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Abstract

The synchronous model of concurrent computation (SMoCC) is well established for
programming languages in the domain of safety-critical reactive and embedded systems.
Translated into mainstream C/Java programming, the SMoCC corresponds to a cyclic
execution model in which concurrent threads are synchronised on a logical clock that cuts
system computation into a sequence of macro-steps. A causality analysis verifies the
existence of a schedule on memory accesses to ensure each macro-step is deadlock-free and
determinate.

We introduce an abstract semantic domain I(D,P) and an associated denotational fixed
point semantics for reasoning about concurrent and sequential variable accesses within a
synchronous cycle-based model of computation. We use this domain for a new and extended
behavioural definition of Berry’s causality analysis in terms of approximation intervals. The
domain I(D,P) extends the domain I(D) from our previous work and fixes a mistake in the
treatment of initialisations.

Based on this fixed point semantics the notion of Input Berry-constructiveness (IBC)
for synchronous programs is proposed. This new IBC class lies properly between strong
(SBC) and normal Berry-constructiveness (BC) defined in previous work. SBC and BC
are two ways to interpret the standard constructive semantics of synchronous programming,
as exemplified by imperative SMoCC languages such as Esterel or Quartz. SBC is often
too restrictive as it requires all variables to be initialised by the program. BC can be
too permissive because it initialises all variables to a fixed value, by default. Where the
initialisation happens through the memory, e.g., when carrying values from one synchronous
tick to the next, then IBC is more appropriate.

IBC links two levels of execution, the macro-step level and the micro-step level. We
prove that the denotational fixed point analysis for IBC, and hence Berry’s causality analysis,
is sound with respect to operational micro-level scheduling. The denotational model can
thus be viewed as a compositional presentation of a synchronous scheduling strategy that
ensures reactiveness and determinacy for imperative concurrent programming.

Keywords: Denotational semantics, concurrency, determinism, constructiveness, Mealy
reactive systems, synchronous programming, Esterel
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1 Introduction

1.1 Motivation
Arguably the mathematically most satisfactory way to define a compositional programming
language semantics is the denotational approach, which defines the semantics of a program
through a system of structurally-recursive equations involving continuous functions on abstract
semantic domains. Compositionality is built into a denotational model at the outset, in the
sense that the functional definition of the fixed-point semantics of a composite program entirely
depends on the abstract functional denotation of its components rather than their syntax. As a
consequence, algebraic axiomatisations for program verification and program transformations
can be derived from the properties of these functions in the abstract domains.

Unfortunately, denotational fixed point models for computationally rich programming lan-
guages are notoriously hard to come by. A famous case in point is the long search for a
fully-abstract denotational model of the functional language PCF [10, 1, 43]. It is the tight
interaction of program components, in particular for non-deterministic concurrent systems, that
makes it hard to decouple a composite program into a system of continuous functions in a
simple way. It is often easier to understand the interaction behaviour of a concurrent program
operationally in terms of inductive relations rather than recursive functions. Hence, many con-
current programming models or process algebras, for that matter, are based on Plotkin-style
structural operational semantics. Such models are then turned into an algebra through notions of
behavioural congruences and pre-congruences. Thereby abstracting from behaviourally unob-
servable information carried by the operational rule system one achieves the desired algebraic
compositionality, see, e.g., [64, 9]. However, denotational semantics generated in this fashion
are essentially syntactic. Recursion is not explained by denotational fixed points but by syntactic
unfolding.

One can do better if the inductive operational rules satisfy certain structural constraints,
such as the GSOS or tyft/tyxt format [32]. In these cases, general techniques are known to
derive independent denotational semantics based on the approximation of a process by finite
synchronization trees, see e.g. [2, 44, 29] for full-abstraction results for bisimulation-style
semantics. Still, these approximation-based denotational models have their own problems. They
are algebraically rather involved and depend on infinitary proof rules which fall outside the
scope of normal (Horn-style) equational reasoning. One classical instance of this problem is
the observation that, e.g., bisimulation equivalence for process algebras with the empty process
0, non-deterministic choice p+ q, action prefix a. p and recursion µx. p(x) does not admit
a finitary denotational semantics based on complete partial orderings. Specifically, the Park
induction principle, p(y) = y⇒ µx. p(x) ≤ y, expressing that µx. p(x) is the least fixed point
is inconsistent with monotonicity of the choice operator +. It is unclear if bisimulation-style
semantics can be finitely axiomatised in equational Horn logic, see e.g. [62]. Denotational fixed
point semantics with Park induction seem to exist only in special cases, such as acceptance
testing, trace equivalence or simulation preorder [39, 48, 28].

While it is now clear that complex algebraic machinery is needed to reconcile genuinely
independent denotational and operational semantics for general non-deterministic process calculi,
attention should turn once again to more special concurrent programming models. An early
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and successful starting point is the data-flow semantics of Kahn networks [45], which is fully-
abstract for coroutine-style operational execution [46]. Kahn process nodes are sequential and
deterministic and thus fairly restricted in modelling distributed systems. Yet, as discovered by
Kok [47], non-determinism can be added to the Kahn model without losing full-abstraction using
(local) clocks for the synchronisation of streams. This remarkable result brings into view an
important special class of concurrent programming languages where denotational and operational
approaches may go well together, known as the synchronous programming paradigm [34, 8].

The Synchronous Model of Concurrent Computation (SMoCC) started in the 1980s with
languages such as Statecharts [38, 68], Lustre [18, 35], Signal [33], Esterel [13, 11] and Ar-
gos [61, 60]. Developing concurrently with the emerging theory of process algebras, the SMoCC,
from its beginning, has taken a practical programming perspective and targeted embedded
and safety-critical systems in the automotive and avionics industries. The SMoCC languages
have been very successful in these highly-demanding and complex domains. Part of this is
due to their solid mathematical underpinning which inherits its robust logic from the design
of digital synchronous circuits. Over the years, the quality-software assurance of the SMoCC
paradigm has received attention in a wider range of applications. These include Stateflow [36],
web-orchestration [14], and music accompaniment [6] to mention a few. The SMoCC approach
also has spread into functional programming [58] and mainstream imperative languages like
C [15, 50, 82] or Java [65].

The SMoCC paradigm is based on a globally synchronous, locally asynchronous model of
concurrent computation1, which employs logical clocks to force asynchronous processes into a
globally deterministic sequence of execution steps, called macro steps or logical instants. The
SMoCC computations relate to classical automata in the sense that macro-steps correspond
to automata transitions and configurations are discrete time points (automata states) on which
system and environment can communicate (synchronise) with each other. At this level of
modelling—under the Synchrony Hypothesis [8]—macro-steps appear as deterministic and
functional input/output interactions. If this were all, synchronous programs could be analysed by
the standard compositional techniques of the theory of synchronous automata, which fits both
the denotational and the operational viewpoint equally well. Not much concurrency theory is
needed for that.

However, there is a catch: The soundness of the automata model depends on the compiler
verifying that the Synchrony Hypothesis is valid. Yet, the Synchrony Hypothesis is not compo-
sitional. The difficulty is that the SMoCC programs exhibit Mealy as opposed to Moore-style
interaction. Since Mealy outputs depend instantaneously on the inputs and (in a typical SMoCC
language) are also broadcast, the atomicity assumption creates a tangled causality cycle when
the SMoCC automata are composed. Since each program acts as the environment of the other,
the Synchrony Hypothesis expects each system to react faster than the other, and hence faster
than itself! This is aggravated by the fact that in some SMoCC languages, such as Esterel
or some version of Statecharts, the reaction of one component can depend on the absence of
a reaction from another component. To resolve the paradoxes, i.e., to prevent deadlock and
non-determinism, the synchronous interaction must satisfy stringent causality requirements.
Consequently, causality analyses have been a key component in the SMoCC compilers. Typ-

1This is sometimes referred to as the ‘LAGS’ model and not to be confused with the well-known but orthogonal
‘GALS’ model which features globally asynchronous and locally synchronous computations.
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ically, these analyses correspond to the derivation of clock schedules (“clock calculus”) for
the activation of program statements [19, 7, 21, 77] or 3-valued circuit simulation (“ternary
analysis”) [12, 26, 72]. Edwards [25] and Potop-Butucaru et al. [69] provide good overviews
of compilation challenges and approaches for concurrent languages, including synchronous
languages. In this report we focus on causality in control-flow oriented SMoCCs such as Esterel
or Quartz rather than data-flow oriented SMoCCs such as Lustre or Signal.

The techniques for causality analysis range from checking simple static criteria on control-
dependencies to full-fledged data-dependent control-flow analysis. Proving the soundness of
causality analyses necessarily requires maintaining some form of refinement (“constructiveness”
or “dependency”) information about a lower-level asynchronous micro-step semantics. The
first to observe this were Huizing, Gerth and de Roever [42] who showed that combining
compositionality, causality and the Synchrony Hypothesis cannot be done within a single-
levelled semantics (see also [23]). In other words, causality analysis establishes consistency
of a synchronous macro-step with respect to an asynchronous micro-step execution model.
This makes causality analyses and their soundness properties interesting from a concurrency
theoretical point of view.

Different distributed execution platforms and memory models induce different degrees
of uncontrollable non-determinism. They give thus rise to different notions of causality. A
conservative, and thus robust, notion of causality among all the SMoCCs is the so-called
constructive semantics of Esterel [13, 11] introduced by Berry in [12]. This is a pure macro-
step semantics combining a structural operational semantics for macro-state transitions with a
denotational fixed-point construction, also known as the “must-cannot” analysis, for computing
causal reactions from every state. However, there do not seem to be soundness proofs for the
causality analyses of Esterel relative to a micro-level scheduling in normal, i.e., unsynchronised
memory.2 The only available result on the lower-level operational soundness of the fixed-
point construction is indirect, has never formally been proven and applies to the hardware
translation given in [12]. At the hardware level it is known that constructiveness implies delay-
insensitivity under non-inertial delays [57, 75, 63]. While this highlights the universal nature of
the constructive semantics, it does not provide insights into the nature of constructiveness for
software implementations of SMoCC languages. This question is now starting to be addressed in
the literature. An interesting example is the more recent SMoCC language Quartz [73]. It has
been given both macro-step operational semantics and a fixed-point semantics implementing an
Esterel-style causality analysis [73, 31]. Talpin et. al. in [76] consider a combination of Signal
and Quartz and prove that the constructive fixed-point semantics is sound for an operational
micro-step semantics. In this report we proceed along similar ideas as [76] for Esterel-style
imperative languages.

1.2 Contributions
In this report we prove the soundness of the denotational fixed point semantics for imperative
SMoCC programs, commonly termed “constructive”, with respect to their micro-step operational

2There is an informal sketch of a micro-step semantics in [12][Sec. 4.3] which is not developed further or
formally related with the fixed point semantics for macro-steps.
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behaviour when compiled into multi-threaded shared memory code. To the best of our knowledge
this is the first result of its kind for Esterel-style imperative programming.

The recent constructive semantics that integrates Quartz and Signal [76] is based on a
similar approach than the one proposed here in the sense that both are developed around similar
mathematical structures, i.e., fixed point on a lattice for representing signal statuses and Boolean
values. The semantics framework of [76] unifies the behaviour of polychronous multi-clocked
Signal networks and synchronous Quartz modules where synchronous Boolean variables are
always present. In contrast, our approach significantly extends the standard 3-valued “must-
cannot” semantics [12, 26, 72] with the effect that (i) it is able to handle explicit initialisation
of signals, and (ii) it operates in a more structured domain of information intervals rather than
flat ternary Kleene algebra. In the enriched domain we prove soundness of the fixed-point with
respect to the micro-step operational execution. By “micro-step operational semantics” we mean
a small-step semantics in which the reaction of a parallel composition for a single clock tick
(rather than sequences of clocks) is (1) implemented by thread interleaving and (2) the execution
does not use the must/cannot enriched statuses. E.g., the SOS reaction rules for Quartz [73, 31]
do not satisfy criterion (1). They give big-step semantics for full reaction instants. On the other
hand, the operational semantics sketched by Berry [12][Chap. 4.3] or by Talpin et.al. [76] do not
satisfy criterion (2).

Our main Theorem 1 strengthens the results presented in [4], where a similar fixed point
semantics was introduced to prove that the sequentially constructive model of synchronous
concurrent computation [84, 86] conservatively extends Berry’s notion of constructiveness for
Esterel. Specifically, we extend the work of [4] in three ways: Firstly, we correct a mistake
preventing the denotational semantics of [4] from detecting deadlocks that can arise from
concurrent initialisations (see our Ex. 19). Secondly, the results presented here imply that the
fixed point analysis is not only sound for sequential constructiveness targeted in [4] but also
for Esterel’s more restrictive operational model of causality, characterised by B-reactiveness
(Def. 4) and SC-read-determinacy (Def. 5). The combination of these two properties is a proper
strengthening of the notion of ∆∗-constructiveness in the sense of [4], which corresponds to the
notion of sequential constructiveness introduced in [84]. Thirdly, we introduce a new definition
of constructiveness, called IB-constructiveness (Def. 9), to permit implicit initialisations through
memory. It is more generous than the notions of constructiveness considered in [4] where all
variables must be reinitialised, by the program or the environment, at every macro step. In other
words, compared to [4] our semantics guarantees a stronger form of operational robustness for a
wider class of programs.

1.3 Overview
Section 2 gives an abstract account of the SMoCC principle for imperative programs based on
the consolidated language model pSCL and the operational notion of free scheduling. It also
offers the definitions of important terms that will be used in the following sections, particularly
of B-Admissibility and SC-Admissibility, which are both scheduling protocols restricting the
free scheduling with different degrees of strength. The related terms of B-Reactiveness and
SC-Reactiveness are also defined as well as the notion of X-Determinacy, parametric in X-
Admissibility and its special case X-read-determinacy.
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Section 3 is dedicated to the definition of the abstract domains and environments on which our
denotational fixed point semantics is based. This includes the definition of the domain D, whose
four elements represent possible signal statuses and comprise representations needed for the
handling of explicit initialization of signals. The semantics operates on closed intervals over
D which represent predictions of variable statuses combined with a domain P that is capturing
initialization statuses, yielding I(D,P) as working domain. Finally, the section introduces a
domain I(C) of program completion statuses.

Section 4 is the core of this work, where we put the introduced technical apparatus to form our
denotational fixed point semantics for pSCL. The semantics induces three notions of construc-
tiveness increasing in strength, Berry-constructive (BC), Input Berry-constructive (IBC) and
Strong Berry constructive (SBC). This section finally contains our main Soundness Theorem 1
that states that IBC programs are B-reactive and SC-read-determinate.

Section 5 positions our work in reference to related work and Section 6 offers concluding remarks
and mentions open problems.

2 Operational Semantics of Synchronous Programs

2.1 Language Model
For our elaborations, we employ a language that focuses on the micro-step computations of
a system. This language, referred to as pSCL3, contains the necessary control structures for
capturing multiple variable accesses as they occur inside macro-steps. pSCL abstracts syntactic
and control particularities of existing synchronous languages not directly related to our analysis.
This not only provides generality to the results but also avoids over-complicating our formal
treatment. pSCL is pure in the sense that it manipulates Boolean variables from a finite set
V , which carry information over time by changing value in B= {0,1}. A variable s ∈ V with
value γ ∈ B is denoted by sγ . Here, 0,1 are used to code, respectively, the logical statuses False
(absent, initialised) and True (present, updated) of a synchronous signal. The syntax of pSCL is
given by the following BNF of operators:

P := ε nothing
| π pause
| ¡s s = false (implicit unemit s in Esterel)
| !s s = true (emit s in Esterel)
| s ? P : P ifs thenPelseP (present s then P else P in Esterel)
| P ||P forkPparP join
| P ; P
| rec p. P p : P declare program label (implicit Esterel loop)
| p goto p jump to label (generalises Esterel iteration)

Since our syntax is abstract in the style of process algebras we also indicate the more concrete
syntax as used in control-flow languages SCL [84] and Esterel on the right of each operator.

3This stands here for “pure Synchronous Constructive Language” indicating not only that signal variables in
pSCL carry Boolean status but also that pSCL is a minimalistic version of control-flow synchronous languages in an
abstract algebraic syntax.
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Intuitively, the empty statement ε indicates that a given program has been completed. That is,
ε corresponds to the termination situation in which there are no further tasks to be performed in
this or any subsequent macro-step. The pause control π forces a program to yield and wait for
a global tick. This means that the execution cannot not proceed any further during the current
macro-step but it will be resumed in the next. The reset (init) ¡s and set (update) !s constructs
modify the value of s ∈ V to s0 or s1, respectively. The conditional control s ? P : Q has the usual
interpretation in the sense that depending on the status 1 or 0 of the guard variable s either P
or Q are executed accordingly. Parallel composition P ||Q forks P and Q, so the statements of
both are executed concurrently. This composition terminates (joins) when both components
terminate, i.e., both are completed in the sense of ε , not waiting in a pause π . When just one of
the two components in P ||Q terminates while the other pauses, then P ||Q pauses. Otherwise,
if one component terminates and the other does not pause or terminate then the computation
continues from the statements of the other component until it terminates, too, or pauses. In the
sequential composition P ; Q, the statements of P are first completely executed. Then, the control
is transferred to Q which, in turn, determines the behaviour of the composition thereafter. The
operator rec p.P introduces a recursion label or process name p that can be used in its body P to
reiterate the process using p as a jump label. The semantics is so that rec p.P is equivalent to
its unfolding P{rec p.P/p}, where P{Q/p} denotes syntactic substitution. As done in process
algebras we can use rec to fold up recursive equation systems modelling arbitrary forward and
backward jumps in control-flow graphs.

By default, a conditional binds tighter than sequential composition, which in turn binds
tighter than parallel composition; the loop prefix rec p has weakest binding power. As usual,
brackets can be used for grouping statements to override the default associations. For instance,
in the expression rec p.x ? ε : p; !y the scope of the loop extends to the end of the expression
as in rec p.((x ? ε : p); !y) whereas (rec p.x ? ε : p); !y limits the scope and leave !y outside the
loop. Similarly, brackets are needed, as in rec p.x ? ε : (p; !y), to include !y into the else branch
of the conditional.

Recursion without restrictions is too powerful for our purposes. We impose the following
three well-formedness conditions on pSCL expressions, which suffices to model the static
structure of many standard synchronous programming languages:

• No jumps out of an enclosing parallel composition. This does not limit the power of
the language, as for example aborts, traps and general gotos as proposed for/provided by
Esterel or SHIM [78, 79] can still be implemented by “chaining” jumps up the thread
hierarchy, but has the advantage of a simple parallel/sequential control flow structure.
Formally, in every loop rec p.P the label p must not lie within the scope of a parallel
operator ‖. For instance, recq. P ||q is not permitted while P ||(recq.q) is accepted. This
makes sure that the static control structure of a program is a series-parallel graph (see [24])
and the number of concurrently running threads is statically bounded by this graph. In
particular any given static thread cannot be concurrently instantiated more than once; A
fresh thread instance only runs sequentially after all previous instances of the same static
thread.

• Every loop rec p.P is clock guarded, i.e., every free occurrence of label p in P lies within
the sequential scope of a pause π . For instance, rec p.π ; p is clock guarded whereas
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rec p. p is not. Clock guarded processes are guaranteed to generate finite, terminating
macro-steps. This corresponds to the standard requirement in Esterel to not have instanta-
neous loops.

• No loop label occurs both free and bound in an expression, where the notion of a free and
bound label is as usual. This a standard restriction in process calculi, see e.g., [9]. For
instance, rec p. recq. p ; q ; q is not allowed, whereas rec p. (recr. p ; r) ; q is accepted.
This restriction avoids capturing of any free variable of rec p.P by a loop recursion in P in
the syntactic unfolding P{rec p.P/p}.

Henceforth, programs are assumed to be expressions satisfying these conditions. Programs
without the rec construct will be called finite programs, or fprogs for short.

The imperative statements of a pSCL program describe discrete changes of state at the level of
micro-steps. The computation of a concurrent program gets described by a collection of threads
(concurrent program fragments), each one performing micro-steps independently and interacting
with each other through shared memory. Generally, a computation depends on a distinction of
micro-steps happening sequentially after each other or concurrently. The sequential order is
instantiated from sequential composition P;Q. Parallel composition P ‖ Q is the construct that
provides the thread topology for achieving concurrency. The resulting tree-like structure of the
parallel construct determines statically which statements belong to which individual thread. At
run-time, these static threads get instantiated and executed. Every one of such instantiations must
have its own local control-state and, therefore, is considered a process. From this perspective,
the configuration capturing the global state of a concurrent program at any given moment is
determined by the local state of all its processes together with a shared global memory.

As in synchronous programming, a micro-step can take place when at least one process is
active, i.e., when it is able to execute a statement other than π . In this manner, a micro-step
produces a change in the configuration resulting from a process modifying its own local state
and possibly the global memory. Active processes induce micro-steps until every process either
terminates or reaches a pause, thereby completing a macro-step. Then, from the resulting
configuration, the environment can provide a fresh stimulus for continuing the computation with
a new macro-step.

The interaction between processes at the micro-step level must be controlled according to
some pre-established rules of admissible scheduling in order to enforce the Synchrony Hypothesis
abstraction. For instance, suppose in P ‖ Q, program P performs a write to a variable x and
Q concurrently reads x. Then, under the Synchrony Hypothesis the producer P (system) is
faster than the consumer (environment) Q, or, equivalently, Q waits for P. A canonical notion
of admissibility that enforces such causalities is the “init;update;read” protocol [84], which
is referred to as the “iur” protocol in the following. It decrees that all initialisations ¡s must
take place before any update !s which in turn must both be scheduled before any read, i.e., any
conditional test s ? P : Q on s.

In the next section we define the notion of a free unconstrained execution for pSCL programs
and then in Sec. 2.3 introduce the restriction imposed by the iur protocol. This defines the
operational semantics of the class of causal pSCL programs for which we shall later, in Secs. 3
and 4, provide a suitable notion of constructive macro-step responses in terms of a denotational
fixed-point analysis.
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2.2 Micro-step Free Scheduling
In our operational model, a process T is defined by its own current control-state, or state for
short, which contains: (i) information about the precise position of T in the tree structure of
forked processes and (ii) control-flow references to specific parts of the code. Formally, T
is given by a triplet 〈id, prog,next〉 where we write T.id, T.prog or T.next for referring to
the individual elements of T which are called, respectively, identifier, current-program and
next-control. Concretely,

• T.id is a non-empty sequence containing an alternation of natural numbers and the sym-
bols l,r that always starts and ends with a number. For instance, 0.l.5 and 1.r.3.l.7 are
identifiers but 0.r and r.1.r.2 are not. Meta-variables to range over identifiers are ι , κ ,
possibly with indices.

• T.prog is the pSCL expression that is currently scheduled to generate T ’s micro-steps.
Since these are pSCL expressions we use the meta-variables P, Q, etc., to range over these.

• T.next is a list of future program fragments that can be converted into micro-steps sequen-
tially after T.prog has terminated. This list is extended when a sequential composition is
executed in T.prog. We use the meta-variable Ks to range over next-controls.

The identifier T.id localises process T uniquely in the sequential-parallel control flow of the
program context which has generated T . The intuition is that the numbers in the identifier are
counting the sequential steps taken by the program context. The symbols (l for left and r for
right) recall the path of previous parallel forks from which the process has emerged. Where we
are only interested in the depth of a process in the thread hierarchy, we use a thread projection
function th(ι) ∈ {l,r}∗ which drops from ι all sequencing numbers. The sequence th(T.id) can
be interpreted as the static thread identifier of process T .

Example 1. The serial-parallel graph in Fig. 1 gives an example of the thread identifiers
generated by the fprog Pε = a0 ; (Pl ‖ Pr) ; a2 with

Pl = a1.l.0 ; a1.l.1, Pr = a1.r.0 ; a1.r.1 ; (Pr.l ‖ Pr.r) ; a1.r.3,
Pr.l = a1.r.2.l.0 ; a1.r.2.l.1 ; a1.r.2.l.2, Pr.r = a1.r.2.r.0,

where all aι are primitive statements {ε, !s, ¡s}. The subscripts ι indicate the thread identifier
associated with the statement aι when it is executed. In Fig. 1 these primitive statements are
shown as rectangular boxes with their identifier written inside it. Notice how the letters l and r
(displayed in red colour) identify the static thread in which the statement is executed. For instance
the statement a0.r.2.l.1 is executed in the static thread r.l, which is the left child of the right child
of the main thread. This is the projection th(0.r.2.l.1) = r.l. The first top level statement a0 is in
the root thread ε , i.e., th(0) = ε , where ε denotes the empty sequence. The hierarchical thread
structure is visualised by the dotted gray background boxes.

Definition 1. To compare the sequential depth of processes, we use the (partial) lexicographic
order ≺ on path identifiers. The natural numbers are ordered in the usual way, i.e., 0 < 1 < 2 . . .
while the symbols l,r are considered incomparable. Thus, for identifiers ι = d1 . . .dn and
ι ′ = d′1 . . .d

′
m we have that ι ≺ ι ′ iff ι is a proper prefix of ι ′ or ι is lexically below ι ′. Formally,

ι ≺ ι ′ iff
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Figure 1: A sequential-parallel program structure of thread identifiers.

• n < m and ∀1≤ j ≤ n. d j = d′j, or

• there is 0≤ i < n such that di+1 < d′i+1 and ∀1≤ j ≤ i we have d j = d′j.

We write � for the reflexive closure of ≺, i.e., ι � ι ′ iff ι ≺ ι ′ or ι = ι ′.

The order� contains both the thread hierarchy and sequencing. If ι � ι ′ then ι ′ is a sequential
successor of ι in program order. If ι 6� ι ′ and also ι ′ 6� ι then both ι and ι ′ are concurrent. Note
that there is no relationship between ι ≺ ι ′ and the prefix order on th(ι) and th(ι ′). The sequential
successor ι ′, in general, can be both a descendant or an ancestor of ι in the thread hierarchy.

Example 2. For instance, in our example of Fig. 1, we have 1.r.2≺ 1.r.2.l.1≺ 1.r.3 following
the sequential program order but 1.l.0 6≺ 1.r.2.l.1 and 1.r.2.l.1 6≺ 1.l.0, because the labels l and r
are incomparable. The micro-steps with thread identifiers 1.l.0 and 1.r.2.l.1 are not sequentially
ordered. They are executed in the concurrent threads th(1.r.2.l.1)= r.l and th(1.l.0)= l. Observe
that 1.r.2.l.1� 1.r.3 but th(1.r.2.l.1) = r.l is not a prefix of r = th(1.r.3). In the other direction,
the fork node 1.r.2 is a sequential predecessor of 1.r.2.l.1 and r = th(1.r.2) is an ancestor of
r.l = th(1.r.2.l.1).

Formally, the global memory is a Boolean valuation function ρ : V → B which indicates
the current value for each variable s ∈ V . Any micro-step of a process T (relative to a given
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memory ρ) produces a new memory ρ ′ and a set of successor processes T ′. Thus, any micro-step
is completely specified by the memory function ρ ′ := mem(T,ρ) and the succession function
T ′ := nxt(T,ρ). For any s ∈ V , the memory function is defined by:

mem(T,ρ)(s) :=


0 if T.prog = ¡s
1 if T.prog = !s
ρ(s) otherwise.

This says that for a given variable s ∈ V , if T performs a reset ¡s then s is changed to 0, if T
performs a set !s then s is changed to 1, otherwise, s keeps its value from the previous memory.
We define the succession nxt(T,ρ) by case analysis on T.prog, where the sequential enumeration
for identifier ι is computed by an increment function inc(ι) which increases by 1 the last number
of the identifier ι , e.g., inc(1.r.6) = 1.r.7:

nxt(〈ι ,P, [ ]〉,ρ) := /0 if P≡ ε,P≡ ¡s or P≡ !s (1)
nxt(〈ι ,P,Q::Ks〉,ρ) := {〈inc(ι),Q,Ks〉} if P≡ ε,P≡ ¡s or P≡ !s (2)

nxt(〈ι ,P ; Q,Ks〉,ρ) := {〈ι ,P,Q::Ks〉} (3)
nxt(〈ι ,rec p.P,Ks〉,ρ) := {〈ι ,P{rec p.P/p},Ks〉} (4)

nxt(〈ι ,s ? P : Q,Ks〉,ρ) :=

{
{〈inc(ι),P,Ks〉} if ρ(s) = 1
{〈inc(ι),Q,Ks〉} otherwise

(5)

nxt(〈ι ,P ||Q,Ks〉,ρ) := {〈ι ,ε,Ks〉,〈ι .l.0,P, [ ]〉,〈ι .r.0,Q, [ ]〉}. (6)

Let us explain the different cases one by one:

(1) If the program T.prog is one of the basic statements (i.e., empty ε , set !s or reset ¡s) and
the list of continuation processes in the next-control T.next is empty [ ], then the process
(after execution) is terminated and disappears from the configuration. This is achieved by
setting the succession to be the empty set.

(2) If T.prog is one of the basic statements and the list of continuation processes in T.next
is a non-empty list Q::Ks, then we start Q in a new process with next-control Ks and a
sequentially incremented index inc(ι).

(3) If T.prog is a sequential composition P ; Q then we start P in a new process with the same
identifier and add Q to the front of the next-control list. The identifier does not increment
since we do not consider the new process 〈ι ,P,Q::Ks〉 a sequential successor but only a
structural replacement.

(4) A loop T.prog = rec p.P behaves like its unfolding P{rec p.P/p}, without modification
to the identifier and next-controls.

(5) Next consider a process with conditional program T.prog = s ? P : Q in memory ρ .
Depending on whether the memory value for the variable s is 1 or 0 we install the P or
the Q branch, respectively, with an incremented identifier and the same next-control. The
identifier is incremented because the branches are considered as being executed strictly
after the conditional test, in sequential program order.
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(6) Finally, executing a parallel program T.prog = P ‖Q instantiates the two sub-threads P and
Q in their own process 〈ι .l.0,P, [ ]〉 and 〈ι .r.0,Q, [ ]〉, respectively, with a fresh and empty
next-control but extended identifiers. The process P is the initial sequential statement of
the left child of the parent process 〈ι ,P ||Q,Ks〉. Therefore, we add the suffix l.0 to the
parent’s identifier, and analogously r.0 for the right child Q. At the same time that the
parent process forks its two children, it transforms itself into a join process 〈ι ,ε,Ks〉. Since
ι ≺ ι .l.0 and ι ≺ ι .r.0 both children have strictly larger identifiers. Since only processes
with maximal identifiers are executable (details below), the join process must wait for the
children to terminate before it can release the next-controls Ks, or terminate itself in case
Ks = [].

Note that there is no clause for the succession of a pausing process or a process label,
i.e., nxt(〈ι ,π,Ks〉,ρ) and nxt(〈ι , p,Ks〉,ρ) are undefined. This is no problem since (i) program
π is never executed in a micro-step but only by the next global clock tick (see below), and (ii)
we are only interested in the behaviour of closed pSCL expressions which do not have any free
process labels.

Example 3. Consider the process T0 = 〈0, ¡x ; y ? π : !x, [ ]〉. This process resets variable x and
then either pauses or sets variable x depending on the value of variable y. Let us derive its
behaviour in the formal semantics.

