micro or macro tick) configuration for the SCG G. Then, for any two active or pausing con-
tinuations c1, c2 ∈ C with c1 6= c2 we have c1.node 6= c2.node and th(c1.node) || th(c2.node). In
particular, c1.node 6�seq c2.node and c2.node 6�seq c1.node.

18

Proof. First note that concurrent nodes cannot be sequentially ordered, so that it suffices to
prove th(c1.node) || th(c2.node) for all active or pausing nodes. Also, the invariant holds trivially
in the initial configuration (C0, ρ0) for G in which C0 only contains the root-level entry node
Root.en as its only (active) configuration.

Now suppose (C, ρ) is a reachable configuration satisfying the invariant, and one additional
micro tick is performed, i. e., (C, ρ)

c→µs (C ′, ρ′). We claim that the successor configuration
(C ′, ρ′) satisfies the invariant, too. It suffices to show th(c1.node) || th(c2.node) for all distinct
active or pausing c1, c2 ∈ C ′, because no node is concurrent to itself.

So, let c1, c2 ∈ C ′ be active or pausing nodes. If both c1, c2 ∈ C we have the result by
induction hypothesis. If c1 6∈ C and c2 6∈ C, so that both configurations have been instantiated
by executing c, i. e., c1, c2 ∈ nxt(c, ρ), then c.node must be a fork node and c1.node and c2.node
the two entry nodes of its concurrent child threads, for which th(c1.node) || th(c2.node) holds
by definition and c.node = lcafork(c1.node, c2.node). Note that neither c1 nor c2 can be the join
node introduced by executing the fork, because c1 and c2 are assumed to be active, whereas the
join node would have waiting status.

It remains to deal with the case where exactly one of the two configurations arises from
c. Without loss of generality suppose c1 ∈ C, c2 6∈ C and c2 ∈ nxt(c, ρ). We first observe
that c1 6= c. Suppose otherwise, c = c1 ∈ C ′. Then, since c 6= c2 ∈ C ′ and by construction,
C ′ = C \ {c} ∪ nxt(c, ρ), we would have {c, c2} ⊆ nxt(c, ρ). But this means c.node must
be a fork node, which is the only node type which generates nxt(c, ρ) with more than one
element. But a fork node can never reproduce itself, i. e., we always have c 6∈ nxt(c, ρ) which is
a contradiction. Since c1 6= c and both c, c1 ∈ C, we can use the induction hypothesis on (C, ρ)
to infer th(c1.node) || th(c.node). From this we now show that th(c1.node) || th(c2.node) taking
into account that c2 has been generated by executing c. As in the proof of Prop. 1 we proceed
by the status c2.status and statement type c.node.st :

• If c2.status = pausing, then c.node.st = surf then as well as c.node = c2.node. This
immediately gives th(c1.node) || th(c2.node) from th(c1.node) || th(c.node).

• If c2.status = active, then c2.node cannot be a join node because all join nodes start their
life with waiting status. Then, considering all possible cases of a statement c generating
an active c2, we find that c.node →seq c2.node. Now, since th(c1.node) || th(c.node), the
definition of thread concurrency and the fact that c.node →seq c2.node, where c2.node is
not a join, implies th(c1.node) || th(c2.node).

Finally, consider a clock tick (C, ρ)→tick (C ′, ρ′), where (C, ρ) must be a quiescent configura-
tions, i. e., contain only pausing or waiting continuations. None of the latter can become active
in the clock tick. Instead, the two active continuations c1, c2 ∈ C ′ must be depth nodes and tick
successors of distinct pausing surf nodes c∗1, c

∗
2 ∈ C. These must be concurrent, th(c∗1.node) ||

th(c∗2.node), by induction hypothesis. Since lcafork(c∗1.node, c∗2.node) = lcafork(c1.node, c2.node)
we get th(c1.node) || th(c2.node).

Notice that the status waiting is actually superfluous because it is derivable from the sub-
ordination relation ≺ of the threads. All we really need is the distinction between pausing
and {active, waiting}. Nevertheless, we keep the value waiting explicit because it suggests a nat-
ural implementation, while the algebraic path order ≺ on ancestor paths is more useful for
mathematical analysis. It relates the status to the static topological nesting of program threads.

Also, note that in concrete implementations there may be explicit statuses such as {enabled,
disabled} associated with each thread to indicate whether it is instantiated or not. These remain

19

implicit in our modeling. A thread t ∈ T is enabled in C if there is c ∈ C such that t = th(c.node)
and it is disabled otherwise.

4.3 Sequentiality vs. concurrency

The key to determinism lies in ruling out any uncertainties due to an unknown scheduling mech-
anism. Like the synchronous MoC, the SC MoC ensures macro-tick determinism by inducing
certain scheduling constraints on variable accesses. Unlike the synchronous MoC, the SC MoC
tries to take maximal advantage of the execution order already expressed by the programmer
through sequential commands. A scheduler can only affect the order of variable accesses through
concurrent threads. As stated in Prop. 2, if variable accesses are already sequentialized by→seq,
they cannot appear simultaneously in the active continuation pool. Hence, there is no way that
a thread scheduler can reorder them and thus lead to a non-deterministic outcome. Similarly, a
thread is not concurrent with its parent thread. Because of the path ordering ≺, a parent thread
is always suspended when a child thread is in operation. Thus, it is not up to the scheduler
to decide between parent and child thread. There can be no race conditions between variable
accesses performed by parent and child threads, and there is no source of non-determinism here.

In every reachable micro configuration (C, ρ) the order of execution of the active continua-
tions is up to the discretion of the scheduler. Hence, non-determinism can occur if the macro
tick response, computed during the tick in which (C, ρ) occurs, depends on this ordering. In this
case, the program must be rejected. Yet, it is computationally intractable whether a program
is deterministic on the macro tick level, even for a given configuration (C, ρ).

The challenge is to find a suitable restriction on the “free” scheduler which is a) easy to
compute, b) leaves sufficient room for concurrent implementations and c) still (predictably)
sequentialises any concurrent variable accesses that may conflict and produce unpredictable
responses. Note that it is easy to obtain deterministic executions disregarding b): Simply
restrict the scheduler to a globally static execution regime, e.g., by assigning each (occurrence) of
a program statement a unique execution priority. However, this destroys the natural parallelism
of the program.

A simple example for sequential accesses would be s1: x = 0; . . . ; s2: x = 1 (sequential writes).
Another example would be if (x < 0) x = 0 (read followed by write), or x = f(x) (another read
followed by write). Other cases are more difficult to detect. For instance, in fork x = 0 par { pause;
x = 1 } join, the accesses to x are not concurrent, because x = 0 would be executed in the first tick,
and due to the pause statement, x = 1 would be executed in the second tick. Fig. 8 gives another
example of a program XY in which the actual run-time concurrency between variable accesses
(reading of y in L9 and its update in L16) may be prevented by tick separation, depending on
the input value x.

However, it may go beyond the analysis capabilities of a compiler to perform the type of
reasoning required in these examples; a conservative approach would be to consider the accesses
to be concurrent. For this it is enough to approximate the concurrency and the conflict relations.
In Sec. 5.2 we introduce such a restriction, called SC-admissible schedules. Before, we need
some further terminology, introduced in Sec. 5.1, to characterise potential conflicts in variable
assignments.

20

1 module XY
2 input int x;
3 output int y;
4 {
5 fork {
6 // Thread1
7 y = x;
8 y += 2;
9 x = y;

10 }
11 par {
12 // Thread2
13 y += 4;
14 if (y > 6)
15 pause;
16 y += 8;
17 }
18 join ;
19 x = 16;
20 }
(a) The SCL pro-
gram

-
x = 0

x = 16
y = 14

(b) Example trace 1

-
x = 1

x = 7
y = 7

x = 2

x = 16
y = 15

(c) Example trace 2

Thread1 Thread2

[L0,2] XY_entry

[L5,2] fork

[L20,0] XY_exit

[L6,2] Thread1_entry [L12,1] Thread2_entry

[L18,0] join

[L19,2] x_2 = 16

[L7,2] y_1 = x_0

[L10,0] Thread1_exit

[L8,2] y_2 += 2

[L13,1] y_3 += 4
1

wi

[L9,0] x_1 = y_23

[L14,1] y_23 > 6
1

ir

[L17,0] Thread2_exit

[L16,1] y_4 += 8

1

ir

[L15s,0] pause_surf

true

[L15d,1] pause_depth

(d) The SC Graph (e) Functionally equivalent SC-
Chart

Figure 8: The XY example. In the tick time line, hollow tick markers denote final ticks.

5 Sequential Constructiveness

5.1 Types of writes

In general, concurrent writes to the same variable constitute a race condition that must be
avoided. However, there are exceptions to this that we want to permit, again with the goal of
not needlessly rejecting sensible, deterministic programs.

For instance, the execution order of any concurrent assignments to different variables does
not matter. Also, in certain cases, two assignments x = ex1 and x = ex2 to the same variable
x may be scheduled successively in any order with the same final result. This depends on
the semantics of the expressions ex1 and ex2 and the memory configurations in which the
assignments are evaluated. When the execution order is irrelevant we call such assignments
confluent in a given configuration, see Def. 7 below. Often, confluence of assignments can be
guaranteed globally, i.e., for all reachable configurations. A large class of such assignments are
those involving combination functions, defined in the following:

Definition 5 (Combination functions). A function f(x, y) is a combination function (on x) if,
for all x and all y1, y2, f(f(x, y1), y2) = f(f(x, y2), y1).

21

If f is a combination function, then, by definition, any set of assignments x = f(x, exi) in
which the expressions exi neither produce any side effect nor depend on x, can be executed in
arbitrary order yielding a unique final value for x.

Definition 5 is closely related to resolution functions in VHDL, and is a generalized variant
of Esterel’s combination function (see below). In Esterel, such combination functions must be
commutative and associative and are used to deterministically merge concurrent emissions of
valued signals, for example via addition. The SC MoC adopts combination functions not only to
encompass that functionality, but also to emulate signals with variables, as discussed in Sec. 7.
In practice, combination functions are used as “updates” on a variable for which the final value
is accumulated incrementally from concurrent source processes.

One may construct arbitrarily complicated assignments from which a compiler might try
to extract some combination function. However, to facilitate the compiler’s job and to make
increments also obvious to the human reader of a program, we recommend to use, whenever
possible, patterns of the form x f= ex, with f being +, *, etc., and ex being an expression not
involving x.

A sufficient condition for a combination function is that f is commutative and associative,
as demanded in Esterel’s combination function, and that ex neither produces any side effect nor
depends on x. However, commutativity and associativity are not necessary conditions, as “–”
(subtraction) demonstrates; assignments x –= ex are confluent. Indeed, – could be replaced by
an equivalent commutative, associative combination function, as x –= ex is equivalent with x +=
-ex.

Our notion of sequential constructiveness is based on the idea that the compiler guarantees
a strict “initialise-update-read” execution schedule during each macro tick. The initialisation
phase is given by the execution of a class of writes which we call absolute writes, while the
update phase consists of executing relative writes. All the read accesses, in particular the
conditional statements which influence the control flow, are done last. In this way, the compiler
restricts the freedom of the run-time platform for reordering variable accesses and creating non-
deterministic macro step responses. Although our definitions of sequential admissibility (Def. 10)
and sequentially constructive programs (Def. 11) permit an arbitrary separation of writes into
absolute and relative writes, it will be important for ASC schedulability (Def. 13) that we can
efficiently verify that any two absolute writes and any two relative writes are confluent in all
reachable configurations. To this end it is expedient to restrict the notion of relative writes to
be combination functions as done in the following definition.

Definition 6 (Absolute/relative writes and reads). For a combination function f , an assignment
x = f(x, ex) where ex does not reference x is a relative write of type f . Other assignments are
absolute writes. A conditional if (ex) or an assignment x = ex is a read for every variable y
referenced by ex, unless the assignment is a relative write to y (which also implies y 6= x).

Relative writes of the same type are also confluent.
As the definition of relative writes requires that ex does not reference x, an assignment such

as x *= x - 1 is not considered a relative write, even though * is a valid combination function.
However, such an assignment might be broken up using a temporary variable, as in temp = x
- 1; x *= temp, which would be a read followed by a relative write, which then again might be
combined with other relative writes of the same type.

In practice, when writing SCL programs, we expect that most writes are absolute writes,
and to understand the basics of the SC MoC it suffices to focus on absolute writes and reads
and to understand that the former precede the latter for a particular variable. However, the
concept of relative writes adds to the expressiveness of sequential constructiveness, in that, as

22

already mentioned and discussed further in Sec. 7, they allow a straightforward emulation of
Esterel-style signals.

5.2 SC-Admissible Scheduling

We are now ready to define what variable accesses we allow in the SC MoC, and what scheduling
requirements the accesses induce. The idea is to formulate the requirements that a given program
must fulfill to produce a deterministic result, and to accept all programs for which a schedule
can be found that meets these requirements.

First, as explained, we want to take advantage of any sequentiality that is already present
in the program. If two variable accesses are sequential, we know that they will be executed in
this prescribed sequential order. By construction, due to the linear flow of the program text, it
is not possible to express conflicting sequential orderings with sequential program statements.
We therefore restrict our attention in the following on concurrent variable accesses.

In a nutshell, the order to be imposed by any valid run is, within all ticks R, for all variables v
that are accessed concurrently within R, “any confluent absolute writes on v before any confluent
relative writes on v before any reads on v.” In this fashion, each variable is subjected to a strict
sequence of initialisation, incremental update and finally read accesses. Note that these three
groups could be interchanged arbitrarily and we would still achieve deterministic concurrency.
For example, if reads were to be done before any writes, the reads would not refer to variable
values from the current tick, but would always refer to the variable values from the previous tick,
or possibly uninitialized values. Also, we could order relative writes before absolute writes, but
then the relative writes would be overwritten by the absolute writes. Therefore, we consider the
order prescribed above to be the most sensible and intuitive one, as it offers the programmer the
greatest degree of control and expressiveness. This is important since this scheduling regime is
part of the behavioral semantics of the SC MoC to be implemented by the compiler and/or the
target execution architecture. It must be controllable by the programmer at the source level.

Definition 7 (Confluence of Nodes). Let (C, ρ) be a valid configuration of the SCG. Two nodes
n1, n2 ∈ N are called conflicting in (C, ρ), if both are active in C, i.e., there exist c1, c2 ∈ C
with ci.status = active, ni = ci.node, and c1(c2(C, ρ)) 6= c2(c1(C, ρ)). The nodes n1, n2 are called
confluent with each other in (C, ρ), written n1 ∼(C,ρ) n2, if there is no sequence of micro steps
(C, ρ) �µs (C ′, ρ′) such that n1 and n2 are conflicting in (C ′, ρ′).

Def. 7 gives a formal account of the notion of confluence which we introduced informally
above. Note that confluence is taken relative to valid configurations (C, ρ) and indirectly as
the absence of conflicts. Instead of requiring that confluent nodes commute with each other
for arbitrary memories we only consider those configurations (C ′, ρ′) that are reachable from
(C, ρ). For instance, if it happens for a given program that in all memories ρ′ reachable from a
configuration (C, ρ) two expressions ex1 and ex2 evaluate to the same value, then the assignments
x = ex1 and x = ex2 are confluent in (C, ρ). Similarly, if the two assignments are never jointly
active in any reachable continuation pool C ′, they are confluent in (C, ρ), too. This means that
statements may be confluent for some program relative to some reachable configuration, but not
for other configurations or in another program. However, notice that relative writes of the same
type, according to Def. 6, are confluent in the absolute sense, i.e., for all valid configurations
(C, ρ) of all programs.

This relative view of confluence expressed in Def. 7 is useful in order to keep the scheduling
constraints on admissible macro ticks, to be defined below in Def. 9, sufficiently weak. Notice that
two nodes which are confluent in some configuration are still confluent in every later configuration

23

reached through an arbitrary sequence of micro steps. Formally, if (C, ρ) �µs (C ′, ρ′) and
n1 ∼(C,ρ) n2 then n1 ∼(C′,ρ′) n2. However, there may be more nodes confluent in (C ′, ρ′) as
compared to (C, ρ), simply because some conflicting configurations reachable from (C, ρ) are no
longer reachable from (C ′, ρ′). We exploit this in the following definition by making confluence
of node instances within a macro tick relative to the index position at which they occur.

We could make confluence in Def. 7 even less constraining by taking into account only those
conflicts between nodes which can actually be observed by the environment. Specifically, we
could consider active configurations c1, c2 in conflict if c1(c2(C, ρ)) 6≈ c2(c1(C, ρ)), where ≈ is
observational equivalence rather than identity. For instance, if c1 and c2 are writes to an external
log file, which is never read by the program during execution, we could consider them conflict-
free and thus confluent, in this sense. On the other hand, note that confluence n1 ∼(C,ρ) n2
requires conflict-freeness for all configurations (C ′, ρ′) reachable from (C, ρ) by arbitrary micro-
sequences under free scheduling. We will use this notion of confluence to define the restricted set
of SC-admissible macro ticks (Def. 10). Since the compiler will ensure SC-admissibility of the
execution schedule, one might be tempted to define confluence relative to these SC-admissible
schedules. However, this is not possible since this would result in a logical cycle.

Definition 8 (Confluence of Node Instances). Let R be a macro tick and (Ci, ρi), for 0 ≤ i ≤
len(R), the configurations of R. Consider two node instances ni1 = (n1, i1) and ni2 = (n2, i2) in
R, i. e., 1 ≤ i1, i2 ≤ len(R) and n1 = R(i1), n2 = R(i2). The node instances are called confluent
in R, written ni1 ∼R ni2 if n1 ∼(Ci,ρi) n2, where i = min(i1, i2)− 1.

Definition 8 determines confluence of node instances (n1, i1) and (n2, i2) in a macro tick R
relative to the configuration (Ci, ρi) in which the first of the two instances is executed. This
is the instance with the minimal index i = min(i1, i2) − 1. It may thus happen that n1 and
n2 are confluent relative to this configuration (Ci, ρi) although they are not confluent in the
initial configuration (C0, ρ0) of the macro tick. Since the execution sequence from (C0, ρ0) to
(Ci, ρi) will be done under SC-admissibility constraints, the range of configurations in a tick in
which confluence of given node instances becomes critical may be drastically reduced. This is
important since whenever two concurrent nodes are not confluent their execution order must be
fixed to prevent non-determinism. To this end the concurrency relation |R is now refined by the
following scheduling relations on node instances to characterise potentially conflicting variables
accesses:

Definition 9 (Scheduling Relation on Node Instances). Let R be a macro tick with two node
instances ni1 = (n1, i1) and ni2 = (n2, i2), i. e., 1 ≤ i1, i2 ≤ len(R) and n1 = R(i1), n2 = R(i2).
Suppose further that ni1 and ni2 are concurrent in R, i. e., ni1 |R ni2, but not confluent in R,
i. e., ni1 6∼R ni2. Under these conditions, we write

• ni1 →R
ww ni2 iff there exists a variable on which ni1 and ni2 both perform absolute writes,

or both perform relative writes of different type.

• ni1 →R
wr ni2 iff ni1 performs an absolute write to a variable that is read by ni2.

• ni1 →R
ir ni2 iff ni1 performs a relative write to a variable that is read by ni2 (the subscript

i stands for “increment”).

• ni1 →R
wi ni2 iff ni1 performs an absolute write to a variable on which ni2 performs a

relative write.

• ni1 →R ni2 if i1 < i2, i. e., ni1 occurs before ni2 in R.

24

Notice that the relation→R
ww in Def. 9 is symmetric, i.e., ni1 →R

ww ni2 implies ni2 →R
ww ni1.

We abbreviate the conjunction of ni1 →R
ww ni2 and ni2 →R

ww ni1 with ni1 ↔R
ww ni2, and due to

the aforementioned symmetry, →R
ww implies ↔R

ww.

By ensuring that execution order respects the ordering constraints→α, α ∈ {ww,wr, ir, wi},
we can now implement the “initialise-update-read” protocol on variable accesses described
above.

Definition 10 (SC-Admissibility). A macro tick R is SC admissible if for all node instances
ni1,2 = (n1,2, i1,2) in R, with 1 ≤ i1, i2 ≤ len(R) and n1,2 = R(i1,2), the following SC scheduling
conditions are satisfied:

SC1 ni1 ↔R
ww ni2 does not hold 3;

SC2 If ni1 →R
wr ni2 then ni1 →R ni2, i. e., whenever ni1 performs an absolute write and ni2

is a non-confluent concurrent read of the same variable, then the write happens before the
read;

SC3 If ni1 →R
ir ni2 then ni1 →R ni2, i. e., whenever ni1 performs a relative write and ni2 is

a non-confluent concurrent read of the same variable, then the write happens before the
read;

SC4 If ni1 →R
wi ni2 then ni1 →R ni2, i. e., whenever ni1 performs an absolute write and ni2 a

non-confluent concurrent relative write on the same variable, then ni1 happens before ni2.

A run for an SCG is SC admissible if all macro ticks R in this run are SC admissible.

In practice, relative writes to a particular variable tend to be of the same type and thus
automatically confluent with each other. Further, typical programs will be such that if there
is more than one concurrent absolute write to a variable, then all are identical, i.e., they write
the same value. An example is Esterel, where all absolute writes are signal emissions setting a
signal variable to true. Hence, these are also confluent in any configuration.

Let us observe that confluence (which expresses a second-order property of nodes relative
to a set of executions) cannot be replaced by the (first-order) condition that out-of-order write
accesses be ineffective, i.e., do not change the configurations. For example, consider the pro-
gram InEffective1 in Fig. 9a which exhibits ineffective out-of-order schedules which produce non-
deterministic responses. The first possible macro tick execution is L10 : x=7; L5 : if (x==2); L8 :
y=0 which does not contain any out-of-order accesses. The absolute write to variable x in L10
happens before the concurrent read L5. This execution gives the response x=7, y=0. A different
response x=7, y=1 is obtained from the macro tick sequence L5 : if (x==2); L6 : y=1; x=7; L10 : x=7.
Here, the second absolute write L10 is out-of-order and concurrent with the earlier read L4.
However, it is ineffective because x gets assigned the very same value, viz. 7, by statement L6
before. While ineffectiveness would not exclude this sequencing, our notion of confluence does.
The write L10 is not confluent with the earlier read L5 since the order of execution matters in the
configuration in which L5 and L10 are both active. Hence the second execution is not admissible
according to Def. 10.

The notion of “effectiveness” does not become stronger if we determine effectiveness of L10
relative to the read L5. Consider the modification InEffective2 of the program seen in Fig. 9b

3Alternatively, SC1 could be formulated “ni1 →R
ww ni2 must imply ni1 →R ni2,” which would be more in line

with the formulations of SC2 – SC3. However, due to symmetry of →ww, that implication can never be satisfied.
Thus the shortened, more direct formulation of SC1, which corresponds to the intuitive requirement that there
must not be any concurrent write-write conflicts.

25

1 module InEffective1
2 output int x = 2; int y;
3 {
4 fork
5 if (x == 2)
6 { y = 1; x = 7 }
7 else
8 y = 0
9 par

10 x = 7
11 join
12 }

(a) An ineffective absolute write x = 7 at write point.

1 module InEffective2
2 output bool x = false; int y;
3 {
4 fork
5 if (! x)
6 { y = 1; x = x xor true }
7 else
8 y = 0
9 par

10 x = x xor true;
11 join
12 }

(b) An ineffective relative write x = x xor true wrt to
the read if (!x).