Starting from some initial memory ρ0, executing T0 yields a new memory ρ1 = mem(T0,ρ0)
and a set of successors S1 = nxt(T0,ρ0). This first micro-step breaks up the sequential compo-
sition operator ; according to rule (3). This results in S1 = {T1} where T1 = 〈0, ¡x, [y ? π : !x]〉.
The micro-step does not modify the memory, i.e., ρ1 = ρ0. Proceeding with T1 from ρ1, we
come to execute the reset ¡x following rule (2), obtaining ρ2 = mem(T1,ρ1) and successors
S2 = nxt(T1,ρ1). Memory ρ2 now assigns 0 to variable x, while y retains its initial value from ρ0.
The succession is S2 = {T2} with T2 = 〈1,y ? π : !x, [ ]〉. Notice the increment of the identifier
T2.id = 1 = inc(0) = inc(T1.id) which reflects the fact that execution has passed a sequential
composition operator. The conditional T2 now reads the value of y in memory ρ2 and passes
control to the ‘then’ or ‘else’ branch:

• If ρ2(y) = ρ0(y) = 1 then the conditional executes the ‘then’ branch. We get ρ3 =
mem(T2,ρ2) = ρ2 and S3 = nxt(T2,ρ2) = {T3} with T3 = 〈2,π, [ ]〉 by rule (5). There
are no micro-step rules for π which is forced to pause during the current macro-step. T3
makes progress only at the next global clock tick where it transforms into T ′3 = 〈0,ε, [ ]〉 as
described later.

• If ρ2(y) = ρ0(y) = 0 then ρ3 = mem(T2,ρ2) = ρ2 and S3 = nxt(T2,ρ2) = {T3} with T3 =
〈2, !x, [ ]〉 by rule (5). From here, the execution of !x sets variable x and yields the new
memory ρ4 = mem(T3,ρ3) with ρ4(x) = 1 and ρ4(y) = ρ2(y). Since S4 = nxt(T3,ρ3) = /0
by rule (1), there are no more processes from which we can continue. The execution of T0
has terminated instantaneously in the current macro-step.

Let us combine the memory and succession functions for a single process to define the
micro-steps of an arbitrary set of processes running concurrently. This requires the notion of a
configuration, defined next:
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Definition 2. A configuration is given by a pair (Σ,ρ), where ρ is the global memory and Σ,
called the process pool, is a finite set of (closed) processes such that

• all identifiers are distinct, i.e., for all T1,T2 ∈ Σ, if T1.id = T2.id then T1 = T2;

• the sequential ordering of identifiers coincides with the thread hierarchy, i.e., for all
T1,T2 ∈ Σ, we have T1.id � T2.id iff th(T1.id) is a (not necessarily proper) prefix of
th(T2.id);

• the identifiers form a full thread tree, i.e., for each T ∈ Σ and every proper prefix (ancestor)
t ∈ {r, l}∗ of th(T.id), there is a process T ′ ∈ Σ of T with th(T ′.id) = t.

A configuration (Σ,ρ) is empty if Σ = /0. We call a process T ∈ Σ

• pausing when T.prog = π;

• active if it is not pausing and T.id is �-maximal (identifier order) in Σ;

• waiting if it is neither pausing nor active.

A configuration with memory ρ in which all the processes in Σ are waiting or pausing, is called
quiescent.

Micro-sequences. From a given configuration (Σ,ρ) and a selection T ∈ Σ of an active process,
we can let T execute a micro-step to produce a micro-step

(Σ,ρ)
T→ (Σ′,ρ ′), (7)

where in the free scheduling there is no constraint on the selection of T other than it being active.
The resulting memory ρ ′ = mem(T,ρ) is computed directly from the mem function. The new
process pool Σ′ is obtained by removing T from Σ and replacing it by the set of successors
generated by nxt, i.e., Σ′ = Σ \ {T} ∪ nxt(T,ρ). Note that in the free schedule both the next
process pool Σ′ and the new memory ρ ′ only depend on the active process T that is executed
and the current memory ρ . They do not depend on the other processes in Σ. Since the successor
configuration is uniquely determined by (Σ,ρ) and T , we may write (Σ′,ρ ′) = T (Σ,ρ). In a
micro-sequence the scheduler runs through a succession

(Σ0,ρ0)
T1→ (Σ1,ρ1)

T2→ ··· Tk→ (Σk,ρk) (8)

of micro-steps obtained from the interleaving of process executions. We let� be the reflexive
and transitive closure of→. That is, we write

R : (Σ0,ρ0)� (Σk,ρk)

to express that there exists a micro-sequence R, not necessarily maximal, from configuration
(Σ0,ρ0) to (Σk,ρk). The sequence R is a function mapping each index 1≤ j ≤ k to the process
R( j) = Tj executed at micro-step j and len(R) = k is the length of the micro-sequence executed
so far. We call any pair (i,R(i)) consisting of a micro-step index 1≤ i≤ len(R) together with
the process R(i) executed at position i, a process instance of R. Further, it will be necessary
to restrict a micro-sequence R : (Σ0,ρ0)� (Σn,ρn) to its prefixes R@i : (Σ0,ρ0)� (Σi,ρi) for
i≤ n = len(R).
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Figure 2: The free scheduling graph of process T1 of Ex. 4

Macro-steps. A macro-step, also called a synchronous instant, or instant for short, abbreviated

R : (Σ0,ρ0) =⇒ (Σk,ρk) (9)

is a maximal micro-sequence R that reaches a final quiescent configuration. Note that for any
memory ρ , a configuration ( /0,ρ) is trivially quiescent. For the sake of simplicity, sometimes we
drop the mapping M from our relations� and =⇒. When (Σk,ρk) is quiescent but non-empty
then no further micro-step is possible (which explains the term ‘quiescent’) since all processes
are waiting for the clock to tick. Such a clock tick

(Σk,ρk) =⇒tick (Σ′,ρ ′) (10)

consists of eliminating every pausing process with empty continuation 〈ι d,π, [ ]〉 ∈ Σk and
replacing every pausing process 〈ι d,π,Q::Ks〉 ∈ Σk with a non-empty continuation by a new
process 〈ι 0,Q,Ks〉 ∈ Σ′ preserving the sequential identifier of all ancestors but restarting the
current thread at sequence number 0. The new memory ρ ′ preserves all internal and output
variables but permits the environment to change any input variables for the next macro-step. For
the investigations in this report, however, we are only interested in single macro-steps generated
by the behaviour of pSCL expressions. Therefore, we will not be concerned with the modelling
of successions of clock ticks.
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Example 4. Let (Σ1,ρ0) be a configuration where ρ0 gives value 0 to every variable and Σ1 =
{T1} consists of the root process: T1 = 〈0,(!s ; !t || ¡s ; t ? ε : π), [ ]〉. The complete computation
graph for the free scheduling from (Σ1,ρ0) is depicted in Fig. 2. The processes are abbreviated
as follows:

T1 = 〈0, !s ; !t ‖ ¡s ; t ? ε : π, [ ]〉 T31 = 〈0.l.0, !s, [!t]〉
T20 = 〈0,ε, [ ]〉 T32 = 〈0.r.0, ¡s, [t ? ε : π]〉
T21 = 〈0.l.0, !s ; !t, [ ]〉 T41 = 〈0.l.1, !t, [ ]〉
T22 = 〈0.r.0, ¡s ; t ? ε : π, [ ]〉 T42 = 〈0.r.1, t ? ε : π, [ ]〉

T521 = 〈0.r.2,ε, [ ]〉 T522 = 〈0.r.2,π, [ ]〉
Each edge in Fig. 2 is a single micro-step. For ease of explanation we do not use the selected
process Ti as the label like in (7) but instead the primitive operator executed in the micro-step,
i.e., a sequential composition ; (rule (3)), atomic set, reset or the empty statements !s, !t, ¡s, ε

(rules (1) and (2)) or a parallel composition ‖ (rule (6)). The shaded regions named A and B
will be explained later.

Since T1 is active it can induce the micro-step (Σ1,ρ0)→ (Σ2,ρ0) with the a succession
Σ2 = {T20,T21,T22} of three processes as a result of executing the parallel fork, the parent T20
and its two children T21 and T22. Observe that in Σ2 the two children are active but the parent
with identifier 0 is waiting, because 0≺ 0.l.0 and 0≺ 0.r.0. The parent T20 now plays the role
of a ‘join’ in the sense that it cannot execute any micro-step until the two children terminate
and its own identifier becomes maximal again. Let us suppose that T21 and T22 are scheduled
in that order to get (Σ2,ρ0)� (Σ4,ρ0) with Σ4 = {T20,T31,T32}, where T31 and T32 are both
active. The configuration (Σ4,ρ0) is underlined in Fig. 2. Notice that we reach exactly the same
configuration if we first schedule T22 and then T21. The concurrent execution of the sequential
compositions in T21 and T22 is confluent, because there are no read or write accesses to variables.
However, in (Σ4,ρ0) things become interesting since the chosen scheduling order will result
in different configurations. For if (Σ4,ρ0)� (Σ6,ρ11), with Σ6 = {T20,T41,T42}, results from
scheduling T32 followed by T31, then first the reset ¡s is performed and thereafter the set !s, so
that ρ11(s) = 1. On the other hand, if first T31 is picked and then T32 does its initial micro-step,
then (Σ4,ρ0)� (Σ6,ρ12) with ρ12(s) = 0. Although the resulting process pool Σ6 is the same in
both configurations, the global memory is not.

Continuing the schedule from configuration (Σ6,ρ11), also underlined in Fig. 2, we see that
there is a race between the reading of variable t by T42 and the writing to t by T41. If we first
execute T41, then the conditional T42 will activate its ‘then’-branch ε . Therefore, we eventually
reach the configuration (Σ9,ρ21) with Σ9 = {T20} where the memory satisfies ρ21(s) = ρ21(t) = 1.
Now ‘join’ process T20 becomes active, which instantaneously terminates reaching the quiescent
configuration ({},ρ21). On the other hand, if in (Σ6,ρ11) the process T42 first gets to test the
value of t, which is 0, before T41 sets it to 1, then the ‘else’-branch is selected and we end up
in the configuration (Σ8,ρ21) where Σ8 = {T20,T522}. This configuration is also quiescent as it
contains no active processes. Here, the ‘join’ process T20 is still waiting since it has a strictly
smaller sequence number than process T522 which is pausing. No progress can be made until the
next clock tick makes T522 disappear from the configuration, thereby activating T20 which then
terminates instantaneously. Note that the conflict between T41 and T42 in (Σ6,ρ11) results in a
non-determinism of control, viz. between terminating in the same instant or the next.

Clearly, as demonstrated in Ex. 4 the selection strategy applied in the free scheduling of
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a program determines the final memory content and termination behaviour of a program in
a macro-step. If we would consider pSCL as a just another clocked process algebra such
as [40, 20, 55] or a model of general statecharts, e.g., [68, 81, 37] (or in fact Java threads,
for that matter) the non-determinism would not worry us. It is a natural consequence of the
asynchrony of parallel execution. We can leave it in the responsibility of the versed programmer
to harness her or his programs by explicit synchronisation through shared memory mutual
exclusion algorithms (see [56]) in order to get rid of non-determinacy. Yet, this is not the right
approach for synchronous programming where every program, by compilation, is required to
code a deterministic Mealy machine. In synchronous programming it is the compiler which has
to achieve determinate tick responses under pessimistic assumption on the varying degree of
perturbations arising from the non-determinism of target run-time system.

In synchronous programming the programmer is supported by static schedulability and
causality analyses. Often non-determinism can be eliminated by restricting the free scheduling
to so-called admissible schedules that are natural for, or intended by, the programmer and at the
same time reliably implemented on the chosen run-time platform by a trusted compiler.

Example 5. Consider Example 4 in which the non-determinacy of the tick response is due to
races between the setting and resetting of variable s and the reading and writing of variable t.
Suppose we compile the root process T0 as a data-flow network in which the non-determinism
maps to the concurrent execution of function blocks. Then it is easy to ensure that the data-
flow always executes reset of a variable (value initialisation) before any set (value update)
and all write accesses before the reads. This natural ordering prohibits the execution of the
transitions shown in Fig. 2 as dashed arrows. It eliminates the paths in region A with the resets
¡s occurring after the sets !s and the path in region B in which the set !t happens after the reads
t?. The remaining admissible scheduling paths then all lead, deterministically, to instantaneous
termination in configuration ({},ρ21).

A canonical notion of admissibility to avoid causality locks is the “init;update;read” (iur)
protocol, which forces the accesses of every variable to undergo strict cycles of first initiali-
sations (¡s), then updates (!s) and finally reads (s?). Moreover, the iur protocol can be refined
by limiting the number of initialisations that are permitted during a single macro-step on any
variable. Liberal notions of sequential constructiveness permitting more than one init;update;read
cycle have recently been proposed [84, 86]. In the traditional model of synchronous program-
ming—paradigmatically represented by Esterel—only one iur cycle is permitted. This leads to a
more conservative notion of constructiveness which is the subject of this report and formalised
in the next section.

Since well-formed pSCL programs are clock-guarded, we can unfold all loops and extract
finite rec-free expressions that fully describe the program’s macro step reactions. Therefore,
as the main results in this report concern the scheduling of micro-steps inside a single finite
macro-step, it suffices to consider only finite, recursion-free pSCL programs, i.e., fprogs.

2.3 Reactiveness and Determinacy
All non-determinism of concurrent execution arises from two types of data races: write-write
conflicts and write-read conflicts. To remove these races, the iur scheduling protocol enforces
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precedence of resets over sets and of writes over reads. The strict ordering can be broken only
if the variable accesses are confluent. A suitable notion of confluence has been introduced
in [84, 86].

Definition 3 (Confluence of Processes). Let T1 and T2 be two arbitrary processes and (Σ,ρ) a
configuration. Then,

1. T1,T2 are called conflicting in (Σ,ρ) if both T1 and T2 are active in Σ and T1(T2(Σ,ρ)) 6=
T2(T1(Σ,ρ));

2. T1,T2 are confluent in (Σ,ρ), written T1 ∼(Σ,ρ) T2, if there is no micro-sequence (Σ,ρ)�
(Σ′,ρ ′) such that T1 and T2 are conflicting in (Σ′,ρ ′).

Example 6. As an illustration consider once more Example 4. Processes T31 and T32 are
conflicting in configuration (Σ4,ρ0) = ({T20,T31,T32},ρ0) because, as we have seen, both are
active in this configuration and, moreover, different execution orders lead to different results.
Since the first micro-step of T31 is !s (update) and the first micro-step of T32 is the reset ¡s
(init), the scheduling protocol gives precedence to T32. Similarly, T41 and T42 are in conflict
in configuration (Σ6,ρ12) with Σ6 = {T20,T41,T42} as can be seen from Fig. 2. For their part,
processes T21 and T22 are independent or confluent in (Σ2,ρ0) with Σ2 = {T20,T21,T22}. This is
so because in every micro-sequence (Σ2,ρ0)� (Σ′,ρ ′) the only configuration in which both T21
and T22 are active is precisely (Σ2,ρ0). Furthermore, as can be seen from Fig. 2, the order
of execution is unimportant in this case, namely T21(T22(Σ2,ρ0)) = T21(T22(Σ2,ρ0)) = (Σ4,ρ0),
where Σ4 = {T20,T31,T32}. Note that since the initial micro-step of both T21 and T22 is the
breaking up of the sequential composition, and thus not variable accesses, their ordering is
unconstrained by the “init;update;read” scheduling protocol.

In this report we introduce a fairly stringent interpretation of the iur protocol derived from
conservative SMoCCs such as Esterel or Quartz, which we term Berry admissibility (Def. 4
below). It uses confluence to permit “ineffective” sets after reads but is stronger than SC-
admissibility [84], as it enforces the iur protocol on all accesses not just concurrent ones as
in [84]. Whatever synchronisation protocol X we use —there may be many other interesting
ones still to be discovered— the restriction to X-admissible executions not only reduces non-
determinacy. Such synchronisation constraints may lead to deadlock, i.e., configurations in
which no micro-step is possible without violating X-admissiblity. Thus we must care about
X-reactiveness, i.e., the property that a program does not get stuck when executed in an X-
admissible fashion.

2.3.1 B-Admissibility and B-Reactiveness

The tighter the underlying notion of X-admissibility the more information we have from knowing
that a program is X-reactive. If all X-admissible schedules are also Y-admissible then a program
without deadlocks under X is also deadlock-free under Y. Here we introduce a suitable notion of
admissibility that captures the essence of Esterel which is tighter than SC-admissibility introduced
in [84, 86].

Definition 4 (Berry Admissibility and Reactiveness). A micro-sequence R : (Σ0,ρ0)� (Σn,ρn)
is Berry admissible (B-admissible) iff
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(1) R does not reset any variable that has been set before.

Formally, if R(i) for 0 < i≤ n executes a set !s for some s ∈ V, then no R( j) for i < j ≤ n
executes a reset ¡s.

(2) R does not write any variable which has been read before, unless this late write is ineffective
in the sense that the write is confluent with the read and the very same value has been
written already before the read.

Formally, if R( j) for 0 < j ≤ n executes a conditional test s ? P : Q for some P,Q, and
R(k) for j < k ≤ n performs a set !s (reset ¡s), then there exists an index i < j before the
read where R(i) already executed a set !s (reset ¡s) and R( j)∼(Σ j,ρ j) R(k).

An fprog P is called Berry reactive (B-reactive) if from every initial configuration ({〈0,P, [ ]〉},
ρ0) there is at least one B-admissible instant.

Example 7. If a reset happens sequentially after a set (violating Def. 4(1)), as in P1 := !s ; ¡s,
then this violates the monotonicity of signal stabilisation. In the conservative delay-insensitive
model of Esterel this is a hazard, since a concurrent environment could read either the first output
value s = 1 (which is interpreted as an emit) or the second s = 0 (which is an initialization).
This creates a write-write race, thus jeopardising determinism. P1 does not have a B-admissible
execution. The opposite ordering P2 := ¡s ; !s of a reset followed by a set is B-admissible, since it
adheres to the monotonic stabilisation protocol.

A read-write race (violating Def. 4(2)) occurs in the sequential programs P3 := s ? !s : ε

and P4 := s ? ¡s : ε . The write accesses !s and ¡s, respectively, may effectively overwrite the
externally controlled value of s which is tested in the conditionals. If we consider P3 and P4
to be environments of themselves then we run into a causality loop: the test s? must wait until
the program has set or reset its value, which however can only happen after the test has been
executed. If R is the micro-sequence generated from P3 with initial memory ρ0(s) = 1 then it
executes the set !s after the read s? without any set having happened before the read. Similarly,
we get a reset ¡s after the read s? in P4 but this reset value has not been established before the
read. Therefore, neither P3 nor P4 are B-reactive. In the hardware translation of Esterel, P3
would be a delay loop s = s which has two stable solutions s = 0 and s = 1, while P4 generates
essentially the feed-back system s = s · s which may produces glitches before it settles at s = 0, if
it stabilises at all.

P3 and P4 were acceptable if the status of s was already decided before the test s?. For
instance, in !s ; P3 the second !s in P3 is ineffective from the point of view of the read access
because the status 1 on s is determined by the first !s which occurs sequentially before the
read. Thus, executing !s ; P3 is B-admissible. P4 can be executed admissibly in the form ¡s ; P4
which then bypasses the reset ¡s in P4. On the other hand, !s ; P4 would not be B-reactive
because it generates a reset ¡s after a set !s. We note that all programs P1–P4 are sequentially
admissible [84] (called ∆∗-admissibility in [4]) because under sequential admissibility glitches
can only be generated from concurrent accesses, not sequential ones as in P1 and P2.

Example 8. Although each fprog P := x ? !y : ε and Q := y ? !x : ε is B-reactive, their concurrent
composition fprog P ||Q is not. There is only one initial memory ρ0 from which this has any
B-admissible instants, viz. ρ0(x) = ρ0(y) = 0. Suppose initially ρ0(x) = 1 or ρ0(y) = 1. Then
either the write statement !y in P is executed after y has been read by Q, or !x in Q is executed
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after x is read by P. Both violates Def. 4(2) because there are no other writes before the read
which would make the “late” write ineffective.

Example 9. All the scheduling sequences R : ({T1},ρ0)� ({},ρ21) of Ex. 4, following the
transitions colored green in Fig. 2 are B-admissible. None of the scheduling sequences going
through a red transition, entering region A or B, is B-admissible. The sequences entering region
A are violating Def. 4(1) by resetting variable s (dashed red arrows labelled ¡s) after s has been
set (solid red arrows labelled !s). The sequences entering region B are breaking the constraint
Def. 4(2) because variable t is set (solid red arrow labelled !t) after it has been read (dashed red
arrows labelled t?), without any setting of variable t before the read. However, since at least one
B-admissible scheduling sequence leads to completion, the program !s ; !t || ¡s ; t ? ε : π of Ex. 4
is B-reactive.

2.3.2 SC-Admissibility and SC-Read-Determinacy

When it comes to the question of determinacy then we want the underlying notion of X-
admissibility to be as weak as possible. If a program analysis detects determinacy under
all X-admissible executions, then the implied level of robustness depends on how much non-
determinism is still permitted by X-admissible executions. For instance, if X-admissibility
limits execution to a single micro-sequence, e.g. through a global linear priority ordering on all
statements, then determinacy is trivial. On the other hand, knowing that a program is determinate
under all free schedules, is a very strong (and rare) property for a program to have. To get more
headroom for our main result we use SC-admissibility. In contrast to B-admissibility this admits
writes-after-reads and resets-after-sets, if these are sequential successors in program order or
confluent. The following definition is rephrased from [84, 86].

Definition 5 (SC-Admissibility and Reactiveness). A micro-sequence R : (Σ0,ρ0)� (Σk,ρk) is
SC-admissible if for every two processes R(i), R( j) such that 0 < i < j ≤ n and either

(i) R(i) reads (tests) a variable s, on which R( j) subsequently performs a reset ¡s or set !s, or

(ii) R(i) performs a set !s on a variable s, on which R( j) subsequently performs a reset ¡s,

the first R(i) is sequentially before R( j) in program order or both are confluent, i.e., we have
R(i).id � R( j).id or R(i)∼(Σi,ρi) R( j).

An fprog P is SC-reactive, if from every initial configuration ({〈0,P, [ ]〉},ρ0) there is at least
one SC-admissible instant for P.

One can show that B-admissibility is more restrictive than SC-admissibility.

Proposition 1. Every B-admissible micro-sequence is also SC-admissible.

Proof. Let R : (Σ0,ρ0)� (Σn,ρn) be a B-admissible micro-sequence, with processes instances
R(i) and R( j) such that 0 < i < j ≤ n. First note that by condition (1) of B-admissibility Def. 4,
the situation (ii) of Def. 5 cannot occur. We only need to care about the situation (i), where
R(i) is a read and R( j) a write of the same variable s. But then condition (2) of B-admissibility
implies both are confluent, i.e., R(i)∼(Σi,ρi) R( j). This was to be shown.
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Example 10. The Ex. 4 is B-reactive and thus also SC-reactive. However, it does not have any
SC-admissible scheduling sequences which are not B-admissible at the same time. None of the
scheduling sequences entering regions A or B in Fig. 2 are SC-admissible. Let us look at what
happens in region A. For instance, take the scheduling

R = T1,T21,T31,T41,T22,T32,T42,T521,T20 : ({T1},ρ0)� ({},ρ22)

in which R(3) = T31 performs a set !s and later R(6) = T32 performs a reset ¡s. This violation of
resets-before-sets is permitted under SC-admissibility only if the micro-steps are sequentially
ordered or confluent. The former is not the case, T31.id = 0.l.0 6� 0.r.0= T32.id, because both pro-
cesses are from concurrent threads. The latter is not the case either, because T31 6∼({T20,T31,T22},ρ0)

T32. In fact, there is the (free) schedule T22 : ({T20,T31,T22},ρ0)→ ({T20,T31,T32},ρ0) (under-
lined in Fig. 2) which reaches the configuration ({T20,T31,T32},ρ0) in which both T31 and T32
are active and conflicting (see Def. 3). Executing T31,T32 from here leads to ({T20,T41,T42},ρ12)
while the swapped ordering T32,T31 ends up in ({T20,T41,T42},ρ11) which have different memo-
ries.

Similarly, one can show that the two concurrent processes T42 and T41 which read and set
variable t are in conflict on every schedule that runs through region B. The critical configuration
for region B is ({T20,T41,T42},ρ11) (underlined in Fig. 2) in which processes T42 and T41 are in
conflict with each other.

Clearly, by Prop. 1, every B-reactive program is also SC-reactive. An X-reactive program is
guaranteed not to deadlock under X-admissible execution. However, it may be non-determinate,
i.e., generate different final memory states. In defining determinacy precisely we meet another
degree of freedom, depending on whether or not we permit the outcome at the end of an instant
to be functionally dependent on the memory configuration at the beginning of the instant. For
instance, we might distinguish, as done in Esterel V7, between temporary and registered variables.
The value of a temporary variable is ephemeral and must be recomputed by the program at every
instant. The value of a registered variable is provided by the environment in memory at the
beginning of each instant. Hence, the final response may depend on the initial value of registered
variables but not on the initial value of the temporary variables. This gives rise to the following
definition, parametric in X-admissibility, where the notations�X and =⇒X are used to indicate
that the corresponding micro-sequence complies with a particular notion X of admissibility.
E.g.�B refers to a B-admissible micro-sequence and =⇒SC indicates a SC-admissible instant.

Definition 6 (X-Determinacy). For a given set of temporary variables W ⊆ V, an fprog P is
X-determinate for W (XW-determinate) iff the following two conditions hold:

1. For every fixed initial memory, P computes the same final memory in all X-admissible
instants.

Formally, if (〈ι ,P〉,ρ0) =⇒X (Σ0,γ0) and (〈ι ,P〉,ρ0) =⇒X (Σ1,γ1) then γ0 = γ1.

2. For every temporary variable in W, P either (i) computes the very same final value in all
X-admissible instants, or (ii) it does not modify the initial memory value of this variable in
any X-admissible instant. In other words, if P changes the value of a variable x ∈W in
any X-admissible instant then this must be the final value for x in all X-admissible instants.

Formally, for all x ∈W and γ0, ρ0, Σ0: if (〈ι ,P〉,ρ0) =⇒X (Σ0,γ0) and γ0(x) 6= ρ0(x), then
for all γ1, ρ1, Σ1 such that (〈ι ,P〉,ρ1) =⇒X (Σ1,γ1), we have γ1(x) = γ0(x).
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In this report we will treat two special cases: When W is the empty set, W = /0, then XW -
determinacy is simply called X-determinacy. When W = rd(P) is the set of read variables of P,
defined by

rd(P) :=


rd(P1) ∪ rd(P2) if P = P1 ||P2 or P = P1 ; P2

{s} ∪ rd(P1) ∪ rd(P2) if P = s ? P1 : P2

/0 otherwise

then XW -determinacy is referred to as X-read-determinacy. The following proposition is obvious,
with Prop. 1:

Proposition 2. Every X-read-determinate fprog is also X-determinate and every SC-determinate
program is B-determinate.

Note that purely sequential programs, i.e., those without the concurrency operator ‖, are
trivially deterministic and hence SC-read-determinate. Sequential programs are also always
SC-reactive. They can however fail B-reactiveness, i.e., if their execution is not B-admissible
because it generates a causal hazard in the access to a variable (see Ex. 7). This models the
stronger interpretation of reactiveness in the more conservative SMoCCs like Esterel and Quartz
which we deal with, here. Also, SC-read-determinacy is trivial for pure input variables which are
never written by a program because their final value will always be the same as the initial value.
Hence, all programs, including those containing the ‖ operator, with disjoint input and output
variables, are SC-read-determinate but possibly not B-reactive.

The following Ex. 11 brings home the problems causality poses for compositionality.

Example 11. All P1, P3, P4 from Ex. 7 are purely sequential programs which are not B-reactive
but SC-read-determinate. An fprog which is B-reactive but not SC-determinate is the parallel
composition P ||Q, where P := x ? ε : !y and Q := y ? ε : !x. The left component P sets y
to 1 if x is 0 and the right sub-expression Q sets x to 1 if y is 0. Indeed, if both variables
x,y ∈ rd(P ‖ Q) are initially ρ0(x) = ρ0(y) = 0, the response of P ||Q is non-determinate (under
B-admissible scheduling). If P is first executed to termination and then Q, we get the final
memory γ0(x) = 0,γ0(y) = 1; otherwise, if we first execute Q and then P, the result will be
γ0(x) = 1,γ0(y) = 0. This is an internal non-determinism observable from a single fixed initial
memory. P ||Q is B-reactive but not B-determinate and thus neither SC-determinate.

That a program is non-determinate does not mean all its sub-programs must be non-
determinate, too. E.g., both fprogs P and Q in this example are SC-read-determinate. E.g., the
only read variable x ∈ rd(P) is not touched by P and thus left to be controlled by the environment.
This satisfies condition (2) of Def. 6. Note that the value of y is changed in the SC-admissible
execution of P starting from ρ0(x) = 0 and ρ0(y) = 0 and its final value γ0(y) = 1 is not the
final value for all SC-admissible instants, e.g., if ρ0(x) = 1 and ρ0(y) = 0 then we get γ0(y) = 0.
However, this is not a violation of Def. 6(2) because y 6∈ rd(P).

Finally note that non-determinate programs can become determinate in context. E.g., the
SC-admissibility rules make sure that in P ||Q || !x the set !x is executed before the test x? in
P, which means that P does not write !y which prevents Q from writing !x, thereby avoiding
an admissibility hazard with any earlier read of y by Q. Moreover, since the set !x is executed
before the read x? by P, the set !x by Q is confluent with the read. As a consequence, for any
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given initial memory ρ0, all SC-admissible executions of P ||Q || !x produce the same determinate
response γ0 with γ0(x) = 1 and γ0(y) = ρ0(y) is the initial value. Thus, the fprog P ||Q || !x is
SC-read-determinate.

In Sec. 4 below we shall give a sound denotational fixed point analysis to check whether
a program is B-reactive and SC-read-determinate. Our fixed point characterisation defines the
class of input Berry constructive (IBC) programs which includes more programs than the strong
Berry constructive (SBC) programs introduced in [4]. The result established in [4], that every
SBC program is SC-reactive and SC-determinate, is a corollary of the main Thm. 1 in this report
which says that every IBC program is B-reactive and SC-read-determinate.

We first need to introduce the appropriate abstract semantical domains. This is done in the
following Sec. 3.

3 Abstract Domains and Environments
The constructiveness analysis on finite pSCL programs (fprogs) takes place in an abstract domain
of information values which describe the sequential and concurrent interaction of signals. It
accounts for data dependencies and can deal with the difference of a variable retaining its
original initial value from the initial memory (pristine), being initialised to 0 and then either
remaining 0 (signal absence) or being set to 1 (signal presence). This includes monotonic
value changes from 0 to 1 and, essentially, corresponds to Berry’s notion of constructiveness in
Esterel [12], yet is able to deal with explicit initialisations which requires the ability to cope with
prescriptive sequencing. This section introduces this abstract domain and its natural extension to
environments, namely discrete structures able to maintain the information of a number of signal
variables.