Figure 9: The InEffective examples illustrating non-deterministic responses despite ineffective
out-of-order write accesses

where the statements x = x xor 1, equivalent to x = !x, are considered relative writes. Now, in the
execution sequence L5; L6; L10 the out-of-order write L10 is ineffective relative to the configuration
of the read L5. The write L10 : x = x xor true after L6 assigns x=false which is the very same value
that x had at the point of the read L5. This sequence would still be admissible and we would
have the two different program responses x=true, y=0 and x=false, y=1. In contrast, under Def. 10,
the tick producing x=false, y=1 is not admissible because L10 is not confluent with the read L5.

The notion of SC-admissibility (Def. 10) restricts the “free” scheduling defined in Sec. 4.2
to those executions which respect an “initialise-update-read” regime for concurrent variable
accesses unless these variable accesses are confluent, in which case the order is immaterial. We
assume that this regime is enforced by the compiler and/or the run-time system on the target
architecture. A program is considered sequentially constructive if it exhibits a deterministic
behavior under such SC-admissible scheduling.

Definition 11 (Sequential Constructiveness). A program is sequentially constructive (SC) if
(i) there exists an SC-admissible run for it, and moreover (ii) every SC-admissible run generates
the same, deterministic trace of macro ticks.

The mere existence of an SC-admissible run does not yet guarantee determinism. A counter
example is the program NonDet presented in Fig. 10, which has two sequentially admissible runs
in which the threads CheckX and CheckY (conditionals in L5 and L7) are executed atomically.
Depending on which thread is scheduled first, we end up with the memory [x = true, y = false] or
[x = false, y = true]. These SC-admissible runs are non-deterministic and thus NonDet is not SC.

Another way in which sequential constructiveness can be violated is when there are no
SC-admissible schedules at all. The simplest SC-blocking program is Fail seen in Fig. 11. No
execution of Fail under the “free” scheduling is SC-admissible. One of the assignments L6 or
L9 will happen after variable z has been read as false by the conditional L8 or L5 in the other
thread. Notice that all macro tick runs of Fail produce the same result, i.e., the program is
deterministic under non-SC scheduling. Such programs have rather theoretical interest, as they
certainly don’t represent good coding style, and fall outside of the class considered here.

As a positive example, the program Control, shown in Fig. 2, is sequentially constructive. As
the concurrency relation on variable accesses is not transitive, an access may belong to different
(maximal) sets of mutually concurrent accesses. For example, in Control, L14 belongs to two

26

1 module NonDet
2 output bool x = false, y = false;
3 {
4 fork // Thread ”CheckX”
5 if (! x)
6 y = true;
7 par // Thread ”CheckY”
8 if (! y)
9 x = true;

10 join ;
11 }

(a) The SCL program

CheckX CheckY

entry

x = false; y = false

exit

if !x

y = true

true

if !y
1

wr
x = true

true1wr

(b) The SC Graph

Figure 10: The NonDet example, illustrating multiple admissible runs and non-deterministic
outcome

1 module Fail
2 output bool z = false;
3 {
4 fork
5 if (! z)
6 then z = true
7 par
8 if (z)
9 then z = true

10 join
11 }

Figure 11: The SCL program Fail, which has a deterministic outcome, but no SC-admissible
schedule

maximal sets of concurrent accesses, namely {L14, L22} and {L14, L24}. The SC scheduling rule
(Def. 10), applied to each of these sets, demands that L22 and L24 must both be scheduled
before L14. This, together with the natural sequential ordering of the Dispatch thread, results
in a deterministic outcome. Formally, this follows from the fact that Control is ASC-schedulable
and every ASC-schedulable program sequentially constructive (see Thm. 1 below).

6 Analyzing Sequential Constructiveness

Practical analyses must approximate the notion of sequential constructiveness which is com-
putationally intractable due to its dependence on run-time properties of macro ticks and node
instances. To this end we abstract the concurrency and scheduling relations from node instances
to static relations on nodes.

Definition 12 (Valid SC-Schedule.). Let Σ = (→α | α ∈ {ww,wr,wi, ir}) be a system of binary
relations →α on the statement nodes of G. Σ is called a valid SC-schedule if it (i) is compatible
with the static ordering constraints imposed by the “initialise-update-read protocol” and (ii)
conservatively over-approximates the dynamic ordering relations necessary for SC-admissible

27

runs. Formally, for all α ∈ {ww,wr,wi, ir} the following holds:

• (Soundness) If n1 →α n2, then n1 and n2 are statically concurrent, i.e., th(n1) || th(n2).
Furthermore, if α = ww, then n1, n2 are absolute writes to the same variable; if α = wr,
then n1 is an absolute write and n2 a read to the same variable; if α = wi, then n1 is an
absolute write and n2 a relative write to the same variable; if α = ir, then n1 is a relative
write and n2 a read to the same variable.

• (Completeness) For every macro tick R of G which is reached and executed under the SC-
admissibility rules, if (n1, i1) →R

α (n2, i2) for node instances n1 = R(i1), n2 = R(i2) with
i1, i2 ≤ len(R), then n1 →α n2.

For a given SC-schedule, we also use the following abbreviations:

• n1 →wir n2 iff n1 →ww n2 or n1 →wr n2 or n1 →wi n2 or n1 →ir n2. This summarizes
the constraints induced by concurrent write/increment/read accesses.

• n1 → n2 iff n1 →seq n2 or n1 →wir n2, that is, if there is any control-flow or concurrent-
access-induced ordering constraint.

The second condition of Def. 12 on SC-schedules Σ is the crucial validity requirement. It
guarantees that the static node relations→α of Σ are a sound over-approximation of the dynamic
relations →R

α on node instances under the assumption that G is executed in an SC-admissible
fashion. In contrast, the first condition of Def. 12 imposes an upper bound on the scheduling re-
lations to prevent the schedule from sequentialising random nodes of the program. Without this
restriction Σ could force, e.g., the sequentialisation of concurrent accesses to different variables,
or of reads before writes. This is not what we want. The purpose of Def. 12 is to provide a
convenient criterion to decide SC-constructiveness of programs. Of course, this does not prevent
a compiler from adding further ordering constraints between arbitrary program nodes on top of
a given valid SC-schedule Σ to achieve a particular deterministic implementation on a particular
execution platform.

Definition 13 (ASC Schedulability). A program is acyclic SC (ASC) schedulable if there exists
a valid SC schedule such that there is no → cycle that contains edges induced by →wir.

Theorem 1 (Sequential Constructiveness). Every ASC schedulable program is sequentially con-
structive.

Proof. Very roughly, the result follows from examining the constraints required by ASC schedu-
lability and the SC-admissibility rules underlying the definition of SC, plus the observation
that under SC scheduling, all potential writes are scheduled before any reads, thus ensuring
determinism. The formal proof is somewhat more involved.

For simplicity, we identify continuations with the active nodes they carry, i. e., we write
n ∈ C, if there is c ∈ C such that c.status = active and c.node = n. This is justified because in
the execution of SCGs no node can be instantiated more than once in different continuations of
the same continuation pool.

First, observe that the final configuration reached through a sequence of micro steps is
uniquely determined by the sequence of nodes executed. Formally, if

(C, ρ)
R
�µs (C ′, ρ′) and (C, ρ)

R
�µs (C ′′, ρ′′)

28

then C ′ = C ′′ and ρ′ = ρ′′. This is because the successor configuration is uniquely determined
by the choice of the continuation executed in each micro step, and because no node can be
instantiated more than once in different continuations of the same continuation pool. This
functional dependency permits us to write

(C ′, ρ′) = R(C, ρ) instead of (C, ρ)
R
�µs (C ′, ρ′).

It implies that any non-determinism in macro steps must result entirely from the order in which
the active configurations are selected in the sequence of micro steps.

Let SC(C0, ρ0) be the set of all SC-admissible macro ticks (maximal sequences of SC-
admissible micro steps) starting in (C0, ρ0) and →α for α ∈ {ww,wr,wi, ir}) be a valid and
acyclic SC-schedule of G according to Def. 12.

We first argue SC-schedulability, i. e., that SC(C0, ρ0) is non-empty for every reachable
configuration (C0, ρ0). Since there is no→ cycle on nodes containing→wir edges we can sequen-
tially order the nodes in the SCG consistently with → and associate with every node a priority
n.pr ∈ N such that if n1 →wir n2 then n1.pr > n2.pr , and if n1 →seq n2 then n1.pr ≥ n2.pr
(see also Sec. 6.2). It is straightforward to show that executing nodes according to their pri-
ority enforces SC-admissibility, i. e., that every macro tick R starting from (C0, ρ0) such that
R(i).pr ≥ R(j).pr for all 1 ≤ i < j ≤ k is SC-admissible.

Firstly, R cannot contain concurrent node instances (R(i1), i1)→R
ww (R(i2), i2) that perform

non-confluent absolute or non-confluent relative writes to the same variable. Otherwise, we
would have a cycle R(i1)↔ww R(i2) by symmetry of→R

ww and validity of the schedule. But this
is excluded by ASC schedulability. This proves requirement SC1 of SC-admissibility. For re-
quirement SC2 and SC3 suppose R contains concurrent node instances (R(i2), i2)→R

ir (R(i1), i1)
or (R(i2), i2)→R

wr (R(i1), i1), with i1 < i2, i. e., R(i1) is a read and R(i2) a subsequent concur-
rent, non-confluent write to the same variable. Then, R(i2) →ir R(i1) or R(i2) →wr R(i1) by
validity, which means R(i2) →wir R(i1). But then R(i2).pr > R(i1).pr which contradicts the
construction of R which enforces R(i1).pr ≥ R(i2).pr . The condition SC4 of SC-admissibility is
argued analogously. Its violation would give nodes R(i2)→wi R(i1) for i1 < i2 which contradicts
the execution priorities.

To sum up, we can generate a SC-admissible macro step from initial configuration (C0, ρ0)
simply by executing the nodes in order of non-increasing priorities. This, in turn, can be
achieved by always selecting among all the active nodes one with maximal priority. Consider
two consecutive steps in a micro step sequence

· · · (Ci, ρi)
ni+1→ µs (Ci+1, ρi+1)

ni+2→ µs (Ci+2, ρi+2) · · ·

such that ni+1 and ni+2 each have maximal priority among all active configurations in Ci and
Ci+1, respectively. Then, if ni+2 was already contained in Ci we have ni+1.pr ≥ ni+2.pr by
construction. If ni+2 is not in Ci but has entered Ci+1 as a result of executing ni+1, then the
statement node of ni+2 must be a sequential successor of that of ni+1, i. e., ni+1 →seq ni+2. But
this means ni+1.pr ≥ ni+2.pr by the assignment of priorities.

Since in every configuration (with finite continuation pool) there must be a continuation
with maximal node priority, we have shown that SC(C0, ρ0) is non-empty for any reachable
configuration (C0, ρ0).

Next we deal with determinism. We prove that if SC(C0, ρ0) contains at least one finite
execution, then all executions in SC(C0, ρ0) are finite and result in the same quiescent configu-
ration. Let len(C0, ρ0) ≥ 0 be the minimal length of any finite and maximal micro step sequence

29

R starting in (C0, ρ0). If this number does not exist, len(C0, ρ0) =∞, all micro sequences from
(C0, ρ0) are infinite and we are done. We prove by induction on len(C0, ρ0) < ∞ that any two
SC-admissible macro ticks R,R′ ∈ SC(C0, ρ0) are finite

(C0, ρ0)
R

=⇒ (Ck, ρk) and (C0, ρ0)
R′

=⇒ (C ′k′ , ρ
′
k′)

and we necessarily have Ck = C ′k′ and ρk = ρ′k′ .

If len(C0, ρ0) = 0, then no micro step is needed to complete a macro tick from C0, i. e., C0

contains no active continuation and thus is quiescent. Hence, no micro step is possible at all
and thus trivially Ck = C0 = C ′k′ as well as ρk = ρ0 = ρ′k′ .

For the inductive case, len(C0, ρ0) ≥ 1, which means C0 contains at least one active con-
tinuation and every R ∈ SC(C0, ρ0) must necessarily be of length len(R) ≥ 1. Note that
SC-admissibility is closed under suffixes: Whenever

(C0, ρ0)
n→µs (C1, ρ1)

R
�µs (C ′, ρ′)

is SC-admissible, then R is SC-admissible, too. This follows from the fact that any pair of
concurrent or conflicting node (instances) in R are also concurrent or conflicting in n,R.

For every n ∈ C0, let Dep(n) ⊆ C0 be the set of (active) nodes n∗ ∈ C0 such that there is a
macro tick R′ ∈ SC(C0, ρ0) containing n∗ and a node m′ such that n∗ �seq m

′ and m′ →wir n.
This includes the special case that n∗ = m′, i. e., n∗ →wir n. In general, whenever n∗ ∈ Dep(n)
then n∗ → n includes exactly one →wir dependency. By ASC-schedulability (Def. 13), there
must be at least one n ∈ C0 such that Dep(n) = ∅, for otherwise finiteness of C0 would imply
the existence of a → cycle that traverses at least one →wir edge.

As argued above, every node n ∈ C0 is the start of an SC-admissible sequence, i. e.,
SC(n(C0, ρ0)) 6= ∅. Therefore, there must exist an SC-admissible macro tick R = n,R1 with

(C0, ρ0)
n→µs (C1, ρ1)

R1=⇒ · · · (3)

so that Dep(n) = ∅. We claim that every quiescent configuration reachable from (C0, ρ0) through
a finite SC-admissible macro tick in d micro steps is also reachable from (C1, ρ1) in an SC-
admissible sequence of d − 1 micro steps. By induction from (C1, ρ1) the result follows easily
since then len(C1, ρ1) = len(C0, ρ0) − 1 < ∞ and any finitely non-determinism reachable from
configuration (C0, ρ0) would generate the same non-deterministic responses from (C1, ρ1).

To prove the reduction claim, let R′ = n′, R′1

(C0, ρ0)
n′→µs (C ′1, ρ

′
1)

R′1=⇒ (C ′k′ , ρ
′
k′) (4)

be any finite SC-admissible macro tick of length d = len(R′) in SC(C0, ρ0) ending in a quiescent
configuration (C ′k′ , ρ

′
k′). If n = n′ then (C1, ρ1) = (C ′1, ρ

′
1) and the claim follows directly. Hence,

we may assume n′ 6= n in (3) and (4).
Since active nodes remain active as long as they are not executed, n must be active in C ′1.

Further, n must eventually be scheduled in R′1 because the final quiescent configuration (C ′k′ , ρ
′
k′)

does not contain any more active continuations. Hence, R′1 = R′11, n,R
′
12. Letting j′ = len(R′11),

the macro tick (4) must break up like this:

(C0, ρ0)
n′→µs (C ′1, ρ

′
1)

R′11
� µs (C ′j′+1, ρ

′
j′+1)

(C ′j′+1, ρ
′
j′+1)

n→µs (C ′j′+2, ρ
′
j′+2)

R′12=⇒ (C ′k′ , ρ
′
k′),

30

where n does not occur in R′11 but n ∈ C ′i for all 1 ≤ i ≤ j′ + 1.
Moreover, observe that since both nodes n, n′ are simultaneously active in C0, they must

be concurrent node instances in R′, i. e., (n′, 1) |R′ (n, j′ + 2). More generally, (n, j′ + 2) is
concurrent to every node instance m′ in n′, R′11. This follows from Prop. 2. This means that
the scheduling constraints SC1–SC4 expressed in Def. 10 apply, which restricts the possible
statement types appearing in n′, R′11. A consequence of this restriction is, as we shall show, that
the initial sequence n′, R′11 must commute with n in R. This implies that

(C1, ρ1)
n′,R′11,R

′
12=⇒ (C ′k′ , ρ

′
k′) (5)

is a macro tick (maximal micro step sequence) from initial configuration (C1, ρ1). One can show,
moreover, that (5) is SC-admissible: Any pair of node instances concurrent in n′, R′11, R

′
12 must

have been concurrent in the SC-admissible macro tick R′ = n′, R′11, n,R
′
12 (considering that n is

concurrent with all n′, R′11), and every pair of nodes from n′, R′11, R
′
12 which are non-confluent in

(C1, ρ1) are also non-confluent in (C0, ρ0) by (3). Therefore, since len(n′, R′11, R
′
12) = len(R′1) =

len(R′)− 1 = d− 1 the claim follows from (5).

The core of our argument for (5) is the confluence of node executions. Recall (Def. 7) that
two nodes n1, n2 ∈ D are confluent in a configuration (D,σ), written n1 ∼(D,σ) n2, if in any
configuration reachable from (D,σ), in which both nodes are active, the order of executing n1
or n2 has no influence on the resulting configuration. We generalise this slightly as follows. Let
R = m1,m2, . . . ,mk be a sequence of micro ticks executable from initial configuration (D,σ) and
Ri = m1,m2, . . . ,mi−1, for 1 ≤ i ≤ k, its prefix sequences. This includes the degenerated case
R1 which is the empty sequence. A node n is confluent with respect to R, written n ∼(D,σ) R
if n ∼Ri(D0,σ0) mi for all 1 ≤ i ≤ k. For i = 1 this is the same as n ∼(D0,σ0) m1. One can show
that if n(D,σ) = (D1, σ1) and R(D,σ) = (D2, σ2), then n ∼(D,σ) R implies there is (D′, ρ′)
with R(D1, σ1) = (D′, σ′) = n(D2, σ2). Finally, we write n ∼ R if n ∼(D,σ) R for all valid
configurations (D,σ).

We claim that n ∼(C0,ρ0) n
′, R′11, which gives us (5). First, observe that if the node n is of

one of the statement types exit, entry, goto, fork, join, surf or depth, then it is confluent with any
other active node, in particular those of the sequence n′, R′11. This holds trivially since these
statements neither depend on nor change the memory, and their effect is solely determined by
the static structure of the program graph.

It remains to consider the cases where the node n is an assignment or a conditional:

• Suppose n is a conditional if (ex) and no variable referred in ex is written by any node
in n′, R′11. Since executing a conditional does not change the memory, this means n ∼ m
for all nodes m in n′, R′11, and thus n ∼ n′, R′11, regardless the specific configurations
(C ′i−1, ρ

′
i−1) generated during the execution of R′.

The only interesting sub-case is when a variable referred in ex (and thus read by n) is
written by any node instance (m′, i) in n′, R′11 with 1 ≤ i ≤ len(n′, R′11) = j′ + 1. If
confluence is violated, i.e., n 6∼(C′i−1,ρ

′
i−1)

m′, then we have m′ →R′
wr n or m′ →R′

ir n by

Def. 9 which in turn implies m′ →wir n by validity of the SC-schedule Def. 12. We will
show below that this can be excluded, whence n 6∼(C′i−1,ρ

′
i−1)

m′ and thus n ∼ n′, R′11 in
all the sub-cases.

• Suppose n is an assignment x = ex and no variable referred in ex is written by any node
m′ in n′, R′11, unless this variable is x and m′ is a relative write to x or n an absolute write

31

to x. We show from the confluence conditions of SC-admissibility of R′ that n ∼(C0,ρ0) m
′

for each node m′ in n′, R′11. This implies n ∼(C0,ρ0) n
′, R′11 as desired.

Let us first look at the possibilities of a node instance (m′, i), for 1 ≤ i ≤ len(n′, R′11) =
j′ + 1, in n′, R′11 that refers to x:

– If m′ is a read on x, then the claim follows directly from SC-admissibility of R′

(Def. 10): Considering that (m′, i) |R′ (n, j′ + 2) we cannot have n 6∼(C′i−1,ρ
′
i−1)

m′

because this would imply (n, j′ + 2) →R′
wr (m′, i) or (n, j′ + 2) →R′

ir (m′, i) by Defs. 8
and 9 depending on whether n is an absolute write or a relative write of x. Yet, the
former is excluded by SC2 and the latter by SC3.

– If m′ is a relative write of x, for the same reason, we have n ∼(C′i−1,ρ
′
i−1)

m′ because of
conditions SC1 or SC4 of SC-admissibility, which enforce confluence of all concurrent
writes after any relative write in R′.

Every other node m′ in n′, R′11 which is neither a read of x nor a relative write on x, cannot
refer to (evaluate) variable x at all, by Def. 6. Thus, every node instance (m′, i) of n′, R′11
which refers to x is confluent to n in (C ′i−1, ρ

′
i−1) by the analysis above. Any node instance

(m′, i) which does not refer to x is trivially confluent with n in any configuration unless
it is an assignment which changes a variable referred to by ex. However, by assumption,
m′ is a relative write to x or both m′ and n are absolute writes to x. In all cases, we infer
n ∼(C′i−1,ρ

′
i−1)

m′ by the properties SC1 or SC4 for SC-admissible R′.

What about the sub-cases of nodes m′ in n′, R′11 not covered? It can be shown that these
must also satisfy n ∼(C′i−1,ρ

′
i−1)

m′. Otherwise, if a node m′ writes to a variable occurring

in ex, but different from x, and n 6∼(C′i−1,ρ
′
i−1)

m′, then m′ →R′
ir n or m′ →R′

wr n; If m′ is

an absolute write to x and n a relative write to x, and n 6∼(C′i−1,ρ
′
i−1)

m′, then m′ →R′
wi n.

Validity of the SC-scheduling relations implies m′ →wir n in all these sub-cases, which is
excluded by the argument given below.

Finally, as indicated, let us show that the case analysis above is complete, i. e., there cannot
exist a node m′ in n′, R′11 with m′ →wir n. By Prop. 1 such m′ must be the sequential successor
m∗ �seq m

′ of some node m∗ ∈ C0. But then m∗ ∈ Dep(n) which contradicts our assumption
that Dep(n) = ∅. This completes the proof of (5) and thus of Thm. 1.

The Control example of Fig. 2 is ASC schedulable and thus sequentially constructive. Specif-
ically, it is easy to see that the only pairs of nodes which are concurrent and in conflict relative
to any initial configuration of Control are L24 6∼ L14 and L22 6∼ L14 which are read-write conflicts
on variable grant, and L23 6∼ L13 as a read-write conflict on checkReq. Observe that we treat the
assignments L22, L23 and L24 as absolute writes. Hence, by forcing the execution to respect the
orderings L22→wr L14, L13→wr L23 and L24→wr L14, specified by the red arrows in Fig. 2, we
avoid the only possible scheduling violation (SC1) expressed in Def. 10. Since these constraints,
when added to the program order, do not introduce a causality cycle, we have a valid acyclic
SC schedule in the sense of Def. 13. This not only ensures SC-admissible execution but also, by
Thm. 1, deterministic macro step responses.