3.1 Value Domain I(D) of Value Status
Instead of distinguishing just two signal statuses “absent” and “present” as in traditional SMoCC,
we consider the sequential behaviour of a variable (during each instant) as taking place in
a linearly ordered 4-valued domain D = {⊥ ≤ 0≤ 1≤>}. This requires to consider two
additional logical memory values, namely ⊥ and >. The former indicates that the corresponding
variable contains its initial memory value, i.e., a pristine 0 or 1. The latter tells us that the variable
value has passed from 1 to 0 at some point, independently of what the final memory result is. The
linear ordering ≤ captures a trajectory through a single instance of the iur protocol. Observe the
difference between the variable values B= {0,1}, which appear at “run-time” as defined in the
operational semantics, and the signal statuses D, which are the basis of constructiveness analysis.
The latter lifts our description to a higher level in which the semantics of variables is enriched
to reflect the fact that they are controlled by an implicit synchronisation protocol. Observe that
the ordering ≤ in D is transitive which permits monotonic status changes from ⊥ directly to
1, without first passing through 0. This means a program can set a variable (emit a signal in
Esterel) which has not been explicitly reset. This matches the iur protocol, from which the
notions of B/SC-admissibility are derived, which does not require an update to be preceded by
an init operation. However, our fixed point semantics can be easily modified, without changing
the domain D, for the stronger requirement if needed.
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We now go one step further in the abstraction. In the analysis we operate on predictions of
variable statuses. Possible statuses of variables are approximated by closed intervals I(D) =
{[a,b] | a,b ∈ D,a≤ b} over D. An interval [a,b] ∈ I(D) in this 10-valued domain corresponds
to the set of statuses set([a,b]) = {x | a≤ x≤ b} ⊆ D. Intervals [a,b] such that a < b denote
uncertain information, i.e., a potential non-deterministic response. Such a general interval
represents an approximation to the final (stable) state of a variable from its two ends, the lower
bound a and the upper bound b. An interval [a,b] associated with a variable x ∈ V can thus be
read as follows: “the executions of the statements so far ensure that x has currently status a, yet
it cannot be excluded that some statements might be executed which could change (increase)
the status of x up to b”. In this vein, the intervals [a,a] correspond to decided, or crisp, statuses
which are naturally identified with the values ⊥= [⊥,⊥], 0 = [0,0], 1 = [1,1] and >= [>,>]
of D, respectively, i.e., D⊂ I(D). A variable s ∈ V with status γ ∈ I(D) is denoted by sγ .

Example 12. When computing the reaction of fprog ¡s ; x ? !s : ε , the interval for s will be [0,1],
assuming the status of x is not decided yet, say, x[⊥,>]. The status s[0,1] for variable s indicates
that a reset ¡s must definitively be executed, but there is at least one set !s that can potentially be
executed, which is why the status of s ranges between 0 and 1.

On the domain I(D) we can define two natural orderings:

• The point-wise ordering [a1,b1]� [a2,b2] iff a1 ≤ a2 and b1 ≤ b2, and

• the (inverse) inclusion ordering [a1,b1]v [a2,b2] iff set([a2,b2])⊆ set([a1,b1]),

which endow I(D) with a full lattice structure for � and a lower semi-lattice structure for v.
The point-wise lattice 〈I(D),�〉 has minimum element [⊥,⊥] and the minimum for the inclusion
semi-lattice 〈I(D),v〉 is [⊥,>]. The element [>,>] is a maximal element for both orderings
but it is the maximum only for �. For v all singleton intervals [a,a] are maximal. Join ∨ and
meet ∧ for the �-lattice are obtained in the point-wise manner:

[a1,b1]∨ [a2,b2] = [max(a1,a2),max(b1,b2)]

[a1,b1]∧ [a2,b2] = [min(a1,a2),min(b1,b2)].

In the inclusion v-lattice the meet u is

[a1,b1]u [a2,b2] = [min(a1,a2),max(b1,b2)].

The semi-lattice 〈I(D),v〉 does not possess joins, but it is consistent complete, i.e., whenever
in a nonempty subset /0 6= X ⊆ D any two elements x1,x2 ∈ X have an upper bound y ∈ D, i.e.,
x1 v y and x2 v y, then there exists the least upper bound tX = u{y | ∀x ∈ X . xv y}. This will
give us least fixed points.

Fig. 3 illustrates the two-dimensional lattice structure of I(D). The vertical direction (upwards,
green arrows) corresponds to � and captures the sequential dimension of the statuses. The
horizontal direction (left-to-right, blue arrows) is the inclusion ordering v and expresses the
degree of precision of the approximation. The most precise status description is given by the
crisp values on the right side, which are v-maximal and are order-isomorphic to the embedded
domain D. The least precise information value is the interval [⊥,>] on the left. The following
Ex. 13 illustrates how we can use the domain I(D) in the fixed point analysis to navigate in both
dimensions � and v for determining the instantaneous response of a program.

22



Kleene‘s ternary domain (Esterel)
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Figure 3: Domain I(D) for Approximating Signal Variable Statuses.

Example 13. Consider the fprog P := (x ? ε : (!y ‖ !z)) ‖ (y ? ε : !x). Suppose that we execute
P in a sequential thread in which all three variables are initially pristine, i.e., with status x⊥,
y⊥ and z⊥. What are the final values of of the variables when P is completed? Since we do not
know what the memory values of x and y are, we do not know how the branches are decided, i.e.,
whether the first concurrent thread x ? ε : (!y ‖ !z) will execute ε or set both variables y and z in
!y ‖ !z. Similarly, we cannot decide if the second thread y ? ε : !x sets x or not. Yet, what we do
know is that the variables x, y or z may be set but cannot crash because there is no reset on any
of them. So, the best approximation for the response of P, in terms of intervals I(D), is the final
status x[⊥,1], y[⊥,1], and z[⊥,1].

Now put P in parallel with the program Q := ¡x ‖ !y. Since Q certainly executes the reset ¡x
and no other write accesses to x, this produces the response x0. Combining this with the status
obtained from P gives the joint response x0∨[⊥,1] = x[0,1]. This tells us that x must certainly be
reset (viz. by Q) and then might be set (viz. by P). Notice how the interval [⊥,1] has shrunk to
[0,1], which provides tighter information. What about variable y? It is set by Q and never reset,
which means its status, after executing Q, is at least 1. By the iur protocol the set !y must wait
for any potential reset on y to have happened in the environment. In this case, P does not have a
reset on y, so the set !y of Q must go ahead, giving y1 for the response of Q. This merges with
the information from P to the joint response y1∨[⊥,1] = y1.

But now we have narrowed down the status of y to a crisp 1, which implies that the conditional
test y ? ε : !x in the second thread of P is decided. So we conclude that the set !x must definitely
be executed. Therefore, the status of x from P in our first approximation can now be tightened
from x[⊥,>] to x1. Once we have that, the conditional x ? ε : (!y ‖ !z) in the first thread of P
is decided, too, implying that the set !z must be executed by P implying 1 as a lower bound for
the status of z and an increase of information from z[⊥,1] to z1. Since all three variables are now
fixed to have crisp statuses x1, y1, z1, the program P ‖ Q is called strongly Berry constructive.
From [4] this implies that P ‖Q is sequentially constructive, i.e., SC-reactive and SC-determinate.
From the results reported here it will follow that it is also B-reactive and SC-read-determinate.
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Figure 4: The domain P coding the initialisation status.

Observe that the well-known ternary domain (Kleene) for the fixed-point analysis of Pure
Esterel [12] or constructive Boolean circuits [63] is captured, as indicated in Fig. 3, by the inner
part with values [0,0] (“absent”), [1,1] (“present”) and [0,1] (“undefined”). In ternary analysis
all signal variables are implicitly assumed initialised, hence no need for⊥. Moreover, since there
is no reset operator and thus programs cannot fail the monotonic single-change requirement,
there is no need for > either, in languages such as Esterel, as long as initialisation of signals is
implemented by the run-time rather than the program. This ternary fragment of I(D) corresponds
to three-valued Kleene logic with ∨ disjunction and ∧ logical conjunction. Fig. 3 visualises
clearly how the 10-valued domain I(D) offers an extended playground to represent the logic of
explicit initialisation.

Interestingly, another recent approach to enrich the standard ternary domain is the constructive
semantics by Talpin et.al. [76] for a multi-clocked synchronous (polysynchronous) data-flow
language which integrates Quartz and Signal. This extension is based on a lattice D which
extends {[0,0], [1,1], [0,1]} by elements ? for representing unknown and  for inconsistent signal
statuses similar to our⊥ and>. It also contains Boolean values for “true” and “false” (embedded
as refinements of the present status) which our domain I(D) does not model. On the other hand,
the partial order D of [76] does not have an interval structure like I(D), which is the key to
modelling Esterel-style reaction to absence. This is not needed in the data-flow semantics of [76].

3.2 Semantic Domain I(D,P) of Signal Status
There is one logical refinement to the domain I(D) that we need to make in order to keep properly
track of the completion of the initialisation phase on each variable. According to the synchronous
protocol a set !s contained in a program can only go ahead if it is guaranteed that no reset ¡s on
this variable is possibly outstanding. There is no information in the intervals of I(D) to express
that no reset is outstanding. For instance, the status s[0,1] specifies that the initialisation of s has
been started and that there is a waiting update access on s, but it does not tell if there are any
other resets ¡s still pending. However, this is important in the constructive scheduling, because
only if the initialisation phase has been completed, the waiting update !s is permitted to proceed
changing the status to s[1,1].

To capture the termination of the initialisation phase of the “init;update;read” protocol, we
enrich the interval domain by an additional token r ∈ P= {0,1,2}, called the init status. The
status 2 expresses that the “init” phase is ongoing and a reset is still predicted. The status 1 means
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that no more resets are outstanding, i.e., the init phase is completed, but the protocol is still
running. Finally, if the “init;update” is finished, and thus the value of the variable determined,
the init status 0 is obtained.

As for I(D) there are natural sequential and information-theoretic orderings on P as seen in
Fig. 4. The sequential ordering � is given by 0� 1� 2 which reflects the fact that in sequential
order a finished computation (0) must first become blocked at a set or a conditional test (1) to
start a running protocol, before it reaches a predicted reset ¡s which witnesses an incomplete
initialisation (2) for the reset variable s. In contrast, the information ordering on P is the opposite,
2v 1v 0, which models the narrowing of behaviour that occurs when the status of variables
becomes more and more decided. The init status 2 is least informative. It says that the protocol is
contingent and that there may still be potential resets outstanding. With the value 1 the protocol
is still contingent but the init phase is finished, i.e., no resets are possible any more. Finally, 0 is
the tightest status for it says that the protocol is finished and that no resets are possible.

The domain (P,�,v) is a lattice for both � and v in which only the semi-lattice structure
will be relevant induced by the join operations r1∨ r2 = r1u r2 = max(r1,r2). Our definition of
constructive behaviours will be based on a fixed point analysis in the product domain

I(D,P) = {([l,u],r) | [l,u] ∈ D,r ∈ P} = I(D)×P.

We will write a typical element ([l,u],r) ∈ I(D,P) more compactly as [l,u]:r and refer to the
interval [l,u] as the value status to separate it from the init status r. If r = 0 we simply write [l,u]
instead of [l,u]:0 or even a instead of [a,a]:0. In this fashion we naturally consider D as a subset
of I(D,P). Generally, as before, when an interval is a singleton we write it as an element in D,
even if its init status is not 0. For instance, 0:1 is the same as [0,0]:1 or ⊥:2 stands for [⊥,⊥]:2.
These singleton intervals are contained within the dotted regions in Fig. 5.

The orderings v and � on I(D,P) are inherited component-wise from the corresponding
orderings in the domains I(D) and P, respectively. The init status is logically part of the upper
bound and so we define the upper projection on I(D,P) by stipulating upp([l,u]:r) = [⊥,u]:r,
and for the lower projection we set low([l,u]:r) = [l,>]:2. The same is obtained if we define
the upper projection separately on P as the identity, i.e., upp(r) = r for all r ∈ P and the lower
projection as the constant function low(r) = 2 for all r ∈ P. Then, upp and low on I(D,P) are
obtained component-wise from upp and low on I(D) and P, respectively.

Note that I(D,P) is essentially a tripling of I(D), extending the domain I(D) by the informa-
tion contained in P.4 This is illustrated Fig. 5.

Example 14. Consider the fprog P := ¡s ; x ? !s : ¡s. Suppose we do not know anything about
the status of x in the current environment. This is captured by the status x[⊥,>]:2 which is the
v-minimal element in I(D,P). It not only leaves open the full range [⊥,>] for the value status of
x. The init status 2 models an unfinished “init” and a possible outstanding reset on x. Now, if the
status of x is so maximally undetermined, the conditional x ? !s : ¡s is undecided. We cannot say
if the initial reset ¡s in P is followed by the set !s or the reset ¡s. Consequently, the response of P
for s will be [0,1]:2. The init status 2 indicates that the protocol execution of P on s is speculative

4This extra bit for indicating predicted resets has been missing in our publication [4] where this fixed point
analysis was introduced for the first time.
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Figure 5: The extended interval domain I(D,P) including the init status P= {0,1,2}.

and that there is a possible reset on s which may become active. The response of P on variable x,
on the other hand, yields x⊥:1 because the value status is guaranteed to remain pristine but that
the computation is nevertheless speculative (because of the blocked conditional test on x).

When the state of x becomes decided with a crisp x0 = x[0,0]:0, then the conditional is
switched through into the left branch containing the reset ¡s and the response of P for s refines
into 0 = [0,0]:0, too. When x is decided present x1 then the conditional is unblocked and the set
!s is executed. Hence, the response for s becomes 1 = [1,1]:0. Both responses for s have init
status 0 stating that the “init;update;read” protocol on s is completed.

Example 15. Consider a reset followed by a set, i.e., the cprog P := ¡x ; !x. Let us schedule the
micro-steps of P starting from the sequential status S0 = x⊥, or equivalently, S0 = x[⊥,⊥]:0. This
represents a fully determined initial memory of unknown value. The reset ¡x is the first micro-step
of P to be scheduled, raising the status of x to S1 = x0. The init status is still 0 because the
reset terminates instantaneously. Thus, we reach the set P′ := !x as the continuation program.
To be scheduled the set must wait for the completion of the init phase which depends on the
concurrent environment. In the environment C0 := x[⊥,>]:2 our sequential thread is blocked at
the set. However, what we can conclude about the sequential response of P is that x undergoes
a reset and then possibly a set, yielding the final status S2 := x[0,1]:1. We cannot put the lower
bound to 1 because we have no guarantee that the set is actually executed. Also, the init status
1 informs the environment that the “init;update” in P is blocked but P does not produce any
further resets, if it ever were to be continued. Assuming that P is running alone by itself we can
strengthen the initial approximation C0 of the environment by C1 := S2 and reanalyse P, again
from the sequential status S0. Now as we reach the set !x, the refined environment C1 with init
status 1 unblocks the set !x and we obtain the final sequential status S3 := x1.

The status of variables and their evolutions over time are kept in discrete structures, called
environments E : V → I(D,P) mapping each variable x ∈ V to a status E(x) ∈ I(D,P). The
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orderings and (semi-)lattice operations are lifted to environments by stipulating

E1EE2 iff E1(x)EE2(x) for E ∈ {�,v} and
(E1�E2)(x) = E1(x)�E2(x) for � ∈ {∨,∧,u}.

If E(x) = [a,b]:r then we will also write x[a,b]:r ∈ E and further xa ∈ E when E(x) = [a,a]:0.
Using this notation we can view environments as sets of variable statuses E = {x[a,b]:r | E(x) =
[a,b]:r} with the property that if x[a,b]:r ∈ E and x[a

′,b′]:r′ ∈ E, then a = a′ and b = b′ and r = r′.

It is natural to identify the values [a,b]:r ∈ I(D) with constant environments such that
([a,b]:r)(x) = [a,b]:r for all x ∈ V . An environment E is called decided if for all variables x ∈ V
there exists b ∈ D with b:1v E(x); crisp if for all variables x ∈ V there exists b ∈ D such that
bv E(x); ternary if E(x) ∈ {0,1, [0,1]} for all variables x ∈ V; crash-free if E(x)� 1:2 for all
x ∈ V . An environment E in which all entries are one-sided lower (upper) intervals, i.e., in
which x[a,b]:r ∈ E implies b => and r = 2 (a =⊥) is called a lower (upper) environment. Every
environment can be separated into its lower and upper projections

low(E) := {x[a,>]:2 | x[a,b]:r ∈ E} upp(E) := {x[⊥,b]:r | x[a,b]:r ∈ E}

so that
E = low(E)tupp(E) = u{X | low(E)v X and upp(E)v X},

where the join exists since low(E) v E and upp(E) v E, i.e., low(E) and upp(E) are always
consistent. Observe further that low(E) = E ∨ [⊥,>]:2= E u>:2 and upp(E) = E u⊥:0.

We use the set-like notation {〈xγ1
1 ,xγ2

2 , . . . ,xγn
n 〉} to specify a finite environment that explicitly

sets the status for the listed variables xi and implicitly defines the status ⊥ for all other variables
z ∈ V \{x1,x2, . . . ,xn}. Then, the empty environment {〈〉}=⊥ = [⊥,⊥]:0 is the neutral element
for ∨ which acts as the operator for set union.

Example 16. Let S1 = {〈x0,y[0,>]:2〉} and S2 = {〈x[⊥,1]:1,z[0,1]〉}. Then, S1 = {〈x0〉}∨{〈y[0,>]:2〉},
S2 = {〈x[⊥,1]:1〉}∨{〈z[0,1]〉} and

S1∨S2 = {〈x0∨[⊥,1]:1,y[0,>]:2∨⊥,z⊥∨[0,1] 〉}= {〈x[0,1]:1,y[0,>]:2,z[0,1] 〉}

S1uS2 = {〈x0u[⊥,1]:1,y[0,>]:2u⊥,z⊥u[0,1] 〉}= {〈x[⊥,1]:1,y[⊥,>]:2,z[⊥,1] 〉}.

3.3 Some Useful Properties of the Interval Domain I(D,P)
The following results all express inherent properties of the domain (I(D,P),�,∨,v,u) but are
phrased here in more general form for environments.

Lemma 1.

1. low(E) = E ∨ [⊥,>]:2= E u>:2

2. upp(E) = E ∧ [⊥,>]:2= E u⊥:0= E u⊥.
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Proof. Trivial from the definitions of low and upp.

Proposition 3. Both projection operators are idempotent, monotonic with respect to both order-
ings E ∈ {�,v} and can be separated into upper and lower projections. Formally,

1. low(low(E)) = low(E), upp(upp(E)) = upp(E).

2. If EEE ′ then low(E)E low(E ′) and upp(E)Eupp(E ′).

3. If low(E)E low(E ′) and upp(E)Eupp(E ′) then EEE ′.

Proof. The first part (1) is obvious from the definition of low and upp. For the second (2) and
third part (3) regarding ordering � observe that [a,b]:r � [a′,b′]:r′ iff a≤ a′, b≤ b′ and r � r′

which holds exactly in case that [a,>]:2� [a′,>]:2 and [⊥,b]:r � [⊥,b′]:r′. For ordering v we
note that [a,b]:r v [a′,b′]:r′ iff a≤ a′, b′ ≤ b and r � r′, which is the same as [a,>]:2v [a′,>]:2
and [⊥,b]:r v [⊥,b′]:r′.

Both orderings � and v are linked up in tight reciprocity connections mediated by the
projections. The connection is summed up in the next Prop. 4:

Proposition 4.

1. low(E1)v E2 iff E1 � low(E2)

2. upp(E2)v E1 iff E2 � upp(E1)

3. low(E1)� E2 iff E1 � low(E2)� E2

4. E1 v upp(E2) iff E1 v upp(E1)v E2.

Proof. For (1) we calculate [a,>]:2v [a′,b′]:r′ iff a≤ a′ iff [a,b]:r ≤ [a′,>]:2; (2) holds since
[⊥,b′]:r′ v [a,b]:r iff b ≤ b′ and r � r′ iff [⊥,b]:r � [a′,b′]:r′; (3) is obtained from observing
that [a,>]:2 � [a′,b′]:r′ iff a ≤ a′, b′ = > and r′ = 2 which is equivalent to [a,b]:r � [a′,>]:2
and [a′,>]:2 � [a′,b′]:r′. Finally, (4) is true because [a,b]:r v [⊥,b′]:r′ iff a = ⊥, b′ ≤ b and
r � r′ which is the same as [⊥,b]:r v [a′,b′]:r′ and [a,b]:r v [⊥,b]:r.

Proposition 5. In the �–lattice, low is inflationary and upp is deflationary. In the v–lattice,
both projection operators are deflationary. Formally,

1. E � low(E), upp(E)� E.

2. low(E)v E, upp(E)v E.

Proof. Statement (1) follows from the observation that ⊥ and > are the minimum and the
maximum, respectively, in the ≤-ordering of D and that 2 is �-maximum in P. Statement (2)
follows from (1) and the connections from Prop. 4(1,2).

With the previous observations we can use the projection operations to define each ordering
� and v in terms of the other. Both orderings together express the same information as each of
the orderings by itself does in combination with the projections:
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Lemma 2. For environments E1, E2 we have

1. E1 v E2 iff low(E1)� low(E2) and upp(E2)� upp(E1);

2. E1 � E2 iff low(E1)v low(E2) and upp(E2)v upp(E1).

Proof. Both statements are easy to establish directly from the definitions. Alternatively, they can
be obtained by abstract reasoning from the previous propositions. For instance, suppose E1 v E2.
Then, by Prop. 3(2,3) this is the same as low(E1) v low(E2) and upp(E1) v upp(E2). But by
Prop. 4 and Prop. 3(1) these are equivalent to E1 � low(E2) and upp(E2)� E1, which in turn
are equivalent to low(E1)� low(E2) and upp(E2)� upp(E1), by Prop. 3(1,2) and Prop. 5(1). In
a similar fashion we obtain statement (2) from Props. 3, 4 and 5(2).

We have seen in Prop. 4 that lower and upper projections connect the two ordering structures
� and v. They are in fact algebraic homomorphism:

Proposition 6. The lower and upper projections distribute over ∨, ∧ and u. Formally,

1. low(E1�E2) = low(E1)� low(E2)

2. upp(E1�E2) = upp(E1)�upp(E2)

for � ∈ {∨,∧,u}.

Proof. Trivial from the definitions.

Another obvious but key result is the monotonicity and distributivity of the (semi–)lattice
operations:

Proposition 7. All the operators ∨, ∧ and u are monotonic in both the �–lattice and the v–
semi-lattice. Furthermore, all three operators distribute over each other, i.e., E1�1 (E2�2 E3) =
(E1�1 E2)�2 (E1�1 E3).

Proof. Since ∨ and ∧ are join and meet for � they must be monotonic for �. Similarly, u is the
meet for v, whence it is monotonic for v. What is not obvious is that ∨ and ∧ are monotonic
for v, and u is monotonic for �, too. This is seen as follows:

Suppose E1 v E ′1 and E2 v E ′2. Then, both low(Ei) � low(E ′i) and upp(E ′i) � upp(Ei) by
Lem. 2. Now, on the one hand, low(E1 ∨E2) = low(E1)∨ low(E2) � low(E ′1)∨ low(E ′2) =
low(E ′1∨E ′2) and upp(E ′1∨E ′2) = upp(E ′1)∨upp(E ′2)� upp(E1)∨upp(E2) = upp(E1∨E2), by
assumption, Prop. 6 and monotonicity of ∨ for �. Hence, E1∨E2 v E ′1∨E ′2 as claimed, again
using Lem. 2.The same reasoning works to show that ∧ is monotonic for v and that u is
monotonic for �. Distributivity of all operators follows from the distributive laws

max(a1,min(a2,a3)) = min(max(a1,a2),max(a1,a3))

min(a1,max(a2,a3)) = max(min(a1,a2),min(a1,a3))

max(a1,min(a2,a3)) = max(max(a1,a2),max(a1,a3)).
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The following final Lem. 3 collects some specific consequences of the universal properties of
the domain (I(D,P),�,∨,v,u) which will be used in our later development

Lemma 3.

1. low(upp(E)) = low(⊥) = [⊥,>]:2= upp(>:2) = upp(low(E))

2. E1∨ low(upp(E2)) = low(E1)

3. E1∨upp(E2)v E1

4. If low(E1)v low(E2), then E1∨upp(E2)v E2

Proof. (1) and (2) are obvious from the definitions. Concerning (3) first observe that E1 �
E1∨upp(E2) as ∨ is the join with respect to �. By Lem. 2(2) this implies

upp(E1∨upp(E2))v upp(E1). (11)

We can also show
low(E1∨upp(E2)) = low(E1) (12)

for the lower projections. First, by statement (2) of the Lemma, Props. 6(1) and 3(1) we compute

low(E1∨upp(E2)) = low(E1)∨ low(upp(E2)) = low(low(E1)) = low(E1)

which proves (12) as claimed. Prop. 3(3) permits us to combine (11) and (12) to obtain E1∨
upp(E2) v E1 as claimed in statement (3) of the Lemma. Suppose low(E1) v low(E2). Then,
E1 � low(E2) by Prop. 3(1) and Prop. 4(1), whence (12) implies

low(E1∨upp(E2)) = low(E1)� low(low(E2)) = low(E2). (13)

using Prop.3(1,2). Next, we have E1 � E1∨E2 � E1∨upp(E2) by the properties of the join ∨
Also, the inclusion upp(E2)� E1∨upp(E2) implies

upp(E2) = upp(upp(E2))� upp(E1∨upp(E2)) (14)

again using Prop. 3(1,2). Another application of Lem. 2, combining the inequations (13) and
(14) for lower and upper projections, proves E1∨upp(E2)v E2, which is statement (4) of the
Lemma, as desired.

3.4 Domain I(C) of Completion Status
The completion status for an fprog P in concurrent environment C is given by a set of completion
codes cmpl〈P,C〉 ⊆ C := {⊥,0,1} which model the uncertainty about the termination behaviour
of P, analogous to the status intervals for signal variables. The code 0 stands for instantaneous
(normal) termination, 1 for pausing and ⊥ for blocking to model a situation when a program’s
control flow is stuck at a conditional test which cannot be decided. These completion codes C
must not to be confused with the signal statuses in D.
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What is the information content of a subset cmpl〈P,C〉 ⊆ C of completion codes? When
c ∈ cmpl〈P,C〉 then c is a possible completion of P, but it is not guaranteed unless cmpl〈P,C〉=
{c} is a singleton, in which case c must be the completion type of P. Otherwise, if c′ 6= c with
c′ ∈ cmpl〈P,C〉, then c′ is another type of completion that can happen for P in environment C.
Complementarily, if c 6∈ cmpl〈P,C〉 then c cannot occur. The “must” and “cannot” information
—which is the basis for defining the completion semantics of programs in Esterel— is completely
captured by the five subsets

I(C) := {{⊥,0},{⊥,1},{⊥,0,1},{0},{1}}.

The sets {}, {0,1} and {⊥} are missing because every program must at least possibly terminate
instantaneously or possibly pause, and if a program possesses both possible codes 0 and 1 then
this is so because some conditional test cannot be decided, which means it is blocked. So, ⊥
must be a possible code for this program, too.5

The precise relation between I(C) to the completion codes of Esterel [12] is given by defining
the sets

mustk(P,C) := {k | k ∈ {0,1}, cmpl〈P,C〉 ∈ {k}},
cannotk(P,C) := {k | k ∈ {0,1}, cmpl〈P,C〉 6∈ {k}},

cank(P,C) := {0,1}\ cannotk(P,C) = cmpl〈P,C〉 \{⊥}

of codes that must and cannot/can be obtained by program P in environment C, respec-
tively. We observe that mustk(P,C)∩ cannotk(P,C) = /0 and that both mustk(P,C) 6= {0,1}
and cannotk(P,C) 6= {0,1}. This makes sense since must and cannot completions are contradic-
tory and there is no program which must terminate and must pause at the same time, or cannot
terminate and cannot pause at the same time. Since we do not consider completion codes for
traps, every program can at least potentially terminate or pause. More specifically, mustk(P,C)
and cannotk(P,C) are either empty /0 or a singleton set {0} or {1}. Also, directly from the
definition we find that if mustk(P,C) is a singleton, then cannotk(P,C) is the complementary
singleton set, i.e., mustk(P,C) = {0} implies cannotk(P,C) = {1} and mustk(P,C) = {1} im-
plies cannotk(P,C) = {0}. Finally, mustk(P,C) = /0 iff ⊥∈ cmpl〈P,C〉 and cannotk(P,C) = /0 iff
cmpl〈P,C〉= {⊥,0,1}.

Note that (i) every P has at least one possible completion status, i.e., 0 ∈ cmpl〈P,C〉 or
1 ∈ cmpl〈P,C〉 and (ii) if we cannot decide whether P terminates instantaneously or pauses
then this is because we cannot decide if P completes at all, i.e., if {0,1} ⊆ cmpl〈P,C〉 then
⊥ ∈ cmpl〈P,C〉. This explains why not all of the eight possible subsets of C can occur as the
completion status of a program.

5In other words, the free set-theoretic “collection semantics”, which defines the completion code of a program
as the set of all it possible completions (under a given choice of environments), would produce exactly the sets in
I(C). We could have defined I(C) more generously as the set of subsets of completion codes P{⊥,0,1}. However,
our explicit description reveals more of the algebraic properties of I(C) than P{⊥,0,1}. For instance, it makes
clear that the internal logic of I(C) is not a Boolean algebra.
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4 Denotational Semantics of Synchronous Programs
Now that the technical apparatus of status intervals and environments is in place it is time to put it
to use. What we will do in this section is to introduce an extended version of the causality analysis
for Esterel, which includes initialisation. This analysis defines the class of constructive programs.
This analysis performs an abstract program simulation using the interval environments I(D,P)
introduced above. To keep matters simple we consider only finite pSCL programs (fprogs), i.e.,
programs without rec. This is without loss of generality. Since well-formed pSCL programs are
clock-guarded, we can unfold all loops and extract finite rec-free expressions that fully describe
the program’s macro step reactions. We first describe the computation of completion codes in
Sec. 4.1 and then the computation of program responses in Sec. 4.2.

4.1 Computing Completion Codes
How are completion codes computed for a program P and environment C? As for the response
semantics 〈〈P〉〉 this is done by structural recursion on P. However, while the computation of
the sets mustk(P,C) and cannotk(P,C) in [12] is performed separately through a combinatorial
construction, we here give a uniform and algebraic definition of the same information for
cmpl〈P,C〉. Specifically, we exploit that I(C), like I(D), forms a meet semi-lattice under
the (inverse) inclusion ordering v, i.e., γ1 v γ2 iff γ2 ⊆ γ1. The completion set {⊥,0,1} is the
minimal element in I(C) and the meet u is γ1uγ2 = γ2uγ1 = γ1 if γ1v γ2 and γ1uγ2 = {⊥,0,1}
if γ1 and γ2 are v-incomparable. Let ⊕ be the strict lifting of Boolean summation to C, i.e.,
0⊕ 1 = 1 = 1⊕ 0 = 1⊕ 1 and 0⊕ 0 = 0, while x⊕ y = ⊥ iff x = ⊥ or y = ⊥. This can then
further be lifted to completion sets, γ1⊕ γ2 := {x⊕ y | x ∈ γ1,y ∈ γ2}. Notice that if we consider
the completion codes 0 and 1 as numbers, then ⊕ is the same as max. Indeed, ⊕ on I(C) is
analogous to ∨ on I(D). The upper projection is given by upp(γ) := γ ∪{⊥}. One shows that ⊕
and upp are well-defined on I(C) and monotonic with respect to v.

The function cmpl〈P,C〉 ∈ I(C) is as described in Fig. 6. One shows by induction on P that
if P is purely combinational, i.e., it does not contain the π operator, then cmpl〈P,C〉= {0} or
cmpl〈P,C〉 = {⊥,0}. Furthermore, it is easy to see that the only way in which the status ⊥
can enter the completion set is through the ‘otherwise’ case of a set or a conditional. More
strictly, we have ⊥∈ cmpl〈P,C〉 iff (i) the control flow reaches some set !s in P which is blocked
on the condition [⊥,>]:1 6v C(s), or (ii) there is some conditional s ? P′ : Q′ executed in P
for which the guard variable s is undecided, i.e., 1:1 6v C(s) and 0:1 6v C(s). The condition
[⊥,>]:1 vC(s) in the definition of cmpl〈!s,C〉 requires that the init status of C(s) is at most
1, i.e., that initialisations ¡s are no longer possible. However, this does not constrain the value
status. If we wanted to make a set !s wait for at least one initialisation ¡s to take place, we could
strengthen the condition [⊥,>]:1vC(s) to [0,>]:1vC(s).