Slightly more subtle is the analysis of the sequentially constructive program GuardedA de-
picted in Fig. 12a. It illustrates the dynamic nature of our SC scheduling relations of Def. 9

32

1 module GuardedA
2 output bool s, t ;
3 {
4 fork

// Thread ”SwitchS”
5 s = false;
6 s = true;
7 par

// Thread ”CheckSAbs”
8 if (! s)
9 t = false;

10 par
// Thread ”CheckSPres”

11 if (s)
12 t = true;
13 par

// Thread ”WaitT”
14 if (t)
15 then s = true;
16 else s = true;
17 join ;
18 }

(a) The SCL program

SwitchS CheckSAbs CheckSAbs WaitT

entry

fork

exit

entry entry entry entry

join

[L5]
s = false

exit

[L6]
s = true

[L8] !s [L11] s

[L15]
s = true

[L16]
s = true

exit

[L9]
t = false

[L12]
t = true

[L14] t

true

exit

true

exit

true

(b) The SC Graph

Figure 12: The GuardedA example, illustrating the data-dependent nature of SC-constructiveness

which need to be over-approximated to find a valid SC schedule, according to Def. 12. We begin
by classifying writes into relative and absolute writes. This is not necessarily unique. The most
conservative stand is to consider all the assignments L5, L6, L9, L12, L15, L16 as absolute writes.
Then, looking at the program from an arbitrary initial configuration and under free scheduling
we could treat all of the potential conflicts by the following valid SC schedule Σ0 (Def. 12):

C1 w →wr r, for w ∈ {L5, L6, L15, L16} and r ∈ {L8, L11}, which resolves read-write conflicts
on variable s;

C2 L12→wr L14 and L9→wr L14 to deal with read-write conflicts on variable t;

C3 L9↔ww L12 for the write-write conflict on variable t;

C4 L5↔ww L15 and L5↔ww L16 to treat write-write conflicts on variable s.

Observe that the pairs {L6, L15} and {L6, L16} are not conflicting because they are identical
writes, and thus confluent in all configurations. The assignments L5 and L6 are not in conflict
because they are sequentially ordered and hence not concurrent. The same applies to L15 and
L16.

All the conflicts C1–C4 can indeed be generated, in the sense of Def. 7, by free scheduling
of GuardedA from a suitable initial configuration. For instance, we could execute the sequence
of statements L4, L5, L8, L6, L11 to reach a configuration in which both assignments L9 and L12
are jointly active. Similarly, in an initial configuration in which s = 1 we can run through L4,
L11, L12, L14 and reach a configuration in which both L15 and L5 are active.

SC-admissible schedules must make sure that program nodes are never executed against
these orderings, unless they are confluent in the local configuration. Running GuardedA under

33

the static SC-schedule Σ0 given by C1–C4 would achieve that. However, this schedule is of no
use since it creates a causality cycle. In fact, every run that adheres to C1 and C2 will block:
C1 forces L15 and L16 to be executed before both L8 and L11. By program order this can only
happen after L14 is taken, which in turn must wait for L9 and L12, by C2. Since both L9 and
L12 depend on prior execution of L8 and L11, by sequential ordering, we are locked up in a cycle.
This is in contrast to the program Control, where the static orderings valid for unconstrained
free executions already generate an acyclic SC-schedule in the sense of Def. 13.

For GuardedA the conservative “worst-case” over-approximation C1–C4 is too tight a belt.
Instead, to see that GuardedA is ASC-schedulable, we can exploit the fact that validity of SC-
schedules in Def. 12 is not required for arbitrary free executions but only those that are SC-
admissible. Because of this, so it turns out, a subset of the constraints C1–C4 is already
sufficient to ensure SC-admissibility. For instance, since L6 is sequentially after L5 in program
order, L6 →wr r suffices to enforce L5 →wr r for r ∈ {L8, L11}. A similar transitivity argument
yields C4 from C1 and C2. It can be shown that imposing the orderings

C1* L6→wr r, for r ∈ {L8, L11}

C2 w →wr L14, for w ∈ {L9, L12}
alone, as seen in Fig 12b, yields a valid SC schedule Σ1. Specifically, under SC-admissibility
there is no reachable configuration in which L9 and L12 conflict, eliminating the need for C3.
To show this we argue as follows: If any of the conditionals L8 or L11 were executed before the
assignment L6, then violation of condition SC2 becomes unavoidable, hence the run cannot be
completed to an SC-admissible macro step. Since the assignment L6 must be executed strictly
earlier, both the conditionals L8 or L11 must consistently see the same memory state s = true.
This has two consequences. Firstly, only L12 becomes active, while L9 is skipped. In other words,
SC-admissibility eliminates the free schedule L4, L5, L8, L6, L11, so that the conflicting absolute
writes L12 and L9 are never jointly active. Secondly, starting with the configuration in which any
of the conditionals L8 or L11 is executed, we have s = true, which is never subsequently changed.
This means that the writes L15 and L16 are confluent with the reads L8 and L11 because, in line
with Def. 8, they are never in conflict. Thus, the constraints w →wr r, for w ∈ {L15, L16} and
r ∈ {L8, L11} are redundant. We may safely remove them from Σ0 without losing completeness
of the schedule as expressed in Def. 12.

Since the remaining constraints C1* and C2 form a valid and acyclic SC schedule Σ1,
GuardedA is ASC-schedulable by Def. 13 and hence sequentially constructive by Thm. 1. Note
that to find the schedule C1* and C2 and prove its validity involves reasoning about execution
orders and data dependencies. In practice, different compilers will be distinguished by how much
such analysis capability they provide. Our notion of ACS-schedulability leaves a lot of room for
semantical abstraction or refinement, as discussed below in Sec 6.1.

An example of a program for which no compiler, however clever, can find a valid and acyclic
SC-schedule is NonDet from Fig. 10. Every valid SC-schedule must contain a cycle that involves
→wr edges, and therefore NonDet is not ASC schedulable. As explained above, NonDet indeed
exhibits non-determinism under SC-admissible scheduling.

To force determinism we would have to eliminate one of the two SC-admissible runs without
blocking off the other. This is seen in the program SCDet in Fig. 13, which is almost like NonDet,
but employs Fail to force one of the two parallel threads to fail. Consequently, there is only one
SC-admissible schedule left over, viz. first to execute the test L5 immediately followed by the
assignment L6. This sets y = true and prevents the second thread to run into Fail. This means
that we no longer need to consider the read-write conflict on variable x. It suffices to include
the single constraint L6→wr L8 on variable y to obtain a valid acyclic SC-schedule.

34

1 module SCDet
2 output bool x = false; y = false;
3 {
4 fork // must be executed atomically
5 if (! x)
6 y = true;
7 par // failing thread
8 if (! y)
9 { x = true; Fail }

10 join
11 }

Figure 13: SCL program SCDet

It is important to observe that dropping the constraint L9 →wr L5 from the schedule, or
alternatively, keeping L9→wr L5 and dropping L6→wr L8, is not an option for program NonDet
in Fig. 10. Although each would remove the deadlock from the execution and resolve non-
determinism, none of these schedules is valid for NonDet. This is quite sensible since each of
these “fabricated” schedules yields a different response. We would simply trade non-determinism
resolved by the run-time for non-determinism resolved by the compiler. Both is equally bad from
the programmer’s point of view.

6.1 Conservative approximations

The concepts underlying the definition of ASC schedulability (Def. 13), namely when statement
nodes are concurrent and how they access a shared variable (type of write), may involve run
time information that a compiler cannot infer. E. g., it is undecidable in the general case of
whether the evaluation of two syntactically different expressions results in the same value. In
such cases, a compiler must work with conservative approximations, as further detailed in this
section. This does not inflict on the validity of the approach presented here, and in particular
does not introduce any non-determinism. However, such approximations may suggest data
dependencies where in fact there are none in any concrete program execution, and thus it may
lead a compiler to reject a program that another compiler with better analysis capabilities
would consider ASC schedulable and therefore would accept. Then again, this situation is not
uncommon in, e. g., hardware synthesis or Esterel compilation, where different compilers with
different analysis capabilities may accept different programs as being free of data races.

Strictly, Def. 13 is not defining a fixed set of relations →α but a class of relations for
SC-scheduling, depending on what information we may care to infer, statically, about which
nodes are relative and which are absolute writes, which nodes are non-confluent with each other
and may be executed concurrently in the same tick. Specifically, the latter will always be a
conservative approximation, in the sense that “nodes may execute in the same tick” means that
we cannot disprove it. But note that even with an exact analysis on which nodes can appear
together in the same tick, concurrency will still only be an approximation. The reason is that
two concurrent nodes may well be executable in the same tick but still sequentially ordered by
data dependencies and synchronization.

For example, assume a pair of writes that are assumed to be non-confluent, in concurrent
threads. These writes may be guarded by expressions that are mutually exclusive, in which

35

case, according to our definition, these writes would not be concurrent. However, a compiler
may or may not recognize mutual exclusivity and thus may or may not consider the writes to
be concurrent. Possible levels of analysis are:

1. No analysis: don’t recognize mutual exclusivity.

2. Simple negation: recognize textually-identical-except-for-a-not-operator guards as being
mutually exclusive.

3. Logical negation: recognize guards that can be proven to be logically inverse for all truth
table values as being mutually exclusive.

4. Logical-over-time negation: recognize guards that can be proven to be logically inverse for
all values that can actually occur in the course of running the program as being mutually
exclusive.

Similarly, a compiler may perform different levels of analysis on whether two statements are
in the same tick, for example:

1. No analysis: consider all statements to be executed in the same tick.

2. Simple linear tick count analysis: detect when statements are executed a different number
of ticks since the start of their respective threads. This might involve traversing different
branches, and other techniques such as dead code elimination to rule out ineffective pause
statements.

3. Loop tick count analysis: detect when statements in loops are aligned such that they are
always executed in different ticks since the start of their respective threads.

Similarly, there are several aspects of the data dependency definitions that a compiler must
approximate conservatively, and which may lead rejection of programs that are in fact SC:

• A compiler may not recognize that writes are confluent, thus introducing superfluous ww,
wr or wi edges.

• A compiler may not recognize that a write is a relative write, falsely classifying it as
an absolute write. This may replace ir edges by wr edges (which is harmless), or may
introduce superfluous wr edges (which may introduce superfluous cycles), or may introduce
superfluous ww edges.

These approximations involve the analysis of values, which might be, for example:

1. No analysis: consider all absolute writes as non-confluent.

2. Text equivalence: accept absolute writes as confluent that are textually equivalent (recall
that we rule out side effects).

3. Mathematical equivalence: recognize absolute writes as confluent that involve logically
equivalent expressions, i. e., “a+ b” and “b+ a”.

36

6.2 Determining SC schedules

For a sequentially constructive program, a valid schedule is one which executes concurrent state-
ments in the order induced by→. Such a schedule may be implemented by associating a priority
n.pr with each statement node n.

Definition 14 (Priorities). Given a SC-schedule →wir, the priority n.pr of a statement n is
the maximal number of →wir edges traversed by any path originating in n in the SCG.

A scheduler that always gives control to the thread with highest priority, chosen from the set
of threads that are still active in the current tick, never allows a statement with higher priority
to wait on one with lower priority. Such a scheduler implements a valid schedule, as can be
verified from the SCG construction. For example n1 →wi n2 implies n1 →wir n2, which implies,
by definition of priorities, n1.pr > n2.pr, which in turn implies that n1 gets scheduled before
n2. Thus absolute writes are performed before concurrent relative writes to the same variable.
Similarly →wr ensures that absolute writes are performed before concurrent reads of the same
variable, and→ir ensures that relative writes are performed before concurrent reads of the same
variable.

The priority concept can also serve to determine sequential constructiveness, based on Thm. 1
and the following theorem:

Theorem 2 (Finite Priorities). A program is ASC schedulable iff there exists a SC-schedule
such that all statement priorities are finite.

Note that the existence of finite priorities imply there is no ↔ww cycle, which means there
is no →ww, dependency edge in the schedule.

Proof sketch: This follows from the observation that whenever ASC schedulability requires
that n1 must be scheduled before n2, then n1 gets assigned a higher priority than n2. �

The statements executed within a tick always execute in decreasing priority order, and a
thread may never fork off threads with higher priority than its current priority. Therefore a
thread t currently executing with some priority pr, meaning that its priority is higher than that
of all other threads that still are eligible for scheduling in the current tick, cannot be preempted
by another thread u unless t just lowered its own priority below u’s priority. Thus, the only
points when a scheduler is called for are 1) when threads are forked and the scheduler has to
schedule one of the forked threads, or 2) when a thread lowers its own priority, or 3) when a
thread finishes for the current tick, that is, it reaches a pause statement or terminates.