Example 17. The completion intervals {0} and {1} are obtained from the pSCL expressions ε

and π , respectively. The intervals {⊥,0} and {⊥,1} are the completion codes for expressions
x ? ε : ε and x ? π : π in every concurrent environment C with 0:1 6vC and 1:1 6vC. Finally, if x
is undecided, we get cmpl〈x ? ε : π,C〉= {⊥,0,1}. The completion statuses {⊥,0} and {⊥,1}
may also be obtained from programs !x ; ε and !x ; π , respectively, in an environment C where
⊥:2�C(x).
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cmpl〈P,C〉 := {0} if P is one of ε or ¡s

cmpl〈!s,C〉 :=

{
{0} if [⊥,>]:1vC(s)
{⊥,0} otherwise

cmpl〈π,C〉 := {1}

cmpl〈P ||Q,C〉 := cmpl〈P,C〉⊕ cmpl〈Q,C〉

cmpl〈P ; Q,C〉 :=

{
cmpl〈P,C〉 if 0 6∈ cmpl〈P,C〉
cmpl〈P,C〉⊕ cmpl〈Q,C〉 otherwise

cmpl〈s ? P : Q,C〉 :=


cmpl〈P,C〉 if 1:1vC(s)
cmpl〈Q,C〉 if 0:1vC(s)
upp(cmpl〈P,C〉)uupp(cmpl〈Q,C〉) otherwise

Figure 6: Denotational analysis of completion codes for fprogs.

4.2 Computing Program Responses
The denotational semantics of a fprog P is given by a function 〈〈P〉〉SC that determines constructive
information on the instantaneous response of P to an external stimulus consisting of a sequential
environment S and a concurrent environment C. The sequential context S can be thought of as
an initialisation under which P is activated. It represents knowledge about the status of variables
sequentially before P is started. In contrast, the parallel environment C contains the external
stimulus which is concurrent with P. The lower bound low〈〈P〉〉SC of the response tells us what
P must write to the variables and the upper bound upp〈〈P〉〉SC is the level that the variables may
reach upon execution of P.

The function 〈〈P〉〉SC is defined by recursion on the structure of the fprog P as seen in Fig. 7.

• The empty fprog 〈〈ε〉〉SC passes out its sequential stimulus S and does not add anything to it.
The same applies to the pausing program π .

• The result of resetting a variable 〈〈¡s〉〉SC depends on whether the sequential stimulus S
already contains a status 1 for s or not and on the init status for s:

– If 1� S(s)�>, then the sequential status is S(s) = [l,u]:r where the value status
[l,u] is one of {1, [1,>],>} and the init status is r = 0. This indicates that s must
have been set sequentially before the execution of the reset ¡s. Hence, we must
crash s since a change from 1 to 0 falls outside of the model. Also, r = 0 means
that the scheduling control flow has reached the reset ¡s and since it terminates
instantaneously the down-stream computation continues with the init status 0. All
other variables x 6= s retain their status from S. This is what S∨{〈s>〉} achieves,

33



〈〈ε〉〉SC := S

〈〈π〉〉SC := S

〈〈¡s〉〉SC :=



S∨{〈s>〉} if 1� S(s)�>
S∨{〈s>:2〉} 1:1� S(s)
S∨{〈s0〉} if S(s)� 0
S∨{〈s0:2〉} if ⊥:1� S(s)� 0:2
S∨{〈s[0,>]:2〉} otherwise

〈〈!s〉〉SC :=

{
S∨{〈s1〉} if [⊥,>]:1vC(s)
S∨{〈s[⊥,1]〉}∨⊥:1 otherwise

〈〈P ||Q〉〉SC := 〈〈P〉〉SC ∨ 〈〈Q〉〉SC

〈〈s ? P : Q〉〉SC :=


〈〈P〉〉SC if 1:1vC(s)
〈〈Q〉〉SC if 0:1vC(s)
S∨upp〈〈P〉〉S∨⊥:1

C ∨upp〈〈Q〉〉S∨⊥:1
C otherwise

〈〈P ; Q〉〉SC :=


〈〈P〉〉SC if 0 6∈ cmpl〈P,C〉
〈〈Q〉〉〈〈P〉〉

S
C

C if cmpl〈P,C〉= {0}
〈〈P〉〉SC∨upp

(
〈〈Q〉〉〈〈P〉〉

S
C

C

)
otherwise

Figure 7: Denotational response analysis for fprogs (the function cmpl〈P,C〉 is explained in
Fig. 6.

viz. (S∨{〈s>〉})(s) = S(s)∨{〈s>〉}(s) = S(s)∨> = > and (S∨{〈s>〉})(x) = S(x)∨
{〈s>〉}(x) = S(x)∨⊥= S(x).

– If 1:1 � S(s) then S(s) = [l,u]:r with a value status [l,u] in {1, [1,>],>} as above,
but now the init status is r � 1. Hence the up-stream computation must have set
the variable but is still contingent, so that the ¡s is speculative. In this case we
crash the value status and raise the init status to 2 since the reset is executed only
speculatively. We must consider it as a possibly outstanding reset. The response,
therefore is S∨{〈s>:2〉}.

– If S(s)� 0 then the sequential status of s is one of S(s) ∈ {⊥, [0,⊥],0} again with
init status 0. This says that the upstream computation has finished and s cannot
have been set before. So we can execute the reset by returning (S∨{〈s0〉})(s) = 0.
The init status stays 0 because the schedule passes the reset ¡s which terminates
instantaneously.

– If ⊥:1� S(s)� 0:2 then S(s) = [l,u]:r with u≤ 0 and 1� r. The constraint u≤ 0
again guarantees that s is not set before while 1 � r tells us that the up-stream
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schedule is contingent. Consequently, we must put the init status to 2 to record that
the ¡s is only speculative. This gives the response (S∨{〈s0:2〉})(s) = 0:2.

– Finally, the remaining cases are S(s) = [l,u] : r, where l < 1, u≥ 1 and 1� r. These
cases are subsumed by the constraint [⊥,1]:1� S(s)� [0,>]:2. These statuses say
that s may have been set before. We can neither be sure that a set on s must have
happened earlier, nor that it cannot have happened. So, the execution of ¡s may crash
the model, whence the result S∨{〈s[0,>]:2〉} forces the value status of s to be [0,>].
The init status must be 2 because the speculative control flow passes a reset.

• Setting a variable 〈〈!s〉〉SC updates the sequential environment S with the status s1 for
variable s. However, the “init;update;read” protocol permits a set !s to be executed only
if and when the init phase on s has been completed. This is checked by the condition
[⊥,>]:1vC(s) on the environment which is the same as C(s)�>:1. If C(s)�>:1 then
C(s) = [l,u]:r with r � 1. Thus, there cannot be any contingent reset still outstanding
and we can execute the set !s which terminates instantaneously. This gives the response
(S∨{〈s1〉})(s) = S(s)∨1. On the other hand, if C(s) 6� >:1, then the update !s is blocked
and only executed speculatively. In this case, the set !s only forces the status of s to be
in the interval [⊥,1]. This leaves open if the set is actually executed or not. Also, the init
status for all variables must be set to 1 in order to inform any sequential successor that its
execution is only speculative rather than factual. Hence our definition of the response as
S∨{〈s[⊥,1]〉}∨⊥:1.

• The response of a parallel 〈〈P ||Q〉〉SC is obtained by letting each of the children P, Q react
to the S and C environments, independently, and then combine their responses using ∨.
This implements a logical disjunction on Boolean values and implements the idea that in
B-admissible executions resets happen before any concurrent sets of a variable. If one
of 〈〈P〉〉SC or 〈〈Q〉〉SC generates a crash, then the composition 〈〈P ||Q〉〉SC does so, too. Also
the init status of combined with the join ∨ operator: The schedule of the “init;update”
phases on a variable s in the parallel composition is completed, 〈〈P ||Q〉〉SC(s) � >:0 if
and only if the scheduling of both threads is completed, i.e., if both 〈〈P〉〉SC(s)�>:0 and
〈〈Q〉〉SC(s) � >:0 Further, the schedule of P ||Q is blocked and has a speculative reset,
〈〈P ||Q〉〉SC(s)�⊥:2 iff in one of the threads a reset is pending, i.e., if 〈〈P〉〉SC(s)�⊥:2 or
〈〈Q〉〉SC(s)�⊥:2.

• In order to derive information about the variables’ status under arbitrary SC-admissible
scheduling, conditionals need to be evaluated cautiously. The result of a branching test
s ? P : Q can only be predicted if and when the value of s has been firmly established as a
decided 0 or 1 under all possible SC-admissible schedules. The decision value for s is taken
from the concurrent environment C. Accordingly, if 1:1vC(s) then 〈〈s ? P : Q〉〉SC behaves
like 〈〈P〉〉SC and if 0:1vC(s) the result of the evaluation is 〈〈Q〉〉SC. As long as the value of
s is still undecided, i.e., if 1:1 6vC(s) and 0:1 6vC(s), we cannot know if branch P or Q
will be executed. However, at least the write accesses already recorded in the sequential
environment S must become effective. This gives the condition low〈〈s ? P : Q〉〉SC = low(S)
for the lower bound. A write access may be produced by s ? P : Q if it may be generated
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by S or by one of the branches P or Q. So, we speculatively compute the response of P
and Q in the sequential environment S∨⊥:1. This sets the init status of all variables to
1 (at least) in order to mark all write accesses in P and Q as speculative. This implies
upp〈〈s ? P : Q〉〉SC = upp(S)∨upp〈〈P〉〉S∨⊥:1

C ∨upp〈〈Q〉〉S∨⊥:1
C for the upper bound. Both

can be expressed by the single equation 〈〈s ? P : Q〉〉SC = S∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C
which is seen as follows:

low(S∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C )

= low(S)∨ low(upp〈〈P〉〉S∨⊥:1
C )∨ low upp〈〈Q〉〉S∨⊥:1

C

= low(S)∨ [⊥,>] : 2∨ [⊥,>] : 2
= low(S)∨ [⊥,>] : 2
= S∨ [⊥,>] : 2∨ [⊥,>] : 2 = S∨ [⊥,>] : 2 = low(S)

by the properties of ∨ and the projections and similarly

upp(S∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C )

= upp(S)∨upp upp〈〈P〉〉S∨⊥:1
C )∨upp upp〈〈Q〉〉S∨⊥:1

C

= upp(S)∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C .

Notice that upp〈〈P〉〉S∨⊥:1
C ∨ upp〈〈Q〉〉S∨⊥:1

C is the same as upp(〈〈P〉〉S∨⊥:1
C u〈〈Q〉〉S∨⊥:1

C ),
the upper projection of the best over-approximation of both environments 〈〈P〉〉S∨⊥:1

C and
〈〈Q〉〉S∨⊥:1

C . It is here that the meet operator u is hidden in the semantics.

• The response of a sequential composition P ; Q depends on a set of possible completion
codes cmpl〈P,C〉 ⊆ {⊥,0,1} from which we can tell whether P is known to terminate
or pause or neither. The code 0 stands for instantaneous termination, 1 for pausing and
⊥ for “unknown” or “blocked”, to model the situation when P’s control flow is stuck
at a conditional test which cannot be decided. If 0 6∈ cmpl〈P,C〉 then P cannot termi-
nate instantaneously. In this case, Q will never be executed in the current instant, so
that 〈〈P ; Q〉〉SC = 〈〈P〉〉SC. However, if cmpl〈P,C〉 = {0}, then P is guaranteed to termi-
nate instantaneously. Thus, the overall response 〈〈P ; Q〉〉SC is that of Q reacting to the
concurrent stimulus C and using the response 〈〈P〉〉SC as the sequential stimulus. Oth-
erwise if 0 ∈ cmpl〈P,C〉 and cmpl〈P,C〉 6= {0}, then this means that some conditional
test on the execution path in P cannot be decided in C. Thus, it is not known yet
how P will complete and, as a consequence, if Q will be executed. Therefore, we can
only say a variable must be written by P ; Q if it must be written by P in the present
environments S and C. This leads to low〈〈P ; Q〉〉SC = low〈〈P〉〉SC. As regards upper
bounds, a variable may be written if it may be written by Q with the response of P as

its sequential stimulus: upp〈〈P ; Q〉〉SC = upp〈〈Q〉〉〈〈P〉〉
S
C

C . One can show, as above in the
case of conditionals, that both lower and upper bound equations can be combined into

〈〈P ; Q〉〉SC = 〈〈P〉〉SC∨upp〈〈Q〉〉〈〈P〉〉
S
C

C , or equivalently 〈〈P ; Q〉〉SC = 〈〈P〉〉SCu〈〈Q〉〉
〈〈P〉〉SC
C .
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Example 18. Consider the fprog P := (x ? ε : (!y ‖ !z)) ‖ (y ? ε : !x) with the environments
S = {〈 〉}=⊥ and C0 = {[ ]}= [⊥,>]:2. The response 〈〈P〉〉SC0

is the information to be got from
a single pass through P without letting P communicate with itself. In doing that the sequential
environment S sums up the variable status that has been established by the upstream control flow
as the execution reaches P. The environment C0 accumulates our information about the global
status of all variables, including the concurrent environment in which P is running. Considering
that neither x nor y is decided in C0, both the conditionals block. Since the updates !x, !y, !z may
possibly be executed and there is no later reset, the variables’ expected status is at least ⊥ and
at most 1, i.e., 〈〈P〉〉SC0

= ⊥:1∨ {〈x[⊥,1],y[⊥,1],z[⊥,1]〉}. The init status ⊥:1 is imposed to record
that the computation for all variables is incomplete, yet there is no contingent reset for any of
them. Indeed, this is what the calculation using Fig. 7 obtains: The response of the first thread is

〈〈x ? ε : (!y ‖ !z)〉〉SC0
= S∨upp〈〈ε〉〉S∨⊥:1

C0
∨upp〈〈!y ‖ !z〉〉S∨⊥:1

C0

= S∨upp(S ∨⊥:1)∨upp(〈〈!y〉〉S∨⊥:1
C0

∨〈〈!z〉〉S∨⊥:1
C0

)

= S∨upp(S ∨⊥:1)∨upp(S ∨⊥:1∨{〈y1〉}∨S ∨⊥:1∨{〈z1〉})
= ⊥∨upp(⊥:1)∨upp(⊥:1∨{〈y1〉}∨⊥:1∨{〈z1〉})
= ⊥:1∨ upp{〈y1,z1〉} = ⊥:1∨ {〈y[⊥,1],z[⊥,1]〉}.

Similarly, we obtain 〈〈y ? ε : !x〉〉SC0
=⊥:1∨ {〈x[⊥,1]〉} for the second thread. Joined together, the

parallel composition then is

〈〈P〉〉SC0
=⊥:1∨ {〈y[⊥,1],z[⊥,1]〉}∨{〈x[⊥,1]〉}=⊥:1∨ {〈x[⊥,1],y[⊥,1],z[⊥,1]〉}

as claimed.

Without further assumptions on the environment this is the end of the story, none of the
variables’ value status can be decided beyond [⊥,1]. One shows that cmpl〈P,C0〉= {⊥,0}, i.e.,
P does not terminate. Now put P in parallel with fprog Q := ¡x ‖ !y, to continue the discussion
begun in Ex. 11. Running Q from S and C0 gives 〈〈Q〉〉SC0

=⊥:1∨{〈x0,y[⊥,1]〉}. The response is
contingent because the set !y cannot proceed in C0 which does not exclude further resets on y.
Therefore,

C1 = 〈〈P ‖ Q〉〉SC0
=⊥:1∨ {〈x[⊥,1],y[⊥,1],z[⊥,1]〉}∨{〈x0,y1〉}=⊥:1∨ {〈x[0,1],y1,z[⊥,1]〉}.

This says that x must be reset but may be set later (stabilising without crash), y and z may remain
pristine or stabilise at 1. In addition, the init status of all variables is 1, excluding any further
possible resets arising from P ‖ Q. Notice that C1 is a more precise description of the response
compared to C0, i.e., C0 @C1.

The remaining uncertainty arises because the single application of 〈〈P ‖ Q〉〉SC0
blocks the

setting of y in the write access in Q. For this, P ‖ Q needs to communicate with itself to
find out that the set !y can proceed. This is achieved by running a second pass, now feeding
the concurrent environment C1 instead of C0. Since C1 indicates a completed “init” phase
for y the set !y in Q is unblocked. We find 〈〈Q〉〉SC1

= {〈x0,y1〉}. Since variable y is now a
decided 1 the conditional in the second thread of P is turned off which makes the set !x non-
executable, so variable x cannot be set. The calculation for the second thread now is 〈〈y ? ε :
!x〉〉SC1

= 〈〈ε〉〉SC1
= S = ⊥. It terminates, i.e., cmpl〈y ? ε : !x,C1〉 = {0}, as one shows without
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difficulty from the definition in Fig. 6. The first thread still does not terminate because x is still
undecided in C1 and we have 〈〈x ? ε : (!y ‖ !z)〉〉SC1

=⊥:1∨ {〈y[⊥,1],z[⊥,1]〉} as before. This means
〈〈P〉〉SC1

=⊥:1∨ {〈y[⊥,1],z[⊥,1]〉}∨⊥= {〈y[⊥,1],z[⊥,1]〉}.
Thus, overall, this gives the refined response

C2 := 〈〈P ‖ Q〉〉SC1
=⊥:1∨ {〈y[⊥,1],z[⊥,1]〉}∨{〈x0,y1〉}=⊥:1∨ {〈x0,y1,z[⊥,1]〉}

which is a more precise status description, i.e., C1 @C2, since C2 now also endows variable x
with a decided value 0. As a result, the conditional in the first thread of P must execute !z which
finally resolves the status of z: 〈〈x ? ε : (!y ‖ !z)〉〉SC2

= 〈〈!y ‖ !z〉〉SC2
= {〈y1,z1〉} which means

C3 = 〈〈P ‖ Q〉〉SC2
= 〈〈P〉〉SC2

∨〈〈Q〉〉SC2

= 〈〈x ? ε : (!y ‖ !z)〉〉SC2
∨〈〈y ? ε : !x〉〉SC2

∨〈〈Q〉〉SC2

= {〈y1,z1〉}∨⊥∨{〈x0,y1〉} = {〈x0,y1,z1〉}.
The environment C3, which satisfies C2 @C3, is a crisp fixed point, 〈〈P ‖ Q〉〉SC3

=C3, in which
the parallel composition P ‖ Q terminates, i.e., cmpl〈P ‖ Q,C3〉= {0}.

Ex. 18 is what we shall call a strongly Berry-constructive program (cf. Def. 7) which
generates a crisp fixed point response. This implies (cf. Thm. 1) that the program is B-reactive
and SC-read-determinate. There are however programs which cannot be scheduled because
they contain a causal cycle which makes the schedule lock up. These deadlocks arise from the
“init;update;read” protocol constraint that makes read accesses wait for the prior completion of
all possible write accesses and sets wait for the completion of any possible resets. The following
examples illustrates the two typical cases of deadlocks.

Example 19. The program P1 := !x ; ¡y ‖ !y ; ¡x is not constructive. Indeed it does not admit any
SC-admissible (and hence neither any B-admissible) schedule because in all its free schedules
a reset happens after a concurrent set to the same variable, yet they are not confluent with
each other. Hence, each schedule violates SC-admissibility. Also, the final memory is non-
deterministic depending on the schedule. If we chose the sequence !x ; !y ; ¡x ; ¡y the final memory
has y = 0, whereas if we schedule !x ; ¡y ; !y ; ¡x the we get y = 1. If we run the fixed point analysis
the problem becomes visible as a deadlock: From S :=⊥ and C0 := [⊥,>]:2 the two concurrent
sets !x and !y both block so that 〈〈!x〉〉SC0

=⊥:1∨{〈x[⊥,1]〉} and 〈〈!y〉〉SC0
=⊥:1∨{〈y[⊥,1]〉}. Then,

because the sets guard the resets ¡y and ¡x, respectively, their init status is set to 2:

〈〈P1〉〉SC0
= 〈〈!x ; ¡y ‖ !y ; ¡x〉〉SC0

= 〈〈!x ; ¡y〉〉SC0
∨〈〈!y ; ¡x〉〉SC0

= 〈〈!x〉〉SC0
∨upp〈〈¡y〉〉

〈〈!x〉〉SC0
C0

∨〈〈!y〉〉SC0
∨upp〈〈¡x〉〉

〈〈!y〉〉SC0
C0

= ⊥:1∨{〈x[⊥,1]〉}∨upp〈〈¡y〉〉⊥:1∨{〈x[⊥,1]〉}
C0

∨

⊥:1∨{〈y[⊥,1]〉}∨upp〈〈¡x〉〉⊥:1∨{〈y[⊥,1]〉}
C0

= ⊥:1∨{〈x[⊥,1]〉}∨{〈y[⊥,1]〉}
∨upp(⊥:1∨{〈x[⊥,1]〉}∨{〈y0:2〉})∨upp(⊥:1∨{〈y[⊥,1]〉}∨{〈x0:2〉})

= ⊥:1∨{〈x[⊥,1]〉}∨{〈x[⊥,0]:2〉}∨{〈y[⊥,1]〉}∨{〈y[⊥,0]:2〉}
= ⊥:1∨{〈x[⊥,1]:2〉}∨{〈y[⊥,1]:2〉}.
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In this updated environment C1 := 〈〈P1〉〉SC0
both variables still indicate contingent resets. As a

consequence, in the next iteration the sets !x and !y again block, whence 〈〈P1〉〉SC1
= C1. This

fixed-point C1 is not crisp (not even decided) and constitutes a scheduling deadlock. Observe
that the deadlock is detected with the help of the init status not reducing from 2 to 1. In the
fixed point semantics of [4] where the init status is missing P1 would wrongly be classified as
SC-constructive. This is a mistake that our extended semantics now fixes.

Example 20. Another unschedulable program is the “arbiter” P2 := x ? ε : !y ‖ y ? ε : !x. It
is not constructive because it fails to have any admissible schedules. Every execution order
forces a set to happen concurrently after a read and both are not guaranteed to be confluent
(depends on the initial memory). As one can verify, our domain-theoretic analysis of P2 obtains
C1 := 〈〈P1〉〉SC0

=⊥:1∨{〈x[⊥,1],y[⊥,1]〉} and then 〈〈P1〉〉SC1
=C1, again choosing S :=⊥ and C0 :=

[⊥,>]:2. The fixed point C1 is undecided and therefore P1 not (strongly) Berry-constructive
(Def. 7).

The completion codes cmpl〈P,C〉 control the analysis of sequential composition. As long as
P does not terminate or pause, a sequential successor Q only enters the calculation for P ; Q to
reduce the “may” (upper bound) information on signal statuses, never the “must” (lower bound)
information. This is similar to the treatment of conditionals s ? P : Q in which we block the
“must” reaction of P and Q until variable s becomes decided. Until this happens the conditional
does not terminate. One can show that termination and crisp reaction environments are closely
related. For this we call an environment E synchronized when (i) E(x) = [l,u]:0 implies l = u,
and (ii) ⊥:1 � E(x) implies ∀y.⊥:1 � E(y), for all variables x ∈ V . As we shall see, all our
environments will be synchronized. Hence the difference between a completed schedule marked
by 0 and a contingent schedule marked by one of {1,2} is a feature of the whole environment
rather than an individual variable.

Proposition 8. Let S be synchronized then

1. 〈〈P〉〉SC is synchronized.

2. If S is a crisp sequential environment, i.e., S(x) ∈ D for all x ∈ V, then the response
of a terminating or pausing fprog starting from S is crisp, too: If cmpl〈P,C〉 = {0} or
cmpl〈P,C〉= {1} then 〈〈P〉〉SC(x) ∈ D for all x ∈ V. The converse also holds, i.e., if 〈〈P〉〉SC
is crisp, then ⊥ 6∈ cmpl〈P,C〉.

Proof. (1) Suppose 〈〈P〉〉SC(x) = [l,u]:0 for a given variable x ∈ V . One shows l = u without
difficulty by induction on P. What is important to observe is that the init status 0 right away
excludes the contingent (blocking) cases of a variable access when P is a set !s, reset ¡s,
conditional s ? P′ : Q′ or a sequential P′ ; Q′. Then, the claim is a matter of straightforward
induction on P′ and Q′. For a reset ¡s, either x 6= s, where the claim follows from the assumption
on S, or x = s and only the cases that 〈〈¡x〉〉SC = S∨{〈x>〉}, 〈〈¡x〉〉SC = S∨{〈x0〉} remain. Here, too
we can use the assumption that S is synchronized, as for the inductive case where P is ε and
π . Finally, for parallel composition P′ ‖ Q′ and generally for all other cases, we exploit that
E1(x)∨E2(x) � >:0 iff both E1(x) � >:0 and E2(x) � >:0. This implies that E1∨E2 is crisp
iff both E1 and E2 are crisp exploiting that both E1 and E2 are synchronized (which is obtained
in each case from the induction hypothesis).
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The second property of being synchronized is that if ⊥:1� 〈〈P〉〉SC(x) for one variable x ∈ V ,
then ⊥:1� 〈〈P〉〉SC(y) for all variables y. This is obvious by induction on P, considering how the
init status is set above 1 in the definition of 〈〈P〉〉SC along the different cases. This time we use the
fact that ⊥:1� E1(x)∨E2(x) iff ⊥:1� E1(x) or ⊥:1� E2(x). For the inductive step of a reset
one observes that ⊥:1� 〈〈¡s〉〉SC(x) iff ⊥:1� S(x) whether x = s or x 6= s.

(2) Note that the claim that ⊥ 6∈ cmpl〈P,C〉 is equivalent to the disjunction of cmpl〈P,C〉=
{0} or cmpl〈P,C〉= {1} is obvious from the definition of the completion codes. Recall that an
environment E is crisp if E(s) = [a,a]:0= a ∈ D for each s ∈ V . The proof is by induction on
the structure of P, along the recursive definitions of 〈〈P〉〉SC and cmpl〈P,C〉. Because of statement
(1) of the Prop. 8 and the assumption that S is synchronized, all of the environments 〈〈P′〉〉SC
obtained for the sub-programs P′ of P are synchronized, too. A synchronized environment E is
crisp iff E �>:0 and it is not crisp iff there exists a variable s such that E(s)�⊥:1.

• The cases of P = ε and P = π are trivial.

• We have cmpl〈¡s,C〉= {0} so that we must show 〈〈¡s〉〉SC is crisp iff S is crisp. The crucial
observation is that for a reset 〈〈¡s〉〉SC in a crisp sequential environment S only the two
cases S∨{〈s>〉} or S∨{〈s0〉} apply which both preserve crispness. Vice versa, if 〈〈¡s〉〉SC is
crisp then the only possible cases are 〈〈¡s〉〉SC = S∨{〈s>〉} or 〈〈¡s〉〉SC = S∨{〈s0〉}. All others
generate the init status 2 on variable s which contradicts crispness. But then either 1 �
S(s)�> or S(s)� 0 which, exploiting the assumption that S is synchronized, implies that
S(s) is crisp. For all other variables x 6= s crispness follows from the assumption because
S(x) = S(x)∨⊥= S(x)∨{〈sa〉}(x) = (S∨{〈sa〉})(x) = 〈〈¡s〉〉SC(x) for both a ∈ {0,>}.
• Suppose [⊥,>]:1 6vC(s), whence cmpl〈!s,C〉= {⊥,0}. We must show that 〈〈!s〉〉SC is not

crisp. But this is obvious since then 〈〈!s〉〉SC = S∨{〈s[⊥,1]〉}∨⊥:1 which gives variable
s the status S(s)∨ [⊥,1]:1. Now assume [⊥,>]:1 vC(s), so that cmpl〈!s,C〉 = {0} and
〈〈!s〉〉SC = S∨{〈s1〉}. As above we argue that then 〈〈!s〉〉SC is crisp iff S is crisp.

• The inductive proof for a parallel composition succeeds, because on the one hand, ⊥ 6∈
cmpl〈P ‖ Q,C〉 = cmpl〈P,C〉⊕ cmpl〈Q,C〉 iff ⊥ 6∈ cmpl〈P,C〉 and ⊥ 6∈ cmpl〈Q,C〉. On
the other hand, a join E1∨E2 of two synchronized environments is crisp iff and only if
both E1 and E2 are crisp. Both 〈〈P〉〉SC and 〈〈Q〉〉SC are synchronized by Prop. 8(1).

• To handle a conditional 〈〈s ? P : Q〉〉SC let us look at undecided case first, i.e., where
1:1 6vC(s) and 0:1 6vC(s). Then,⊥∈ upp(cmpl〈P,C〉ucmpl〈Q,C〉) = cmpl〈s ? P : Q,C〉
by definition of the upp abstraction. We can infer that 〈〈s ? P : Q〉〉SC = S∨upp〈〈P〉〉S∨⊥:1

C ∨
upp〈〈Q〉〉S∨⊥:1

C is not crisp, using the in-equations ⊥:1 = upp(⊥:1) � upp(S∨⊥:1) �
upp〈〈P〉〉S∨⊥:1

C � 〈〈s ? P : Q〉〉SC.

What if the conditional is decided, 1:1vC(s) or 0:1vC(s)? Then 〈〈s ? P : Q〉〉SC = 〈〈P〉〉SC
or 〈〈s ? P : Q〉〉SC = 〈〈Q〉〉SC and the claim follows directly from the induction hypothesis.

• The last operator is the sequential composition. First observe that if 0 6∈ cmpl〈P,C〉 then
〈〈P ; Q〉〉SC = 〈〈P〉〉SC and cmpl〈P ; Q,C〉 = cmpl〈P,C〉. Then, the claim is obtained from
the induction hypothesis without detours. So, assume 0 ∈ cmpl〈P,C〉 henceforth. But this
means cmpl〈P ; Q,C〉= cmpl〈P,C〉⊕ cmpl〈Q,C〉, and further that

⊥ 6∈ cmpl〈P ; Q,C〉 iff cmpl〈P,C〉= {0} and ⊥ 6∈ cmpl〈Q,C〉. (15)
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If in fact cmpl〈P,C〉= {0} then (i) by induction hypothesis on P, we can conclude that (i)

〈〈P〉〉SC is crisp iff S is crisp; further, we have (ii) 〈〈P ; Q〉〉SC = 〈〈Q〉〉〈〈P〉〉
S
C

C and, due to (15),
(iii) ⊥ 6∈ cmpl〈P ; Q,C〉 iff ⊥ 6∈ cmpl〈Q,C〉. From here the claim follows by induction
hypothesis on Q, considering that 〈〈P〉〉SC is synchronized by Prop. 8(1).

If cmpl〈P,C〉 6= {0}, i.e., cmpl〈P,C〉= {⊥,0}, then by (15) we have ⊥ ∈ cmpl〈P ; Q,C〉.
We show that 〈〈P ; Q〉〉SC is not crisp. This follows because by induction hypothesis on P the
environment 〈〈P〉〉SC is not crisp. Yet, it is synchronized, which means that ⊥:1� 〈〈P〉〉SC(x)
for some x ∈ V . On the other hand, in this case 〈〈P ; Q〉〉SC = 〈〈P〉〉SC ∨ upp〈〈Q〉〉〈〈P〉〉

S
C

C .

Thus, ⊥:1 � 〈〈P〉〉SC(x) � 〈〈P〉〉SC(x)∨ upp〈〈Q〉〉〈〈P〉〉
S
C

C (x) = 〈〈P ; Q〉〉SC(x). This shows that
〈〈P ; Q〉〉SC is not crisp as required.

Prop. 8 does not hold for decidedness: Although a program does not terminate it may be
possible to constructively prove that its response is decided. E.g., the fprog s ? ε : ε does
not complete in the concurrent environment C(s) = [⊥,>]:2 but still has the decided response
〈〈s ? ε : ε〉〉⊥C (s) =⊥:1, implying that the s remains pristine and environment-controlled.

Proposition 9. For every reset-free fprog P, the sets mustk(P,C) and cannotk(P,C) extracted
from cmpl〈P,C〉 as defined in Sec. 3.4 are identical to the completion semantics of Esterel [12].

Proof. To show the connection with [12] let us take a detailed look at the mustk and cannotk sets
and see how they are computed for the different operators of the language. We begin with mustk:

• The primitive statements have mustk(ε,C) = mustk(!s,C) = {0} and mustk(π,C) = {1}.

• We have 0 6∈ mustk(P,C) iff cmpl〈P,C〉 6= {0}. In all cases one shows that 0 6∈ mustk(P ;
Q,C) and also that 1 ∈ mustk(P ; Q,C) iff 1 ∈ mustk(P,C). This is because γ1⊕ γ2 = {0}
iff γ1 = γ2 = {0}. Thus, mustk(P ; Q,C) = mustk(P,C) if 0 6∈ mustk(P ; Q,C). On the
other hand, if 0 ∈ mustk(P,C), i.e., cmpl〈P,C〉 = {0}, then cmpl〈P ; Q,C〉 = cmpl〈Q,C〉
by definition and thus mustk(P ; Q,C) = mustk(Q,C). Overall,

mustk(P ; Q,C) =

{
mustk(P,C) if 0 6∈ mustk(P,C)

mustk(Q,C) otherwise.

• For parallel composition, the following holds:

– mustk(P ‖ Q,C) = /0 iff mustk(P,C) = /0 or mustk(Q,C) = /0;

– mustk(P ‖ Q,C) = {0} iff mustk(P,C) = {0} and mustk(Q,C) = {0};
– mustk(P ‖Q,C) = {1} iff either mustk(P,C) = {1} and mustk(Q,C) 6= /0, or mustk(Q,

C) = {1} and mustk(P,C) 6= /0.

This can be summarised as

mustk(P ‖ Q,C) = Max(mustk(P,C),mustk(Q,C)),

where Max(A,B) = {a⊕b | a ∈ A,b ∈ B}= {max(a,b) | a ∈ A,b ∈ B} for subsets A,B⊆
{0,1}.
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• Finally, since always⊥∈ upp(cmpl〈P,C〉)uupp(cmpl〈Q,C〉) we find mustk(s ? P : Q,C)=
/0 if s1 6∈C and s0 6∈C, by definition. Hence, for conditionals

mustk(s ? P : Q,C) =


mustk(P,C) if 1:1vC(s)
mustk(Q,C) if 0:1vC(s)
/0 otherwise.

Now we turn to the cannotk sets:

• For the primitive statements we compute cannotk(ε,C)= cannotk(!s,C)= {1} and cannotk
(π,C) = {0}, or in positive terms, cank(ε,C) = cank(!s,C) = {0} and cank(π,C) = {1}.

• The definition for conditional statements directly implies that if 1:1vC(s) then cannotk(s ?
P : Q,C) = cannotk(P,C) and if 0:1 vC(s) then cannotk(s ? P : Q,C) = cannotk(Q,C).
If both 1:1 6v C(s) and 0:1 6v C(s) then one can show that cannotk(s ? P : Q,C) =
cannotk(P,C)∩cannotk(Q,C). This is because we have, in this case, cmpl〈s ? P : Q,C〉=
upp(cmpl〈P,C〉)u upp(cmpl〈Q,C〉) and since for boolean a ∈ {0,1}, we have that a 6∈
γ1u γ2 iff a 6∈ γ1 and a 6∈ γ2, as well as a 6∈ uppγ iff a 6∈ γ . In terms of can-sets

cank(s ? P : Q,C) =


cank(P,C) if 1:1vC(s)
cank(Q,C) if 0:1vC(s)
cank(P,C)∪ cank(Q,C) otherwise.

• For the parallel operator observe that 1 ∈ γ1⊕ γ2 iff 1 ∈ γ1 or 1 ∈ γ2. I.e., a parallel cannot
pause if both concurrent branches cannot pause; Further, 0 ∈ γ1⊕ γ2 iff 0 ∈ γ1 and 0 ∈ γ2,
for all γ1,γ2 ∈ I(C). In other words, a parallel cannot terminate if one of its branches
cannot terminate. This leads to

cank(P ‖ Q,C) = Max(cank(P,C),cank(Q,C)).

• The sequential composition we makes the following case distinction: First suppose 0 ∈
cannotk(P,C) or equivalently, 0 6∈ cmpl〈P,C〉. Then, the definition implies that cannotk(P ;
Q,C) = cannotk(P,C). What if 0 ∈ cmpl〈P,C〉? Since then cmpl〈P ; Q,C〉= cmpl〈P,C〉⊕
cmpl〈Q,C〉 we get 0 ∈ cmpl〈P ; Q,C〉 iff 0 ∈ cmpl〈Q,C〉. Also, a ∈ cmpl〈P ; Q,C〉 iff
a ∈ cmpl〈P,C〉 or a ∈ cmpl〈Q,C〉 for all a ∈ {⊥,1}. This can be summed up as

cmpl〈P ; Q,C〉= (cmpl〈P,C〉 \{0})∪ cmpl〈Q,C〉.

Hence,

cank(P ; Q,C) =

{
cank(P,C) if 0 6∈ cank(P,C)

(cank(P,C)\{0})∪ cank(Q,C) otherwise.

These calculations, extracting recursive definitions for the sets mustk(P,C) and cank(P,C)
show that we have recovered precisely the definition in [12] of the completion codes that must
and can be computed for a program P in environment C.
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4.3 The Fixed Point Semantics and Constructivity
While 〈〈P〉〉SC describes the instantaneous behaviour of P in a compositional fashion, the con-
structive response of P running by itself is obtained by the least fixed point

µC.〈〈P〉〉SC =
⊔
i≥0

Ci, (16)

where C0 := [⊥,>]:2 and Ci+1 := 〈〈P〉〉SCi
. Note that the sequential environment S is not updated

in the iteration. This reflects the fact that the fixed point approximates the reaction always from
the beginning of and concurrent with P. In contrast, the environment S is an initialisation which
captures the sequential history of the thread P which remains fixed each time the iteration takes
place. The fixed point µC.〈〈P〉〉SC closes P off against its concurrent environment C. It lets P
communicate with itself by treating P as its own concurrent context.

For the fixed point to exist the termination function cmpl〈P,C〉 and functional 〈〈P〉〉SC must be
well-behaved. This is the content of the following Prop. 10. We do not use more than elementary
fixed point theory over finite domains, here. For a detailed exposition of the technical background
the reader is referred to [22].

Proposition 10. Let P be an arbitrary fprog, S, E environments. Then,

1. The functional cmpl〈P,E〉 is monotonic with respect to v in E.

2. The functional 〈〈P〉〉SC is inflationary in the sequential environment S with respect to �.

3. The functional 〈〈P〉〉SE is monotonic with respect to v in both the concurrent environment
E and the sequential environment S and monotonic for � in S.

Proof. (1) Suppose E1 v E2. We show cmpl〈P,E1〉 v cmpl〈P,E2〉 by induction on the structure
of P.

• For the base cases P∈{ε, ¡s} the statement is trivial since cmpl〈P,E1〉= {0}= cmpl〈P,E2〉.
P = π we have cmpl〈P,E1〉= {1}= cmpl〈P,E2〉.

• For P = !s we observe that {⊥,0} v {0} and that if E1(s) = α1:r1 with r1 � 1 is given
and E1 v E2 then we also have E2(s) = α2:r2 and r2 � r1 � 1.

• For parallel composition P ||Q the induction step follows directly from monotonicity of ⊕
and the induction hypothesis.

• The crucial case for sequential composition is when 0 ∈ cmpl〈P,E1〉, for which cmpl〈P ;
Q,E1〉 = cmpl〈P,E1〉⊕ cmpl〈Q,E1〉, yet 0 6∈ cmpl〈P,E2〉 when the completion function
switches to cmpl〈P ; Q,E2〉= cmpl〈P,E2〉. We must show that cmpl〈P,E2〉⊆ cmpl〈P,E1〉⊕
cmpl〈Q,E1〉. By induction hypothesis we have cmpl〈P,E2〉 ⊆ cmpl〈P,E1〉, so it suffices to
prove cmpl〈P,E1〉 ⊆ cmpl〈P,E1〉⊕ cmpl〈Q,E1〉. By assumption 0 6∈ cmpl〈P,E1〉, so this
inclusion only needs to hold for codes⊥ and 1. But this follows since a ∈ γ1⊕γ2 iff a ∈ γ1
or a ∈ γ2 for a ∈ {⊥,1} and γ1,γ2 ∈ I(C).
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• First, suppose 0:1 6v E2(s) and 1:1 6v E2(s). For the completion codes we get cmpl〈s ? P :
Q,E2〉= upp(cmpl〈P,E2〉)uupp(cmpl〈Q,E2〉)⊆ upp(cmpl〈P,E1〉uuppcmpl〈Q,E1〉) =
cmpl〈s ? P : Q,E2〉 using the induction hypothesis and monotonicity of upp and u. If
1:1 v E2(s) then cmpl〈s ? P : Q,E2〉 = cmpl〈P,E2〉. Also, we must have 0:1 6v E1(s).
Otherwise, if 0:1v E1(s), then by E2 ⊆ E1, both 0:1v E2(s) and 1:1v E2(s) which is im-
possible. Therefore, cmpl〈s ? P : Q,E1〉 is either (i) cmpl〈P,E1〉 or (ii) upp(cmpl〈P,E1〉u
uppcmpl〈Q,E1〉). In either cases, cmpl〈P,E1〉 ⊆ cmpl〈s ? P : Q,E1〉 since the operators
upp and u are ⊆-increasing. Overall, cmpl〈s ? P : Q,E2〉= cmpl〈P,E2〉 ⊆ cmpl〈P,E1〉 ⊆
cmpl〈s ? P : Q,E1〉, by induction hypothesis, as desired. For 0:1 v E2(s) we argue in a
similar fashion.

(2) We show that for all S, S� 〈〈P〉〉SC by induction on the structure of P.

• The cases P = ε and P = π are trivial since 〈〈P〉〉SC = S implies S� 〈〈P〉〉SC by reflexivity.

• For !s: Since ∨ is the join in the�-lattice we have S� S∨{〈s1〉} and S� S∨{〈s[⊥,1]〉}∨⊥:1.
Hence, S� 〈〈!s〉〉SC whether [⊥,>]:1vC(s) or not.

• For ¡s: Again, S� S∨{〈sγ〉}= 〈〈¡s〉〉SC in all cases of γ ∈ {>,0,0:2, [0,>]:2,>:2}.

• For P||Q: Assume by induction hypothesis that S� 〈〈P〉〉SC and S� 〈〈Q〉〉SC. Since S = S∨S,
monotonicity of ∨ gives us S∨ S � 〈〈P〉〉SC ∨ 〈〈Q〉〉SC, and thus S � 〈〈P〉〉SC ∨ 〈〈Q〉〉SC. The
definition 〈〈P ||Q〉〉SC = 〈〈P〉〉SC∨〈〈Q〉〉SC implies S� 〈〈P ||Q〉〉SC.

• For P ; Q: The induction hypothesis applied for P and Q yields the inequalities

S� 〈〈P〉〉SC � 〈〈Q〉〉
〈〈P〉〉SC
C . (17)

Since the upper projection is �-monotonic, (17) implies upp(S) � upp〈〈P〉〉SC. Further,
using �-monotonicity of ∨ and upp, we find

S� S∨upp(S)� 〈〈P〉〉SC∨upp〈〈P〉〉SC � 〈〈P〉〉SC∨upp〈〈Q〉〉〈〈P〉〉
S
C

C . (18)

Finally, by definition, 〈〈P ; Q〉〉SC is either one of the three environments 〈〈P〉〉SC, 〈〈Q〉〉〈〈P〉〉
S
C

C

or 〈〈P〉〉SC∨upp〈〈Q〉〉〈〈P〉〉
S
C

C , depending on cmpl〈P,C〉, which results in S� 〈〈P ; Q〉〉SC, from
(17) or (18) respectively, as desired.

• For the conditionals: By induction hypothesis both S � 〈〈P〉〉SC and S � 〈〈Q〉〉SC. Fur-
ther, S� S∨upp〈〈P〉〉S∨⊥:1

C ∨upp〈〈Q〉〉S∨⊥:1
C exploiting the properties of ∨. The fact that

〈〈P〉〉SC, 〈〈Q〉〉SC and S∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C are the only possible responses of
the conditionals implies S� 〈〈s ? P : Q〉〉SC.

(3) First we prove monotonicity with respect to v. Suppose S1 v S2 and E1 v E2. We show
〈〈P〉〉S1

E1
v 〈〈P〉〉S2

E2
by induction on the structure of P. For notational compactness let us generally

abbreviate 〈〈P〉〉Si
Ei

as 〈〈P〉〉ii wherever possible. Also, notice that [1,>] v [a,b] is equivalent to
1� [a,b] and [⊥,0]v [a,b] is the same as [a,b]� 0.
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• For P = ε and P = π the statement is trivial because 〈〈P〉〉11 = S1 v S2 = 〈〈P〉〉22.

• If E1(s) = α1:r1 with r1 � 1 then also E2(s) = α2:r2 with r2 � r1 � 1. Then, since ∨
is monotonic for v we have 〈〈!s〉〉11 = S1 ∨{〈s1〉} v S2 ∨{〈s1〉} = 〈〈!s〉〉22. Further, note
that (S1∨{〈s[⊥,1]〉}∨⊥:1)(s) = S1(s)∨ [⊥,1]∨⊥:1= S1(s)∨ [⊥,1]:1v S2(s)∨1 and for
x 6= s we calculate (S1∨{〈s[⊥,1]〉}∨⊥:1)(x) = S1(x)∨⊥:1 v S2(x)∨⊥ = S2(x). Hence,
〈〈!s〉〉11 v 〈〈!s〉〉22 in all other cases, too.

• First note that [0,>]:2 is v-minimal among all statuses γ ∈ {>,0,0:2,>:2}. Hence, if
S1(s) = [a1,b1]:r1 with 1� r1, a1 � 0 and 1� b1 we have 〈〈¡s〉〉11 = S1∨{〈s[0,>]:2〉} v S2∨
{〈s[0,>]:2〉} v 〈〈¡s〉〉22 by monotonicity. If 1� S1(s)�> then S1 v S2 implies 1� S2(s)�>,
too, and if S1(s)� 0, then also S2(s)� 0. Hence, 〈〈¡s〉〉11 = S1∨{〈sγ〉} v S2∨{〈sγ〉}= 〈〈¡s〉〉22
independently of whether γ = 0 or γ =>. The only remaining cases are S1(s) = α1:r1 with
1� r1 and (i) α1 � 0 or (ii) α1 � 1. From S1 v S2 it follows that S2(s) = α2:r2 with α2 � 0
in case (i) and α2 � 1 in case (ii). On top of that, in each case either 1� r2 or r2 = 0. For
(i) the result then follows directly since 〈〈¡s〉〉11 = S1∨{〈s0:2〉} v S2∨{〈sγ〉} = 〈〈¡s〉〉22 for
both γ = 0:2 or γ = 0. For (ii) we observe that 〈〈¡s〉〉11 = S1∨{〈s>:2〉} v S2∨{〈sγ〉}= 〈〈¡s〉〉22
for both γ ∈ {>:2,>}.
• Parallel composition P ||Q is handled by induction hypothesis and monotonicity:

〈〈P ||Q〉〉11 = 〈〈P〉〉11∨〈〈Q〉〉11 v 〈〈P〉〉22∨〈〈Q〉〉22 = 〈〈P ||Q〉〉22.

• Sequential composition P ; Q needs more effort. Suppose first that 0 ∈ cmpl〈P,E2〉 and
cmpl〈P,E2〉 6= {0}. Then, by monotonicity of the completion function, Prop. 10(1), we
also have 0 ∈ cmpl〈P,E1〉 and cmpl〈P,E1〉 6= {0}. In this case we get

〈〈P ; Q〉〉11 = 〈〈P〉〉11∨upp〈〈Q〉〉〈〈P〉〉
1
1

1 v 〈〈P〉〉22∨upp〈〈Q〉〉〈〈P〉〉
2
2

2 = 〈〈P ; Q〉〉22
by induction hypothesis and v-monotonicity of ∨ and upp. Similarly, if 0 6∈ cmpl〈P,E1〉
then also 0 6∈ cmpl〈P,E2〉. We calculate

〈〈P ; Q〉〉11 = 〈〈P〉〉11 v 〈〈P〉〉22 = 〈〈P ; Q〉〉22.

Now consider the case that cmpl〈P,E1〉= {0} and thus also cmpl〈P,E2〉= {0} by mono-
tonicity Prop. 10(1). Then,

〈〈P ; Q〉〉11 = 〈〈Q〉〉〈〈P〉〉
1
1

1 v 〈〈Q〉〉〈〈P〉〉
2
2

2 = 〈〈P ; Q〉〉22
again exploiting the induction hypothesis and monotonicity of 〈〈〉〉 in the sequential input.
If 0 6∈ cmpl〈P,E1〉= {1}, then also 0 6∈ cmpl〈P,E2〉= {1} and thus 〈〈P ; Q〉〉11 = 〈〈P〉〉11 v
〈〈P〉〉22 = 〈〈P ; Q〉〉22 by induction hypothesis.

It remains to treat the cases where 0 ∈ cmpl〈P,E1〉 and cmpl〈P,E1〉 6= {0}, while either (i)

cmpl〈P,E2〉= {0} or (ii) 0 6∈ cmpl〈P,E2〉. Consider case (i) first: Since upp〈〈Q〉〉〈〈P〉〉
1
1

1 v
〈〈Q〉〉〈〈P〉〉

1
1

1 by Lem. 3(4) and monotonicity of ∨ for v, the inflationary property Prop. 10(2)

〈〈P ; Q〉〉11 = 〈〈P〉〉11∨upp〈〈Q〉〉〈〈P〉〉
1
1

1

v 〈〈P〉〉11∨〈〈Q〉〉
〈〈P〉〉11
1 = 〈〈Q〉〉〈〈P〉〉

1
1

1 v 〈〈Q〉〉〈〈P〉〉
2
2

2 = 〈〈P ; Q〉〉22
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using the induction hypothesis. For (ii) we argue as follows:

〈〈P ; Q〉〉11 = 〈〈P〉〉11∨upp〈〈Q〉〉〈〈P〉〉
1
1

1 v 〈〈P〉〉11 v 〈〈P〉〉22 = 〈〈P ; Q〉〉22
by induction hypothesis and Lem. 3(3). This concludes the case of sequential composition.

• Next consider a branching s ? P : Q. The first case which we take a look at is when variable
s does not have a decided Boolean value in the environment E2, i.e., when 1:1 6v E2(s) and
0:1 6v E2(s). This also means that 1:1 6v E1(s) and 0:1 6v E1(s) because E1 v E2. Then,

〈〈s ? P : Q〉〉11 = S1∨upp〈〈P〉〉S1∨⊥:1
1 ∨upp〈〈Q〉〉S1∨⊥:1

1

v S2∨upp〈〈P〉〉S2∨⊥:1
2 ∨upp〈〈Q〉〉S2∨⊥:1

2 = 〈〈s ? P : Q〉〉22
by induction hypothesis and monotonicity of ∨ and upp with respect to v. It remains to
verify the cases when s is decided in the increased environment E2, i.e., when 1:1v E2(s)
or 0:1v E2(s).

To start with let us assume 0:1 v E2(s), i.e., 〈〈s ? P : Q〉〉22 = 〈〈Q〉〉22. If also 0:1 v E1(s)
we are done immediately since then 〈〈s ? P : Q〉〉11 = 〈〈Q〉〉11 v 〈〈Q〉〉22 = 〈〈s ? P : Q〉〉22 by
induction hypothesis. What if 0:1 6v E1(s)? Then, certainly we also have 1:1 6v E1(s),
because otherwise this would contradict the assumption 0:1 v E2(s) and the inclusion
E1 v E2. Hence, since then 1:1 6v E1(s), the reaction of s ? P : Q in S1, E1 is determined
as 〈〈s ? P : Q〉〉11 = S1 ∨ upp〈〈P〉〉S1∨⊥:1

1 ∨ upp〈〈Q〉〉S1∨⊥:1
1 . Since by Prop. 6, Prop. 3(1),

Prop. 10(2), Lem. 2(2) and Lem. 3(2) we have

low(S1∨upp〈〈P〉〉S1∨⊥:1
1 ∨upp〈〈Q〉〉S1∨⊥:1

1 )

= low(S1)∨ lowupp(〈〈P〉〉S1∨⊥:1
1 ∨〈〈Q〉〉S1∨⊥:1

1 )

= lowlow(S1) = low(S1) v low〈〈Q〉〉11.

The inequation S1 � S1∨⊥:1 together with monotonicity of 〈〈 〉〉S in the sequential envi-
ronment S (proved above) and monotonicity of upp with respect to � implies

upp〈〈Q〉〉11 � upp〈〈Q〉〉S1∨⊥:1
1 � S1∨upp〈〈P〉〉S1∨⊥:1

1 ∨upp〈〈Q〉〉S1∨⊥:1
1

and then Lem. 2(2) and Prop. 3(1) means

upp(S1∨upp〈〈P〉〉S1∨⊥:1
1 ∨upp〈〈Q〉〉S1∨⊥:1

1 )v upp upp〈〈Q〉〉11 = upp〈〈Q〉〉11.

Now we can invoke Prop. 3(3) to get

〈〈s ? P : Q〉〉11 = S1∨upp〈〈P〉〉S1∨⊥:1
1 ∨upp〈〈Q〉〉S1∨⊥:1

1

v 〈〈Q〉〉11 v 〈〈Q〉〉22 = 〈〈s ? P : Q〉〉22
by the induction hypothesis.

It remains to treat the case 1:1 v E2(s), i.e., 〈〈s ? P : Q〉〉22 = 〈〈P〉〉22. If also 1:1 v E1(s)
the desired result follows directly from the induction hypothesis, because 〈〈s ? P : Q〉〉11 =
〈〈P〉〉11 v 〈〈P〉〉22 = 〈〈s ? P : Q〉〉22. Otherwise, if 1:1 6v E1(s) then it must also be the case that

46



0:1 6v E1(s) for otherwise the inclusion E1 v E2 would imply 0:1v E2(s), in contradiction
with the assumption 1:1v E2(s). Thus,

〈〈s ? P : Q〉〉11 = S1∨upp〈〈P〉〉S1∨⊥:1
1 ∨upp〈〈Q〉〉S1∨⊥:1

1

v 〈〈P〉〉11 v 〈〈P〉〉22 = 〈〈s ? P : Q〉〉22

using the same argument as above.

Finally, let us argue monotonicity for � in the sequential environment, i.e., to show that
S1 � S2 implies 〈〈P〉〉S1

E � 〈〈P〉〉
S2
E . We proceed essentially as above by induction on P. Most cases

follow directly by induction hypothesis and �-monotonicity of the operators ∨ and upp used
in the definition of 〈〈 〉〉SE . The only interesting induction step is the one where the sequential
environment S is used in a case analysis, viz. in the definition of 〈〈¡s〉〉SE . There, an increase
S1 � S2 may result in the following switch-overs:

• We may have 1 � S1(s) � > and 1:1 � S2(s). This results in an increase 〈〈¡s〉〉S1
E =

S1∨{〈s>〉} � S2∨{〈s>〉} � S2∨{〈s>:2〉}= 〈〈¡s〉〉S2
E .

• For S1 we may have S1(s)� 0 and for S2 any one of the other conditions in the definition
of 〈〈¡s〉〉S2

E holding true. This is fine since then 〈〈¡s〉〉S1
E = S1 ∨{〈s0〉} and 0 � γ for all

γ ∈ {>,0:2, [0,>]:2,>:2}.

• The environment S1 may satisfy ⊥:1� S1(s)� 0:2 while for the increased S2 we may find
a switch to [⊥,1]:1� S2(s)� [0,>]:2 or 1:1� S2(s). This is covered by the inequations
0:2� [0,>]:2 and 0:2�>:2.

• The situation where [⊥,1]:1 � S1(s) � [0,>]:2 may change to 1:1 � S2(s), yet we have
[0,>]:2�>:2 which produces an increase 〈〈¡s〉〉S1

E � 〈〈¡s〉〉
S2
E .

No other switch-over is possible. Specifically, if S1 � S2 then 1:1 � S1(s) implies also 1:1 �
S2(s).

Corollary 1. The lower projection low〈〈P〉〉SE is inflationary in the sequential environment S
with respect to both � and v.

Proof. First observe that is suffices to show one of low(S)� low(〈〈P〉〉SE) or low(S)v low(〈〈P〉〉SE),
since each implies the other in-equation considering Lem. 2 and the fact that low(low(E)) =
low(E) (Prop. 3). However, the former follows directly from Prop. 10(2) and monotonicity of
low.

Example 21. Note that 〈〈P〉〉SE is not in general inflationary in S wrtv. For instance, if [⊥,>]:1v
C(x) 〈〈!x〉〉⊥E (x) = 1, but ⊥ 6v 1. Also, because of the reaction to absence 〈〈P〉〉SE is not in general
monotonic for � in the concurrent environment E.
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Monotonicity (Prop. 10) together with finiteness of I(D,P) implies that the least fixed point
µC.〈〈P〉〉SC given by (16) is well-defined, for any sequential environment S, if we start from an
initial concurrent environment C0 that is a post-fixed point of 〈〈P〉〉S, i.e., if C0 v 〈〈P〉〉SC0

. The
trivial concurrent environment satisfying this is C0 = [⊥,>]:2 for all x ∈ V . This is the least
element wrt v which codes null-information about the concurrent environment. With this choice
of C0, the sequential environment S is in fact completely arbitrary. We then have Ci vCi+1 and
(16) is the stationary limit of this monotonically increasing sequence, which must exist because
of the finiteness of I(D,P).

On the modelling side, the fixed point semantics, discussed so far, is able to accommodate
different levels of synchronous constructiveness within it, as we will see next. Different notions
of constructiveness are specified by means of certain properties in the fixed point response. First,
the connection with Esterel can be made through the two versions of constructiveness introduced
in [4]. Then, the denotational companion for the operational notion of IB-causality, namely
IB-constructiveness (IBC), is identified and a soundness result is presented. The relationship
between the various notions of constructiveness is also discussed.

The class of strongly Berry-constructive programs corresponds to the notion of constructive-
ness in Esterel, yet is able to manage explicit initialisations. This, as expected, can deal with a
variable being reset to 0 and then either remaining 0 (signal absence) or being set to 1 (signal
presence). Besides, it verifies proper initialisations as part of the constructiveness analysis. It
holds the programmer responsible for proper initialisation, not the compiler or the run-time
system. Thus, it is important to distinguish whether a variable retains its original value ⊥ from
the initial memory or not.

Definition 7 (Strong Berry-Constructiveness [4] SBC). An fprog P is strongly Berry-constructive,
or SBC, iff for all variables x ∈ V we have (µC.〈〈P〉〉⊥C )(x) ∈ {⊥,0,1}.

It is worth observing that in a SBC program the status ⊥ for a variable corresponds to a
witness for checking initialisations. It indicates that the variable is neither set nor reset by the
program. If such a variable is read and thus used in a branching decision the program would
be rejected, except for trivial cases. In other words, the resulting status ⊥ from the fixed point
indicates that the variable is indeed never accessed (set, reset or read) by the program.

Example 22. Fprog P := x ? ε : !y is not SBC since variable x (with status ⊥) is not properly
initialised in the code and thus it cannot be decided if variable y is set or not. The fixed point
satisfies µC.〈〈P〉〉⊥C (y) = [⊥,1]:1. In contrast, for the properly initialised fprog !x ; P the fixed
point will give us µC.〈〈!x ; P〉〉⊥C = {〈x1,y⊥〉} which is SBC.

On the other hand, the actual Esterel’s semantics resets all signals to 0 by default, at the
beginning of every instant. Thus, in this case, we need to look at ternary behaviours, i.e., those
which remain inside environments with E(x) ∈ {0,1, [0,1]} for all x ∈ V . In order to keep the
status of variables in the ternary domain, we could initialise with the reset construct and avoid
sequentially forced resets from happening after sets. However, in the semantics 〈〈 〉〉S one can
emulate initialisation directly by running the fixed point in the sequential environment S = 0
instead of S =⊥. This give us the class of Berry-constructive programs:

Definition 8 (Berry-Constructiveness [4] BC). An fprog P is Berry-constructive, or BC, iff for
all variables x ∈ V we have (µC.〈〈P〉〉0C)(x) ∈ {0,1}.
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Example 23. The fprog P from Ex. 22 is BC because now µC.〈〈P〉〉0C(y) = {〈x0,y1〉}. In Esterel’s
hardware translation [12], the corresponding Boolean equations are x = 0 and y = x+0 which
stabilise to x = 0 and y = 1. This depends on the initialisation of x to 0, however. On the other
hand, Q := x ? ε : !x, which emits signal x if x is absent and does not emit it if x is present,
is not BC: µC.〈〈Q〉〉0C(x) = [0,1]:1. Its hardware translation would be an inverter loop, or
combinational equation x := x+0, which may exhibit oscillations. Q is not SBC either since
µC.〈〈Q〉〉⊥C (x) = [⊥,1]:1.

Examples 22 and 23 show that SBC is properly more restrictive than BC. The difference
between the two forms of Berry-constructiveness is whether we run the simulation with the
sequential stimulus ⊥ or 0, respectively.

The above are not sufficient for capturing SC-read-determinacy as given in Def. 6 which
induces an open-world version of constructiveness that takes into consideration external inputs
to the program. SC-read-determinacy is constructed from any arbitrary initial memory state that
is not controlled by the code such as registered variables. The conditions imposed by this notion
can, therefore, be read as follows. For all external inputs, there is always a schedule that does not
lead to > (reset safe) and for all read variables and all such schedules either: the final memory
value for the variable (temporary variable) is controlled by the program and always the same (0
or 1) or by the environment (registered variable) in which case it is not changed at all during the
computation (read safe). In short, this specifies that every variable used for branching of control
is either causally justified or never modified in the code, independently of the initial external
input. This leads us to the following definition:

Definition 9 (IB-Constructiveness IBC). Fprog P is Input Berry-constructive (IB-constructive
or IBC), iff its fixed point C∗ = µC.〈〈P〉〉⊥C is safe for P, that is:

• reset-safe: ∀x ∈ V. C∗(x)� 1:1, and

• read-safe: ∀x ∈ rd(P). C∗(x) ∈ {⊥,0,1}.

One can show that the class of IBC programs lies between the SBC and the BC programs
and that these inclusions are proper.