Cycles induced solely by →seq, which correspond to instantaneous loops within a thread,
do not impede on sequential constructiveness, as they do not entail race conditions, as already
discussed in the context of the InstLoop example in Sec. 3.8. In practice, one might want to rule
out unbounded instantaneous loops, which could lead to infinite statement sequences within a
tick. However, this question is orthogonal to sequential constructiveness, and is more related to
timing predictability and program correctness in general.

6.3 Computing priorities

The calculation of priorities (Def. 14) can be formulated as a longest weighted path problem.
We assign to each edge e ∈ E a weight e.w, with e.w = 0 iff e.src →seq e.tgt , and e.w = 1 iff
e.src →wir e.tgt . Note that the relations→wir and→seq exclude each other, as statements cannot
be sequential and concurrent to each other, so the weight of each edge is uniquely determined.

37

With this assignment of weights, n.pr becomes the maximal weight of any path originating in
n.

A non-trivial aspect in calculating priorities is that we want to handle (sequential) loops, i. e.,
cyclic SCGs. In the usual synchronous MoC, loops are prohibited when they can occur within
a tick; this simplifies the scheduling problem, but is again more restrictive than necessary to
ensure determinism. For arbitrary (i. e., possibly cyclic) weighted graphs, the computation of
the longest weighted path is an NP-hard problem, as it can be reduced to the Hamiltonian path
problem. However, according to our definition of SC, we can exclude all graphs that contain a
cycle with a positive weight, as these cycles would contain a →wir edge, which would mean that
the program is not ASC schedulable. Thus we can compute priorities efficiently as follows:

1. Detect whether any positive weight cycles exist. We can do so by computing the Strongly
Connected Components (SCCs), for example using Tarjan’s algorithm [30], and checking
if any SCC contains a node that is connected to another node within the same SCC by a
→wir edge.

2. If a positive weight cycle exists, the program is not ASC schedulable; we then reject the
program and are done. Otherwise, we accept the program, and continue. Now nodes in
the same SCC can reach each other, but only through paths with weight 0, and therefore
must have the same priority.

3. From the SCCs, construct the directed acyclic graph GSCC = (NSCC , ESCC), where
NSCC ⊂ N contains a representative node from each SCC of G (using e. g. the SCC
roots computed by Tarjan’s algorithm), and ESCC contains an edge from one SCC rep-
resentative to another iff the corresponding SCCs are connected in G. Here we assign an
edge in ESCC the maximum weight of the corresponding edges in E.

4. Compute for each nSCC ∈ NSCC the maximum weighted length (priority) nSCC .pr of any
path originating in nSCC . This can be done with a depth-first recursive traversal of all
edges in the acyclic GSCC .

5. Assign each statement n ∈ N the priority computed for its SCC.

Note that we can perform all these steps in time linear to the number of nodes and edges of the
graph. For the Control example, the resulting priorities are indicated in Fig. 2c.

7 Variables vs. Signals

The SC MoC does not mandate directly an Esterel/SyncChart-like signal mechanism, as de-
scribed in Sec. 2. However, with the SC scheduling regime described in Sec. 5.2, signals can be
emulated with ordinary boolean variables, as are present in Java and can be represented with
integers in C.

7.1 Emulating pure signals

To make a boolean s behave like a signal, declared at some scope (which can be the whole
program), we can use s as follows:

1. Initialize s to be absent at the beginning of each tick by adding a thread while (true) { s =
false; pause } that runs concurrently to the scope of s. This constitutes an absolute write
of s.

38

2. To emit s, i. e., to make it present, perform s = s ‖ true. This constitutes a relative write,
which can be combined with other, concurrent relative writes.

3. Interpret s == true as s being present, s == false as absent. These constitute reads of s.

7.2 Emulating valued signals

For valued signals without a combination function, we must statically check that they cannot
be emitted concurrently. If this is the case, the emission of the valued signal becomes a simple
absolute write to an ordinary variable, plus the emission of a pure signal that indicates the
presence status.

The more interesting case, considered in the following, are valued signals that are equipped
with a combination function and that can be emitted concurrently. A slight complication is that
the value of a signal is persistent across ticks. That is, if the signal is not emitted in the current
tick, we must remember its value from the previous tick. However, if it is emitted, we must
consider it to be initialized with the neutral element of the combination function.

We can emulate a valued signal of some type, say integer, and some combination function,
say +, as follows. A boolean s indicates signal presence/absence, as with pure signals. An integer
sval carries the value of the signal, an auxiliary integer scur is used to collect emissions of the
current tick. These variables are used as follows:

1. Initialize s with false at every tick in the scope of the signal, as for pure signals. Also at
every tick, initialize scur with 0, the neutral element for +.

2. To emit the signal with some value ex, execute scur = scur + ex; s = s ‖ true.

3. To set s to its current value if it has been emitted in the current tick, perform while (true)
{ if (s) sval = scur; pause } concurrently to the scope of the signal.

4. Refer to sval to retrieve the value of the signal, and interpret s == true as the signal being
present, as for pure signals.

Note how the use of the auxiliary variable scur allows to maintain schedulability of concurrent
emissions. If we would operate directly on sval, we would possibly have to perform an absolute
write—for initialization with the neutral element—at any signal emission. This would destroy
schedulability if we would try to emit different values at the same tick.

7.3 The pre operator

Esterel and SyncCharts provide the pre operator, which allows to access the presence status
or the value of a signal in the previous tick. SCCharts provide a pre operator for variables,
which can also be used for signals, as introduced in Sec. 7.1. However, how to recover pre under
sequential constructiveness may not seem obvious. To emulate pre(x) for some variable x, a näıve
approach might be to introduce a fresh variable pre x, to store the value of x in pre x at the
end of each tick in some new concurrent Pre, and to replace all occurrences of pre(x) by pre x.
However, the SC scheduling rules would order the assignment to pre x after any assignment to
x within the same tick, and thus pre x would effectively replicate x from the current tick, not
from the previous tick.

What does work, however, is to store x in some fresh buffer variable x at the end of a tick,
and to copy this x to pre x in the next tick. The SC scheduling rules will order the assignment
to x after all assignments to x, and will order the assignment to pre x before all references to
pre x.

39

25 ni.com | NI CONFIDENTIAL

Syntax Overview – States
Root state	
 Final state	

Conditional
pseudo state	

Normal state	

Initial state	
 Anonymous
simple states	

Macro states	

Named 	

simple states	

State Region ID	

Transition
trigger/effect	

Immediate
trigger	

Transition
priority	

Strong abort	

Weak abort	

Normal
termination	

History transition	

Figure 14: Overview of SCCharts

However, taking a broader look at the issue, we consider the need to use the pre operator
at all to be much lower than in the current synchronous MoC. After all, a very typical use of
the pre operator in the synchronous MoC is to break causality cycles that arise if we disregard
any sequential order. The SC MoC already makes these cycles disappear by restricting the
write-before-read requirement to truly concurrent variable accesses.

8 SCCharts — Sequentially Constructive Statecharts

As indicated earlier, it is natural to apply the concept of sequential constructiveness not only
to a textual C/Java-like language, but also to a graphical formalism such as Statecharts [4]. In
fact, the development of a semantically sound, yet flexible and intuitive Statechart dialect was
the original motivation for developing the SC concept. We have developed such a Statechart
dialect, named Sequentially Constructive Statecharts, or SCCharts in short, to be used for
the development of safety-critical embedded systems in an industrial setting. We here do not
present SCCharts in detail, as this would go beyond the scope of this paper, but outline its key
characteristics. In particular, we discuss how it relates to other Statecharts dialects with respect
to what Statecharts are considered admissible.

Compared to the SCL language introduced in Sec. 3.1, which already contains concurrency
(the par statement) and state (pause), the main semantic addition of Statecharts is preemption.
SCCharts provide two types of preemption, strong preemption and weak preemption, analogous
to SyncCharts. Adding the concept of preemption allows to write more compact diagrams,
but does not really add to the expressive power. Therefore, there are no particular challenges
involved in mapping preemption to the SC model of computation. An overview of the elements
of SCCharts is shown in Fig. 14.

An SCChart that corresponds to the XY example (see Fig. 8) is shown in Fig. 8e.

40

An SCChart that illustrates preemption, called ABSWO, is shown in Fig. 15a. As noted,
preemption can be emulated with auxiliary signals and normal termination. The ABSWO SC-
Chart shown in Fig. 15b is the correspondingly expanded variant of ABSWO. This in turn can
be expressed as textual SCL program, see Fig. 15c, with the corresponding SCG in Fig. 15e.
The SCG nodes show the statement priorities computed by our algorithm in square brackets.

9 Alternative Notions of Constructiveness

As noted in the beginning, SC-scheduling is not the only way to interpret the Synchrony Hy-
pothesis. In the following let us mention the three most prominent approaches discussed in the
literature. The induced notions of P-, L-, and B-constructiveness are due to Pnueli & Shalev,
Boussinot and Berry, respectively. A survey and detailed mathematical analysis of these schemes
can be found in [31].

The Statecharts dialects we consider here use broadcast communication on (pure) signals.
We assume these are translated into our imperative language, with shared boolean variables,
as described in Sec. 7.1. Hence, we assume signals are initialised to false at the beginning of
each macro tick and the only assignments to a signal s are relative writes s = s ‖ true setting s
true. Since there is no risk of confusion with absolute writes these may simply be represented
as constant assignments s = true. Moreover, for compactness of the code we use numbers 0, 1 for
the boolean values instead of false, true.

An overview of how sequentially constructive Statecharts (called S-constructive, for short, in
the sequel) relate to these other classes of Statecharts is given in Fig. 16.

P-Constructiveness (PC) As one of the first semantics for Statecharts, Pnueli & Shalev [6]
have introduced a (non-deterministic) execution model (P) which is distinguished by the fact
that it permits speculation on the absence of a signal. As long as no thread has emitted a signal,
say y, the P-scheduler may execute a command guarded by the absence of y. In doing so, the
guard signal y is fixed to have absent status for the whole synchronous instant. P-admissible
executions must be globally consistent and the status of a signal not be overridden by any
thread. Otherwise, the scheduler detects a conflict and backtracks in search of a viable schedule.
As a consequence, P-admissible schedules lead to non-deterministic response behavior, like our
SC-admissible schedules do, e.g., as exhibited by the program PNonDet in Fig. 10 of Sec. 5.2. In
line with Def. 11 a program then is P-constructive if there exists a conflict-free P-admissible
schedule, and all P-admissible schedules induce the same response. For example, consider the
program

PLP = fork s1 : if (!y) s11 : x = 1

par s2 : if (!x) s21 : {x = 1; y = 1} join

which executes under P-admissible scheduling to generate the unique response y = 0, x = 1.
Initially, both x and y are absent (by default), so both parallel statements s1, s2 are executable.
If s2 is chosen, then the guard x is frozen up to be absent, and the statement s21 becomes ready
to be executed. Yet, this will eventually emit x, which contradicts the default speculation on the
absence of x. Thus, this schedule is abandoned. If s1 is executed instead, then the statement
s11 sets x = 1. Now, the guard of s2 is false, whence s2 can enter its (implicit) else branch and
terminate. This is the only P-admissible schedule, whence the response is deterministic and PLP
is P-constructive according to our terminology.