Example 24. The BC fprog x ? ε : !y from Ex. 22, which is not SBC, is also IBC. The fixed
point result is µC.〈〈x ? ε : !y〉〉⊥C = {〈x⊥,y[⊥,1]:1〉}. Since x is not properly initialised the status
of y cannot be decided. This does not matter for IBC as y is not a read variable. Now take
the program Q := x ? (y ? ε : !y) : ε . If we initialise with 0, we get µC.〈〈Q〉〉0C = {〈x0,y0〉}, so
Q is BC. Yet, it is not IBC because µC.〈〈Q〉〉⊥C (y) = [⊥,1]:1 and y ∈ rd(Q) is a read variable.
The problem is that not every initial memory for Q admits of an IB-causal micro-step execution.
Specifically, if ρ0(x) = 1, then the sub-program y ? ε : !y is scheduled which creates a read-write
hazard. It reads the initial (environment-controlled) value of y and then, sequentially afterwards,
may change it itself.

The result in [4] establishes that for every fprog P, if P is SBC then P is SC-reactive and
SC-determinate. Here, we show the following stronger result:

Theorem 1. For every fprog P, if P is IBC then it is B-reactive and SC-read-determinate.
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Thm. 1 gives a stronger soundness result for the application of the theory compared to Thm. 1
of [4] because it permits us to prove strictly stronger forms of reactiveness and determinacy
for a strictly wider class of programs, considering that there are more IBC programs than SBC
programs.

4.4 Soundness of the Denotational Fixed Point Semantics
In this section we prove our main theorem (Thm. 1) stating that every IB-constructive fprog is
B-reactive and SC-read-determinate, and a fortiori also sequentially constructive as introduced
in [84, 85, 86].

The key element in the soundness proof is to relate the abstract values in D and P used
in the fixed point analysis with the operational behavior of process executions. These status
values are interpreted as abstractions of the write accesses in a finite sequence of micro steps
generating what we call the sequential yield of each thread. More precisely, a sequential yield is
a function µ which assigns each possible thread identifier ι ∈ TI to a sequential environment
µ(ι) : V→ D×P subject to the condition that ι � ι ′ implies µ(ι ′)� µ(ι). The idea is that µ(ι)
codes the local view of a thread instance ι about the sequential status of the variable values. So,
if ι ≺ ι ′ then ι ′ is a (sequential) descendant of thread ι all of whose memory write accesses are
visible to the waiting ancestor thread ι . The fact that the view of the ancestor ι is wider, also
encompassing other threads (e.g., siblings of ι and their descendants) running concurrently with
ι , is captured by the constraint µ(ι ′)� µ(ι). The descendant ι ′ is behind the parent since the
parent ι sees all variable accesses of all its active children while ι ′ only knows about its own.

With the following definition of the sequential yield we are interpreting the actions of a
micro-sequence as an incremental update of a sequential state. The pairs in D×P are treated
naturally as elements of I(D,P), viz. (a,r) ∈D×P is the same as [a,a]:r ∈ I(D,P) and therefore
written a:r. In this way, all operations on environments over I(D,P) can be used for the sequential
environments, too.

Definition 10 (Sequential Yield). Let R be a finite sequence of micro-steps R : (Σ0,ρ0)� (Σn,ρn)
and C an environment. We define the sequential yield |R|C : TI→ V→ D×P of R by iteration
through R, as follows: If R = ε , then |R|C(ι)(x) :=⊥=⊥:0 for all ι ∈ TI and x ∈ V. Otherwise,
suppose R = R′,Tn consists of a sequence R′ : (Σ1,ρ1)� (Σn−1,ρn−1) followed by a final action
Tn : (Σn−1,ρn−1)→ (Σn,ρn). Then, |R|C is computed from |R′|C by case analysis on the action
Tn.

Generally, the yield does not change for all threads concurrent to Tn.id, i.e., for all κ ∈ TI
such that κ 6� Tn.id and Tn.id 6� κ we have |R|C(κ) := |R′|C(κ). Also, if the next control is a
non-empty list Tn.next = Q::Ks′ and the program Tn.prog∈ {ε, !s, ¡s} instantaneously terminates,
then the execution of Tn installs the process 〈inc(ι),Q,Ks′〉. This incremented thread inherits
the sequential state from ι . In this case we put |R|C(inc(ι)) := |R|C(ι). Otherwise, if Tn.prog ∈
{ε, !s, ¡s} and Ks = [] is empty, then |R|C(inc(ι)) := |R′|C(ι).

In all other cases, for ancestor and descendant threads κ , the new yield |R|C(κ) is determined
according to the following clauses:

1. Executing a sequential composition or the empty statement does not change the yield.
Formally, if Tn.prog ∈ {P ; Q,ε}, then |R|C(κ) := |R′|C(κ);
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2. Executing a conditional test which is undecided in environment C raises the init status
of the thread and its ancestors to 1; otherwise, if the test is decided in C the yield is
preserved. Formally, if Tn = 〈ι ,s ? P : Q,Ks〉 and for all b ∈ {⊥,0,1}, b:1 6vC(s), then
we put |R|C(κ) := |R′|C(κ)∨⊥:1 for all κ � inc(ι); Otherwise, for κ 6� inc(ι) or if
b:1vC(s) for some b ∈ {⊥,0,1}, then we define |R|C(κ) := |R′|C(κ);

3. Upon forking a parallel process we copy the sequential status of the parent thread to
its two children. Formally, if Tn = 〈ι ,P ||Q,Ks〉, then |R|C(ι .l.0) = |R|C(ι .r.0) := |R′|C(ι)
and for all κ 6= ι .r.0 and κ 6= ι .l.0 we have |R|C(κ) := |R′|C(κ);

4. A set !s increases the sequential yield of s in the executing thread and its ancestors
and also the speculation status (for all variables) if the set is blocked by C due to a
potentially pending reset. Formally, suppose Tn = 〈ι , !s,Ks〉. Then, for all inc(ι) ≺ κ ,
|R|C(κ) := |R′|C(κ) and for all κ � ι ,

• if [⊥,>]:1vC(s) then |R|C(κ)(s) := |R′|C(κ)(s)∨1 and |R|C(κ)(x) := |R′|C(κ)(x)
for all variables x 6= s. More compactly, |R|C(κ) := |R′|C(κ)∨{〈s1〉};
• if [⊥,>]:1 6vC(s) then |R|C(κ)(s) := |R′|C(κ)(s)∨1:1 and |R|C(κ)(x) := |R′|C(κ)(x)∨
⊥:1 for x 6= s. More compactly, |R|C(κ) := |R′|C(κ)∨{〈s1〉}∨⊥:1.

5. A reset ¡s increases the sequential yield for s to 0 if the status is still smaller than 0, or to
> if the status of s in the thread is already at or above 1. At the same time, if the thread has
entered the speculative mode, then the reset ¡s raises the speculation status to 2. Formally,
if Tn = 〈ι , ¡s,Ks〉, then |R|C(κ)(x) := |R′|C(κ)(x) for all inc(ι) ≺ κ or x 6= s; Otherwise,
for all κ � ι we put

• |R|C(κ)(s) := |R′|C(κ)(s)∨> if 1� |R′|C(ι)(s)�>;

• |R|C(κ)(s) := |R′|C(κ)(s)∨>:2 if 1:1� |R′|C(ι)(s);
• |R|C(κ)(s) := |R′|C(κ)(s)∨0 if |R′|C(ι)(s)� 0;

• |R|C(κ)(s) := |R′|C(κ)(s)∨0:2 if ⊥:1� |R′|C(ι)(s)� 0:2;

Observe that a sequential yield µ assigns a status µ(ι)(x) = a:r ∈ D×P⊂ I(D,P) to every
thread identifier ι ∈ TI and variable x ∈ V . A special case is the totally pristine sequential yield
µ⊥ with µ⊥(ι) = ⊥ for all ι ∈ TI. This is the yield |ε|C of the empty micro sequence. Also,
if a thread identifier ι does not occur in (any action of) a micro-sequence R, then |R|C(ι) =⊥.
Moreover, the yield operation is monotonic, i.e., if R is a prefix of R′ then |R|C(ι)� |R′|C(ι).

Observe further that if R does not have any write accesses to a variable x then the value
status of x in the sequential yield remains ⊥, the init status may raise to 1 but not to 2, i.e.,
|R|C(ι)(x)�⊥:1.

Lemma 4. Let R : (Σ0,ρ0)� (Σn,ρn) be an SC-admissible micro-step sequence and C an
environment. Then, |R|C is consistent for the final memory ρn in the following sense:

(i) If |R|C(Root.id)(x)�⊥:2 then ρ0(x) = ρn(x);
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(ii) If |R|C(Root.id)(x) = b:r with b ∈ {0,1} ⊂ D then ρn(x) = b;

(iii) If |R|C(Root.id)(x)� 1 then there exists a micro step 1≤ i≤ n such that Ti.prog = !x and
for all T ∈ Σn with Ti.id � T.id we have 1� |R|C(T.id)(x).

(iv) Whenever in R a thread ι reads a variable x, the value status of x in any other con-
current thread remains constant from this point onwards. In other words, no thread
changes the value status of x after it is has been read by another thread concurrent to it.
Formally, suppose R(i) = 〈ι ,x ? P : Q,Ks〉 and for some i ≤ j ≤ n and ι ′ ∈ TI we have
|R@i|C(ι ′)(x)∧> 6= |R@ j|C(ι ′)(x)∧>. Then, ι ′ � ι or ι � ι ′.

Proof. Statement (iv) follows directly from the “no concurrent write after read” constraint of
SC-admissibility. Note that the value status of a variable can only change, i.e., strictly increase,
for a thread ι ′ between |R@i|C(ι ′)(x) and |R@ j|C(ι ′)(x) if ι ′ performs a write access !x or ¡x
at some intermediate point k with i≤ k ≤ j. But then ι ′ cannot be concurrent to the read R(i),
which otherwise would violate the iur protocol of SC-admissibility. Thus, ι ′ � ι or ι � ι ′.

For R = ε the claim (i) is trivial and also (ii) and (iii) by the choice of µ0 = |ε|C = ⊥ and
Def. 10(1). For the induction step we assume (i)–(iii) for the yield µn = |R|C of sequence R :
(Σ0,ρ0)� (Σn,ρn) and consider one additional action Tn+1 : (Σn,ρn)→ (Σn+1,ρn+1) extending
R. We show that the yield µn+1 = |R,Tn+1|C also satisfies (i)–(iii). Now, µn+1 is updated from
µn = |R|C according to the rules of Def. 10 by action Tn+1.

For case (i) we exploit the fact that if µn+1(Root.id)(x)�⊥:2 then µn(Root.id)(x)�⊥:2
and ρn+1(x) = ρn(x). The former follows from the inflationary nature of forming the yield. The
latter holds because the only way in which we could have ρn+1(x) 6= ρn(x) is when Tn+1 is a set
or a reset access on x which necessarily implies µn+1(Root.id)(x) � 0 in contradiction to the
assumption. Hence, µn(Root.id)(x)�⊥:2, so that in combination with the induction hypothesis
ρ0(x) = ρn(x), the claim (i) follows.

Condition (ii) of the Lemma needs more thought and a case analysis. By way of contradiction
suppose that µn+1(Root.id)(x) = 0:r and ρn+1(x) = 1. We can exclude the case that Tn+1.prog
is a reset ¡x, because this cannot result in the memory value ρn+1(x) = 1. If Tn+1.prog is
not a write access (set or reset), then by Def. 10, µn+1(Root.id)(x) = 0:r implies that also
µn(Root.id)(x) = 0:r′ as well as ρn(x) = ρn+1(x) = 1. However, this contradicts the induction
hypothesis which would enforce ρn(x) = 0. This means that Tn+1.prog must be a write access
!x. But if Tn+1.prog = !x then µn+1(Root.id)(x) = µn(Root.id)(x)∨ 1 or µn+1(Root.id)(x) =
µn(Root.id)(x)∨1:1, contradicting the assumption, where we observe that Root� Tn+1.id.

Now, suppose µn+1(Root.id)(x) = 1:r and ρn+1(x) = 0. Then, Tn+1.prog must be a reset
¡x. It has to be a write access for otherwise we would get a contradiction to the induction
hypothesis as above, yet it cannot be a !x because of the final memory value ρn+1(x) = 0.
By definition of µn+1 this means the reset action is executed either with µn(Tn+1.id)(x) � 0
and 1:r = µn+1(Root.id)(x) = µn(Root.id)(x)∨0 or with ⊥:1� µn(Tn+1.id)(x)� 0:2 and then
1:r = µn+1(Root.id)(x)= µn(Root.id)(x)∨0:2. Either case can only be true if µn(Root.id)(x)�
1. The other situations for executing a reset on x, viz. 1 � µn(Tn+1.id)(x) � > or 1:1 �
µn(Tn+1.id)(x) would result in µn+1(Root.id)(x)�>.

Now we can use the induction hypothesis (iii) on µn, i.e., conclude that there exists a micro
step 1≤ i≤ n with Ti.prog = !x and Ti.id 6� Tn+1.id (consider that µn(Tn+1.id)(x)� 0:2). The
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former implies that µi(Ti.id)(x)� 1 by Def. 10. But then, Tn+1.id 6� Ti.id, because otherwise if
Tn+1.id � Ti.id, by the monotonicity of sequential states and the yield function, it would have
to be the case that µi(Ti.id) � µi(Tn+1.id) � µn+1(Tn+1.id) � 0:2, contradicting µi(Ti.id) � 1.
Thus, both Ti.id 6� Tn+1.id and Tn+1.id 6� Ti.id, i.e, the reset action ¡x with identifier Tn+1.id
and the set !x with identifier Ti.id are concurrent. One can show that by admissibility all reads
between i and n+1 must be confluent with the reset Tn+1. Therefore, there is a configuration
reachable from (Σi,ρi) in which Ti and Tn+1 conflict. But then the micro sequence R,Tn+1 would
not be ∆∗-admissible, containing a concurrent reset after a set.

This completes the proof of case (ii) of the Lemma. It remains to argue for (iii). But this
is simple, without explicit induction: The only way in which the initial state µ0(Root.id) =⊥
can change to µn(Root.id)(x) � 1, by construction Def. 10, is if some action of R is a set !x.
But if this set access is executed in a thread identifier Ti.id, so that µi(Ti.id)(x) � 1, then all
its descendants Ti.id � ι becoming active afterwards, at steps j > i, inherit this value and thus
satisfy µ j(ι)(x)� 1.

The strategy for proving Thm. 1, stating that every IB-constructive program is B-reactive and
SC-determinate, is to show that the fixed point µC.〈〈P〉〉⊥C ∈ I(D,P) computes sound information
about the sequential yield of every SC-admissible micro-step sequence R of P. More specifically,
we show that µC.〈〈P〉〉⊥C is an abstract predictor for the SC-admissible behavior of P in the sense
that (i) the yield of every SC-admissible micro-sequence lies within the window specified by
µC.〈〈P〉〉⊥C and (ii) there exists a B-admissible instant. This is done by induction on the structure
of P. However, since the fixed point of a composite expression cannot be obtained from the fixed
points of its sub-expressions, induction on P for the full fixed point µC.〈〈P〉〉⊥C does not work.
Instead, we need to break up the fixed point and do an outer induction along the iteration that
obtains the fixed point in the limit. The idea is to extract the logical meaning of a single iteration
step Ci+1 = 〈〈P〉〉SCi

as a conditional specification of the SC-admissible behavior of P assuming a
sequential environment S and concurrent environment Ci. This can then be proven by induction
on P.

The main observation is that a single application of the response functional 〈〈P〉〉SCi
covers the

behavior of an initial slice of any micro-sequence R generated from P, consisting of an atomic
“read;update” burst of P. This burst consists of all those statements of R that can be executed
solely based on the concurrent environment Ci to decide which branch to take in a conditional
and whether a set can go ahead or is blocked because of a pending reset. At such a point, or
if a conditional is undecided, the slice stops. We have reached the stopping index of the slice
in R. In the slice, control branching is decided entirely in terms of the variables whose values
are decided in Ci and not on variables whose value may be changing as a result of executing
P. In particular, the execution in R covered by a slice decided from Ci does not involve any
communication between concurrent processes inside P. Since effect of executing the slice is
described by the response environment Ci+1 = 〈〈P〉〉SCi

, the communication between threads is
then handled by feeding back the result Ci+1 as the new concurrent environment in the next
iteration Ci+2 = 〈〈P〉〉SCi+1

of the response functional.

Definition 11 (C-Stopping Index). Let R : (Σ0,ρ0)� (Σn,ρn) be a finite micro-sequence and C
an environment. A process Ti ∈ Σi for 0≤ i < n is called C-blocked if Ti is active in Σi and either
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• Ti.prog is a branching x ? Q : R and the status of x is undecided in C, i.e., ⊥:1 6vC(x),
0:1 6vC(x) and 1:1 6vC(x), or

• Ti.prog is a set !x and the concurrent environment indicates an incomplete initialization
phase, i.e., [⊥,>]:1 6vC(x).

In all other cases, the process Ti is called C-enabled. Let 〈ιP,P,Ks〉 ∈ Σi be active in Σi. The
C-stopping index of program P in R is the earliest step index i ≤ t ≤ n such that one of the
following holds:

• P pauses

• P has terminated instantaneously and handed over to the first program Q in the next
control Ks = Q :: Ks′

• all remaining active descendants 〈ι ′,P′,Ks〉 ∈ Σt with ι � ι ′ are C-blocked.

Note that the C-stopping index of a program in a micro-sequence R may not exist if R is
not long enough so that R still has an active process from P in its last configuration and this
process is not C-blocked. Also, if C is safe, i.e., reset-safe and read-safe then at its C-stop in R
the program P must either pause or terminate instantaneously.

Definition 12 (C-Consistency). Let R : (Σ0,ρ0) � (Σn,ρn) be a micro sequence and C an
environment. For any 0≤ i < n, abbreviate by ρi(x)

.
= b the condition that ρi(x) = b if b ∈ {0,1}

and ρi(x) = ρ0(x) if b = ⊥. We say a read action R(i).prog = x ? P : Q with 0 < i ≤ n is
C-consistent in R if b:1 vC(x) for b ∈ {⊥,0,1} implies ρi−1(x)

.
= b. R is called C-consistent

for a thread ι if all read actions performed by all descendants of ι in R are C-consistent.

Note that if a read action is C′-consistent and C vC′ then the read is also C-consistent.

Proposition 11 (Soundness of the Lower/Must Prediction).
Let R : (Σ0,ρ0)� (Σn,ρn) be a micro sequence with an active process 〈ιP,P,Ks〉 in Σs, 0 < s≤ n,
and C an environment such that R is C-consistent for ιP and n the C-stopping index of P in R.

(i) If cmpl〈P,C〉 = {0} then P instantaneously terminates at step n by executing an action
of the form ε , ¡s, !s; If cmpl〈P,C〉 = {1} then P pauses at step n where the last of its
descendants has reached the action π .

(ii) Suppose S� |R@s|C(ιP)�> for some sequential environment S. Then, for each variable
x ∈ V there exists an index s≤ i≤ n and a descendant thread ι � ιP such that 〈〈P〉〉SC(x)∧
>� |R@i|C(ι)(x)∨ [⊥,>]�>. Moreover, if ⊥ 6∈ cmpl〈P,C〉 then i = n and ι = ιP.

(iii) If S� low |R@s|C(ιP) then 〈〈P〉〉SC � low |R@n|C(ιP).
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Proof. Both parts (i) and (ii) of the proposition are shown by induction on P. Regarding part
(iii) we observe that under the assumptions of (ii) it follows that

low(〈〈P〉〉SC(x)∧>)� low(|R@i|C(ι)(x)∨ [⊥,>]) =
low |R@i|C(ι)(x)� low |R@n|C(ιP)(x)

and therefore

〈〈P〉〉SC � (low〈〈P〉〉SC)∧>:2 = low〈〈P〉〉SC∧ low(>)
= low(〈〈P〉〉SC∧>) � low |R@n|C(ιP).

One can show that this in-equation for the lower bound does not depend on the assumption
|R@s|C(ιP) � >. We omit the proof. It is the upper bound constraint upp |R@i|C(ι)(x) � >
implied by Prop. 11(ii) which needs the precondition |R@s|C(ιP)�>.

For the following note that the assumption S � > and |R@s|C(ιP) � > are equivalent to
S = S∧> and |R@s|C(ιP) = |R@s|C(ιP)∧>, respectively.

• Regarding statement (i) for P = ε or P = π note that cmpl〈ε,C〉 = {0} and at the C-
stopping index n the program P = ε terminates instantaneously, while cmpl〈π,C〉= {1}
and at the C-stop, n = s, the program P pauses.

Further, if P = ε or P = π then 〈〈P〉〉SC = S. The micro sequence R contains no write access
or conditional test at all by a descendant of P between s and n. Therefore, |R@s|C(ιP) =
|R@n|C(ιP) and thus > = >∨ [⊥,>] � |R@n|C(ιP)∨ [⊥,>] = |R@n|C(ιP)∨ [⊥,>] �
S = 〈〈P〉〉SC � 〈〈P〉〉SC∧>, by assumption. This proves (ii) for all variables x with i = n and
ι = ιP.

• For P = !x observe that cmpl〈P,C〉 = {0} implies [⊥,>]:1 v C(x) in which case P is
C-enabled and executed at the C-stopping index n, where P terminates instantaneously.
Since cmpl〈P,C〉 6= {1} statement (i) of the proposition is proven.

Here the prediction is 〈〈P〉〉SC = S∨{〈x1〉} if [⊥,>]:1vC(x) and 〈〈P〉〉SC = S∨{〈x[⊥,1]〉}∨⊥:1,
if [⊥,>]:1 6vC(x). The assumption is S� |R@s|C(ιP)�>. If [⊥,>]:1 6vC(x), and thus
⊥ ∈ cmpl〈P,C〉, then we find

〈〈P〉〉SC∧> = (S∨{〈x[⊥,1]〉}∨⊥:1)∧>
= (S∧>)∨ ({〈x[⊥,1]〉}∧>)∨ (⊥:1∧>)
= S∨{〈x[⊥,1]〉}∨⊥
� S∨ [⊥,>]
� |R@s|C(ιP)∨ [⊥,>]
� >∨> = >.

This proves the statement (ii) for i = s and ι = ιP. Hence, it remains to consider the
case that [⊥,>]:1vC(x) for statement (ii). Then, the set action !x of P is C-enabled and
⊥ 6∈ cmpl〈P,C〉. So, the C-stop at n occurs because ιP is finally selected and executed, at
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which moment P also terminates. By Def. 10(4), |R@n|C(ιP) = |R@n−1|C(ιP)∨{〈x1〉}=
|R@s|C(ιP)∨{〈x1〉} and therefore

〈〈P〉〉SC∧> = (S∨{〈x1〉})∧>
= (S∧>)∨ ({〈x1〉}∧>)
= S∨{〈x1〉}
� |R@s|C(ιP)∨{〈x1〉}
= |R@n|C(ιP)

� |R@n|C(ιP)∨ [⊥,>]
= |R@s|C(ιP)∨{〈x1〉}∨ [⊥,>]
� >∨{〈x1〉}∨ [⊥,>] � >.

as desired, taking i = n and ι = ιP.

• Suppose P = ¡x and S � |R@s|C(ιP) � >. This write action is the first and only one of
process P in R. Since a reset is never blocked, by assumption, the C-stop occurs at the very
step n in R when the reset action is executed. At this point P terminates instantaneously
which validates statement (i) in view of the fact that cmpl〈P,C〉 = {0}. Moreover, by
Def. 10(5),

|R@n|C(ιP) = |R@n−1|C(ιP)∨{〈x>〉} if 1� |R@n−1|C(ιP)(x)�> (19)

|R@n|C(ιP) = |R@n−1|C(ιP)∨{〈x>:2〉} if 1:1� |R@n−1|C(ιP)(x) (20)

|R@n|C(ιP) = |R@n−1|C(ιP)∨{〈x0〉} if |R@n−1|C(ιP)(x)� 0 (21)

|R@n|C(ιP) = |R@n−1|C(ιP)∨{〈x0:2〉} if ⊥:1� |R@n−1|C(ιP)(x)� 0:2. (22)

Since |R@n− 1|C(ιP) = |R@s|C(ιP) � > this eliminates the cases (20) and (22) right
away. Thus, |R@n|C(ιP) = |R@n−1|C(ιP)∨{〈xδ 〉}= |R@s|C(ιP)∨{〈xδ 〉} for δ ∈ {0,>}.
We treat both cases separately:

– In the first case (19) 1� |R@n−1|C(ιP)(x)�>we have |R@n|C(ιP)= |R@s|C(ιP)∨
{〈x>〉}, and thus

〈〈P〉〉SC∧> � (S∨{〈x>:2〉})∧>
= (S∧>)∨ ({〈x>:2〉}∧>)
= S∨{〈x>〉}
� |R@s|C(ιP)∨{〈x>〉}
= |R@n|C(ιP)

� |R@n|C(ιP)∨ [⊥,>]
= |R@s|C(ιP)∨{〈x>〉}∨ [⊥,>]
� >∨{〈x>〉}∨ [⊥,>] � >.

The first of the above in-equations holds, because ∧ is �-monotonic and >:2 is
maximal under � and thus γ �>:2 for all γ ∈ {>,0,0:2, [0,>]:2,>:2}.
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– Secondly, consider (21) where S(x)� |R@s|C(ιP)(x) = |R@n−1|C(ιP)(x)� 0. This
implies S(x)= [l,u]:r with l� 0. Hence, 〈〈P〉〉SC = S∨{〈xγ〉}where γ ∈{0,0:2, [0,>]:2}.
Now we find |R@n|C(ιP) = |R@n− 1|C(ιP)∨{〈x0〉} = |R@s|C(ιP)∨{〈x0〉}, which
goes down a similar route as above:

〈〈P〉〉SC∧> = (S∨{〈xγ〉})∧>
� S∨{〈x[0,>]〉}
� S∨{〈x0〉}∨ [⊥,>]
� |R@s|C(ιP)∨{〈x0〉}∨ [⊥,>]
= |R@n|C(ιP)∨ [⊥,>]
= |R@s|C(ιP)∨{〈x0〉}∨ [⊥,>]
� >∨{〈x0〉}∨ [⊥,>] � >.

Thus in all cases we proved statement (ii) of the Proposition with i = n and ι = ιP.

• Let us look at parallel composition P ||Q. For (i) suppose {c} = cmpl〈P ||Q,C〉 =
cmpl〈P,C〉⊕ cmpl〈Q,C〉 where c ∈ {0,1}. The definition of ⊕ implies that cmpl〈P,C〉=
{cP} and cmpl〈Q,C〉 = {cQ} with max(cP,cQ) = c. For if one of these completion sets
contains ⊥ then cmpl〈P ||Q,C〉 would contain ⊥, too. So, if c = 0 then we must have
both cmpl〈P,C〉 = {0} and cmpl〈Q,C〉 = {0}. By induction hypothesis both P and Q
terminate instantaneously at their C-stop, whence P ||Q terminates at the last of them, i.e.,
at n. If c = 1 then max(cP,cQ) = 1 and therefore, by induction, both threads P and Q are
terminating instantaneously or pausing at their C-stop, but at least one of them is pausing.
Hence, P ||Q is pausing at the C-stop with index n.

Now assume S � |R@s|C(ιP||Q) � >. As n is the C-stop of ιP||Q there must be an index
s < j ≤ n where the forking of the parallel statement is executed. This results in a
configuration (Σ j,ρ j) in which both sub-programs P and Q are activated as child processes,
〈ιP,P, [ ]〉 ∈ Σ j and 〈ιQ,Q, [ ]〉 ∈ Σ j with ιP = ιP||Q.l.0 and ιQ = ιP||Q.r.0. Between steps s
and j all actions of R are concurrent to ιP||Q, so that |R@ j|C(ιP||Q) = |R@s|C(ιP||Q). Also,
by Def. 10(3) we have |R@ j|C(ιP) = |R@ j|C(ιP||Q) = |R@ j|C(ιQ). It follows that both
S � |R@ j|C(ιP) � > and S � |R@ j|C(ιQ) � >. Since R is C-consistent for ιP||Q, it is
C-consistent for ιP||Q � ιP and ιP||Q � ιQ, too. We can apply the induction hypothesis on
P and Q from position j in the sequence. To this end let j ≤ tP, tQ ≤ n be the C-stopping
indices for each, which must exist, because otherwise P ‖ Q would not have reached its
C-stop at n. This implies that for each variable x ∈ V there exist step indices j ≤ iP ≤ tP
and j ≤ iQ ≤ tQ, as well as descendants ιP � ι ′P and ιQ � ι ′Q, so that

〈〈P〉〉SC(x)∧> � |R@iP|C(ι ′P)(x)∨ [⊥,>] � >
〈〈Q〉〉SC(x)∧> � |R@iQ|C(ι ′Q)(x)∨ [⊥,>] � >.

Further, if ⊥ 6∈ cmpl〈P,C〉 then iP = tP and ι ′P = ιP, if ⊥ 6∈ cmpl〈Q,C〉 then iQ = tQ and
ι ′Q = ιQ. Then, by the properties of ∨, and because of 〈〈P ||Q〉〉SC = 〈〈P〉〉SC ∨ 〈〈Q〉〉SC we
must have low〈〈P ||Q〉〉SC(x) = low〈〈X〉〉SC(x) for X = P or X = Q. If the former holds,
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low〈〈P ||Q〉〉SC(x) = low〈〈P〉〉SC(x), we obtain the following chain

〈〈P ||Q〉〉SC(x)∧> � low(〈〈P ||Q〉〉SC)(x)∧>
= low〈〈P〉〉SC(x)∧>
= (〈〈P〉〉SC(x)∨ [⊥,>]:2)∧>
= (〈〈P〉〉SC(x)∧>)∨ ([⊥,>]:2∧>)
= (〈〈P〉〉SC(x)∧>)∨ [⊥,>]
� |R@iP|C(ι ′P)∨ [⊥,>]∨ [⊥,>]
= |R@iP|C(ι ′P)∨ [⊥,>]
� >.

This proves statement (ii) of the Proposition for i = iP and ι = ι ′P. The second case where
X = Q and low〈〈P ||Q〉〉SC(x) = low〈〈Q〉〉SC(x) is argued analogously, with i = iQ and ι = ι ′Q.
Finally, suppose that ⊥ 6∈ cmpl〈P ||Q,C〉, i.e., P ||Q terminates or pauses. Then both
⊥ 6∈ cmpl〈P,C〉 and ⊥ 6∈ cmpl〈Q,C〉, i.e., iP = tP, ι ′P = ιP, iQ = tQ and ι ′Q = ιQ by the
induction hypothesis. The C-stopping index for ιP||Q is either n = max(tP, tQ) if one of the
threads pauses, or, if both P and Q terminate, the point n≥ max(tP, tQ) at which the join
action is executed. In the latter case, |R@iX |C(ι ′X) = |R@tX |C(ιX) = |R@n|C(ιP||Q) where
X = P or X = Q is the thread which terminates last, i.e., tX = max(tP, tQ). This implies in
all the cases that i = n and ι = ιP||Q.

• Let a conditional test x ? P : Q with identifier ιx?P:Q be active in (Σs,ρs) and S �
|R@s|C(ιx?P:Q) � >. We must show that the prediction 〈〈x ? P : Q〉〉SC(y)∧> for each
variable y ∈ V is surpassed by the yield |R@i|C(ι)(y)∨ [⊥,>], at some index s≤ i≤ n for
some descendant thread ι � ιx?P:Q, where n is the C-stopping index of program x ? P : Q
in R. For this to occur, the branch test must be executed at some step index j with
s < j ≤ i ≤ n. At this point j, the value of x is determined from the memory ρ j−1(x)
and control branches into either P or Q. The successor configuration (Σ j,ρ j) contains
either 〈ιP,P,Ks〉 as an active process if ρ j−1(x) = 1, or 〈ιQ,Q,Ks〉 if ρ j−1(x) = 0. In either
case, ιP = ιQ = inc(ιP;Q). If the status of x is boolean decided in C, i.e., if 0:1 v C(x)
or 1:1 v C(x), we call the test of x at step j a non-speculative branching, otherwise a
speculative branching step. Since the process 〈ιx?P:Q,x ? P : Q,Ks〉 does not execute any
action between s and j, we must have |R@s|C(ιx?P:Q) = |R@ j|C(ιx?P:Q).

The simplest case is the speculative case. From Prop. 6(2) and Lem. 3(1,2), with S = S∧>,
we obtain

〈〈x ? P : Q〉〉SC∧> = (S∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C )∧>
= (S∧>)∨ (upp(〈〈P〉〉S∨⊥:1

C ∨〈〈Q〉〉S∨⊥:1
C ))∧>

= S∨ ((〈〈P〉〉S∨⊥:1
C ∨〈〈Q〉〉S∨⊥:1

C )∧ [⊥,>]:2∧>)
� S∨ [⊥,>]
� |R@s|C(ιx?P:Q)∨ [⊥,>]
� >∨ [⊥,>] = >
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which is what we are after for statement (ii) of the proposition taking i = s and ι = ιx?P:Q.

Regarding the proof of statement (i) consider that cmpl〈x ? P : Q,C〉 = {c} can only
hold true if 0:1vC(x) or 1:1vC(x), i.e. if the branching is non-speculative. Otherwise,
cmpl〈x ? P : Q,C〉= upp(cmpl〈P,C〉u cmpl〈Q,C〉) which would result in ⊥ ∈ cmpl〈x ?
P : Q,C〉.

Now suppose the branching is non-speculative, say 1:1 vC(x). Then, the fact that R is
C-consistent for ιx?P:Q means that ρ j−1(x) = 1 and we know that the branch P is taken
in R. Therefore, the process 〈ιP,P,Ks〉 is part of the process pool Σ j and |R@ j|C(ιP) =
|R@ j|C(ιx?P:Q) = |R@s|C(ιx?P:Q) by Def. 10(2). Then the C-stopping index n of x ? P : Q
is at the same time the C-stopping index of P. Since R is C-consistent for ιx?P:Q it follows
that it is C-consistent for ιP. Also, S � |R@s|C(ιx?P:Q) = |R@ j|C(ιP) � >. Therefore,
the induction hypothesis can be invoked for any x ∈ V to give an index j ≤ i ≤ n and a
descendant thread ι � ιP such that

〈〈x ? P : Q〉〉SC(x)∧> = 〈〈P〉〉SC(x)∧> � |R@i|C(ι)(x)∨ [⊥,>] � >, (23)

as required because s≤ i≤ n and ιx?P:Q� ιP� ι . The same reasoning applies if 0:1vC(x),
leading to

〈〈x ? P : Q〉〉SC(x)∧> = 〈〈Q〉〉SC(x)∧> � |R@i|C(ι)(x)∨ [⊥,>] � >. (24)

for s≤ i≤ n and ιx?P:Q � ιQ � ι .

Also, note that statement (i) is obtained trivially by induction hypothesis in case the
branching is decided ⊥ 6∈ cmpl〈x ? P : Q,C〉 since then cmpl〈x ? P : Q,C〉= cmpl〈P,C〉
or cmpl〈x ? P : Q,C〉= cmpl〈Q,C〉 and at the C-stop n the conditional program x ? P : Q
completes (terminates or pauses) if P completes or Q completes, respectively. Let X = P
or X = Q be the thread which completes at n. By induction hypothesis, we know that then
i = n and ι = ιX as well as |R@i|C(ι)(x) = |R@n|C(ιX)(x) = |R@n|C(ιx?P:Q)(x). This
means that in either case (23) or (24) we get 〈〈x ? P : Q〉〉SC(x)∧>� |R@n|C(ιx?P:Q)(x)∨
[⊥,>]�>.

• Finally, consider a sequential composition P ; Q active in (Σs,ρs) with id ιP;Q and
S � |R@s|C(ιP;Q) � >. Before its C-stop at n the thread ιP;Q must perform its first
“sequentialization” action, say at micro-step s < j≤ n. Then, the statement is broken up so
that Σ j contains the process 〈ιP,P,Q::Ks〉 and ιP;Q = ιP. Since all actions in R between s
and j are taken by threads concurrent to ιP;Q, we have

|R@ j|C(ιP) = |R@ j−1|C(ιP;Q) = |R@s|C(ιP;Q)

by Def. 10(1). By assumption, R is C-consistent for ιP. Let j ≤ k ≤ n be the C-stopping
index of P which must exist because n is the C-stop of P ; Q, so we must pass through the
C-stop of P. The induction hypothesis on P then says that for every variable x ∈ V there is
a step index j ≤ i≤ k and descendant ι � ιP such that

〈〈P〉〉SC(x)∧> � |R@i|C(ι)(x)∨ [⊥,>] � >. (25)
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Further, if ⊥ 6∈ cmpl〈P,C〉 then i = k and ι = ιP. Now, if 0 ∈ cmpl〈P,C〉 and cmpl〈P,C〉 6=
{0} then ⊥ ∈ cmpl〈P ; Q,C〉 and our claim for statement (ii) follows:

〈〈P ; Q〉〉SC(x)∧> = (〈〈P〉〉SC(x)∨upp〈〈Q〉〉〈〈P〉〉
S
C

C )(x)∧>
= (〈〈P〉〉SC(x)∧>)∨ (〈〈Q〉〉

〈〈P〉〉SC
C (x)∧ [⊥,>]:2∧>)

� (〈〈P〉〉SC(x)∧>)∨ [⊥,>]
� |R@i|C(ι)(x)∨ [⊥,>] � >.

Statement (i) is trivially satisfied since in this situation cmpl〈P ; Q,C〉 6= {0} and cmpl〈P ;
Q,C〉 6= {1}.
The second case is that cmpl〈P,C〉 = {0}. Then, cmpl〈P ; Q,C〉 = {c} for c ∈ {0,1}
implies that cmpl〈Q,C〉= {c}. Thus, we can regress to the induction hypothesis on Q to
argue that x ? P : Q completes at the C-stop n which coincides with the C-stop of Q. This
proves statement (i).

Regarding statement (ii) consider that Prop. 8(2) and the assumption S�> yields 〈〈P〉〉SC �
>, which in turn permits us to derive

〈〈P〉〉SC(x)� |R@k|C(ιP)(x)�>
from (25) exploiting that ⊥ 6∈ cmpl〈P,C〉. Then, by Prop. 11(i) the stopping index k of P
is actually the termination point so that 〈ιQ,Q,Ks〉 ∈ Σk. The stopping index of program
P ; Q is then also the stopping index of Q. Since ιP;Q = ιP� ιQ and R is C-consistent for ιQ,
Def. 10(1) gives |R@k|C(ιP) = |R@k|C(ιQ). This means 〈〈P〉〉SC(x)� |R@k|C(ιQ)(x)�>,
whence we can use the induction hypothesis on Q to obtain an index k ≤ i ≤ n and
ι � ιQ � ιP;Q

〈〈P ; Q〉〉SC∧> = 〈〈Q〉〉〈〈P〉〉
S
C

C ∧> � |R@i|C(ι)∨ [⊥,>] � >.
In addition if ⊥ 6∈ cmpl〈P ; Q,C〉 we must have ⊥ 6∈ cmpl〈Q,C〉 so that i = n and ι = ιQ.
This settles statement (ii) since then |R@i|C(ι) = |R@n|C(ιQ) = |R@n|C(ιP;Q).

The remaining case is when 0 6∈ cmpl〈P,C〉. But then by Prop. 12(i) P cannot terminate
instantaneously at its C-stopping index k, and thus it cannot pass on control to Q at
step k. This means we have n = k, i.e., the C-stop of P is already the C-stop of P ;
Q. Then, (25) together with the definition of the fixed point 〈〈P ; Q〉〉SC = 〈〈P〉〉SC and
|R@k|C(ιP) = |R@k|C(ιP;Q) = |R@n|C(ιP;Q) obtains the desired result for statement (ii)
of the proposition. Also, cmpl〈P ; Q,C〉 = cmpl〈P,C〉, whence cmpl〈P ; Q,C〉 = {c}
implies c = 1 which tells us that P must pause at its C-stop, by induction hypothesis.
Hence, P ; Q pauses at n. This deals with statement (i) of the proposition.

Proposition 12 (Soundness of Upper/Cannot Prediction). Let R : (Σ0,ρ0)� (Σn,ρn) be a finite
micro sequence with an active process 〈ιP,P,Ks〉 ∈ Σs, 0≤ s≤ n, and C an environment such
that R is C-consistent for ιP. Suppose that all actions executed between s and n are from
processes concurrent to ιP or from descendants of P. In particular, there are no actions from the
continuation list Ks. Then,
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(i) If 0 6∈ cmpl〈P,C〉 then at least one descendant of P is active or pausing in Σn and if
1 6∈ cmpl〈P,C〉 then not all descendants of P in Σn, if there are any, are pausing.

(ii) upp |R@s|C(ιP)� S implies upp |R@n|C(ιP)� 〈〈P〉〉SC.

Proof. We proceed by induction on the structure of the program and the length of the continuation
list Ks. Note that the statements (i) and (ii) of the Prop. 12 hold trivially, if program P does not
perform any actions between s and n. In this case, upp |R@n|C(ιP) = upp |R@s|C(ιP) � S �
〈〈P〉〉SC by the inflationary nature of the prediction (Prop. 10(2)). Hence, in the following we may
assume for (ii) that P performs at least one action after s. Note that this deals with the case P = π

which cannot perform any actions at all for both (i) and (ii).

• Let P= ε and upp |R@s|C(ιP)� S. As there is no write access performed by ιP, the sequen-
tial yield remains constant, i.e., |R@s|C(ιP) = |R@n|C(ιP). Therefore, upp |R@n|C(ιP) =
upp |R@s|C(ιP)� S = 〈〈P〉〉SC as desired. This proves (ii).

The case for statement (i) of Prop. 12 is trivial because cmpl〈P,C〉 = {0} and P cannot
pause.

• Let P = !x for which the prediction is 〈〈P〉〉SC = S∨{〈x1〉} if [⊥,>]:1vC(x), whereas it is
〈〈P〉〉SC = S∨{〈x[⊥,1]〉}∨⊥:1, otherwise. The only action of ιP after s is the set !x. Suppose
first that [⊥,>]:1 vC(x). By Def. 10(4), |R@n|C(ιP) = |R@s|C(ιP)∨{〈x1〉}. From this
we obtain

upp |R@n|C(ιP) = upp(|R@s|C(ιP)∨{〈x1〉})
= upp |R@s|C(ιP)∨upp{〈x1〉}
� S∨{〈x[⊥,1]〉} � S∨{〈x1〉} = 〈〈P〉〉SC

as required. The last in-equation holds because {〈x[⊥,1]〉} � {〈x1〉}. Second, consider the
case [⊥,>]:1 6vC(x). Here, by Def. 10(4), we get

upp |R@n|C(ιP) = upp(|R@s|C(ιP)∨{〈x1〉}∨⊥:1)
= upp |R@s|C(ιP)∨upp{〈x1〉}∨upp(⊥:1)
= upp upp |R@s|C(ιP)∨upp upp{〈x1〉}∨upp(⊥:1)

� upp(S)∨upp{〈x[⊥,1]〉}∨upp(⊥:1)

= upp(S∨{〈x[⊥,1]〉}∨⊥:1)
= upp〈〈P〉〉SC � 〈〈P〉〉SC.

Again, statement (i) of Prop. 12 is trivial in this case because 0 ∈ cmpl〈P,C〉, whatever the
environment C looks like, and also P cannot pause.

• Suppose P = ¡x and upp |R@s|C(ιP) � S. Suppose that all actions performed by ιP
between s and n are from processes concurrent to ιP or from descendants of P, and
that the reset is performed at step s < t ≤ n. Hence, |R@s|C(ιP) = |R@t− 1|C(ιP) and
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|R@n|C(ιP) = |R@t|C(ιP). We must show upp |R@n|C(ιP)� 〈〈P〉〉SC. Let us see what we
have got on both sides of the desired inequation: One the left hand side,

upp |R@n|C(ιP) = upp |R@t|C(ιP)

= upp(|R@t−1|C(ιP)∨{〈xδ 〉}
= upp |R@t−1|C(ιP)∨upp{〈xδ 〉}
= upp |R@s|C(ιP)∨upp{〈xδ 〉}
� S∨upp{〈xδ 〉},

where δ is chosen in accordance with Def. 10(5) so that

d1) δ => if 1� |R@s|C(ιP)(x)�>
d2) δ =>:2 if 1:1� |R@s|C(ιP)(x)

d3) δ = 0 if |R@s|C(ιP)(x)� 0

d4) δ = 0:2 if ⊥:1� |R@s|C(ιP)(x)� 0:2.

On the other right-hand side we have 〈〈P〉〉SC = S∨{〈xγ〉} where γ is determined from the
sequential status S as follows

g1) γ => if 1� S(x)�>
g2) γ =>:2 if 1:1� S(x)

g3) γ = 0 if S(x)� 0

g4) γ = 0:2 if ⊥:1� S(x)� 0:2

g5) γ = [0,>]:2 if [⊥,1]:1� S(x)� [0,>]:2.

We now observe that the constraint upp |R@s|C(ιP)(x)� S(x) enforces a logical coupling
between the cases (d1)–(d4) and (g1)–(g5) such that always upp{〈xδ 〉} � {〈xγ〉}. This then
proves that upp |R@n|C(ιP) � S∨ upp{〈xδ 〉} � S∨{〈xγ〉} = 〈〈P〉〉SC. We proceed by case
analysis on S(x) = [l,u]:r:

− If both u≥ 1 and r � 1 then we have the cases (g2) or (g5), i.e., γ ∈ {>:2, [0,>]:2} and
thus upp{〈xδ 〉} � {〈xγ〉} is trivially true.

− Next, we may have u ≥ 1 and r = 0 which implies 1 � S(s) � >, i.e., we have case
(g1) where γ = >. But also, upp |R@s|C(ιP)(x) � S(x) � >. Hence, the only possible
solution for δ is (d3). Now the argument is completed by the approximation upp{〈xδ 〉}=
upp{〈x0〉}= {〈x[⊥,0]〉} � {〈x>〉}= {〈xγ〉}.
− If u≤ 0 and r = 0 then upp |R@s|C(ιP)(x)� S(x)� 0 which means we are looking at
case (g3) and (d3) in which case upp{〈xδ 〉}= upp{〈x0〉} � {〈x0〉}= {〈xγ〉}.
• If u ≤ 0 and r � 0 then ⊥:1 � S(x) � 0:2 and upp |R@s|C(ιP)(x) � S(x) � 0:2. This
gives case (g4) and either (d3) or (d4), i.e., δ ∈ {0,0:2}. In either case, γ = 0:2 and
upp{〈xδ 〉} � {〈xγ〉} as one verifies readily.

Since 0 ∈ cmpl〈P,C〉 and P cannot pause, the proof of statement (i) of the proposition is
trivial. This complete the case of P = ¡x for Prop. 12.
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• Let us look at parallel composition P ||Q. The interval between s and n must contain the
initial forking action 〈ιP||Q,P ||Q,Ks〉 executed at some index s < t ≤ n in R. Remember
that we may assume that the program performs at least one action in R and this action
must be the forking. As a result, the processes 〈ιP,P, [ ]〉 and 〈ιQ,Q, [ ]〉 are activated in Σt .
Thereafter, all actions from ιP||Q are actions of the children ιP or ιQ, in some interleaving,
possibly followed by the execution of the join 〈ιP||Q,ε,Ks〉. R must be C-consistent for
both ιP � ιP||Q and ιQ � ιP||Q, because it is C-consistent for ιP||Q by assumption. Therefore,
the induction hypothesis applies to both P and Q, taking t as the point of prediction.
Also, since both children inherit the yield of their parent, |R@s|C(ιP||Q) = |R@t|C(ιP||Q) =
|R@t|C(ιP) = |R@t|C(ιQ). Therefore, both upp |R@t|C(ιP) = upp |R@s|C(ιP||Q)� S and
upp |R@t|C(ιQ)� S, by assumption. The induction hypothesis obtains

upp |R@n|C(ιP)� 〈〈P〉〉SC and upp |R@n|C(ιQ)� 〈〈Q〉〉SC.
Moreover, since all write actions of ιP||Q between t and n are write actions of either ιP or
of ιQ, we have |R@n|C(ιP||Q) = |R@n|C(ιP)∨|R@n|C(ιQ). Thus,

upp |R@n|C(ιP||Q) = upp(|R@n|C(ιP)∨|R@n|C(ιQ))

= upp |R@n|C(ιP)∨upp |R@n|C(ιQ)

� 〈〈P〉〉SC∨〈〈Q〉〉SC = 〈〈P ||Q〉〉SC.
Finally, suppose 0 6∈ cmpl〈P ||Q,C〉 = cmpl〈P,C〉 ⊕ cmpl〈Q,C〉. The definition of ⊕
implies 0 6∈ cmpl〈P,C〉 or 0 6∈ cmpl〈Q,C〉. Hence, by induction hypothesis the final
process pool Σn must contain descendants from P or Q that are active or pausing. As these
are descendants of P ||Q, this means that program P ||Q must still be active or pausing in
Σn. On the other hand, if 1 6∈ cmpl〈P ||Q,C〉 then by definition of ⊕ we must have both
1 6∈ cmpl〈P,C〉 and 1 6∈ cmpl〈Q,C〉. By induction then none of the parallel threads P or Q
is pausing in Σn, so neither is P ||Q.

• Now we tackle a conditional test x ? P : Q, active in (Σs,ρs). Our assumption is that
upp |R@s|C(ιx?P:Q)� S and that all actions in R from ιx?P:Q after s are either concurrent
or from descendants of x ? P : Q.

At some point t in R with s < t ≤ n the read action on variable x installs one of the
branches P or Q into the process pool. So, either 〈ιP,P,Ks〉 or 〈ιQ,Q,Ks〉 are active in Σt ,
depending on the value ρt−1(x). If ρt−1(x) = 1, then 〈ιP,P,Ks〉 ∈ Σt and if ρt(x) = 0, then
〈ιQ,Q,Ks〉 ∈ Σt .

Let us first consider the situation in which the branching variable is undecided by C, i.e.,
0:1 6vC(x) and 1:1 6vC(x). Between s and t all actions are from processes concurrent to
ιx?P:Q and thus, depending on which branch is taken, by Def. 10(2), either

(i) ιP = inc(ιx?P:Q) and

upp |R@t|C(ιP) = upp(|R@t−1|C(ιx?P:Q)∨⊥:1)
= upp(|R@s|C(ιx?P:Q)∨⊥:1)
= upp |R@s|C(ιx?P:Q)∨upp(⊥:1)
� S∨⊥:1
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(ii) ιQ = inc(ιx?P:Q) and upp |R@t|C(ιQ)� S∨⊥:1 using the analogous calculation.

Since R must be C-consistent for the respective branch ιP or ιQ by assumption, the
induction hypothesis obtains the in-equations

upp |R@n|C(ιx?P:Q) = upp |R@n|C(ιP)� 〈〈P〉〉S∨⊥:1
C

in case (i) or
upp |R@n|C(ιx?P:Q) = upp |R@n|C(ιQ)� 〈〈Q〉〉S∨⊥:1

C

in case (ii). But this means

upp |R@n|C(ιx?P:Q)� 〈〈P〉〉S∨⊥:1
C ∨〈〈Q〉〉S∨⊥:1

C

independent of the memory value ρt−1(x). So, if the branching variable x is undecided
under C, i.e., 0:1 6vC(x) and 1:1 6vC(x), then we are done, since

upp |R@n|C(ιx?P:Q) = upp upp |R@n|C(ιx?P:Q)

� upp
(
〈〈P〉〉S∨⊥:1

C ∨〈〈Q〉〉S∨⊥:1
C

)
= upp〈〈P〉〉S∨⊥:1

C ∨upp〈〈Q〉〉S∨⊥:1
C

� S∨upp〈〈P〉〉S∨⊥:1
C ∨upp〈〈Q〉〉S∨⊥:1

C

= 〈〈s ? P : Q〉〉SC
since E � S∨E and by Props. 3, 6 as well as �-monotonicity of upp. This establishes (ii)
of the proposition.

In order to prove statement (i) of Prop. 12, suppose 0 6∈ cmpl〈x ? P : Q,C〉= upp(cmpl〈P,C〉
ucmpl〈Q,C〉). From this we can infer that 0 6∈ cmpl〈P,C〉 and also 0 6∈ cmpl〈Q,C〉.
So, whatever branch is taken by R at micro-step t, the induction hypothesis guaran-
tees that at least one descendant of x ? P : Q is active or pausing in Σn. Similarly,
1 6∈ upp(cmpl〈P,C〉u cmpl〈Q,C〉) means that 1 6∈ cmpl〈P,C〉 and 1 6∈ cmpl〈Q,C〉, so that
x ? P : Q cannot pause in Σn by induction hypothesis.

Otherwise, if the branching is decided in C, i.e., the run-time value ρt−1(x) is predicted
by a status 1:1 v C(x) or 0:1 v C(x), then the prediction will include the respective
branch and thereby follow the actual run tightly. For instance, suppose 1:1 v C(x).
The assumption that R is C-consistent for ιx?P:Q means that the memory value of x is
ρt−1(x) = 1. Hence the run R takes the P branch and considering Def. 10(2) we calculate
upp |R@n|C(ιx?P:Q) = upp |R@n|C(ιP)� 〈〈P〉〉SC = 〈〈s ? P : Q〉〉SC based on the induction
hypothesis and the fact that every variable access in R that is concurrent to ιP is also
concurrent to ιP;Q.

Finally, observe that if 1:1 vC(x) then 0 6∈ cmpl〈x ? P : Q,C〉 = cmpl〈P,C〉 permits us
to invoke the induction hypothesis on P to conclude that P, and thus x ? P : Q, cannot
be terminated instantaneously in Σn. The same is true for the 1 6∈ cmpl〈x ? P : Q,C〉 =
cmpl〈P,C〉 showing that P and hence P ; Q cannot pause.

Since the argument for 0:1vC(x) is analogous, just P replaced by Q we have completed
the inductive step of Prop. 12 for conditional expressions.
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• Finally, it remains to consider the case of a sequential composition P ; Q active in (Σs,ρs)
such that upp |R@s|C(ιP;Q)� S. The first action of ιP;Q in R breaks up the statement, say
at index s < t ≤ n, and adds 〈ιP,P,Q::Ks〉 with ιP = ιP;Q into the process pool Σt . As there
are no actions from ιP;Q between s and t we have |R@s|C(ιP;Q) = |R@t− 1|C(ιP;Q) =
|R@t|C(ιP), by Def. 10(1), and so upp |R@t|C(ιP)� S.

From step index t the execution of ιP;Q continues with the execution of ιP and by assump-
tion only consists of actions from the descendants of P ; Q but not of the continuation list
Ks. There are two cases depending on whether P terminates instantaneously or not. If P
happens to terminate instantaneously in R, then at this step index, say t < k≤ n the process
〈ιQ,Q,Ks〉 ∈ Σk is started. Deriving from the assumption that R is C-consistent for ιP;Q
we infer that R is C-consistent for both ιP and ιQ.

First, let us assume that P does not terminate instantaneously in R, i.e., either it pauses
at some step t < k ≤ n or some descendant of P is still active and non-pausing in Σn. In
either case, |R@n|C(ιP;Q) = |R@n|C(ιP). Then, upp |R@n|C(ιP;Q) = upp |R@n|C(ιP) �
〈〈P〉〉SC by induction hypothesis on P. Now observe that, independently of the completion
cmpl〈P,C〉, we always have 〈〈P〉〉SC � 〈〈P ; Q〉〉SC, which implies upp |R@n|C(ιP;Q)� 〈〈P ;
Q〉〉SC overall, as desired.

Note that if 1 6∈ cmpl〈P ; Q,C〉 then also 1 6∈ cmpl〈P,C〉, regardless if cmpl〈P ; Q,C〉 =
cmpl〈P,C〉 or cmpl〈P ; Q,C〉= cmpl〈P,C〉⊕cmpl〈Q,C〉. So, if 1 6∈ cmpl〈P ; Q,C〉 we can
argue by induction that P cannot pause and therefore, in this case, P must still be active in
Σn. Hence, P ; Q does not pause in Σn, either.

This takes care of (i) of the proposition since if 0 6∈ cmpl〈P ; Q,C〉 then P ; Q does not
terminate because by assumption in this case P does not terminate in R.

Second, what if P terminates at some t < k≤ n instantaneously? Then, we have 〈ιQ,Q,Ks〉 ∈
Σk by Def. 10(1,4,5), and upp |R@k|C(ιQ) = upp |R@k|C(ιP) � 〈〈P〉〉SC. Moreover, R is
C-consistent for ιQ and so the induction hypothesis guarantees

upp |R@n|C(ιP;Q) = upp |R@n|C(ιQ) � 〈〈Q〉〉〈〈P〉〉
S
C

C , (26)

where the equation follows from the fact that ιP;Q � ιQ, i.e., all write accesses in R that are
concurrent to ιQ are also concurrent to ιP;Q. Now, since P terminates instantaneously, we
must have 0 ∈ cmpl〈P,C〉 by Prop. 12(i). If cmpl〈P,C〉= {0} we directly get

〈〈P ; Q〉〉SC = 〈〈Q〉〉〈〈P〉〉
S
C

C

from which (26) gives the desired result. If both 0 ∈ cmpl〈P,C〉 and cmpl〈P,C〉 6= {0} we
can also use (26) as follows:

upp |R@n|C(ιP;Q) = upp upp |R@n|C(ιP;Q)

� upp〈〈Q〉〉〈〈P〉〉
S
C

C

� 〈〈P〉〉SC∨upp〈〈Q〉〉〈〈P〉〉
S
C

C = 〈〈P ; Q〉〉SC.
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Let us look at the inductive step for statement (i) of Prop. 12. As 0 ∈ cmpl〈P,C〉 the
completion code for the sequential composition is

cmpl〈P ; Q,C〉= cmpl〈P,C〉⊕ cmpl〈Q,C〉.

In this situation the assumption 0 6∈ cmpl〈P ; Q,C〉 implies that 0 6∈ cmpl〈Q,C〉. So,
we can use the induction hypothesis for Q from micro-step k to infer that at least one
descendant of P ; Q, or more specifically of Q, is still active or pausing in Σn. Finally, the
assumption 1 6∈ cmpl〈P,C〉⊕cmpl〈Q,C〉 means 1 6∈ cmpl〈Q,C〉. Hence, Q does not pause
and therefore P ; Q does not pause in Σn, considering that P terminates instantaneously at
k ≤ n.

Thm 1. For every fprog P, if P is IBC then P is both B-reactive and SC-read-determinate.

Proof. Let P be an IBC program, i.e., C∗ = µC.〈〈P〉〉⊥C is safe: for all x ∈ V , C∗(x)� 1:1 and for
all x ∈ rd(P), C∗(x)∈ {⊥,0,1}. Further, let (Σ0,ρ0) be an initial configuration in which program
P appears as the sole active process in the pool, i.e., Σ0 = {Root}, where Root= 〈ιP,P, [ ]〉 and
ιP = Root.id = 0.

B-reactivity. We now show that there must exist at least one B-admissible execution for P
from any memory state. This proof demonstrates how the fixed point iteration can be used as a
predictive B-admissible scheduler. We are going to build iteratively a contiguous sequence of
B-admissible micro-sequences

(Σn0,ρn0)
R0
� (Σn1,ρn1)

R1
� (Σn2,ρn2)

R2
� (Σn3,ρn3) · · ·

Ri−1
� (Σni,ρni)

with n0 = 0 and ni−1 ≤ ni, where in each scheduling round Ri−1 we are pushing the execution
as far as possible while staying Ci−1-enabled, where Ci−1 is the sequence of concurrent envi-
ronments generated by the fixed point iteration. Since the initial pool is Σ0 = {〈ιP,P, [ ]〉}, all
threads in any of the process pools Σk reached during R0,R1, . . . ,Ri−1 are descendants of P. By
construction, each descendant thread remaining active in round Ri−1 is Ci−1-stopped in the final
configuration Σni . For the fixed point C∗, which is safe, this means that in the corresponding end
configuration (Σn∗,ρn∗) all threads descending from ιP are either instantaneously terminated or
pausing. Recall that in the final configuration (Σn∗,ρn∗) no set !x can be C∗-blocked since C∗ is
reset-safe and no read x ? P′ : Q′ can be blocked because C∗ is read-safe. Hence, at the fixed
point, we have constructed a maximal micro sequence and thus reached the end of the macro
step (instant). Here are the key invariants of the construction:

(I1) The yield of each partial schedule is in the range predicted by the fixed point approximation,
i.e., Ci v |R0,R1, . . . ,Ri−1|Ci−1(ιP).

(I2) Each partial schedule R0,R1, . . . ,Ri−1 is B-admissible.

(I3) For every free schedule R′ starting from (Σni,ρni), the extended schedule R0,R1,R2, . . . ,
Ri−1,R′ is Ci-consistent. Further, if Ci(x)�>:1 then R′ does not contain a reset ¡x.
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The invariants (I1)–(I3) tell us that the full sequence R = R0,R1, . . . ,R∗ up to the fixed point,
obtained as the result of our scheduling strategy, is C∗-consistent and that every conditional test
performed in the full schedule R reads exactly the memory value predicted by the read-safe fixed
point environment.

Base Case. Observe that the empty schedule ε is trivially B-admissible and its sequential
yield |ε|(ιP) = ⊥ lies in the environment C0 = [⊥,>]:2, i.e., C0 v ⊥. So, both (I1) and (I2)
hold for the empty sequences. Regarding (I3) note that every free schedule R′ starting in the
configuration (Σn0 ,ρn0) is trivially C0-consistent since no variable is decided in C0. Since
C0 6� >:1 the schedule R′ is not constrained regarding resets.

This is the base case of our construction. However, for better understanding of the procedure
let us go on into the first round: To create R0 we simply execute every active process in any
order provided the action is C0-enabled. In C0 all conditional branching and set actions are
C0-blocked. The only C0-enabled actions are resets ¡x and actions such as ε , sequencing P′ ; Q′

and the forking and joining of a parallel P′ ||Q′. These actions can be executed in any order
without violating B-admissibility. We continue until we reach a configuration (Σn1,ρn1) in which
all descendants of ιP have either completed (pausing or terminated) or are C0-blocked. The proof
that R0 satisfies (I1)–(I3) is covered by the step case which is handled next.

Step Case. By way of induction hypothesis (I1)–(I3), suppose we have constructed a
B-admissible schedule R0,R1, . . . ,Ri−1 (I2) such that for every j ≤ i (using course-of-values
induction) the yield of R0,R1, . . . ,R j−1 with respect to C j−1 lies in the range predicted by C j (I1)
and for every free schedule R′ from (Σn j ,ρn j) the extension R0,R1, . . . ,R j−1,R′ is C j-consistent
(I3). Moreover, from (I3) we may assume that if C j(x)�>:1 then R′ is reset-free for x.

From (Σni,ρni) we now continue to schedule all and only those actions that are active and
Ci-enabled. We do this until ιP stops under Ci, i.e., until it completes or all remaining active
threads are Ci-blocked. This procedure builds a round schedule Ri and leads to a configuration
(Σni+1,ρni+1). Then, ni+1 is the Ci-stopping index of P in R0,R1, . . . ,Ri−1,Ri. If it happens that
there is no active process in Σni which is Ci-enabled, then Σni+1 = Σni and ρni+1 = ρni . In this
case, we just move on to the next iteration round Ci+1 of the fixed point without progressing the
schedule.