41

(a) SCChart ABSWO, with
strong and weak preemption
of ABO, triggered by S and W,
respectively

(b) Functionally equivalent
SCChart ABSWO-xp, which
emulates preemption

1module ABSWO−xp
2 input bool A, B, S, W;
3output bool O = false;
4{
5 ABO: { // Local vars of ABO
6 bool SA = false, WA = false;
7

8 fork { // Macro State ABO
9 // Thread Main

10 fork { // Macro State WaitAB
11 // Thread HandleA
12 WaitA: pause;
13 if (! SA) {
14 if (A) {
15 B = true;
16 goto DoneA;
17 } else if (! WA)
18 goto WaitA;
19 } A = true;
20 DoneA:
21 } par {
22 // Thread HandleB
23 WaitB: pause;
24 if (! SA) {
25 if (B)
26 goto DoneB;
27 else if (! WA)
28 goto WaitB;
29 } A = true;
30 DoneB:
31 } join ;
32

33 if (! A) {
34 O = true;
35 GotAB:
36 if (!(SA || WA)) {
37 pause;
38 goto GotAB;
39 }
40 }
41 // State Aborted
42 } par {
43 // Thread Abort−Ctrl
44 WaitAbort: pause;
45 if (S)
46 SA = true;
47 else if (W)
48 WA = true;
49 else
50 goto WaitAbort;
51 // State Abort
52 } join ;
53 }; // Leave scope of local vars
54 goto ABO;
55}

(c) SCL program ABSWO-xp

-A

B,
O

S B A

B,
O

W
A,
W

B,
O

A,
S

(d) Possible execution trace, with inputs above the
tick time line and outputs below

Main

HandleA HandleB

AbortCtrl

entry

_SA = false; _WA = false

exit

WaitAB

!(_SA || _WA)

O = true

true

!(_SA || _WA)
true

!_SA

!_WA
true

A

true

B = true

true

!(_SA || B || _WA)

1

true

S

W

_SA = true

true

_WA = true

true

1

1

11

1

1

1

1

ABO

(e) The SC Graph; fork nodes are labelled with
corresponding macro states. All data dependen-
cies are of wr type and hence their labels are
omitted.

Figure 15: The ABSWO example, illustrating strong and weak preemption, and the function-
ally equivalent ABSWO-xp (“expanded”) example, which emulates preemption with an Abort-Ctrl
handler and auxiliary control signals A, SA and WA.

42

Sequentially
Constructive (SC) Acyclic

Schedulable
Static cycles

Dynamic scheduling
(ASC)

Sequences
of values

y g
PS

PAS Cycle of
t

PAPS PALS or concurrent
writes

concurrent
dependencies,

PALPS

P

writes

Out-of-order
scheduling

PABLPS
PPS PLS

NonDet

PP PBLPS
PLPS

Speculate on
absence

Speculate on
absence or presencePLP

Pnueli-Shalev
(PC)

PL All
Programs

Logically
Correct (LC)

()

Berry
Constructive (BC)

Figure 16: Relationships of Statecharts classes

Since the SC-schedule also runs PLP from the initialisation x = 0; y = 0 to model the signals,
it might seem we should get the same result. However, as P-schedules are dynamically self-
correcting, they may be deterministic where SC-schedules are not. Concretely, PLP has two
SC-admissible schedules. One executes s1 and then s2 atomically and produces the result y =
0, x = 1, just like in the P-schedule above. The other is to execute s2 first and then s1. This is
viable under SC-rules since the update of x = 1 after reading x = 0 in the guard of s2 is permitted
and the update done in the same thread. Thus, we have two distinct responses whence PLP is
not S-constructive. Observe that the program

PS = fork s1: if (!x) {y = true; x = true}
par s2: if (!y) {y = true; x = true; Fail} join

which is S-constructive (for the same reason as SCDet from Fig. 13) is not P-constructive. No
matter which of the guards if (!x) or if (!y) is scheduled first, testing the absence of the signal, the
very signal will be emitted later, which is not P-admissible. Still there are programs such as

PPS = fork s1: if (!x) {y = true}
par s2: if (!y) {x = true; Fail} join

which are both P and S-constructive. Thus, the properties of being P or S-constructive are
independent from each other.

L-Constructiveness (LC) A different, and in some sense more permissive, scheduling scheme
underlies the notion of logical coherence (L) defined by Boussinot [28] and also Berry [3]. L-
schedules may speculated on both absence and presence of signals subject to the constraint that
the response be logically coherent in the sense that a signal is present throughout a tick iff it is
emitted in that tick. If no signal emission statement is executed, the signal must be consistently
interpreted as absent. In addition, like for all Statecharts dialects, signals cannot be unemitted.

43

A program is called L-constructive if it has exactly one logically coherent response in each macro
tick. As an example consider the program

PL = fork s1 : if (y) s11 : x = 1

par s2 : if (x) {x = 1; s21 : y=1} else y = 1 join.

The L-schedule may guess the (emit) statements s11 and s21 to be executed (out of order) which
makes both signals x, y become present. This justifies the execution of the then (true) branch of
s1 and the then branch of s2, which confirms the initial speculation that s11 and s21 are executed
in the macro tick. One can show that this is the only logically coherent schedule: Since the
signal emission y = 1 appears in both branches of s2, it will happen irrespective the status of
x. Now, if y is present, the then branch of s1 is taken, which emits x. Hence, x = 1, y = 1 is the
unique L-response of PL, so it classifies as being L-constructive.

On the other hand, PL is not S-constructive. Let us see why. From the initialisation
x = 0; y = 0 we can schedule either the (implicit) else branch of s1 or the else branch of s2.
However, in the ordering s1, s2 the second thread executing s2 would write y = 1 after s1 has
tested y for absence. This is a concurrent-write-after-read conflict. If we schedule s2, s1, then
the thread for s2 sets y = 1 first, which forces s1 to run s11 writing x = 1. Again, this is a
concurrent-write-after-read conflict since s2 tested x before. So, we find that PL does not admit
any SC-schedules, and thus is not S-constructive. Note that PL not P-constructive either. No
matter which of the conditional tests in s1 and s2 are executed first, we run into a conflict.
Signal x will necessarily be emitted after it has been tested absent by s2.

One can show that L-constructiveness is incomparable with both the P and S classes of
constructiveness. The program PS (see p. 43), which is S-constructive, but neither P-constructive
nor L-constructive: It is not L-constructive because it does not admit any coherent solutions: x
= 0 is excluded since then s1 would force x = 1 to be executed, and y = 0 is impossible because
this would result in the execution of y = 1 in s2. But if x = 1 and y = 1, then both of the guards
if (!x) and if (!y) are switched off and neither x = 1 nor y = 1 is executed. At the same time there
are programs such as

PP = fork s1 : if (x) s11 : y = 1

par s2 : if (y) s21 : x = 1

par s3 : x = 1

par s4 : if (z) s41 : z = 1 join

which is P-constructive but neither S-constructive nor L-constructive. Any admissible P-schedule
may execute nodes from {s1, s2, s3} and from s4 in arbitrary interleaving since they do not de-
pend on each other. Due to the initialization z is found absent, whence s4 exits immediately.
Regarding the scheduling of nodes within {s1, s2, s3} we are not free: The P-schedule must first
execute s3, setting x present, then s1, atomically, followed by s2. Otherwise, if the test if (x)
in s1 is evaluated before the assignment s3, or if (y) in s2 is evaluated before the assignment y
= 1 from s1, we would override a signal tested absent by emitting it. The final P-response is
x = 1, y = 1, z = 0.

PP is not S-constructive since all schedules must necessarily execute the writes s3 or s21
after the test if (x) in s1, or s11 after the test if (y) in s2, which all violates condition SC2 of
SC-admissibility. PP is not L-constructive since it admits the two logically coherent solutions x
= 1, y = 1, z = 0 and x = 1, y = 1, z = 1.

Any two of the properties of S, P and L-constructiveness can be combined without the third:
The program PLP given above, which is not S-constructive, is not only P-constructive but also

44

L-constructive. Its only P-admissible response y = 0, x = 1 is also the only logically coherent
speculative execution for PLP in which a signal is present if and only if it is emitted. Program
PPS is both P and S-constructive but not L-constructive, because of its two coherent solutions
x = 0, y = 1, z = 1 and x = 1, y = 0, z = 1. Finally,

PLS = fork s1 : if (!x) s11 : x = 1

par s2 : if (x && y) s21 : {x = 1; y = 1} join

is L and S-constructive but not P-constructive. All executions start with an evaluation of x in
the guards of s1 or s2 and then eventually emit x with s11 which is not P-admissible. However,
there is one SC-admissible schedule which first atomically executes s1 (emitting x) and then s2
in which the concurrent write s21 to x is not executed. The write s11 takes place sequentially
after the test if (!x) at the beginning of s1 and is SC-admissible. Finally, PLS admits of only one
coherent logical assignment, viz. x = 1, y = 1 as one shows without difficulty.

B-Constructiveness (BC) Finally, the most well-known interpretation of the Synchrony
Hypothesis can be found in the semantics propagated by Berry [29, 3] for the language Esterel,
which has also been adopted by SyncCharts [32]. It is known as the “constructive” semantics
and motivated from the theory of boolean circuits which have been an important target for
Esterel compilers. Every Esterel program compiles naturally into a circuit [3] such that the
resulting circuit is delay-insensitive [12] iff the program is constructive [13]. This means that the
response behaviour of constructive Esterel programs is time-bounded and deterministic under
arbitrary node and wire delays on a fully concurrent execution architecture (such as circuits).
This fully concurrent, asynchronous circuit scheduling, is more admissible than any of the SC-,
P- or L-scheduling schemes. Not surprisingly, the notion of constructiveness deriving from it,
which universally quantifies over all admissible schedules (“all concurrent asynchronous schedules
produce the same deterministic response”), is rather stringent. Fewer programs satisfy this
condition, which we propose to call B-constructive, for the purposes of this discussion.

To understand B-constructiveness in terms of our shared variable model, we can use its char-
acterisation through ternary analysis [14, 13]. Ternary, or “must/cannot” analysis on the source
Esterel program [3] is an abstract simulation that tries to justify the presence and absence status
of all signals without any form of speculation. Ternary simulation works like a simultaneous
breadth-first exploration of all threads to propagate signal absence and present statuses. A
conditional can only be executed if all signals in the guard have been fully resolved. This means
that, based on the accumulated signal statuses, it can be ruled out that any write ever changes
the value of the guard, later. In particular, signal absence is no longer a default value but must
be justified. A ternary schedule will get stuck, i. e., deadlock (“waiting for stabilisation”), in
case not all signal statuses are uniquely resolved to be absent or present for the tick. Note
that this lock-up in ternary simulation indicates non-constructiveness by the non-existence of
a terminating admissible schedule. It exploits the existential quantification in the definition
of constructiveness (“there exists a terminating ternary schedule”). Ternary simulation and
asynchronous circuit execution are equivalent notions of B-admissible scheduling to characterise
B-constructiveness from different ends of the stick.

Consider the example PLP , which is not B-constructive: The B-schedule cannot initially
resolve the status of either x or y as absent, because both can be emitted by the branches s11
and s21 and because their execution cannot be excluded as the guards of s1 and s2 have not yet
been resolved. We are locked up in a causal cycle. Note that a P-schedule can run s1 by itself,
based on the default absence of y, which blocks s2 and prevents the deadlock.

45

The L-constructive example PL is not B-constructive either: Initially, x cannot be decided
as absent, since s1 might still produce an emission for it. To exclude that, the guard variable y
of s1 would have to be resolved absent. But this is not guaranteed because statement s21 could
set y=1. This cannot be excluded either since we cannot resolve the status of the guard signal x
of s2. Again, the schedule is stuck in a justification cycle without finite grounding.

The same is true for PP . Starting the ternary simulation from x = ⊥, y = ⊥ in which none
of the conditional guards of s1 or s2 is resolved, we cannot conclude that either is executed or
that it isn’t. Hence, we do not know if x (y) must be emitted or cannot be emitted, viz through
execution or blocking of the “then” branch of s2 (s1).