In the sequel we will argue that (I2) – the schedule R0,R1, . . . ,Ri−1,Ri is B-admissible, that
(I1) – its yield is constrained by Ci+1 and (I3) – that every freely extended schedule R0, R1, . . .,
Ri−1, Ri, R′ is Ci+1-consistent so that if Ci+1(x)�>:1 then R′ is reset-free on x.

(I1) By induction hypothesis (I3) the schedule R0,R1, . . . ,Ri−1,Ri is Ci-consistent. Consider
that Ci+1 = 〈〈P〉〉⊥Ci

. Then, we apply Prop. 11(ii) to obtain the lower constraint

Ci+1 � low |R0,R1, . . . ,Ri−1,Ri|Ci(ιP)

and the upper bound
upp |R0,R1, . . . ,Ri−1,Ri|Ci(ιP)�Ci+1

is provided by Prop. 12(ii). Both together yield Ci+1 v |R0,R1, . . . ,Ri−1,Ri|Ci(ιP), which
proves (I1) for the extended sequence.
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(I2) In order to show that Ri preserves B-admissibility we argue by induction on the length of Ri.
Refer to Def. 4 for the notion of B-admissibility. Suppose that after a partial B-admissible
schedule

(Σn0,ρn0)
R0,R1,...,Ri−1
� (Σni,ρni)

R′i
� (Σn,ρn)

T→ (Σn+1,ρn+1) (27)

of Ci-enabled actions R′i, which are a prefix of Ri, we reach a process pool Σn with n < ni+1,
containing an active and Ci-enabled action T ∈ Σn which is now picked to be executed.
We show that whatever such T we choose, we preserve B-admissibility.

– “No reset after set.” Suppose some set !x is executed before in round j ≤ i, i.e., in R′i
or as part of R0,R1, . . . ,Ri−1. Now, since every C j-enabled action is also Ci-enabled,
the fact that !x has been scheduled already, by construction, implies [⊥,>]:1vCi(x)
which is the same as Ci(x)�>:1. The induction hypothesis (I3) tells us that there
cannot be a reset on x in any free (schedule) extending R0,R1, . . . ,Ri−1. Hence, the
action T cannot be a reset ¡x in this case.

– “Late writes are ineffective and confluent.” Suppose T is a write access to a variable
x∈V and some read access x ? P′ : Q′ has been executed before in R0,R1, . . . ,Ri−1,R′i,
say in round j≤ i at step n j < k≤ n j+1, where it must be C j-enabled. Let R0,R1, . . . ,
R j−1,R′j : (Σn0,ρn0)� (Σk,ρk) be the prefix sequence up to the point of the read.
From C j-enabledness of the read we obtain b:1vC j(x) for b ∈ {⊥,0,1}. Also, we
must have j > 0 because of the choice of the initial environment C0.

∗ We first show that T must be a set !x and b = 1.
Recall that the inclusion C j vCi means that b:1vCi(x). But then Ci(x)�>:1,
so that the induction hypothesis (I3) implies that T cannot be a reset of variable
x. Moreover, since the schedule R0,R1, . . . ,Ri−1,R′i,T is Ci−1-consistent by
induction hypothesis (I3), applying Prop. 12(ii) implies that

upp |R0,R1, . . . ,Ri−1,R′i,T |Ci−1(ιP)(x)� 〈〈P〉〉⊥Ci−1
(x) =Ci(x)� b:1. (28)

On the other hand, the last action T is a set !x, so we also have

1� |R0,R1, . . . ,Ri−1,R′i,T |Ci−1(ιP)(x) (29)

by Def. 10(4). But (28) and (29) together imply b = 1.

∗ We next show that T is ineffective.
Exploiting the induction hypothesis (I2) gives

1:1= b:1vC j(x)v |R0,R1, . . . ,R j−1|C j−1(ιP)(x)

which can only hold if there is at least one set !x already in the schedule
R0,R1, . . . ,R j−1 which is before the read x ? P′ : Q′ at step k in round j. Other-
wise, we would have

|R0,R1, . . . ,R j−1|C j−1(ιP)(x)� 0:2

(by Def. 10). Hence T is ineffective.
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∗ It remains to see that T is confluent with the read.
By C j-consistency of R0,R1, . . . ,Ri−1,R′i and 1:1 v C j(x), the memory value
must be ρk−1(x) = 1 at the point of the read. Then, a conflict to violate conflu-
ence can only occur if there exists a free schedule R′′ forward from Σk so that at
(i) the end of R0,R1, . . . ,R j−1,R′j,R

′′ both the read and the set are jointly active
and (ii) during this free schedule the memory value of x is changed to 0 by a
reset action ¡x. However, since any such free schedule extends from (Σn j ,ρn j)
this contradicts the induction hypothesis (I3) and C j(x)� 1:1 which tells us that
there cannot be a reset of x in R′j,R

′′.

(I3) We claim that the extended schedule R0,R1, . . . ,Ri−1,Ri,R′ is Ci+1-consistent for every
free schedule R′. Further, if Ci+1(x)�>:1 then R′ contains no reset ¡x.

Let us assume a read action T.prog = x ? P : Q is performed for which the environment
Ci+1 is decided, say b:1vCi+1(x) for some b ∈ {⊥,0,1}, which implies Ci+1(x)� b:1 in
particular. We must show that the memory value of x at the point of the read is identical to
the prediction b.

– Clearly, the read cannot be in round R0 since all reads are C0-blocked and thus not
executable in R0.

– Next, suppose the read on x in question occurs in round R j for 1≤ j ≤ i, say at index
n j−1 < k ≤ n j. As the read has been performed in round R j, it is C j-enabled, and
so b j:1vC j(x) for some b j ∈ B. But then C j vCi+1 implies b j = b. On the other
hand, by induction hypothesis, R0,R1, . . . ,Ri−1,Ri,R′ is C j-consistent and so in fact
ρk−1(x)

.
= b, as desired.

– The remaining possibility is that the read T occurs in R′. Without loss of generality
we can assume that the read is the last action of R′. Using invariant (I1) for the
sequence R0,R1, . . . ,Ri which was proven above, we conclude b:1 v Ci+1(x) v
|R0,R1, . . . ,Ri|Ci(ιP)(x). Further, by invariant (I2) proven above, the schedule R0,R1,
. . . ,Ri is B-admissible and thus in particular SC-admissible. But then Lem. 4 says
that the value of x in memory ρni+1 is fixed by Ci+1. More specifically, ρni+1(x)

.
= b.

By way of contradiction, suppose that ρk−1(x) 6 .= b, i.e., the memory read by T at the
end of R′ is different from ρni+1(x):

One possibility is that b = 1 and the memory read by T is ρk−1(x) = 0. As seen
above, the value of x in memory ρni+1 is 1. Hence, the schedule R′ must activate
a reset ¡x to bring x’s value to 0. Also, the fact that 1:1 v |R0,R1, . . . ,Ri|Ci(ιP)(x)
means there must have been a set !x executed in some round R j for j ≤ i. This
set action !x must be C j-enabled (otherwise it would have blocked and not been
executed), i.e., [⊥,>]:1vC j(x)vCi(x) or 〈〈P〉〉⊥Ci−1

(x) =Ci(x)�>:1. But then the
reset in the schedule R′ contradicts the induction hypothesis (I3).

The other possibility for a violation of Ci+1-consistency is when b ∈ {⊥,0} and the
read T at the end of R′ finds the memory value of x is 1 when b = 0, or different
from from ρni+1(x) when b =⊥. In any case, this can only happen if the schedule
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R′ from (Σni+1,ρni+1) executes a set !x or a reset ¡x to change the memory from
ρni+1(x) to ρk−1(x). We exploit that the schedule R0,R1, . . . ,Ri,R′ is Ci-consistent
by inductive invariant (I3). So we can use Prop. 12(ii) to conclude that the se-
quential yield of R0,R1, . . . ,Ri,R′ cannot go above level b. More precisely, since
upp |(R0,R1, . . . ,Ri,R′)@0|Ci(ιP)(x) = upp(⊥)�⊥, Prop. 12(ii) guarantees that

upp |R0,R1, . . . ,Ri,R′|Ci(ιP)(x)� 〈〈P〉〉⊥Ci
=Ci+1(x)� b:1. (30)

Now if R0,R1, . . . ,Ri,R′ is to contain a write access at all then (30) implies b 6= ⊥.
Hence, b = 0 and the read T at the end of R′ finds the memory value of x is 1.
Therefore, the schedule R′ must execute a set !x to change the memory value of x from
ρni+1(x) = 0 to ρk−1(x) = 1. This, in turn, implies 1� |R0,R1, . . . ,Ri,R′|Ci(ιP)(x) by
Def. 10(4). However, this contradicts (30) as no status γ satisfies both 1 � γ and
upp(γ)� 0:1.

Finally, by way of contradiction, suppose R′ contains a reset ¡x and Ci+1(x)�>:1.
Let T be the reset action in R′ and R′′,T the prefix of R′ up to and including the
reset. Then by Ci-consistency of the schedule R0,R1, . . . ,Ri,R′′,T , from the induction
hypothesis (I3), and Prop. 12(ii) we infer

upp |R0,R1, . . . ,Ri,R′′,T |Ci(ιP)(x)� 〈〈P〉〉⊥Ci
(x) =Ci+1(x)�>:1.

Hence, the init status of x is not raised to 2 by the reset T . Now by Def. 10(5) this
can only be if

upp |R0,R1, . . . ,Ri,R′′|Ci(ιP)(x)�>:0.

But this is a contradiction: By construction Σni+1 is the Ci-stop of P, so already
the first action taken by R′′ is Ci-blocked. As a consequence, this action (either a
conditional or a set) must raise the speculation status to 1 for all variables, so that in
fact

⊥:1� upp |R0,R1, . . . ,Ri,R′′|Ci(ιP)(x).

This completes the proof for (I3).

It is important to observe that the inductive step for (I3) depends on the inductive steps (I1)
and (I2). However, the proof of (I1) does not need (I3) at all and the step for (I2) only requires the
induction hypothesis on (I3). Thus, there is no logical cycle and the induction is well-grounded.

SC-Read-Determinacy. To prove the determinacy part, let us fix an SC-admissible instant
R : (Σ0,ρ0)� (Σn,ρn), where n = len(R). Observe that all processes in every pool Σi are
descendants of ιP. We are going to cover the micro-sequence R incrementally with the results
from the fixed point iteration, showing that R can only ever execute variable read accesses within
the corridor predicted by the fixed point responses Ci, where C0 = [⊥,>]:2 and Ci+1 = 〈〈P〉〉⊥Ci

.
This exploits the soundness of lower and upper predictions, Props. 11 and 12.

Initially, C0 does not constrain anything, so R may be arbitrary. But as the sequence of Ci
narrows down in the fixed point iteration, less and less uncertainty remains for where R is headed.
Eventually, at the read-safe fixed point C∗, all read variables of P receive a crisp value from
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{⊥,0,1} by which we find the final response of R is pinned down exactly. More precisely, at
this point we find C∗ v |R@n|(ιP), thus proving that all read variables eventually receive one of
the statuses ⊥ (variable pristine, retains initial memory value), 0 (variable initialized and never
updated later) or 1 (variable initialized and then updated but never reset again later). In view of
Lem. 4 this ascertains determinacy and coincidence between the fixed point status and the final
memory for all read variables x ∈ rd(P) in all SC-admissible executions of P, independent of the
initial values in memory ρ0: If C∗(x) =⊥ then the value of x is not changed in any SC-admissible
execution for any initial memory, i.e. ρ0(x) = ρn(x). If C∗(x) = b ∈ B, then ρn(x) = b, i.e. the
final value of x is constant b for all initial memories. This verifies condition (2) of Def. 6 for
the temporary variables W = rd(P). For all other, pure write variables V \ rd(P) (let us call
them output variables), Def. 6 only requires that the final memory is uniquely determined for
each initial memory. But if we fix the initial memory ρ0 and we know that all read accesses to
variables, by C∗-consistency, see a fixed constant value, then the only non-determinism left is
in the concurrent execution of writes. Yet, since SC-admissibility prescribes a fixed protocol
ordering “resets before sets” on such concurrent writes to output variables, the final value of the
output variables is uniquely determined. This proves SC-read-determinacy.

In the following we show that every SC-admissible execution R of P is C∗-consistent and C∗v
|R@n|(ιP). We start with the start index i0 = 0 and initial concurrent environment C0 = [⊥,>]:2
which does not impose any constraint on R. Trivially, the execution R is C0-consistent for thread
ιP, since no variable is decided in C0. Let i1 be the C0-stopping index of P in R. It must exists
because R is an instant and thus a maximal micro-sequence. The first iteration of the response
function yields C1 = 〈〈P〉〉⊥C0

. Note that low |R@0|C0(ιP) = low(⊥)�⊥. Prop. 11(iii) then says
that C1� low |R@i1|C0(ιP) and thus for all i1≤ j≤ n, C1� low |R@i1|C0(ιP)� low |R@ j|C0(ιP).
Hence, from micro-step i1 onwards, the sequential yield of the sequence R must stay above
the lower bound of the prediction C1. On the other hand, upp |R@0|C0(ιP) = upp(⊥)�⊥. So,
by Prop. 12(ii) we derive upp |R@n|C0(ιP)�C1. But this means that for all i1 ≤ j ≤ n we get
upp |R@ j|C0(ιP) � upp |R@n|C0(ιP) � C1. In other words, from micro-step i1 onwards, the
yield of the sequence R must stay below the upper margin given by the prediction C1. In sum,
we find that R is squeezed into the corridor given by C1, i.e.,

C1 v |R@ j|C0(ιP) for all i1 ≤ j ≤ n. (31)

Thus, the environment C1 is a sound approximation of the yield from i1 onwards.

We now show that R is also C1-consistent (for ιP). Take any variable x ∈ rd(P) ⊆ V such
that b:1vC1(x) for some b ∈ B and a read action R( j) = 〈ι ,x ? Q1 : Q2,Ks〉 ∈ Σ j−1 on x, with
ιP � ι , occurring at some step index 0 < j ≤ n. First, suppose the read is after the C0-stop, i.e.,
i1 < j ≤ n, Then, (31) means |R@ j− 1|C0(Root.id) = b:r, for r � 1, given that Root.id = ιP.
Therefore, by Lem. 4(ii) and SC-admissibility, we conclude that ρ j−1(x)

.
= b as required. What

if the read action R( j) on x takes place at some step index 0 < j ≤ i1? If R( j) is C0-enabled
then b′:r′ vC0(x) and thus b′ = b because of C0 vC1. Then, we have ρ j−1(x)

.
= b immediately

because of C0-consistency. So, let us assume R( j) is C0-blocked.

We claim that |R@ j−1|C0(ιP)(x) = b:r′, from which the desired result follows by Lem. 4(ii)
and SC-admissibility. The upper bound part of |R@ j−1|C0(ιP)(x) = b:r′ this is already estab-
lished because upp |R@ j− 1|C0(ιP)(x) � upp |R@i1|C0(ιP)(x) � C1(x) � b:1 by (31) and the
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assumption b:1vC1(x). Thus, it remains to show that

b:0� |R@ j−1|C0(ιP)(x). (32)

This is trivially true if b = ⊥. So, suppose b ∈ {0,1} henceforth. By Prop. 11(ii) (Lower
Soundness) there exists a descendant ιP � ι ′ and index i ≤ i1 such that b:0 = C1(x)∧> �
|R@i|C0(ι

′)(x)∨ [⊥,>]�>, which is the sames as b:0= |R@i|C0(ι
′)(x). Without loss of gener-

ality, let i be the earliest index where this happens. We claim that i≤ j−1, from which (32) fol-
lows directly by monotonicity: b:0= |R@i|C0(ι

′)(x)� |R@ j−1|C0(ι
′)(x)� |R@ j−1|C0(ιP)(x).

By way of contradiction, suppose otherwise, i.e., j ≤ i. First, note that since the read R( j) is
C0-blocked, the init status of the yield in thread ι is above 1 from index j for all descendants of ι .
This implies that ι ′ cannot be a descendant of ι . Also, by the construction of the index i we have
b:0 6= |R@ j−1|C0(ι

′)(x). So, the status of x in thread ι ′, which is concurrent to ι or an ancestor
of ι , changes from something different from b (hence strictly below) at index j−1 to status b at
index i≥ j. By Prop. 4(iv) (SC-Admissibility) the thread ι ′ cannot be concurrent to ι , whence it
must be a proper ancestor of ι , i.e., ι ′ ≺ ι . However, this is impossible, too, because no proper
ancestor can execute any action (here: between index j and n) while one of its descendants (here
ι at index j−1) is still active. This completes the proof that R is C1-consistent for ιP.

We now repeat the argument for ιP and C1. Let 0 ≤ i2 ≤ n be the C1-stopping index of P
in R. From C0 vC1, which implies that every action which is C1-blocked it also C0-blocked,
we conclude that i2 ≥ i1. Then, Prop. 11(iii) gives us 〈〈P〉〉⊥C1

=C2 � low |R@i2|C1(ιP). Further,
Prop. 12(ii) implies upp |R@n|C1(ιP)�C2. We conclude that from i2 onwards, the sequence R
must remain in the corridor given by C2. Formally,

C2 v |R@ j|C1(ιP) for all i2 ≤ j ≤ n. (33)

We argue that R is C2-consistent for ιP exactly as above, and continue in the same fashion,
inductively, until we reach the fixed point C∗ = µC.〈〈P〉〉⊥C ∈ {⊥,0,1}, thus proving that R is
C∗-consistent for ιP, i.e., all read accesses to variables in R, which receive a crisp boolean value
in the read-safe environment C∗ read the from the memory the value prescribed by C∗. Further,
given that n is the C∗-stopping index, a final application of Props. 11 and 12 permits us to
conclude that C∗ v |R@n|(ιP), which was to be shown.

5 Related Work
The usefulness of synchronisation primitives is well-established in main-stream concurrent
programming. E.g., C++ and Java are based on a multi-threaded shared-memory execution model
which provides synchronisation of methods to isolate threads and to ensure safety properties such
as mutual exclusion. The clock synchronisation (pause) and associated scheduling constraints of
our SMoCC approach may also be seen as a synchronisation pattern to ensure memory safety. It
provides global snapshot barriers and pruning of thread interleaving with the aim of ensuring
reactiveness and memory determinacy. The programmer must decide which synchronisation
model is the right one for a given application context. In reactive and embedded systems the
SMoCC has turned out to be a natural choice.
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In terms of programming languages, the work presented here is at the interface between
synchronous concurrent languages and C-like sequential languages, and is strongly influenced by
both worlds. Edwards [25] and Potop-Butucaru et al. [69] provide good overviews of compilation
challenges and approaches for concurrent languages, including synchronous languages. They
discuss efficient mappings from Esterel to C, thus their work is related to ours in the sense
that we present a means to express Esterel-style signal behavior and deterministic concurrency
directly with variables in a C-like language. However, a key difference is that we do not “compile
away” the concurrency as part of our signal-to-variable mapping, but fully preserve the original,
concurrent semantics with shared variables.

Introducing the constructive causality classes SBC, IBC, BC we redress the synchronous
model of computation, well-known in the embedded systems domain, for main-stream program-
ming. There are already many proposals that extend C or Java with synchronous concurrency
constructs. Reactive C [15] is an extension of C that employs the concepts of ticks and pre-
emptions, but does not provide concurrency. FairThreads [16] are an extension introducing
concurrency via native threads. PRET-C [5] and Synchronous C, a.k.a. SyncCharts in C [82],
provide macros for defining synchronous concurrent threads. SC also permits dynamic thread
scheduling, and thus would be a suitable implementation target for the pSCL language discussed
here. SHIM [78], another C-like language, provides concurrent Kahn process networks with
CCS-like rendezvous communication [41] and exception handling. SHIM has also been inspired
by synchronous languages, but it does not use the synchronous programming model, instead
relying on communication channels for synchronisation. None of these language proposals
claims and proves to embed the concept of Esterel-style constructiveness into shared variables as
we do here. As far as these language proposals include signals, they come as “closed packages”
that do not, for example, allow to separate initialisations from updates.

As traditional sequential, single-core execution platforms are being replaced by multi-
core/processing architectures, determinism is no longer a trade secret of synchronous pro-
gramming but has become an important issue in shared memory concurrent programming.
Powerful techniques have recently been developed to verify program determinism statically. For
Java with structured parallelism, the tool DICE by Vechev et al. [80] performs static analysis to
check that concurrent tasks do not interfere on shared array accesses. Leung et al. [52] present a
test amplification technique based on a combination of instrumented test execution and static
data-flow analysis to verify that the memory accesses of cyclic, barrier-synchronised, CUDA
C++ threads do not overlap during a clock cycle (barrier interval). For polyhedral X10 programs
with finish/async parallelism and affine loops over array-based data structures, Yuki et al. [87]
describe an exact algorithm for static race detection that ensures deterministic execution.

These recently published analyses [80, 52, 87] are targeted at data-intensive, array/point-
er/based code building on powerful arithmetical models and decision procedures for memory
separation. Yet, they address determinism in more limited models of communication. SMoCC
constructiveness concerns the determinism and reactivity of “control-parallel” rather than “data-
parallel” synchronous programs and permits instantaneous communication between threads
during a single tick. The challenge is to deal with feedbacks and reaction to absence, as in
circuit design, which is difficult. The causality of the SMoCC memory accesses cannot nec-
essarily be captured in terms of regular affine arithmetics as done in the polyhedral model
of [80, 87] or reduced to a “small core of configuration inputs” as in [52]. Further, analyses such
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as [80, 52, 87] verify race-freedom for maximally strong data conflicts: Within the barrier no
write must ever compete with a concurrent read or another conflicting write. Soundness of the
analysis is straightforward under such full isolation. Full thread isolation is fine for Moore-style
communication but does not hold in the SMoCCs whose hallmark is the Mealy model. Threads
do in fact share variables during a clock phase and multi-emissions are permitted. Analysing
SMoCC determinism, therefore, is tricky and arguing soundness of the constructivity analysis
in the SMoCCs (our Thm. 1) is non-trivial. This is particularly true if reaction to absence is
permitted, as in our work, which introduces non-monotonic system behaviour on which the
standard (naive) fixed-point techniques fail.

For functional programming languages, traditionally abstracting from the impurity of low-
level scheduling, determinism on concurrent platforms also has become an issue. For instance,
Kuper et al. [49] extend the IVar/LVar approach in Haskell to provide deterministic shared
data-structures permitting multiple concurrent reads and writes. This extension, dubbed LVish,
adds asynchronous event handlers and explicit value freezing to implement negative data queries.
Since the negative information is transient, run-time exceptions are possible due to the race
between freezing and writing. However, all error-free executions produce the same result which
is called quasi-determinism. Because of the instantaneous communication and the negative
information carried by the value status of shared data, the quasi-deterministic model of [49]
is similar in spirit to our approach. However, there are at least two differences: First, our
programming model deals with first-order imperative programs on Boolean data, while [49]
considers higher-order λ -functions on more general “atomistic” data structures. Second, our
〈〈 〉〉 constructivity includes reactivity, which is a liveness property, whereas [49] only address
the safety property of non-interference. Our two-dimensional lattice I(D) seems richer than
the lifted domain Freeze(D) of [49] which only distinguishes between the “unfrozen” statuses
[⊥,>], [0,>], [1,>], [>,>] (lower information) and the “frozen” statuses [⊥,⊥], [0,0], [1,1]
(crisp information). There do not seem to be genuine upper bound approximations expressible
in Freeze(D). It will be interesting to study the exact relationship between the two models on a
common language fragment.

There is also a large body of related work investigating different notions of constructiveness.
Causal Esterel programs on pure signals satisfy a strong scheduling invariant: they can be
translated into constructive circuits which are delay-insensitive [17] under the non-inertial delay
model, which can be fully decided using ternary Kleene algebra [63]. This makes Malik’s
work [57] on causality analysis of cyclic circuits applicable to constructiveness analysis of
(instantaneous) Esterel program. This has been extended by Shiple et al. [75] to state-based
systems, as induced by Esterel’s pause operator, thus handling non-instantaneous programs as
well. The algebraic transformations proposed by Schneider et al. [74] increase the class of
programs considered constructive by permitting different levels of partial evaluation. Pnueli
and Shalev’s non-deterministic model of Statecharts [68] has been studied using an axiomatic
semantics in intuitionistic logic [53], which subsequently has been extended to Esterel [54]. In [3]
a game-theoretic approach is used to define a hierarchy of levels constructiveness using maximal
post fixed points. However, none of these approaches considers imperative programming,
separates initialisations and updates, or permits sequential writes within a tick as we do here.

Recently, Mandel et.al.’s clock domains [59] and Gemünde et.al.’s clock refinement [31]
provide sequences of micro-level computations within an outer clock tick. This also increases
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sequential expressiveness albeit in an upside-down fashion compared to our approach. Our
work on SC aims to reconstruct the scope of a synchronous instant on top of the primitive
notion of sequential composition. Different classes of constructiveness are distinguished by how
generous they are in bundling sequences of variable accesses from concurrent threads within
a single clock tick. In the clock domains and clock refinement approach, clocks are the only
sequencing mechanism, so micro-level sequencing is implemented in terms of lower-level clocks.
It should be possible to combine our approach with that of [59, 31] by considering the sequential
composition operator as a local micro-level clock nested inside an outer, and global, macro-level
clock. This might generate a useful theory of causal clock abstractions.

Our work focuses on imperative, i.e., control-dominated synchronous programs rather than
data flow semantics. Recently, Talpin et.al. within the “Polycore” project have started important
work on semantically integrating the control-flow synchronous language Quartz with the data
flow language Signal. In [76] they present the first micro-step (or “small-step”) operational
fixed point semantics that is capable of executing both Signal code and the guarded actions of
Quartz. The operational semantics models the behaviour of each variable in a 6-valued lattice
domain D coding the signal statuses unknown (?), absent (⊥), present (>), present-and-false
(0), present-and-true (1) as well as inconsistency ( ). Based on the operational execution model
they define the notion of constructive programs and prove a soundness theorem stating that each
constructive program is deterministic.

One difference compared to our work is that the domain I(D,P) supports reaction to absence6

which is a hall-mark of Esterel-style SMoCCs and motivates its richer interval structure. On
the other hand, the polychronous language of [76] is richer than pSCL in that is has preemption
and boolean data values which we do not consider here. However, these concepts can be
easily mapped to pSCL, as demonstrated in SCCharts [83]. Finally, note that our definition of
constructive programs (e.g., Def. 9) is based on a genuine denotational semantics 〈〈 〉〉, not an
operational one as in [76]. E.g., it follows from our results that if two program P and Q generate
the same response function 〈〈P〉〉SC = 〈〈Q〉〉SC in S and C, then P and Q are behaviourally equivalent
in all program contexts. Also, our operational semantics (e.g.. Sec. 2) uses free multi-threaded
scheduling in a memory that is ignorant of the signal statuses. In particular, it does not perform
any implicit enabledness, synchronisation or deadlock checks like the operational semantics
of [76] does, in which execution maintains scheduling information through variable values in
D . Hence, our Soundness Theorem 1 which guarantees B-reactiveness and SC-determinacy
makes a stronger soundness statement which is considerably more difficult to prove. Our result
can be applied directly to standard imperative C/Java code which is not normally executed
under a D-instrumented run-time scheduler. Yet, given the limited language constructs of pSCL
compared to [76], it would be very interesting to combine both approaches.

An acknowledged strength of synchronous languages is their formal foundation [8], which
facilitates formal verification, timing analyses, and inclusion results of the type presented in this
work. This formal foundation has been developed in several ways in the past; e.g., Berry [12]
presents several Plotkin-style structural operational semantics [67], as well as a definition in
terms of circuits for Esterel. Our functional/algebraic approach based on I(D,P) generalizes the

6 The oversampling feature of Signal may be seen as an implicit form of reaction to absence in the asynchronous
data-flow part of [76]. Synchronous reaction to absence would map ⊥ to > and > to ⊥ in the domain D which
does not seem to be expressible by the control-flow operators considered in [76].
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“must-cannot” analysis for constructiveness [12] and the ternary analysis for synchronous control
flow [71] and circuits [57, 75]. The extension lies in the ability to deal with non-initialization
(⊥) and re-initialization (>) in sequential control flow, which the analyses [12, 71, 57, 75, 76]
cannot handle. Due to the two-sided nature of intervals our semantics permits the modeling of
instantaneous reaction to absence, a definitive feature of Esterel-style synchrony for control-
flow languages. In contrast, the balance equations (see, e.g., [51]) or the clock calculus (see,
e.g., [18, 66, 30, 76]) of synchronous reactive data flow do not handle reaction to absence. These
analyses are concerned with inter-tick causality (i.e., in which ticks a signal is present) rather than
intra-tick causality (i.e., presence or absence in a given tick) which we focus on here. Reflected
into I(D), Lustre clocks collapse the signal status (within a tick) to either ⊥ (value not initialized
or computed) or [0,>] (value computed). However, since each program abstracts to a continuous
function on I(D,P)-valued environments our model fits naturally into the Kahn-style fixed-points
semantics and scheduling analysis for synchronous block diagrams [27, 70].

6 Conclusions
In this report we study constructiveness analysis, the center-piece of the synchronous model
of concurrent computations, from a scheduling perspective. We advocate the view that con-
structiveness is the property of a synchronous program being deadlock-free and determinate
with respect to a given scheduling protocol defining admissible executions. This permits us (i)
to apply the concept to (clocked) multi-threaded shared memory programs and (ii) to obtain
different interpretations of constructiveness by varying the notion of admissibility. The two
notions addressed are Berry-admissibility (Def. 4) introduced here and SC-admissibility (Def. 5)
defined in [86]. Both are instances of the “init-update-read” protocol, which schedules initialising
writes before updating writes, and writes before reads.

For a small imperative synchronous language pSCL we extend the causality analysis from [4]
by initialisation information P and define the class of IBC programs as those (recursion-free)
pSCL programs for which abstract simulation in the extended domain I(D,P) returns a reset- and
read-safe fixed-point (Def. 9). We then prove that this implies deadlock-freeness under Berry-
admissible scheduling (Berry-reactiveness) and determinacy under SC-admissible scheduling
(SC-read-determinacy). This shows that the denotational fixed-point semantics which asso-
ciates with every program P a response behaviour 〈〈P〉〉 in the domain I(D,P) is sound and
compositional for the operational semantics defined in terms of micro-step scheduling. This
strengthens the results of [4] showing that IBC programs are guaranteed to be deadlock-free and
determinate under scheduling principles more robust than those in [4]: B-reactiveness does not
permit reinitialisations as SC-reactiveness does in [4]. SC-read-determinacy forces read variables
to be stable (any change of a read variable must be constant across all initial memories), which is
not precluded by soundness in [4].

We leave as an open problem the question if the I(D,P) fixed-point semantics is also complete
for the notions of admissible scheduling discussed here, or, if there are natural variations of the
scheduling principles for which our semantics is complete. The ideal is a situation like in [63]
where it is shown that Berry’s must-cannot analysis [12] when applied to circuits is (sound and)
complete for scheduling under non-inertial delays. In another direction, it will be interesting
to search for suitable, more expressive, extensions of the domain I(D,P) in which the fixed
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point analysis of pSCL is complete for SC-constructiveness as defined in [86]. Our fixed-point
analysis is sound but rejects programs with more than one init-update-read cycle. This, however,
is permitted by SC-constructiveness.
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