Similarly, one shows that none of the other programs PP , PS , PPS or PLS discussed so
far, are B-constructive. If we translated these programs into gate-level circuits we would find
that they are not delay-insensitive, showing non-deterministic or oscillatory behavior under the
non-inertial delay model [13].

From the results in [31] it follows that every B-constructive Esterel program is also P-
constructive and L-constructive. One can show that B-constructive programs are also S-con-
structive, so that B-constructiveness properly lies inside the intersection of our classification
as seen in Fig. 16. In particular, S-constructiveness is strictly larger than B-constructiveness.
Concretely, all programs without the parallel fork-par-join operator are trivially S-constructive,
but many fail to be B-constructive. The simplest examples are the programs

PAS = s1 : if (!x) s11 : x = 1

PAPS = s1 : if (x) s11 : x = 1

PALS = s1 : if (!x) s11 : x = 1 else x = 1

PALPS = s1 : if (!x && y) s11 : {x = 1; y = 1}

which are all trivially ASC schedulable and therefore S-constructive by Thm. 1. After all, without
the parallel operator there cannot be any dependency cycle through →wir edges. However, one
shows that none of them is B-constructive. In each case the signals x and y tested in the
conditionals are potentially emitted by the if statement. So, in order to decide (by ternary
simulation) the status of x and y, we need to decide whether or not the if branch is executed.
But this means we need to know the status of the signals tested, in the first place. This is a logical
cycle. The above programs have SC-admissible schedules because of the default initialisation
of signals (absolute writes) and the fact that a variable may be freely overwritten within a
thread. This gains substantial extra ground for programming synchronous interactions in SCL
compared to the existing imperative synchronous code which is based on B-constructiveness. At
the same time, so we believe, S-constructive programs are more practical, than either P- and
L-constructive programs.

To complete this section let us mention that the class of ASC schedulable programs, although
more restricted, is independent of the PC, LC and BC classes of constructiveness, just like S-
constructiveness:

• For instance, none of PAS or PAPS is L-constructive. The former because is has no logically
coherent (speculative) execution, and the latter because it has two different ones. PALS is
L-constructive with the unique coherent response x = 1.

• Among the programs PAS , PAPS and PALS only only PAPS is P-constructive. Assuming
signal variables are initialised to 0, executing s1 of PAPS exits into the implicit ‘else’
branch of the conditional and terminates. This is the only P-admissible schedule of PAPS .

46

Executing s1 in PAS or PALS , however, activates the “then” branch in which s11 emits x.
This raises a failure since x has just been tested absent in the evaluation of the conditional.
Since there is no other conflict-free P-schedule, program PAS is not P-constructive.

• PALPS lies in all three classes LC, PC, and SC.

In the other direction, there are example programs

PLPS = fork s1 : if (!x && z) s11 : {y = 1; z = 1}
par s2 : if (y) s21 : x = 1 join

PBLPS = fork s1 : if (!x && z) s11 : y = 1

par s2 : if (y) s21 : x = 1 join

PABLPS = s1 : if (x) s11 : y = 1

to separate BC from ASC and the intersection of LC, PC and SC. To sum up, we find that
besides the inclusions BC ⊂ SC ∩ PC ∩ LC and ASC ⊂ SC all the classes are independent as
illustrated in Fig. 16.

10 Summary and Outlook

Relying on a scheduler that is blind to shared variable accesses, such as a Java thread scheduler,
makes concurrent programming a difficult endeavor with generally unpredictable outcome. The
SC MoC presented in this paper harnesses the synchronous MoC where it truly matters, namely
to ensure determinism when shared variables are accessed concurrently, and combines this with
the flexibility and familiarity of sequential programming.

The SC MoC domain and associated algorithm, introduced in this paper, for static anal-
ysis and scheduling sequentially constructive programs, provide for a novel regime to achieve
deterministic concurrency for C/Java-style imperative programming. The scheme borrows ideas
from synchronous programming such as the fork. . . par. . . join construct and global clock synchro-
nisation through the pause statement. By exploiting the inherent sequential program order we
can compile more programs than existing synchronous programming languages without losing
determinism. This not only adds expressive power compared to established synchronous pro-
gramming, but allows programmers versed in sequential languages to harness the SC MoC and
the deterministic concurrency it provides without giving up familiar, safe programming patterns
that are merely sequential. By synchronising hierarchically instantiated threads on global tick
barriers, potential non-determinism is restricted, which considerably simplifies static scheduling
analysis.

Current and future work entails gathering practical experience with full-scale applications,
as well as a further theoretical investigation as how the SC MoC compares to other concurrent
MoCs.

Acknowledgment

The material presented here has benefited greatly in substance and presentation from discussions
with Hugo Andrade, Stephen Edwards—who rightfully pointed to relationships with static single
assignment techniques—, Jeff Jensen, Stephen Mercer, Murali Parthasarathy, and Marc Pouzet.

47

References

[1] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5, pp. 33–42, 2006.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone,
“The Synchronous Languages Twelve Years Later,” in Proceedings of the IEEE, Special
Issue on Embedded Systems, vol. 91, Jan. 2003, pp. 64–83.

[3] G. Berry, The Constructive Semantics of Pure Esterel. Draft Book, 1999, ftp://ftp-sop.
inria.fr/esterel/pub/papers/constructiveness3.ps.

[4] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Computer
Programming, vol. 8, no. 3, pp. 231–274, Jun. 1987.

[5] C. André, “SyncCharts: A visual representation of reactive behaviors,” I3S, Sophia-
Antipolis, France, Tech. Rep. RR 95–52, rev. RR 96–56, Rev. April 1996.

[6] A. Pnueli and M. Shalev, “What is in a step: On the semantics of Statecharts,” in Proc. Int.
Conf. on Theoretical Aspects of Computer Software (TACS’91). London, UK: Springer,
1991, pp. 244–264.

[7] S. A. Edwards, “Tutorial: Compiling concurrent languages for sequential processors,” ACM
Transactions on Design Automation of Electronic Systems, vol. 8, no. 2, pp. 141–187, Apr.
2003.

[8] D. Potop-Butucaru, S. A. Edwards, and G. Berry, Compiling Esterel. Springer, May 2007.

[9] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its
use in optimization,” ACM Transactions on Programming Languages and Systems, vol. 9,
no. 3, pp. 319–349, 1987.

[10] G. Berry, “The foundations of Esterel,” Proof, Language and Interaction: Essays in Honour
of Robin Milner, 2000, editors: G. Plotkin, C. Stirling and M. Tofte.

[11] Esterel Technologies, The Esterel v7 Reference Manual Version v7 30—initial
IEEE standardization proposal, Nov. 2005, http://www.esterel-technologies.com/files/
Esterel-Language-v7-Ref-Man.pdf.

[12] J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits. New York: Springer-Verlag,
1995.

[13] M. Mendler, T. Shiple, and G. Berry, “Constructive boolean circuits and the exactness of
timed ternary simulation.” Formal Methods in System Design, vol. 40, no. 3, pp. 283–329,
2012.

[14] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 13, no. 7, pp. 950–956, Jul. 1994.

[15] K. Schneider, J. Brandt, T. Schüle, and T. Türk, “Improving constructiveness in code
generators,” in International Workshop on Synchronous Languages, Applications, and Pro-
gramming (SLAP’05), Edinburgh, Scotland, UK, 2005.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data-flow pro-
gramming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320,
September 1991.

48

ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
http://www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf
http://www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf

[17] P. L. Guernic, T. Goutier, M. L. Borgne, and C. L. Maire, “Programming real time appli-
cations with SIGNAL,” Proceedings of the IEEE, vol. 79, no. 9, Sep. 1991.

[18] M. Pouzet and P. Raymond, “Modular static scheduling of synchronous data-flow networks
- an efficient symbolic representation,” Design Autom. for Emb. Sys., vol. 14, no. 3, pp.
165–192, 2010.

[19] D. Biernacki, J.-L. Colaco, G. Hamon, and M. Pouzet, “Clock-directed Modular Code
Generation of Synchronous Data-flow Languages,” in ACM International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, AZ, USA, Jun.
2008.

[20] P. Caspi, J.-L. Colaço, L. Gérard, M. Pouzet, and P. Raymond, “Synchronous Objects with
Scheduling Policies: Introducing safe shared memory in Lustre,” in ACM International
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Dublin,
Jun. 2009.

[21] R. von Hanxleden, “SyncCharts in C—A Proposal for Light-Weight, Deterministic Con-
currency,” in Proceedings of the International Conference on Embedded Software (EM-
SOFT’09). Grenoble, France: ACM, Oct. 2009, pp. 225–234.

[22] S. Andalam, P. Roop, A. Girault, and C. Traulsen, “PRET-C: A new language for pro-
gramming precision timed architectures,” in Procedings of the Workshop on Reconciling
Performace with Predictability (RePP), Embedded Systems Week, Grenoble, France, Oct.
2009.

[23] O. Tardieu and S. A. Edwards, “Scheduling-independent threads and exceptions in SHIM,”
in Proceedings of the Proceedings of the International Conference on Embedded Software
(EMSOFT’06), Seoul, Korea, Oct. 2006.

[24] C. A. R. Hoare, Communicating Sequential Processes. Upper Saddle River, NJ: Prentice
Hall, 1985.

[25] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S. Mer-
cer, O. O’Brien, and P. Roop, “Sequentially Constructive Concurrency—A conservative
extension of the synchronous model of computation,” Christian-Albrechts-Universität zu
Kiel, Department of Computer Science, Technical Report, ISSN 2192-6247, to appear.

[26] J.-L. Colaço, B. Pagano, and M. Pouzet, “A conservative extension of synchronous data-
flow with State Machines,” in ACM International Conference on Embedded Software (EM-
SOFT’05), Jersey City, NJ, USA, Sep. 2005.

[27] J.-L. Colaço, G. Hamon, and M. Pouzet, “Mixing Signals and Modes in Synchronous Data-
flow Systems,” in ACM International Conference on Embedded Software (EMSOFT ’06),
Seoul, South Korea, Oct. 2006.

[28] F. Boussinot, “SugarCubes implementation of causality,” INRIA, Research Report RR-
3487, Sep. 1998.

[29] T. R. Shiple, G. Berry, and H. Touati, “Constructive Analysis of Cyclic Circuits,” in Proc.
Int. Design and Test Conference (ITDC’96), Paris, France, Mar. 1996.

[30] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal of Comput-
ing, vol. 1, no. 2, pp. 146–160, 1972.

49

[31] J. Aguado and M. Mendler, “Constructive semantics for instantaneous reactions,” Theoret-
ical Computer Science, vol. 241, pp. 931–961, 2011.

[32] C. André, “Computing SyncCharts reactions,” Electronic Notes in Theoretical Computer
Science, vol. 88, pp. 3–19, Oct. 2004.

50

	Introduction
	Related Work
	The SC Language and the SC Graph
	The SC Language
	The Control Example
	The SC Graph
	Mapping SCL to an SCG
	Thread Terminology
	Thread Reincarnation—The Reinc Example
	Thread Trees—The Reinc2 Example
	Statement Reincarnation—The InstLoop Example
	Macro Ticks, Micro Ticks, and the Thread Status
	Concurrency of Node Instances

	``Free'' Scheduling of SCGs
	Continuations and Continuation Pool
	Configurations, Micro Step and Macro Step Scheduling
	Sequentiality vs. concurrency

	Sequential Constructiveness
	Types of writes
	SC-Admissible Scheduling

	Analyzing Sequential Constructiveness
	Conservative approximations
	Determining SC schedules
	Computing priorities

	Variables vs. Signals
	Emulating pure signals
	Emulating valued signals
	The pre operator

	SCCharts — Sequentially Constructive Statecharts
	Alternative Notions of Constructiveness
	Summary and Outlook

